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Driving a pure spin current from nuclear-polarization gradients
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A pure spin current is predicted to occur when an external magnetic field and a linearly inhomogeneous spin-
only field are appropriately aligned. Under these conditions (such as originate from nuclear contact hyperfine
fields that do not affect orbital motion) a linear, spin-dependent dispersion for free electrons emerges from the
Landau Hamiltonian. The result is that spins of opposite orientation flow in opposite directions giving rise to a
pure spin current. A classical model of the spin and charge dynamics reveals intuitive aspects of the full quantum
mechanical solution. We propose optical orientation or electrical polarization experiments to demonstrate this
outcome.
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I. INTRODUCTION

The coupling of spin and orbital currents is integral to
spintronics [1,2]. The (inverse) spin Hall effect is a hallmark
example where (spin) charge current is converted to (charge)
spin current [3–6]. Other effects include spin galvanic or
“Edelstein” effects (and their reciprocal) which convert charge
current into spin polarization [7–9]. Each of these rely on the
intrinsic coupling of spin and charge via the spin-orbit effect.
Despite this there are a few examples of spin-charge current
coupling not through spin-orbit effects, such as the spin Gunn
effect [10,11] or spin bottleneck effects in localized [12] or
extended [13,14] materials, which rely on the Pauli exclusion
principle and dynamical spin correlations.

In this article an alternate method of spin-charge coupling
is described that relies on electron-nuclear spin coupling and
does not require spin-orbit coupling, the Pauli exclusion prin-
ciple, or electronic spin-spin correlations.

The origin of the effect is dynamic nuclear polarization:
large nuclear spin polarizations that can exert a sizable nuclear
field on the electronic system [15,16]. These nuclear spin
polarizations are generated by electron nonequilibrium spin
transfers to moment-carrying nuclei through the hyperfine
interaction which accumulate due to the slow spin relaxation
time of nuclei. The resultant nuclear field, although it is a
magnetic field, is highly concentrated near the nuclei (Fermi
contact potential). Due to its localized character and the lack
of an extended vector potential acting on the orbital motion,
this nuclear field acts only on spin and not orbital motion,
and is sometimes referred to as an effective field. Here we
designate it as a “Zeeman-only field.”

This absence of coupling between nuclear spin and elec-
tronic orbital momentum entails that the field from polarized
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nuclei does not contribute to the ordinary Hall effect but may
support a larger anomalous Hall effect due to the increase in
spin splitting [17,18]. How a Zeeman-only field allows spin
components to be spatially separated is the subject of this
article.

Here we show that nuclei with patterned spin polarization,
due to their lack of orbital coupling and spatial inhomogene-
ity, can evince remarkable spin-dependent charge dynamics
leading to pure spin currents or charge currents. Recent work
has demonstrated the importance of inhomogeneous nuclear
fields on coupled electron-nuclear spin dynamics [19,20] but
have not explored the resulting spin-dependent motion. The
spin-motive force may emerge from either the Stern-Gerlach
force or from the combination of Stern-Gerlach and Lorentz
forces. The effect of the net force is to separate up and down
spins along a direction longitudinal or transverse to the effec-
tive field gradient [Fig. 1(b) shows spins separating transverse
to the gradient]. In a longitudinal field configuration, a linear
contribution to the dispersion relation appears for which we
calculate a spin current using a Landau-like Hamiltonian.
We also examine the longitudinal and transverse geometries
within a semiclassical Drude-like model. Finally, we propose
experiments to see this effect by inducing dynamic nu-
clear polarization gradients via patterned optical or electrical
orientation.

II. NUCLEAR FIELD

We treat an electron ensemble in two or three dimensions
with charge q = −e, effective electron mass m, and effective
Landé g factor g∗. We assume that the external field, B0, is
homogeneous and any inhomogeneities lie in a Zeeman-only
field, BZ (r). We choose a Zeeman field based on the mag-
netic interaction between electrons and nuclei: BZ (r) = Bn(r)
where

Bn(r) = bn〈I(r)〉 = bn〈I (r)〉B̂0, (1)
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FIG. 1. Diagram of transverse geometry in n-GaAs where gradi-
ent force is perpendicular to applied field. Trajectories of Eqs. (17)
and (18) are shown. Regardless of initial conditions, spins travel in
opposite directions at the same speed. Blue trajectory is up spin and
black trajectory is down spin. Inset: Orange arrows represent Lorentz
force, red arrows represent Stern-Gerlach force, and green arrows
represent charge velocity.

with

〈I (r)〉 = B2
0

B2
0 + ξB2

�

P(r) · B̂0. (2)

Here bn is the Overhauser coefficient and P(r) = P0 +
β f (r) = P0B̂0 + β f (r)B̂0 is the out-of-equilibrium electron
spin polarization (we assume that thermal electron spin po-
larization is negligible) that is responsible for the dynamic
nuclear polarization. The quantity β controls the magnitude
of the nonuniformity whereas f (r) is the function specifying
the spatial structure of the Zeeman-only field;

√
ξB� is the

strength of the random local field [21]. A coordinate system is
chosen to maintain the external field in the z direction. Bn(r)
lies collinear with B0 (we ignore Knight fields) but its gra-
dient may not; we examine two different linear functions for
f (r): longitudinal [ f (r) = z] and transverse [ f (r) = x]. These
linear functional forms describe slowly varying exponential
functions (−e−ri ∼ ri − 1) of their respective Cartesian coor-
dinate, i ∈ {x, y, z}, so that we can posit the existence of a
constant spin-dependent force as shown later in this article.
Combining these assumptions, the nuclear field is

Bn(r) = cB̂0 + briB̂0, (3)

where

b = bn
B2

0

B2
0 + ξB2

�

β, c = bn
B2

0

B2
0 + ξB2

�

P0. (4)

III. QUANTUM MECHANICAL FORMULATION

The starting point is the Landau level description of free
electrons in a magnetic field. The Hamiltonian for Landau
levels is

H = p2
x

2m
+ 1

2
mω2

c (x − x0)2, (5)

where the Landau gauge, A = (0,B0x, 0), is assumed and
ωc = eB0/m. The harmonic potential is centered at x0 =
−h̄ky/eB0. The lack of propagation in the bulk is shown
by a quick computation of the velocity vy = h̄ky/m −
qAy(x0)/m = h̄ky/m − qB0x0/m = 0. The wave functions are

�(r, x0) = ei(kyy+kzz)

√
2nn!

(mωc

π h̄

)1/4

× e− mωc (x−x0 )2

2h̄ Hn

(√
mωc

h̄
(x − x0)

)
, (6)

where Hn are Hermite polynomials of degree n. To the best
of our knowledge, prior work has not treated effective or
Zeeman-only magnetic field gradients within the Landau
Hamiltonian. Inhomogeneous real magnetic fields, that op-
erate on spin and orbital degrees of freedom, lead to more
challenging Hamiltonians that exclude analytic solutions. For
instance, a linear magnetic field gradient produces an anhar-
monic oscillator potential [∼(x2 − x2

0 )2] for which there is no
analytic solution [22]. By assuming a constant real magnetic
field in z and a linearly inhomogeneous Zeeman-only field
(directed in z but changes along x; we call this the transverse
geometry), difficulties are avoided since the Landau level
Hamiltonian is unchanged from Eq. (5) except for the addition
of a Zeeman term that contains the field inhomogeneity:

H = p2
x + p2

y + p2
z

2m
+ 1

2
mω2

c (x − x0)2

+ ge

2m
(B0 + c + bx)Sz. (7)

Since the equation depends on neither y nor z, we express
those dependencies of the wave function as planes waves
which leaves us, for each spin orientation σ = ±1, after
“completing the square” and dropping terms of order b2, with

−h̄2

2m

∂2

∂x2
φ(x) + 1

2
mω2

c [x − x′
0]2φ(x)

=
[
ε − h̄2k2

z

2m
− gμb

2
(B0 + c)σ − 1

2
gμBbx0σ

]
φ(x), (8)

where x′
0 = x0 − gμBb

2mω2
c
σ is the new center of the harmonic

potential and φ(x) is the x part of the separable wave func-
tion. The eigenvalues of this modified Landau problem are
E = h̄ωc(n + 1

2 ) which gives a total energy of

ε = h̄ωc

(
n + 1

2

)
+ h̄2k2

z

2m
+ gμb

2
(B0 + c)σ − 1

2
gμBb

h̄ky
eB0

σ,

(9)
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which possesses a linear-in-ky dispersion. The wave function
differs only slightly from the Landau level case: �(r, x′

0).
The group velocity is defined as vg = ∂ε/h̄∂k. vg,x is

trivially zero and vg,z is h̄kz/m but on average also zero
since

∫ ∞
−∞ kzdkz = 0. There is no type of current in x or

z. However the linear term remains for the y group ve-
locity: vg,y = ∂ε/h̄∂ky = − gμBb

2eB0
σ = −rSGωcσ where rSG =

gμBb/2mω2
c and ωc = eB0/m. As expected, different spin ori-

entations move in opposite directions. Summing over the two
spins yields zero charge current. If only a single spin orienta-
tion were present, then a charge current would accompany the
spin-polarized current.

A harmonic confining potential can be added to mimic
edges (Vconfine = mω2

0x
2/2), and remarkably the problem can

still be solved exactly; x0 becomes

x0 → ω2
c

ω2
c + ω2

0

x′
0 = ω2

c

ω2
c + ω2

0

(
x0 − gμbb

2mω2
c

σ

)
(10)

and the eigenvalues are

ε =
(
n + 1

2

)
h̄
(
ω2
c + ω2

0

)1/2 − 1

2

gμBbh̄kyωc

m
(
ω2
c + ω2

0

)σ

+ h̄2k2
y

2m

ω2
0

ω2
c + ω2

0

+ h̄2k2
z

2m
+ gμb

2
(B0 + c)σ, (11)

where the main difference between the unconfined example is
the presence of a kinetic energy with a modified effective mass
(3rd term). The dispersion relation contains spin-dependent
linear and spin-independent quadratic elements. The eigen-
states are not significantly altered beyond a redefinition of x0

and a new normalization factor [23]. Confinement does not
change the results in any significant way; a pure spin current
is still generated traveling in the ∓y direction:

vg,y = −1

2

gμBbωc

m
(
ω2
c + ω2

0

)σ, (12)

where the effect of the harmonic potential is to reduce the
velocity.

The presence of the soft potential allows us to avoid the
unphysical fact that the velocity diverges as ωc → 0 in the
unconfined model. With the soft potential in place, the trans-
verse velocity also vanishes if the applied field vanishes in
accordance with expectations.

IV. SEMICLASSICAL FORMULATION

The spin separation is naturally seen within a simple clas-
sical framework that includes discrete spins. Only real fields
exert a Lorentz force, FL = −ev × B0, while the gradient of
either field (B0 or Bn) may exert a Stern-Gerlach force; since
B0 is uniform, the spin-dependent forces are

FSG = −∇(−μ · B) = −g
μB

h̄
∇(S · B) = −g

2
μBσbẑ (longitudinal), (13)

FSG = −∇(−μ · B) = −g
μB

h̄
∇(S · B) = −g

2
μBσbx̂ (transverse), (14)

for gradients either longitudinal or transverse to B0. Our
choice of Zeeman-only field along ẑ allows the spin dynamics
to be trivial when enforcing semiclassical spins to be in one of
two states S = h̄

2 (0, 0, σ ) where σ = ±1. The charge and spin
dynamics are determined by solving the equations of motion:

FL+ FSG = m
dv

dt
= −eB0v × ẑ − g

2
μBσbẑ (longitudinal),

(15)

FL + FSG = m
dv

dt
= −eB0v × ẑ − g

2
μBσbx̂ (transverse).

(16)

In either case, the constant force acts just like a spin-
dependent effective constant electric field. In the longitudinal
geometry, consisting of a constant force, the charge carrier ac-
celerates indefinitely. By considering damping (to be done in
the next paragraph), this unphysical behavior is avoided. The
system of equations for the transverse model can be solved
exactly for any initial starting place and electron velocity in
a way that mirrors the classical Hall effect calculation except
now with a spin-dependent electric field. For simplicity we
express the solution for an electron starting at the origin with
no initial velocity, v0 = 0,

r(t ) = (−σ rSG(1 − cos ωct ), σ rSG(−ωct + sin ωct ), 0),
(17)

v(t ) = (−σ rSGωc sin ωct, σ rSGωc(−1 + cos ωct ), 0), (18)

which carve out cycloidal skipping orbits as shown in Fig. 1.
The period is T = 2π/ωc. The periodicity of the skipping
orbits is � = −2πrSGσ . From this solution, it is clear that
opposite spins will separate from one another along the y
axis. The average speed along the y axis is vavg = �/T =
−gμBbσ/2eB0 = −rSGωcσ (and zero in x) which is identical
to the quantum calculation. This same average speed remains
regardless of the initial position and velocity of the elec-
trons. For an unpolarized electron spin system, the behavior
is reminiscent of the spin Hall effect where a spin current
is formed. However here, unlike for the spin Hall effect, a
longitudinal charge current and its concomitant dissipation is
unnecessary [24].

For nonballistic transport, in the spirit of the Drude model
we express the spin and charge dynamics in either the longi-
tudinal or transverse geometry as

d p
dt

= −e

(
Eeffσ + p× B0

m

)
− p

τ
(19)

with Eeff,i = gμB

2e
∂BZ,z

∂ri
being an effective electric field gener-

ated from a general Zeeman-only field. A solution is readily
found for each spin orientation in z, σ , in the steady state
which gives for an unpolarized electron ensemble the second
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FIG. 2. Spin current density components versus applied mag-
netic field calculated in n-GaAs for a nuclear hyperfine gradient
longitudinal (ẑ) to the applied field. Parameters: τ = 0.4 ps, n ≈
1016 cm−3,

√
ξB� = 100 mT, bn = −1 T, β = 10−3 nm−1 (corre-

sponds to b ≈ −1 mT/nm in a large field), and g∗ = −0.44.

rank tensor of the spin current, ji,z:

ji,z = gμB

2e
σii

∂BZ,z

∂ri
σ + gμB

2e
εizkσik

∂BZ,z

∂rk
σ (20)

with the conductivity tensor

σ̂c =
⎛
⎝σxx −σyx 0

σyx σxx 0
0 0 σzz

⎞
⎠, (21)

where

σ0 = neμ, σxx = σ0

1 + ω2
cτ

2
, σyx = σxxωcτ, σzz = σ0, (22)

B0 = B0ẑ, and μ is the electron mobility. From this it is
apparent that the charge current is zero, jc = j+ + j− = 0, but
the spin current, js = j+ − j− 
= 0, is not.

V. DISCUSSION

Now the nuclear field of Eq. (2) is used for the Zeeman-
only field and we make estimates of the spin current. In the
longitudinal configuration, with B̂0||ẑ, Eq. (20) reduces to

js = 2σ0Eeff = neμ
g∗μB

e

B2
0

B2
0 + ξB2

�

bnβB̂0 = nμg∗μBbB̂0,

(23)
where we use the g factor for GaAs g = g∗ = −0.44. This
longitudinal spin current is plotted in Fig. 2. The width of the
curve in Fig. 2 is governed by the local field, B�.

Nuclear field gradients could be produced in a variety of
ways. The simplest manner would be for the nuclear field to
be graded by the inhomogeneous electron spin polarization
arising from electron spin diffusion. In GaAs, the largest
possible nuclear field is ≈17 T which would correspond to
efficient dynamic nuclear polarization from highly polarized
electrons [16,21]. In practice, the maximum nuclear field is
smaller; Chan et al. found it near 5 T [25]. At low tempera-
tures, the spin diffusion length in doped GaAs is on the order
of 10 μm. By ignoring additional nuclear spin diffusion, the
decay of nuclear field follows that of the electron spin. If we
take the maximum nuclear field slightly above 5 T, the 1/e
field is about 2 T over 10 μm which leads to b ≈ 0.2 mT/nm.

FIG. 3. Spin current density components versus applied mag-
netic field calculated in n-GaAs for a nuclear hyperfine gradient
transverse (x̂) to the applied field. Parameters: τ = 0.4 ps, n ≈
1016 cm−3,

√
ξB� = 100 mT, bn = −1 T, β = 10−3 nm−1 (corre-

sponds to b ≈ −1 mT/nm in a large field), and g∗ = −0.44.

Further control of b may be possible by controlling the elec-
tron spin diffusion length with an electric field [26,27].

To find the size of longitudinal spin current to be expected
in n-GaAs, we estimate the conductivity to be σ0 = neμ =
2000/(
m) with n = 1016 cm−3 and μ = 104 cm2/V s. The
effective “electric field” is determined by

Eeff = g∗μBb

2e
= (−0.44)(9.3 × 10−24J/T )

2 × 1.6 × 10−19C
b, (24)

which computes to be 1.3 × 10−5b J/(T C). Using b = 0.2
mT/nm, we find Eeff ≈ 3 V/m. The spin current would be
2σ0Eeff = 1.2 A/cm2 which is comparable to values mea-
sured in the spin Hall mechanism [28,29].

Larger linear effective field gradients may be possible by
optically orienting [16] spin with an appropriate optical grat-
ing. Through the process of dynamical nuclear polarization,
an effective field is created parallel to the applied field with
a transverse [Fig. 1(a)] or longitudinal geometry. The “slope”
of the linear grating will dictate the strength of β or b. After
generating the nuclear field and allowing the electronic spin
to relax, an unpolarized pump can excite carriers that will
undergo the dynamics described herein. A pure electron spin
current will cross the sample. Note that since injected spin-up
carriers are transported in the opposite direction to injected
spin-down carriers, the spin current is independent of the in-
jected spin polarization. Kerr or Faraday rotation spectroscopy
may then resolve the opposite spins on either side of the pump
beam’s spot. An alternate method of measurement, which may
avoid charge recombination of spin carriers, is, after preparing
the nuclear fields in the same manner, to have a polarized
pump beam generate an imbalance of conduction electron
spins which then result in a charge current, proportional to the
injected spin polarization, to be measured at opposite contacts.

Our focus has been on the longitudinal spin current (as
opposed to the transverse spin current) since it is able to
achieve larger values in a broad field range. For completeness,
we display the transverse spin current in Fig. 3. There are two
field scales present: the narrow width is ∼B� and the larger
width scales with the momentum relaxation rate.
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VI. CONCLUSION

In this article, we have demonstrated how nuclear fields,
which are effective magnetic fields that do not affect orbital
motion when uniform, induce spin and charge currents when
graded. Significant nuclear fields (on the order of teslas) are
commonly created in doped GaAs which offer the chance
to observe the effects described here. Managing gradients of
these fields remains to be seen; we suggest an optical means
by which dynamic nuclear polarization is filtered across
a sample by selecting an appropriate optical grating. Our

estimate of A/cm2 spin current is similar to spin Hall currents
measured in n-GaAs.
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