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Deep inertial sequence learning has shown promising odometric resolution over model-based approaches for trajectory

estimation in GPS-denied environments. However, existing neural inertial dead-reckoning frameworks are not suitable for

real-time deployment on ultra-resource-constrained (URC) devices due to substantial memory, power, and compute bounds.

Current deep inertial odometry techniques also suffer from gravity pollution, high-frequency inertial disturbances, varying

sensor orientation, heading rate singularity, and failure in altitude estimation. In this paper, we introduce TinyOdom, a

framework for training and deploying neural inertial models on URC hardware. TinyOdom exploits hardware and quantization-

aware Bayesian neural architecture search (NAS) and a temporal convolutional network (TCN) backbone to train lightweight

models targetted towards URC devices. In addition, we propose a magnetometer, physics, and velocity-centric sequence

learning formulation robust to preceding inertial perturbations. We also expand 2D sequence learning to 3D using a model-free

barometric g-h filter robust to inertial and environmental variations. We evaluate TinyOdom for a wide spectrum of inertial

odometry applications and target hardware against competing methods. Specifically, we consider four applications: pedestrian,

animal, aerial, and underwater vehicle dead-reckoning. Across different applications, TinyOdom reduces the size of neural

inertial models by 31× to 134× with 2.5m to 12m error in 60 seconds, enabling the direct deployment of models on URC
devices while still maintaining or exceeding the localization resolution over the state-of-the-art. The proposed barometric

filter tracks altitude within ±0.1𝑚 and is robust to inertial disturbances and ambient dynamics. Finally, our ablation study
shows that the introduced magnetometer, physics, and velocity-centric sequence learning formulation significantly improve

localization performance even with notably lightweight models.
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1 INTRODUCTION

Odometry is the fusion of onboard sensors for indirect estimation of an object’s position and attitude under
absence or in conjunction with infrastructure-dependent localization services [5]. Given the widespread ubiquity
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of inertial measurement units (IMU), inertial odometry [18, 44, 46, 53, 77] is a viable alternative available to
localization applications demanding small footprint, low-access delay, low-power pathway, and operating in GPS
or network-denied environments. Examples of such applications include terrestrial and marine "search and rescue"
missions [82], underwater sensor networks [15], oceanic biodiversity and marine health tracking [88], wildlife
monitoring [89], deep-space small satellite localization [73], and localizing micro unmanned vehicles and robots
[10, 29, 96]. For example, marine search and rescue missions [82] limit the compute device payload and resource
availability (e.g., rescuers can only carry limited weight), and cannot assume continuous access to GPS or network
infrastructure (e.g., the rescue operation can happen underground). The use-case of marine health tracking [88]
and wildlife monitoring [89] necessitate odometry solutions that can operate in the absence of infrastructure
and have a light payload of deployment hardware not impacting the normal animal behavior. Further, localizing
micro unmanned vehicles and robots [10, 29, 96] demand a small footprint solution due to compute and energy
constraints. These environments represent scenarios where compute devices are ultra-resource constrained, thus
necessitating the need to develop lightweight approaches where the smartphone or cloud-based solutions are
unusable. However, adopting internal odometry for resource-constrained hardware and across different use-cases
is challenging, as discussed next.

1.1 Challenges

To handle the error explosion inherent in inertial navigation, inertial odometry on URC microcontroller-class
hardware is heavily hard-coded through application-specific heuristics, Bayesian statistics, and human-engineered
system models. These techniques, although lightweight, are not robust to domain shifts or inertial perturba-
tions [10, 16, 46]. Recently, several data-driven techniques based on sequence learning have been used in the
attempt to alleviate the constraints in model-based approaches for various applications [10, 29, 35, 74, 96].
However, enabling accurate yet lightweight and real-time neural-inertial methods for resource-constrained
environments faces the following challenges
• The Real-time Deployment on URC devices: While neural-inertial methods have been shown to
provide superior long-term resolution over classical techniques [16, 46, 74], they are unsuitable for real-
time deployment [18, 35] on URC hardware due to memory, power, and compute constraints. Consequently,
no prior work has shown neural-inertial architectures running in real-time under extremely resource-
constrained settings (e.g., 128 kB RAM, 1 MB flash).
• The Run-Time Robustness of Existing Approaches: Existing neural-inertial methods suffer from
gravity pollution, high-frequency inertial artifacts, varying device attitude, heading-rate singularity, and
3D estimation failure. The current solutions come at the cost of larger neural network models, auxiliary
ML operations, or the addition of model-based filters [29, 46, 59, 74, 96].
• The Realization of 3-D Odometry: While classical methods can perform 3D odometry via sensor fusion
without significant compute overhead, the data-driven neural-inertial methods thus far have been mostly
limited to 2D tracking only [59]. Data-driven methods which attempt to perform 3D tracking with inertial
sensors suffer from the curse of inertial drift and gravity pollution.

1.2 Contributions

We introduce TinyOdom, a systematic and practical framework for deploying lightweight yet robust 3D inertial
odometry models on URC hardware. TinyOdom leverages advances in NAS to optimize inertial sequence learning
models based on hardware constraints, accuracy, and latency goals via direct communication with target hardware.
In addition, TinyOdom uses a magnetometer, physics, and velocity-centric sequence learning formulation with
a TCN backbone, allowing tiny models to perform accurate inference even under inertial disturbances while
maintaining the simplicity of models. To expand 2D tracking to 3D, we perform sensor fusion using barometric
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g-h filters robust to inertial and environmental variations. To showcase the generalizability of TinyOdom, we
evaluate pedestrian, animal, aerial, and underwater vehicle dead-reckoning on four different URC hardware
platforms. TinyOdom reduces the neural network model size between 31× to 134× with 2.5m to 12m error in 60
seconds over the state-of-the-art (SOTA), thereby enabling the direct deployment of neural-inertial odometry
using the onboard compute resources of URC hardware platforms. Even though our neural network models are
notably lightweight, the introduced magnetometer, physics, and velocity-centric sequence learning formulation
still maintain or exceed the tracking performance compared to the existing state-of-the-art. We evaluate the
proposed barometric g-h filter showing it outperforms the baselines and is robust to pressure sensor noises in real
data. The superior and lightweight real-time inertial tracking enabled by TinyOdom holds the key to improving
the tracking performance of applications deployed in challenging GPS/network denied environments. Our work
not only enables always-on and lightweight neural-inertial navigation, but also improves the cost and the energy
footprint of embedded odometry while being expandable to any reduced footprint hardware.
Our contributions are summarized as follows:
• We propose a magnetometer, physics, and velocity-centric inertial sequence formulation to generate models
robust to gravity pollution, high-frequency inertial perturbations, varying sensor attitude, and heading
rate singularity, without adding significant compute overhead.
• We develop a hardware-in-the-loop (HIL) AutoML framework based on Bayesian Optimization (BO) to
generate lightweight inertial odometry models without sacrificing resolution significantly. We use a TCN
backbone as the basis for NAS and TensorFlow Lite Micro (TFLM) as model runtime interpreter.
• We exploit the omnipresence of barometers to expand 2D dead-reckoning to 3D using lightweight barometric
𝛼 − 𝛽 filters that are robust to inertial and environmental variations. The filter can perform altitude tracking
within ±0.1m.
• We extensively benchmark TinyOdom for pedestrian, animal, aerial, and underwater vehicle dead-reckoning
on four different URC hardware platforms against competing inertial odometry baselines, based on accuracy
and resource usage.
• To the best of our knowledge, we are the first to showcase a real-world evaluation of neural-inertial
navigation and discuss challenges and solutions of transferring pre-trained odometry models in the real
world.

TinyOdom is available open-source1 to promote development and benchmarking of lightweight yet robust neural
inertial odometry that is generalizable across different applications.

1.3 Organization

The rest of the paper is organized as follows: Section 2 mathematically motivates the challenges of localization
using an inertial sensor. Section 3 presents the related work that attempts to mitigate the challenges in inertial
tracking, as well as recent advances in lightweight deep-learning. Section 4 details the robust 3D inertial sequence
learning formulation. Section 5 delineates the model architecture and the hardware-aware NAS formulation.
Section 6 presents the experimental setup, baseline algorithms, and datasets used for evaluation. Section 7 presents
extensive experimental evaluation of the models generated by the TinyOdom framework. Finally, Section 8
provides concluding remarks and future directions.

2 BACKGROUND

MEMS inertial sensors are usually equipped with a 3DoF accelerometer, a 3DoF gyroscope, and a 3DoF magne-
tometer [50]. Firstly, when the gyroscope is mounted on an immobile platform w.r.t Earth frame close to the

1https://github.com/nesl/tinyodom
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Fig. 1. Example of localization of a quadrotor using GPS+IMU and autonomous IMU via Extended Kalman Filter (EKF). (Left)

GPS corrects drift induced by naive double integration of accelerometer readings, while using autonomous IMU without

error correction heuristics leads to cumulative drift that explodes with time. (Right) Error in trajectory estimation grows

cubically with time when autonomous IMU is used without error correction, while GPS constrains the error within a few

meters. ATE refers to absolute trajectory error.

Earth’s surface, the gyroscope within a MEMS inertial sensor is modeled as follows [50]:

𝜔𝑖𝑏 = 𝜔𝑛𝑏 + 𝑏𝑔 + 𝑛𝑔 (1)

where, �𝑏𝑔 ∼ N(0, 𝑄𝑔) = bias gradient, 𝑛𝑔 ∼ N(0, Σ𝜔 ) = additive white Gaussian noise (AWGN), and 𝜔𝑛𝑏 = latent
and uncorrupted angular velocity. Secondly, assuming negligible effects centrifugal or Coriolis components of
Earth’s rotation, the accelerometer model is defined as [50]:

𝑓 𝑏 = 𝑅𝑏𝑛 (𝑎𝑛𝑛𝑛 − 𝑔) + 𝑏𝑎 + 𝑛𝑎 (2)

where,𝑎𝑛𝑛 = latent linear acceleration of body,𝑔 = gravity vector, �𝑏𝑎 ∼ N(0, 𝑄𝑎) = bias gradient, and𝑛𝑎 ∼ N(0, Σ𝑎)
= AWGN. Lastly, the compass can be modeled as [50]:

𝑏𝑛 = 𝑅𝑏𝑛𝑚𝑛 + 𝑛𝑏, 𝑚𝑛 = [𝑐𝑜𝑠𝛿 0 𝑠𝑖𝑛𝛿] (3)

where,𝑛𝑏 ∼ N(0, Σ𝑚) =AWGN, and 𝛿 =magnetic inclination due to Earth’s magnetic dip. Under ideal geomagnetic
conditions void of magnetic disturbances, non-uniform magnetic field, or sensor noise, and for slow movements,
the heading 𝐻 can be estimated directly from the magnetometer [88] in the body frame 𝐼 :

𝐻 = arctan

(
𝑚𝐼

𝑦,𝑡

−𝑚𝐼
𝑥,𝑡

)
· 180

𝜋
(4)

The latitude (𝜙) and longitude (𝜆) can be hypothetically obtained via double integration of accelerometer
readings (𝑎𝐼𝑥 , 𝑎

𝐼
𝑦, 𝑎

𝐼
𝑧) under empirical accelerometer vector sum threshold 𝛼 [88] to reject noise:

𝑠𝑡 =

{
𝛽
√

𝐼𝑎2𝑥,𝑡 + 𝐼𝑎2𝑦,𝑡 + 𝐼𝑎2𝑧,𝑡 + 𝛾,
√

𝐼𝑎2𝑥,𝑡 + 𝐼𝑎2𝑦,𝑡 + 𝐼𝑎2𝑧,𝑡 > 𝛼

0 otherwise
(5)

𝜙𝑡 = arcsin

(
sin𝜙𝑡−1 · cos 𝑠𝑡

𝑅𝐸
+ cos𝜙𝑡−1 · sin 𝑠𝑡

𝑅𝐸
· cos𝐻

)
, 𝑅𝐸 = 6.371 × 106m (6)
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𝜆𝑡 = 𝜆𝑡−1 + arctan 2
(
sin𝐻 · sin 𝑠𝑡

𝑅𝐸
· 𝑐𝑜𝑠𝜙𝑡−1, cos

𝑠𝑡

𝑅𝐸
− sin𝜙𝑡−1 · sin𝜙𝑡

)
(7)

While magnetometers are unpolluted by device motion [70], magnetic disturbances coupled with sensor placement
offset can affect the seemingly simple estimation of 𝐻 and lead to errors as much as 100◦ [94]. Furthermore, naive
double integration (NDI) of accelerometer readings cumulatively accumulates the effects of time-varying bias
(𝑏𝑎), gravity pollution (𝑔), and AWGN (𝑛𝑎), causing errors in 𝜙 and 𝜆 to explode in a cubic manner [46, 62, 70, 93],
illustrated in Fig. 1. The gyroscope suffers from time-varying drift (𝑏𝑔) in the long term because of bias instability
(BI) and angular random walk (ARW) resulting from AWGN (𝑛𝑔), pink noise and thermal effects [62]. The cubic
explosion of error in position estimate, 𝜎𝑥 (𝑡), due to gyroscope drift can be modelled as:

𝜎𝑥 (𝑡) = 𝑣
√︃
(2 · 𝐴𝑅𝑊 ·

√
𝑡3/3)2 + (𝐵𝐼 · 𝑡2/2) (8)

The goal of inertial odometry is to address the cumulative error in naive double integration of accelerometer
readings. Conventional approaches use model-based methods that are dependent on application-specific heuristics
and demand expert domain knowledge. More recently, learning-enabled approaches are proposed that either
work in combination with model-based methods or work in an end-to-end manner, completely replacing model-
based methods. In the next section, we present the existing state-of-the-art in both model-based methods and
learning-enabled approaches. We also briefly discuss recent advances in lightweight deep learning.

3 RELATED WORK

In this section, we provide a comprehensive review of the recent advances in inertial odometry and efficient DL for
URC devices, outlining their strengths and weaknesses. Inertial localization can be categorized into model-based
systems using Bayesian filters and heuristics, or learning-enabled systems exploiting recent advances in DL [46].
Software advances in TinyML include the use of pruning, quantization and model compression, lightweight
neural blocks, hardware-aware NAS and the rise of commercial off-the-shelf (COTS) tools [64, 67]

3.1 Model-Based Inertial Odometry

Model-based inertial dead-reckoning frameworks typically employ multimodal fusion via physics-based and
heuristic priors with occasional support from infrastructure-dependent position fixes, along with the application
of Bayesian filters for error handling [46]. These approaches are commonly hard-coded for specific applications.

3.1.1 Vehicular, Robotic and Animal Localization. Depending on the target application and topography, heuristic
drift reduction, magnetic anomaly detection, opportunistic calibration, quasi-static moment detection, particle
filters, magnetic map matching, and inertial signature verification are used to counteract heading estimation
error [47, 70, 91, 94, 99], typically fused through an error-tracking indirect Kalman filter (KF). For displacement
estimation, unmanned aerial, ground, and underwater vehicles (UAV, UGV, and UUV) typically fuse inertial sensors
with GPS, LIDAR, camera, and RADAR via KF variants for localization, complemented via map information from
known localization space [3, 53]. Typical aid includes magnetic map matching, flow-sensors, and wheel odometers,
with nonholonomic constraints on the motion. Satellites and spacecraft perform non-linear Bayesian fusion of
physics-based kinematics models with inertial sensor measurements for attitude estimation [22], coupled with
position information from GPS, kinematics models (e.g. ephemeris and almanac), relative angle measurements (e.g.
parallax) or ground control [38, 61]. For slow and predictable motion profiles such as in wildlife tracking, ecologists
formulate animal-specific belief-based constraints on velocity, transportation modes, and Boolean decision-trees
to mitigate drifts and sensor errors, occasionally fusing GPS through KF variants when available [87–89].

3.1.2 Pedestrian Dead Reckoning (PDR). PDR systems typically decompose position estimation problems into
direction estimation and stride length estimation [94], the latter of which is further partitioned into transportation
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mode classification, gait cycle segmentation, and step length estimation (SLE) subject to environmental constraints
and iterative updates [44, 47, 91]. For dead-reckoning via foot-mounted IMU, information about the linear and
angular velocities of the foot during the swing and stance phases for various motion primitives can be exploited
to constrain the explosion of errors in step counting [33, 47, 91]. This is referred to as zero velocity update
(ZUPT) or zero angular rate update (ZARU) pseudo-measurements [49], segregating the gait cycle into identifiable
chunks either coarsely or granularly [47]. Temporal and frequency-domain analysis (e.g., wavelet and Fourier
transforms, level crossing detection, extrema detection, autocorrelation, Hidden Markov Models (HMM), and
local variance detection) are used to extract recurrent and temporal contextual dynamics in the gait cycle to
improve the robustness of gait phase identification against AWGN for various activity modes [2, 47, 91, 94].
Typical SLE approaches include physiological knowledge injection (e.g., Weinberg SLE), linear regression upon
step frequency with aiding covariance heuristics, global acceleration extrema difference, knowledge of virtual
landmarks, and floor plans or use of KF variants [44, 47, 56, 83, 91, 94].

While model-based inertial localization systems are computationally efficient, designing generalizable heuristics
poses a significant hurdle in the deployment of real-time inertial dead-reckoning systems, with no “one size fits all”
analytical solution to the problem. The system models used by model-based approaches are linear approximations
of the state evolution in the real world, which do not translate accurately in the long run for eclectic scenarios due
to non-optimal parametrization. In contrast, in TinyOdom, we propose an end-to-end learning-based framework
that is generalizable across different applications. We show that TinyOdom develops machine learning models
that are superior to model-based methods and are deployable on resource constraint devices. We outline existing
data-driven techniques in the next subsection.

3.2 Data-Driven Inertial Odometry

To handle the shortcoming of model-based methods, researchers have recently proposed several ML approaches
capable of capturing high-dimensional contextual dynamics in the non-linear domain void of human knowledge.
Next, we categorize existing approaches based on the role of data-driven components. They are either used in
combination with model-based methods or are completely replacing them in an end-to-end manner.

3.2.1 Aiding Model-Based Systems. Deep neural networks (DNN) are adept at filtering out noise and irrelevant
information while extracting useful features from sensors in the wild [66]. Intuitively, a hands-off generalizable
solution for the curse of drift in inertial odometry involves eliminating the root of sensing uncertainty on the fly
before the model-based position estimation step using DL models. Affixing a neural network block dedicated to
denoising in the Bayesian state estimation framework yields real-time and on-the-fly noise reduction while being
invariant to random gyrations and actuator micro-vibrations, exhibiting generalizability under unseen trajectory
projections and robustness to training data anomalies and domain shift [1, 11, 12, 98]. An alternative approach
involves using DNN or reinforcement-learning (RL) agents to dynamically and tightly update KF noise covariance
parameters instead of sensor errors [10, 36, 90]. In this case, the filter is non-agnostic to the corrections being
made by the DNN, leading to estimates that are statistically Pareto-optimal under non-ideal gradient descent
convergence. A parallel technique uses DNN as tightly coupled state advisors, providing indirect momentary
pseudo-measurements about position and orientation (such as velocity and heading) from a finite window of raw
inertial readings to physics-based filters to aid decision making under a broad spectrum of motion primitives,
topography, environment, sensor-placement and test subjects [20, 59, 72].

3.2.2 Velocity-Profile Heuristics. For non-Bayesian filters such as in PDR, DL-based velocity profile detectors
(ZUPT and ZARU) and SLE can extract coveted velocity intervals for step detection and adapt stride length
based upon discerned motion patterns [80, 81] for varying gait patterns and sensor placements. In the case of
wheeled robots, DL-based ZUPT and ZARU allow attitude and bias corrections, with priors on lateral and vertical
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velocity to improve long-term position estimation accuracy [9]. RIDI [93] used classical ML to detect sensor
placement and regress velocity and direction to correct accelerometer readings for usable double integration
within a stabilized-inertial frame for various transportation modes.

3.2.3 End-to-End Frameworks. Model-based filters require an accurate representation of the evolution of sensor
errors and state estimates in terms of the incoming measurements. Such system models are only linear approxi-
mations and are unable to optimally control error explosion from naive double integration due to deviations from
mathematical abstractions for non-linear complex motions or deployment in different domains [16, 46]. IONet [16]
introduced the concept of sequence learning for dead-reckoning, resulting in the first end-to-end neural-inertial
model capable of trajectory estimation in presence of non-linearities associated with inertial localization which
are otherwise hard to model mathematically, including effects of unrestricted sensor orientation and position,
different test subjects, diverse motion primitives and abnormalities, decoupling individual sensor errors and
biases, sampling rate jitter and physical characteristics of the sensors. Notable successors of IONet include
RoNIN [46], IDOL [74] and L-IONet [18] for PDR, AbolDeepIO for aerial vehicle localization [29], VeTorch for
UGV localization [35] and NavNet [96] for UUV positioning. MotionTransformer uses a transformer network to
generate domain invariant inertial sequences from raw sensor data from various sensor placements, rotations,
or motion types in a completely unsupervised fashion, without requiring the exhaustive collection of labeled
domain-specific datasets [17].
Out of the proposed data-driven methods, data-driven end-to-end frameworks are preferred, as they are not

dependent on any domain heuristics and have shown superior performance [16, 18, 46] over model-based
techniques. However, currently, none of the data-driven methods are suitable for real-time deployment on URC
devices. Among all of the data-driven techniques, only L-IONet [18], VeTorch [35] and the two frameworks by
Brossard et al. [10, 12] were designed with efficiency in mind to run in real-time on smartphones. The constraints
of URC devices (e.g., a typical microcontroller has 128 KB RAM and 1 MB of flash) demand extremely lightweight
machine learning models in comparison to a smartphone, which can have 4 GB of RAM and 64 GB of storage [57].
TinyOdom is designed to address the gap of enabling neural inertial odometry on ultra-resource-constrained
devices. TinyOdom reduces themodel size between 31× to 134× in comparison to the existing data-drivenmethods.
Even though our models are lightweight, TinyOdom either maintains or exceeds the tracking performance in
comparison to the existing SOTA due to a novel magnetometer, physics, and velocity-centric inertial sequence
formulation.

3.3 Deep-Learning for URC devices

Several libraries exist that enable the transfer of trained machine learning models generated by well-known
libraries (such as Tensorflow) to microcontrollers. These libraries include TensorFlow Lite Micro [23, 84], CMSIS-
NN [54], uTensor [75], and Microsoft EdgeML [24, 25, 39, 40, 42, 51, 52, 65]. Such libraries provide comprehensive
sets of optimized ML operators, algorithms, and tools, perform pruning, quantization (fixed and mixed precision),
and model compression [43] and convert models to deployable C code. However, these libraries assume that the
trained model can fit within the device resource constraints. To satisfy the tighter hardware constraints of URC
devices, neural architecture search (NAS) needs to be optimized by target hardware specifications to strike a
balance between accuracy and efficiency [30, 57] tradeoff.
Several NAS frameworks have been proposed for microcontroller-class devices. SpArSe [30] treats NAS as a

gradient-driven multi-objective BO problem, treating hardware attributes via proxies and coupling pruning with
NAS. MicroNets [6] uses a quantization-aware gradient-driven approach to optimize task-aware DNN backbones.
MCUNet [57] tailors Once-for-All (OFA) NAS [14] for microcontrollers, using a two-stage evolutionary NAS to
train a single OFA network in an optimized search space for a broad spectrum of target hardware. Adopting
MCUNet is a challenge as it uses a custom inference engine and its latency/resource measurements rely on a
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closed-source software stack. In TinyOdom, we perform hardware-aware NAS using multi-objective BO, where
the acquisition function is optimized using Monte Carlo sampling. We adopt BO due to the following reasons:
(i) BO provides a state-of-the-art approach to optimize expensive objective functions in a few evaluations [69],
(ii) BO allows explicit inclusion of non-gradient-friendly constraints of the model size and accuracy tradeoffs
during the training process [30]. The choice of Monte Carlo sampling instead of the gradient-driven approach of
SpArSe [30] is based on the fact that neural architecture search space consists of categorical variables where
the sampling approach evaluates the acquisition function only at valid configurations only [37, 68]. TinyOdom
includes the hardware-aware training where the resource utilization of a model is computed at runtime by its
real deployment on the target hardware, instead of just using proxies as done by SpArSe [30]. Our evaluation
shows that proxies are only approximations of the real hardware constraints, which are noisy for extremely
resource-constrained devices.

4 ROBUST 3D INERTIAL SEQUENCE LEARNING

Fig. 2. Components of robust 3D inertial sequence learning. (1) Velocity and magneto-centric DNN regresses velocities and

uses magnetic North as an additional anchor point. (2) A physics metadata module that supplies latent information about

whether valid translational movements have occurred or not from accelerometer readings. (3) A barometric g-h filter immune

to inertial perturbations to regress altitude from pressure sensors.

To break the cycle of continuous integration and error propagation, IONet [16] proposed inertial sequence
learning based on Newtonian physics. The goal is to estimate the change in navigation state over pseudo-
independent inertial windows rather than absolute coordinates, constraining the ball of outputs for a neural
network 𝑓 to model. Under loose nonholonomic constraints and in polar coordinates, 𝑓 is given as:

(Δ𝑙𝑡 ,Δ𝜓𝑡 ) = 𝑓𝜃 (v𝐼 (0), g𝐼0, â𝐼Δ𝑡 , ŵ𝐼
Δ𝑡 ) (9)

where, Δ𝑡 = 𝑡 : 𝑡 − 𝑛, referring to a window of accelerometer â𝐼 and gyroscope ŵ𝐼 samples of length 𝑛. The
task involves estimating the initial velocity v𝐼 (0) and gravity g𝐼0 in each window, which are treated as latent
states. Instead, 𝑓 outputs heading rate Δ𝜓𝑡 and displacement Δ𝑙𝑡 in the azimuthal plane. However, as we will
showcase, the vanilla inertial sequence learning formulation suffers from gravity pollution, high-frequency
inertial perturbations, varying sensor attitude, and heading rate singularity. We introduce a magnetometer,
physics, and velocity-centric inertial sequence formulation robust to aforementioned problems, summarized in
Fig. 2.
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4.0.1 Latent Heading Information. Gravity-aligned coordinate frames [46] are polluted by continuous transla-
tional motion due to the mixture of linear and gravitational acceleration. Gravity pollution can induce short-term
offsets in the estimated orientation, leading to large velocity projection errors [70]. In addition, gyroscope
BI and ARW generate long-term drift in the latent attitude estimate, further degenerating coordinate frame
normalization in sensor fusion. As a result, we feed 𝑓 with local magnetometer measurements 𝐼 m̂ to provide
additional latent information about device attitude and body heading, globally anchored by the 3D magnetic
North N𝐺 . Magnetometers are motion-agnostic and do not suffer from long-term drift [70]. 𝐼 m̂ provides an
additional anchor N𝐼0 to correct and constrain implicit estimation of g𝐼0 and v𝐼 (0) for each window, robust to
varying sensor orientation, gravity pollution and continuous movements (e.g., circular trajectories). Furthermore,
to emulate unrestricted sensor attitude and noise characteristics, we perform data augmentation during training
via controlled random rotation R of inertial channels and addition of multivariate Gaussian noise N [81]:

s𝑥,𝑦,𝑧Δ𝑡 → Rs𝑥,𝑦,𝑧Δ𝑡 + N(0, 𝚺) (10)

4.0.2 Physics Metadata Channel. Changes in sensor orientation and placement, hardware noise, ferromagnetic
disturbances and body heading without linear movements can induce high-frequency inertial signatures, which
can falsely trigger 𝑓 to output invalid displacements. We supply 𝑓 with latent valid motion metadata 𝑐𝑡 (·) based
on Newtonian kinematics to suppress the effects of high-frequency inertial artifacts. Specifically, we want 𝑓 to be
activated only when significant positional transitions have occurred. For humans, legged robots and terrestrial
animals, 𝑐𝑡 (·) corresponds to a local-variance step detector binary mask [71]:

𝑐𝑡 (𝐼 â) =
1, â𝐼𝐿,Δ𝑡 > 𝜁 ·

√︂∑
𝑘∈Δ𝑡

(
â𝐼
𝐿,𝑘
−â𝐼

𝐿,Δ𝑡

)2
𝑛

0, otherwise
(11)

where, â𝐼𝐿,Δ𝑡 = 𝐺5,𝑓𝑐 ( |â𝐼Δ𝑡 |) −𝐺5,𝑓𝑐 ( |â𝐼Δ𝑡 |), 𝜁 is a tunable parameter and𝐺5,𝑓𝑐 (·) represents a 5th order low-pass filter
with cutoff 𝑓𝑐 . For vehicles, 𝑐𝑡 (·) signifies one of four transportation modes (stationary, accelerating, decelerating
and constant speed) inferred through the discrete Fourier transform of | 𝐼 âΔ𝑡 | [63]:

𝑐𝑡 (𝐼 â) = min
𝑐𝑡 ( ·)

���|FFT( |â𝐼Δ𝑡 |) | − 𝛾𝑘 ��� , 𝑘 = {1, 2, 3, 4} (12)

where 𝛾𝑘 represents predefined threshold for 𝑘th transportation mode. The transportation mode metadata is
important particularly to aid 𝑓 better differentiate between constant velocity and stationary period inertial
signatures.

4.0.3 Heading Rate Singularity. The ground truth heading rate Δ𝜓𝑡,𝑔 is given as:

Δ𝜓𝑡,𝑔 = 𝜓𝑡,𝑔 −𝜓𝑡−𝑛,𝑔 (13)

where, {
𝜓𝑡,𝑔 = mod (arctan 2(Δ𝐿𝑦,𝑔,Δ𝐿𝑥,𝑔), 2𝜋)
Δ𝐿𝑖,𝑔 = 𝐿𝑖,𝑔,𝑡 − 𝐿𝑖,𝑔,𝑡−𝑛

(14)

𝐿𝑖,𝑔 represents ground truth location. As Δ𝐿𝑦,𝑔 ∧Δ𝐿𝑥,𝑔 → 0, Δ𝜓𝑡,𝑔 ↑, leading to large spikes in heading rate. These
outliers can severely degrade the performance of deep neural architectures [45] using mean squared error (MSE)
loss. As a result, we modify the inertial sequence learning problem to regress 𝑥 and 𝑦 velocities rather than
displacements and heading rates. Combined with latent heading and physics metadata channel, 𝑓 is given as:

(𝑣𝑥,𝑡 , 𝑣𝑦,𝑡 ) = 𝑓𝜃 (v𝐼 (0), g𝐼0,N𝐼0, â𝐼Δ𝑡 , ŵ𝐼
Δ𝑡 , m̂

𝐼
Δ𝑡 , 𝑐𝑡 (𝐼 â)) (15)
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We use strided velocity loss [46] for optimizing the parameters 𝜃 of 𝑓 :

L𝑓 = E[(𝑣𝑥,𝑔,𝑡 − 𝑣𝑥,𝑡 )2] + 𝜅E[(𝑣𝑦,𝑔,𝑡 − 𝑣𝑦,𝑡 )2] (16)

The location at time 𝑡 for sliding window with stride 𝑠 and length 𝑛 is given by:{
𝐿𝑥,𝑡 = 𝐿𝑥,𝑡−1 + 𝑠 ·𝑣𝑥,𝑡

𝑛−𝑠
𝐿𝑦,𝑡 = 𝐿𝑦,𝑡−1 +

𝑠 ·𝑣𝑦,𝑡
𝑛−𝑠

(17)

4.0.4 Z-axis Dead-Reckoning. Barometric sensors share many common coveted characteristics with inertial
sensors [76], resulting in their widespread availability in current electronic systems [58]. We complement 2D
sequence learning with altitude estimate by exploiting existing barometric chips to provide 3D dead-reckoning.
We designed a model-free barometric 𝛼 − 𝛽 filter [8][86] with thermocline, salinity, noise and timestamp jitter
mitigation [32]. The altitude measurements 𝐿𝑧,𝑚 at timestep 𝑡 are given by:

𝐿𝑧,𝑡,𝑚 =


���� − 𝑅 (𝑇𝑐,𝑡+273.15)

𝑀𝑔
ln

(
𝑃𝑡,m
𝑃0

) ����
air����𝑃𝑡,m𝜌0𝑔 (

1 − 𝑃𝑡,m
𝐾

) ����
fluid

(18)

where, 𝑃𝑡,m = pressure measurement,𝑀 = air molar mass, 𝑔 = gravitational acceleration, 𝑅 = gas constant, 𝑇𝑐,𝑡
= temperature in Celsius (from barometer) and 𝑃0 = average sea level pressure (kPa). Furthermore:

𝜌0 = 𝐷 (𝑇𝑐,𝑡 ) + 𝑠𝐴(𝑇𝑐,𝑡 ) + 𝑠1.5𝐵(𝑇𝑐,𝑡 ) + 𝑐𝑠2 (19)

𝐾 = 𝐸 (𝑇𝑐,𝑡 , 𝑠) + 𝐹 (𝑇𝑐,𝑡 , 𝑠)𝑃𝑡,m +𝐺 (𝑇𝑐,𝑡 , 𝑠)𝑃2𝑡,m (20)

where, 𝑁 (𝑇𝑐,𝑡 ) ← 𝛾10𝑗𝑇𝑘𝑐,𝑡 , 𝑀 (𝑇𝑐,𝑡 , 𝑠) ← 𝜇10𝑙𝑇𝑛𝑐,𝑡𝑠𝑞 + 𝑁 (𝑇𝑐,𝑡 ), 𝑠 = salinity of fluid and 𝜇,𝛾, 𝑗, 𝑘, 𝑙, 𝑛 and 𝑞 are
constants. The filter prediction steps are given by:

𝐿𝑧,𝑡,𝑝 = 𝐿𝑧,𝑡−1,𝑝 + Δ𝑇 ¤𝐿𝑧,𝑡−1,𝑝 , ¤𝐿𝑧,𝑡,𝑝 = ¤𝐿𝑧,𝑡−1,𝑝 (21)

The update steps are given by:

¤𝐿𝑧,𝑡,𝑝 = ¤𝐿𝑧,𝑡,𝑝 +
𝛽

Δ𝑇
(𝐿𝑧,𝑡,𝑚 − 𝐿𝑧,𝑡,𝑝 ) (22)

𝐿𝑧,𝑡,𝑝︸︷︷︸
altitude

= 𝐿𝑧,𝑡,𝑝 + 𝛼 (𝐿𝑧,𝑡,𝑚 − 𝐿𝑧,𝑡,𝑝 ) (23)

¤𝐿𝑧,𝑡,𝑝 refers to the vertical velocity of the object, Δ𝑇 is the difference between current and previous timestamps
and (𝛼, 𝛽) are filter coefficients. Large values of 𝛼 favor measurements over prediction, while large values of 𝛽
increase the transient sensitivity of the filter. The barometric approach does not suffer from the effects of varying
inertial sensor orientation and placement, gravity pollution, and unusual movements common in approaches
using inertial sensors to regress height [59].

5 HARDWARE-AWARE INERTIAL NAVIGATION

In this section, we present the details of the neural network architecture adopted by TinyOdom (Section 5.0.1)
and our NAS approach to enable deployments on URC devices (Section 5.0.2)
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5.0.1 Backbone Neural Architecture. We use a TCN [55, 78] to model 𝑓 [10, 18, 35], which can jointly handle
spatial and temporal features hierarchically. The receptive field 𝐹𝑖 of each unit in the 𝑖th layer in a TCN dilated
causal kernel of size 𝑘 × 𝑘 with dilation factor 𝑙 is given by:

𝐹𝑖,TCN = 𝐹𝑖−1 + (𝑘𝑙 − 1) × 𝑙, 𝐹0 = 1 (24)
𝐹𝑖,TCN is larger than 𝐹𝑖,CNN, which is 𝑖 × (𝑘 − 1) + 𝑘 . Without explosion of parameter, memory footprint, layer
count or overfitting, TCN kernels allow the network discover global context in long inertial sequences while
maintaining input resolution and coverage. Causal convolutions maintain temporal ordering without requiring
computationally intensive recurrent units, supporting out-of-order parallelization during training. In addition,
two stacks of dilated causal convolution layers are fused through gated residual blocks z for expressive yet
bounded non-linearity, complex interactions and temporal correlation modeling in the input sequence:

z = tanh(W𝑓 ,𝑘 ∗ x) ⊙ 𝜎 (W𝑔,𝑘 ∗ x) (25)

5.0.2 Neural Architecture Search. To find the ideal neural inertial candidate from the backbone TCN for limited
flash, RAM, and latency requirements, we model the search as a parallelizable black-box BO problem. The search
space Ω consists of neural network weights 𝑤 , hyperparameters 𝜃 , network structure denoted as a directed
acyclic graph (DAG) 𝑔 with edges 𝐸 and vertices 𝑉 representing activation maps and common ML operations 𝑣
(e.g., convolution, batch normalization, pooling, etc.) respectively, which act on 𝑉 . The goal is to find a neural
network that maximizes the hardware SRAM and flash usage within the device capabilities while minimizing
latency and validation RMSE.

𝑓opt = 𝜆1 𝑓error (Ω) + 𝜆2 𝑓flash (Ω) + 𝜆3 𝑓SRAM (Ω) + 𝜆4 𝑓latency (Ω) (26)
where

𝑓error (Ω) = Lvalidation(Ω),Ω = {{𝑉 , 𝐸},𝑤, 𝜃, 𝑣} (27)

𝑓flash (Ω) =
{
− | |ℎFB (𝑤,{𝑉 ,𝐸 }) | |0flashmax

∨ −HIL information
flashmax

∞, 𝑓flash (Ω) > flashmax
(28)

𝑓latency (Ω) =
FLOPS

FLOPStarget FLOPS
∨ HIL information
Latencytarget latency

(29)

𝑓SRAM (Ω) =
{
−max𝑙∈[1,𝐿] { | |𝑥𝑙 | |0+| |𝑎𝑙 | |0 }

SRAMmax
∨ −HIL information

SRAMmax

∞, 𝑓SRAM (Ω) > SRAMmax
(30)

𝑎 = 𝑤 ∨ 𝑦, 𝑦 =

𝐾∑︁
𝑘=1

𝑣𝑘𝑔𝑘 (𝑥,𝑤𝑘 )

The objective function 𝑓opt can be thought of as seeking a Pareto-optimal configuration of parameters Ω∗ under
competing objectives [30] such that:

𝑓𝑘 (Ω∗) <= 𝑓𝑘 (Ω) ∀𝑘,Ω ∧ ∃ 𝑗 : 𝑓𝑗 (Ω∗) < 𝑓𝑗 (Ω) ∀Ω ≠ Ω∗ (31)
We use Gaussian process as the surrogate model to approximate 𝑓opt, which allows priors on the distribution of
moments to propagate forward as the search progresses. In addition, the domain of random scalarizations 𝜆 can
be specified by the user to guide the parallel search acquisition functions (hallucination or K-means clustering)
into the promising Pareto-optimal regions of the gradient plane. The acquisition function decides the next set of
Ω𝑛 to sample from the design space using Monte Carlo sampling with Bayesian Upper-Confidence Bounds (UCB),
also known Thompson sampling, which balances exploration and exploitation [68]. Apart from speeding up the
NAS, parallel search ensures that NAS is not being performed on network morphs early on (exploitation) and
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information gain is maximized in the search process (exploration), yielding a stage-wise "coarse-to-fine" search
space:

𝑓 (Ω) ∼ GP(𝜇 (Ω), 𝑘 (Ω,Ω′)) (32)
Ω𝑡 = argmax

Ω
(𝜇𝑡−1 (Ω) + 𝛽0.5𝜎𝑡−1 (Ω)) (33)

Firstly, validation RMSE serves as a proxy for the error characteristics 𝑓error (Ω) of the model candidate. Secondly,
when real hardware is absent, we use the size of the flatbuffer model schema ℎFB (·) [23] as a proxy for flash usage.
Thirdly, we use the standard RAM usage model as a proxy for SRAM usage 𝑓SRAM (Ω), with intermediate layer-wise
activation maps and tensors being stored in SRAM [30]. Lastly, since model latency is linearly proportional to the
FLOPS count for a variety of convolutional models for microcontrollers, we use FLOPS as a proxy for runtime
latency 𝑓latency (Ω) [6]. When HIL is available, we obtain the SRAM, flash, and latency parameters directly from
the target compiler and real-time operating system (RTOS). All hardware parameters are normalized by device
capacity or target metrics. The entire NAS pipeline is summarized in Fig. 3.

Fig. 3. Implementation of hardware-aware neural-inertial navigation. The framework supports both the use of proxy and

real-hardware to get hardware constraint estimates.

6 EXPERIMENTAL SETUP

In this section, we provide details on the implementation of our hardware-aware robust 3D sequence learning
framework. We list the domain space of the TCN backbone (Section 6.1) to be optimized by NAS. Next, we provide
details on how we setup BO in Python (Section 6.2). Then, we outline the datasets (Section 6.3) used to train and
benchmark the performance TinyOdom models and competing baselines (Section 6.4). Afterward, we list the
performance metrics used for benchmarking (Section 6.5). Next, we provide details on the target hardware, host
machine, and software specifications (Section 6.6). Finally, we provide details on our real-world experimental
setup (Section 6.7).

6.1 NAS Search Space

Our TCN model consists of an input layer, followed by the TCN backbone. The hyperparameters to be optimized
by the NAS framework for the TCN backbone are as follows:
• Number of filters: 2-64
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• Kernel size: 2-16
• Use of residual (skip connections): True, False
• Number of layers: 3-8
• Dilation factor to assign to each layer: [1, 2, 4, 8, 16, 32, 64, 128, 256]
• Dropout: 0.0-1.0
• Normalization: Weight, Layer, Batch

The fixed parameters for the TCN backbone are as follows:
• Number of stacks: 1
• Activation: ReLU
• Learning Rate: 0.001 (Adam)

The outputs of the TCN backbone are reshaped, pooled, and flattened. The flattened vectors are fed to a 32 unit
fully-connected layer. The final output of the TCN model is x and y velocities.

6.2 NAS Implementation

Our NAS implementation is based on the state-of-the-art open-source BO library called Mango [68][69]. Our NAS
implementation consists of three steps: (i) NAS search space definition, (ii) multi-objective function specifications,
and (iii) hardware-in-the-loop or proxy constraints computation. Our NAS search space is a combination of
categorical, integer, and continuous variables as shown in Section 6.1. This search space is realized using python
constructs (lists, dictionaries) and SciPy [79] distributions which are directly supported in Mango [69]. We create
𝑓opt (Equation 26) in Python, where the hardware metrics are computed either using proxies or hardware-in-
the-loop. For training TCN models for each application, we run the BO search strategy for 50 iterations. The
internal surrogate model used by our implementation is based on the Gaussian process [69] which uses the upper
confidence bound as the acquisition function. The surrogate model approximates the hyperparameter decision
boundary learning the best regions that minimize the 𝑓opt. The next sampled hyperparameter is selected based on
the predicted mean (exploitation) and the corresponding variance (exploration) which are included as part of the
acquisition function. In our implementation, we use the adaptive exploitation versus exploitation trade-off and
automatic domain size explorations from Mango [68][69].

6.3 Benchmark Datasets

To train the TCN models and evaluate the performance of TinyOdom against competing proposals, we selected
five inertial odometry datasets that have been widely used to benchmark existing inertial dead-reckoning
techniques for various applications [16, 18, 29, 31, 46, 88]. Table 1 summarizes the representative characteristics

Table 1. List of datasets used for evaluation. We use five datasets spanning four different applications.

Application Dataset Environment Device Configuration Device Placement Ground
Truth

Data Specifica-
tions

Pedestrian Dead
Reckoning

OxIOD [18] Indoors Smartphone 9DoF-IMU (InvenSense
2600)

Hand, pocket, bag,
trolley

Vicon 5 subjects, 14.7
hours, 42.6 km

RoNIN* [46] Indoors Smartphone 9DoF-IMU (ICM20602,
LSM6DSL)

Unrestricted Tango 100 subjects, 42.7
hours

UUV Localization AQUALOC [31] Underwater 9DoF-IMU (MPU-9250), Pressure
Sensor (MS5837-30BA, Keller 7LD-
100BA)

Fixed, underwater
probe

ColMap 2 probes, 1.74 hours,
0.78 km

UAV Localization EuRoC
MAV [13]

Indoors 6DoF-IMU (ADIS 16488) Fixed, MAV Vicon 1 MAV, 0.37 hours,
0.9 km

Animal Tracking GunDog [41] Outdoors 6DoF-IMU (no gyroscope) Fixed, penguin GPS 1 animal, 7.6 km
* only 50% of the dataset is publicly available.
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of the five datasets. For PDR, we selected the OxIOD [18] and the RoNIN [46] dataset, the two largest publicly
available inertial odometry datasets for human localization. Both OxIOD and RoNIN use smartphone inertial
sensors to collect 9DoF IMU data. However, the RoNIN dataset assumes unrestricted phone orientation and phone
placement to support natural day-to-day smartphone usage and provides a more challenging task of developing
inertial models invariant to device placement or orientation. Furthermore, the trajectories in the RoNIN dataset
have a larger spatial span compared to the trajectories in the OxIOD dataset. The OxIOD dataset, on the other
hand, has a higher ground truth resolution (sub-mm) thanks to the use of a Vicon motion capture setup.

For UUV, UAV, and animal localization, we chose the AQUALOC [31], the EuRoCMAV [13], and the GunDog [41]
dataset, the only publicly available datasets for benchmarking dead-reckoning algorithms for UAV, UUV, and
animals. The EuRoC MAV, AQUALOC, and the GunDog datasets collect IMU data from sensor tags fixed to
quadrotors, underwater probes, and penguins, respectively. The size of these datasets is much smaller than the
OxIOD and RoNIN datasets. We used the AQUALOC dataset to evaluate the performance of the barometric
altitude estimator besides 2D inertial tracking, as it includes underwater pressure sensor data. The only caveats
in these three datasets are the lack of magnetometer and gyroscope readings in the EuRoC MAV and the GunDog
dataset, respectively. We adapted our TCN input layers to work with the available sensors in these two datasets.

Table 2. Window size, stride,training-validation-test splits (by sequences), and training epochs used in the benchmark

datasets. The validation split is used to compute error metric during NAS and not for individual model training. The test split

is used for final evaluation of the model with most optimal hyperparameters found via NAS.

Dataset Sampling Rate (Hz) Window Size Stride Splits (Tr, Val, Te) (%) Model Epochs NAS epochs
OxIOD 100 200 10 85, 5, 10 900 50
RoNIN 200 400 20 70, 5, 25 900 50
AQUALOC 200 400 20 80, 5, 15 300 30
EuRoCMAV 200 50 5 80, 10, 10 300 30
GunDog 40 10 10 45*, 5*, 50 300 30

* Training trajectory split into 2 parts for train and validation splits.

Table 2 lists the window size, stride, data splits, and epochs that we used in the training pipeline for our TCN
model for each dataset. We split the datasets by sequences (separate files). We did not use any validation during
the training phase of each candidate model but rather used the validation split to compute the error metric
𝑓error (Ω) in the outer loop of the NAS. The test split was used in the final evaluation of the best-performing
model found via NAS against baseline techniques. For the OxIOD and RoNIN dataset, we used the same window
size and stride used by IONet [16], L-IONet [18], and RoNIN [46] on the two datasets. For the EuRoC MAV and
GunDog dataset, we chose a window size of 0.25 seconds to account for the faster maneuverability of drones and
penguins over humans. On the contrary, since underwater vehicles move slowly, we used a window size of 2
seconds for the AQUALOC dataset. Note that the dataset splits are different from each other because the datasets
were split by sequences/files and not samples to preserve continuous trajectories. For the RoNIN dataset, we used
splits provided by the dataset makers [46]. For the OxIOD, the AQUALOC, and the EuRoC MAV datasets, we split
the files such that the training set, the validation set, and the test set roughly have 80%, 5%, and 15% of the total
dataset samples respectively. Since there are only two complete trajectories in the GunDog dataset, we split the
training trajectory into a training and validation split, while using the other trajectory as a test split.

6.4 Baseline Algorithms

To evaluate the utility of TinyOdom, we use several SOTA inertial odometry techniques as baselines for the four
applications. For tracking humans via the OxIOD and the RoNIN datasets, we use the following baselines:
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Step Detector with Weinberg SLE (PDR): We used one of the PDR algorithms proposed by Jimenez et al. [48].
The algorithm uses a threshold-based step detector based on accelerometer peaks and updates the displacement
via Weinberg Stride Length Estimation (SLE) [85], which models step length in terms of vertical movement of
the pelvis during each step. The heading is computed from the gyroscope. PDR is one of the most widely used
classical inertial localization method [44, 91]. We used a publicly available implementation the PDR 2

Naive Double Integration (NDI): We use the ideal formula for dead-reckoning (Equations (5-7)), where we
simply integrate the linear accelerometer readings to get the position after coordinate transformation [88]. We
used a publicly available implementation of the NDI2.

IONet: IONet [16] is the first deep inertial sequence learning model. The LSTM model uses the original heading-
displacement formulation of neural inertial localization and takes in gyroscope and accelerometer readings as
input. IONet was shown to outperform PDR and strap-down inertial navigation system (SINS) on the OxIOD
dataset. We implemented our own version of IONet using the same architectural encodings mentioned in [16], as
the code is not publicly available.

L-IONet: L-IONet [18] improves the computational efficiency over IONet by using a TCN in place of LSTM,
without significantly sacrificing localization performance. We implemented our own version of L-IONet, as the
code is not publicly available.

RoNIN TCN: RoNIN TCN [46] uses robust velocity loss and a heading-agnostic coordinate frame to account for
unrestricted sensor orientation and placement. RoNIN TCN outperformed NDI, PDR, and IONet on the RoNIN and
OxIOD datasets. We used the publicly available implementation of RoNIN TCN 3 for retraining and benchmarking.

For UUV localization using the AQUALOC dataset, we use the following baseline:

NavNet: NavNet [96] asynchronously combines inertial sensor and doppler velocity log (DVL) through sepa-
rate LSTM networks, followed by attention layers to capture relevant long-term contextual information across
timesteps and regress x and y velocities. NavNet was shown to outperform EKF and UKF for underwater localiza-
tion. We implemented our own version of NavNet, as the code is not publicly available.

For UAV localization using the EuRoC MAV dataset, we use two baselines:

AbolDeepIO: AbolDeepIO [29] uses two separate LSTM channels to map accelerometer and gyroscope readings
to different latent representations while feeding the sampling rate of the inertial sensor through a third LSTM
channel to make the displacement and heading regressor robust to sampling rate jitter. The high-level correlated
features are then fused using slow fusion. AbolDeepIO was shown to outperform VINet [19], SINS, and IONet.
We implemented our own version of AbolDeepIO, as the code is not publicly available.

VeTorch: VeTorch [35] uses two TCN to compute the heading and displacement of autonomous vehicles from
smartphone accelerometer and gyroscope readings. It also transforms inertial dynamics from the phone to the
car. VeTorch was shown to outperform EKF and IONet. We implemented our own version of VeTorch, as the code

2https://lopsi.weebly.com/teaching.html
3https://github.com/Sachini/ronin
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is not publicly available.

Finally, for animal tracking, we use the following baseline:

GunDog: GunDog [41] complements the ideal formula for dead-reckoning (Equations (5-7)) with a step detector
and compass calibration to constrain error explosion during animal tracking. We used the publicly available
implementation of GunDog 4.

6.5 Performance Metrics

We adopt two widely used [46, 59, 97] metrics to quantify the localization performance:
• Absolute Trajectory Error (ATE): ATE is defined as the average root-mean-squared-error (RMSE) between
the actual and the predicted locations for the entire trajectory [46]:

𝐴𝑇𝐸 =
1
𝑇

∑︁
𝑡 ∈𝑇

√︃
(𝐿𝑥,𝑡 − 𝐿𝑥,𝑔,𝑡 )2 + (𝐿𝑦,𝑡 − 𝐿𝑦,𝑔,𝑡 )2 (34)

The lower the ATE, the better.
• Relative Trajectory Error (RTE): RTE is defined as the average root-mean-squared-error (RMSE) between
the actual and the predicted locations for a specific time interval. Inspired from [46], we use a time interval
of 1 minute to calculate RTE. The lower the RTE, the better.

To quantify the resource usage of the proposed dead-reckoning techniques, we use either the size (flash usage) of
the TFLM flatbuffer serialized model schema for neural-inertial models or use the flash usage of the compiled
embedded C code for classical techniques.

6.6 Hardware and Software Specifications

For benchmarking HIL NAS, we use three real ARM Cortex-M target boards and one virtual hardware model
(proxy) with varying resource constraints. The target hardware specifications are summarized in Table 3. The
processor runs Mbed RTOS and TFLM interpreter on-board. To communicate with the target hardware via system
commands from the host machine, we used the Mbed command-line interface (CLI).

Table 3. List of hardware evaluated for NAS.

Hardware SRAM (kB) Flash (kB) Proxy/HIL
STM32F446RE 128 512 HIL, Proxy
STM32L476RG 128 1024 HIL, Proxy
STM32F407VET6 192 512 Proxy
STM32F746ZG 320 1024 HIL, Proxy

The TinyOdom models were implemented in Jupyter Notebook (Python), using Keras via a Tensorflow and
TFLM [23] backend. All the publicly-unavailable baselines were also implemented similarly. To benchmark PDR,
NDI, and GunDog’s resource usage, we rewrote their MATLAB and R code in C++. Table 4 lists the specifications
of the host machines on which we ran the NAS and model training. Our NAS framework supports training on
machines with a wide range of processor, GPU, and RAM configurations.

4https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R
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Table 4. GPU workstations used to perform NAS.

Processor GPU RAM (GB)
3.7 GHz AMD Ryzen Threadripper 3970x 32 core 2× 24 GB Nvidia GeForce RTX 3090 256
2.5 GHZ Intel Xeon W-2175 14 core 2× 24 GB Nvidia Titan RTX 256
3.4 GHz AMD Ryzen Threadripper 1950X 16 core 2× 12 GB Nvidia GeForce GTX 1080 Ti 128
3.0 GHz Intel Core i7-6050x 10 core 2× 12 GB Nvidia GeForce GTX Titan X 128
3.4 GHz Intel Core i7-2600k 4 core 1× 12 GB Nvidia GeForce GTX Titan X 32

6.7 Real-World Setup

To showcase how TinyOdom can support real-world applications, we retrofitted an agricultural robot intended
for precision farming [27][28] with neural-inertial tracking hardware and software. The setup is shown in Fig. 4.
The robot is intended for autonomous inter-row weed control in flaxseed and canola fields, where the spacing
between adjacent crop lines can be as small as 30 cm. Thereby, the robot requires a high-sampling rate cm level
precision localization [27][28], which is not possible to achieve with commodity GPS alone. We attached a 9DoF
Razor IMU board to the robot to perform inertial data logging as well as on-board neural-inertial tracking. The
board features a MEMS accelerometer (ADXL345), a gyroscope (ITG-3200), and a magnetometer (HMC5883L).
The data is logged onto an SD card. The board features 32kB of SRAM and 256 KB flash. To log sub-mm ground
truth position, we used several OptiTrack Prime 17W5 MoCap infrared markers [34] mounted in a rigid body

5https://optitrack.com/cameras/prime-17w/

Fig. 4. Setup for testing the utility of TinyOdom in the real-world. A 9DoF Razor IMU board logs inertial sensor data from an

agricultural robot onto an SD card, with developed neural-inertial model running in real-time on the board after training.

Motion capture (MoCap) markers are attached to the robot to log ground truth position on the track using high-resolution

infrared cameras with respect to the ground plane.
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configuration. The motion data of the rigid body were tracked using Motive:Tracker6 [4]. To synchronize the
ground truth data and the IMU data, we harmonized the local system clocks to the Network Time Protocol and
also performed graphically identifiable special movements with the robot before collecting position data. We had
two experimental phases with the robot:
• Data Collection Phase: In this phase, we drove the robot within a 2×2 m arena using a remote controller
to collect inertial sensor data and ground truth position data. We collected 3 hours of IMU and ground
truth position data at a 100 Hz sampling rate.
• Evaluation Phase: In this phase, we ported a neural-inertial model on the Razor IMU platform. Instead of
logging IMU data this time, the board logged the estimated position of the robot. The driving patterns and
ground truth collection setup remained the same.

6https://optitrack.com/software/motive/

Table 5. Performance of competing 2D inertial dead-reckoning techniques for human, UUV, UAV and animal tracking

against TinyOdom in terms of ATE and RTE (lower is better). The top three techniques are shaded. For TinyOdom models, the

corresponding hardware are shown in parenthesis.

Application Dataset Method SRAM (kB) Flash (kB) FLOPS (M) ATE (m) RTE (m)

Pedestrian Dead
Reckoning

OxIOD [18]

PDR [48] 10.8 49.6 - 3.47 3.24
NDI [88] 1.2 28.1 - 9119.50 247.53
IONet [16] 766.7 679.5 - 5.95 2.84
L-IONet [18] 154.2 182.9 13.87 4.37 2.82
RoNIN TCN [46] 2046.3 2195.5 220 1.95 0.42
TinyOdom (STM32F446RE) 52.4 71.6 4.64 3.30 1.24
TinyOdom (STM32L476RG) 72.5 89.6 6.65 3.59 1.37
TinyOdom (STM32F407VET6) 90.1 117.6 8.92 6.82 1.28
TinyOdom (STM32F746ZG) 55.5 71.0 4.92 2.80 1.26

RoNIN [46]

PDR [48] 10.8 49.6 - 34.81 23.62
NDI [88] 1.2 28.1 - 12398.00 59.85
IONet [16] 976.3 782.0 - 22.52 7.63
L-IONet [18] 159.0 182.9 26.8 24.73 14.84
RoNIN TCN # [46] 2046.3 2195.5 440 4.73 1.21
TinyOdom (STM32F446RE) 36.2 50.8 4.15 28.3 7.76
TinyOdom (STM32L476RG) 56.2 65.3 7.80 23.9 6.74
TinyOdom (STM32F407VET6) 138.3 147.1 26.54 27.7 6.20
TinyOdom (STM32F746ZG) 257.3 253.9 49.44 27.36 5.84

UUV Localization AQUALOC [31]

NavNet [96] 1364.1 1396.5 - 3.80 2.98
TinyOdom (STM32F446RE) 18.4 20.5 0.34 4.99 2.78
TinyOdom (STM32L476RG) 36.7 34.2 4.03 4.90 3.30
TinyOdom (STM32F407VET6) 18.6 20.9 0.40 4.03 2.83
TinyOdom (STM32F746ZG) 17.3 26.8 0.14 3.32 2.45

UAV Localization EuRoC MAV [13]

AbolDeepIO [29] 4217.9 4217.8 - 11.24 13.96
VeTorch [35] 7325.3 7294.1 899.74 13.5 15.2
TinyOdom (STM32F446RE) 87.5 110.0 2.95 2.82 2.41
TinyOdom (STM32L476RG) 89.8 110.2 3.18 2.24 2.25
TinyOdom (STM32F407VET6) 63.8 85.6 2.14 2.90 2.55
TinyOdom (STM32F746ZG) 4.37 31.4 0.073 2.19 2.02

Animal Tracking GunDog [41]
GunDog [41, 88] 8.5 32.5 - 28.45 10.53
TinyOdom (STM32F446RE) 49.9 72.8 2.92 43.9 0.27
TinyOdom (STM32L476RG) 32.4 55.9 1.81 60.82 0.35
TinyOdom (STM32F407VET6) 84.3 95.9 3.19 28.2 0.20
TinyOdom (STM32F746ZG) 45.4 64.0 1.90 11.41 0.15

# trained on entire RoNIN dataset, while only 50% is publicly available [46].
FLOPS calculation for models with LSTM/GRU/RNN cells were inaccurate and hence ommitted.

and bolded - best performing technique, - second best performing technique, - third best performing technique.
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(a) (b)

(c) (d)

Fig. 5. ATE, RTE, and flash usage (lower is better) of competing dead-reckoning techniques against TinyOdom (TO) models.

TinyOdom can provide 31-134× reduction in model size without significant markup (often improvement) in ATE/RTE over the

SOTA methods in each application, thanks to robust sequence learning and hardware-aware formulation.

7 EVALUATION, COMPARISON AND DISCUSSION

In this section, first, we showcase the localization performance and resource usage of TinyOdom models against
competing baselines (Section 7.1). Next, we illustrate how our HIL NAS adapts models based on hardware
capability (Section 7.2). Third, we show the performance of our depth filter for altitude estimation (Section 7.3).
Fourth, we perform an ablation study to show how the individual components in our physics, velocity, and
magnetometer-centric sequence learning formulation affect localization performance (Section 7.4). Finally, we
show transferability and real-world evaluation of TinyOdom (Section 7.5).

7.1 Localization Performance and Resource Usage

Table 5 and Fig. 5 showcase the performance of TinyOdom TCN models against competing methods for all four
applications in terms of ATE, RTE, and resource usage. From Table 5 and Fig. 5, we can see that TinyOdom
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models, despite being a fraction of the size of competing baselines, are always among the top two best performing
models in terms of ATE and RTE. Specifically, TinyOdom outperforms the SOTA for UUV, UAV, and animal
tracking by reducing the ATE by 1.14× to 5×, while being 52× to 134× lighter. Classical approaches such as PDR,
NDI, and Gundog are outperformed not only by TinyOdom but other deep-learning neural inertial models. Notice
how our best performing models are within 27-72 kB, while the best performing baselines are 33-2200 kB. For
human localization, TinyOdom competes with RoNIN TCN while outperforming NDI, PDR, IONet, and L-IONet.
Compared to the RoNIN TCN, the top-performing TinyOdom models are 31× to 34× smaller, while overall,
the framework provides 31× to 134× reduction in model size over the SOTA. We can make several important
inferences from Table 5 and Fig. 5:

• Baselines which regress heading and displacement (e.g., IONet, L-IONet, AbolDeepIO, and VeTorch) have
high ATE and RTE. We observed that the errors build up when sharp turns occur in the trajectory. Given

(a) (b)

(c) (d)

Fig. 6. Selected trajectory reconstructions on unseen test data from (a) OxIOD dataset, (b) RoNIN dataset, (c) AQUALOC

dataset, and (d) GunDog dataset, in the NE coordinate frame, for TinyOdom and competing proposals.
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that objects in these datasets mostly travel in straight lines, the singularities in the heading rates are ignored
by the neural network during training, leading to large errors in the final position estimate.

• Note that the ATE and RTE for all techniques are much higher than RoNIN TCN for the RoNIN dataset.
We hypothesize that this happened because the pre-trained RoNIN TCN was trained on the entire RoNIN
dataset, while we only had access to 50% of the data (which is challenging due to unrestricted sensor
configuration). In fact, the performance of RoNIN TCN is similar to TinyOdom on the OxIOD dataset,
with TinyOdom lagging RoNIN TCN by 0.85 m. The performance gain comes from the 34× more weights
available to the RoNIN TCN. RoNIN TCN also relies on device orientation, which itself is polluted.

• The robust sequence learning and hardware-aware formulation of TinyOdom generalize across heteroge-
neous applications, continuously maintaining superior localization resolution while keeping a low resource

(a) (b)

(c) (d)

Fig. 7. Evolution of position estimation error with time on selected unseen trajectories from (a) OxIOD dataset, (b) RoNIN

dataset, (c) AQUALOC dataset, and (d) GunDog dataset, for TinyOdom and competing proposals.
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overhead. TinyOdom attempts to lower the ATE and RTE based on available resources. Observe from Fig. 5
that with more available memory, the ATE and RTE generally go down.
• Excluding PDR, NDI and GunDog and L-IONet, none of the baselines are suitable for deployment on URC
devices due to memory constraints. All 4 of these baselines are outperformed in localization resolution.

Fig. 6 shows selected trajectory reconstructions of varying lengths by TinyOdom models against competing
methods for PDR, UUV, and animal tracking. From Fig. 6, we can see that TinyOdom can perform dead-reckoning
for varying trajectory lengths without explosion of position estimation error. Due to heading rate singularity,
IONet and L-IONet struggle to constrain the errors generated by sharp turns, evident in Fig. 6(b), where IONet
and L-IONet tend to over-smooth the turns in the trajectory. PDR has a large error radius and completely fails on
the RoNIN dataset, where the heading cannot be inferred via model-based techniques because of unrestricted
phone placements. TinyOdom models are more closely able to replicate the trajectories generated by RoNIN
TCN with 31×-34× lower model size. For UUV and animal tracking, TinyOdom generates trajectories that closely
mimic the ground truth, while baselines either fail or are further apart from the ground truth.

For small trajectories, the average ATE and RTE metric does not completely state how the error evolves with
time [97]. For example, if a trajectory is circular with a radius of a few meters (common in the OxIOD dataset [18]),
the average ATE and RTE would be unable to showcase how the location estimation varied with time. As a result,
we evaluated how the position estimation error evolves with time for PDR, UUV, and animal tracking for all
methods, shown in Fig. 7. From Fig. 7, we can observe that the position estimation error of TinyOdom grows
much more slowly with time compared to baseline techniques. TinyOdom provides position estimate within 2.5m
to 12m for trajectories of length 12m to 1160m spanning 60 seconds. Notice how the error of the PDR, IONet, and
L-IONet is sinusoidal with time in the OxIOD dataset while growing linearly in the case of the RoNIN dataset.

Fig. 8. Architectural adaption and device capability exploitation by Bayesian NAS based on resource usage for TinyOdom

models. The RAM and flash constraints of the device are written inside paranthesis. 𝐿𝑖 refers to 𝑖
th

layer of TCN.
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Since movement is constricted in a limited space for circular trajectories, ATE of these three baselines fluctuates
for the OxIOD dataset even as they provide poor position estimation. On the other hand, the error of RoNIN-TCN,
NavNet, GunDog, and TinyOdom grow linearly with time.

7.2 Evaluation of Hardware-in-the-Loop Bayesian Neural Architecture Search

Fig. 8 showcases how our hardware-aware NAS adapts architectural encodings of the TCN backbone for hardware
with different compute constraints for the RoNIN dataset. Instead of simply providing small models every time,
our NAS framework optimizes the TCN model to maximize resource usage, thereby lowering ATE and RTE,
when more resources are available. For example, in Fig. 8, as the SRAM capacity increases, the NAS framework
also increases the number of layers, filters, and the kernel size of the TCN models. The framework even adds skip
connections to prevent exploding and vanishing gradient problems for deeper networks. In addition, to capture
both local and long-term inter-dependencies in the temporal sequence within a limited computing budget, our
NAS framework assigns small dilation factors to lower layers and large dilation factors to higher layers. This is
counter-intuitive, as human designers would normally assign dilation factors that grow by a constant factor with
each successive layer instead of intelligent assignment performed by NAS.

(a) (b)

(c) (d)

Fig. 9. (a)-(c) RTE and SRAM usage estimation comparison between proxyless Bayesian NAS and proxied Bayesian NAS

for different devices. The SRAM usage is normalized by maximum RAM capacity of each device. (d) Relationship between

FLOPS and model latency for models trained on all five datasets with HIL.
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We also performed an ablation study to see how proxyless (with real-hardware) and proxied versions (with
proxy to simulate hardware metric) of our NAS framework differ in performance with three real hardware devices
for PDR and UAV localization. The results are showcased in Fig. 9 (a)(b)(c). From Fig. 9 (a)(b)(c), we can see that
the proxy generally tends to provide models which need a higher SRAM compared to HIL NAS. This is because
the HIL NAS can take into account the model runtime interpreter and RTOS overhead, which the proxy for SRAM
and flash fails to account for. Thus, some well-performing models (models with low ATE) found by proxied NAS
may not fit on the real hardware. Thus, HIL is especially important for URC devices, where all overheads need to
be accounted for. Besides quantifying the difference between proxyless and proxied NAS for memory and RTE
modeling, we also studied the relationship between FLOPS and model latency (from real hardware) for all five
datasets, with the results summarized in Fig. 9(d). From Fig. 9(d), we can observe that even though the models
were trained on widely different datasets, there is still a strong positive correlation (Pearson Coefficient, 𝜌 =
0.933) between FLOPS and model latency in the log-log scale, indicating that it is possible to develop an analytical
model correlating FLOPS and model latency without requiring HIL for explicit latency modeling. This would
save time as the models do not need to be run on real hardware to benchmark latency but would only require
compilation to get the SRAM and flash, which can be achieved on the host machine.

7.3 Performance of Robust Depth Filter

Fig. 10 shows sample trajectory reconstruction in the z-axis provided by the barometric 𝛼 − 𝛽 filter on the
AQUALOC dataset. As a baseline, we convert the raw pressure sensor readings to depth using the formula
𝑃𝑡 = 𝜌𝑔𝐿𝑧,𝑡 , where 𝑃𝑡 is the raw pressure reading at time 𝑡 , 𝜌 is the density of seawater and 𝑔 = 9.81. From Fig. 10,
we can see that our filter is robust to sensor noise caused by environmental variations, with the sum of gradients
of the reconstructed trajectory much closer to the ground truth trajectories. Compared to 3D-RoNIN and TLIO,
which estimate height from IMU and have errors of up to ±1.0𝑚, the barometric filter provides altitude estimates
within ±0.1𝑚. Moreover, 3D-RoNIN and TLIO use neural networks in the pipeline much larger than TinyOdom
models to regress height. Our filter, on the other hand, is lightweight, requiring only 10 KB SRAM and 51.4 kB
flash on the target hardware. In addition, our approach for regressing altitude is immune to the curse of drift
associated with inertial sensors.

(a) (b) (c)

Fig. 10. Sample z-axis trajectories of barometric g-h filter on three sequences in the AQUALOC dataset against baseline

depth estimator. The sum of gradients for each plot is shown as well.

7.4 Ablation Study for Sequence Learning Formulation

We performed an ablation study to highlight the importance of the individual components (i.e., velocity, mag-
netometer, and physics module) in our robust sequence learning formulation. We took a model, kept the same
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Fig. 11. Ablation study showcasing the importance of velocity, magnetometer and physics-centric sequence learning formu-

lation for models with same architectural encodings on the OxIOD and the AQUALOC dataset.

architectural encodings, and retrained the model without one or two of the three components. Fig. 11 summarizes
the study performed on the OxIOD and AQUALOC dataset for the best performing models on STM32F446RE and
STM32F746ZG hardware, respectively. From the ablation study, it is clear that the velocity formulation, magne-
tometer readings, and physics channels all work together to reduce the ATE and RTE of the same model. ATE and
RTE are lowest when all three components are present in both datasets. In particular, the velocity-formulation
and the inclusion of magnetometer seem to have the greatest effect in reducing the position estimation error. The
velocity formulation solves the heading rate singularity issue associated with heading-displacement formulation,
while the magnetometer provides an additional anchor for inferring body heading minus the effects of gravity
pollution, varying sensor attitude, translational movements, and drift associated with accelerometers and gyro-
scopes. The physics channel, on the other hand, helps the neural network decide whether valid translational
movements have occurred or not, thereby constraining the output of the network when the object to be localized
is static.

7.5 Transferability and Real-World Evaluation

In this section, we first showcase how pre-trained models perform when they are tested on an entirely different
dataset, which may or may not come from the same underlying application (Section 7.5.1). We then show how
very small amounts of data in the new domain can fine-tune the weights of a pre-trained model trained on an
entirely different underlying application and dataset to operate reasonably well in the real-world (Section 7.5.2).

7.5.1 Transferability Across Applications and Datasets (No Fine-Tuning). Table 6 provides an example of the
performance of neural inertial models on new datasets and applications without fine-tuning. For testing the

Table 6. RTE (m) of neural-inertial models across different datasets (left) and applications (right) without fine tuning. The

dataset on which the model is trained on is shown in parenthesis.

Method (Training Dataset) OxIOD RoNIN

IONet (OxIOD) 2.84 4.7
IONet (RoNIN) 7.65 7.63
LIONet (OxIOD) 2.82 4.7
LIONet (RoNIN) 8.35 14.84

RoNIN TCN (OxIOD) 0.42 13.4
RoNIN TCN (RoNIN) 10.3 1.21
TinyOdom (OxIOD) 1.26 97.2
TinyOdom (RoNIN) 3.16 6.74

Method (Trained Application) PDR UUV

IONet (PDR) 2.84 5.15
LIONet (PDR) 2.82 3.94

RoNIN TCN (PDR) 0.42 14.96
TinyOdom (PDR) 1.26 7.83
NavNet (UUV) 93 2.96

TinyOdom (UUV) 5.82 2.45
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transferability across the same application but different datasets, we tested PDR models across the OxIOD and
RoNIN datasets. For testing the transferability across different applications, we tested PDR (trained on the OxIOD
dataset) models and UUV localization models (trained on the AQUALOC dataset). From Table 6, it is evident
that while neural-inertial models (both TinyOdom and large models) perform well within the trained data
distribution, they are not directly transferable to another dataset or application without fine-tuning. Apart from
having different data distribution, these odometry datasets have different sampling rates as well as different
motion primitives (e.g., a UUV’s motion patterns would be different from that of a person walking). Thereby,
the ideal window sizes and learned physical embeddings would be significantly different across datasets and
applications. In addition, the TinyOdommodels perform slightly worse than the large models on different datasets
and applications. This is because the lightweight models do not have enough redundant weights or parameters to
model globally significant attributes that may be common across datasets or applications, but instead overfit the
dataset-specific characteristics in the temporal sequences, sacrificing generalizability over accuracy. Thus, it is
necessary to perform domain adaption when transferring pre-trained models to different applications.

7.5.2 Fine-Tuning and Real-World Usage. Before fine-tuning pre-trained models, we ran NAS using the entire
3-hour dataset to find TinyOdom models that can run in real-time on the target hardware listed in Table 3, as
well as on the Razor IMU retrofitted to the robot. Table 7 lists the hardware and performance metrics of the best
performing model for each hardware. Note that the ATE and RTE metrics shown for the Razor IMU are from
the evaluation phase performed in real-time with the robot. From Table 7, we can observe that the RTE over 60
seconds is around 1 meter. This is acceptable for precision agriculture, as the robot can intermittently correct its
location by fusing GPS with TinyOdom, while TinyOdom takes care of a high sampling rate and high-resolution
cm-level localization.

Table 7. Resource and localization metrics for TinyOdom models geared towards different hardware for agricultural robot

localization trained using the entire dataset (3 hours) from scratch. The ATE is for a 20 minute (250 m) trajectory.

Hardware SRAM (kB) Flash (kB) FLOPS (M) ATE (m) RTE (m)
Razor IMU 3.1 16.2 0.012 15.3 1.13

STM32F446RE 4.1 32.4 0.059 24.5 1.47
STM32L476RG 4.6 17.8 0.062 18.3 1.02
STM32F407VET6 15.6 31.9 0.359 22.96 1.28
STM32F746ZG 3.2 19.8 0.016 19.65 0.96

Having empirical gurantees of TinyOdom capable of operating on real-world data in real-time on real hardware,
next, we explored whether pretrained models trained on an entirely different application (hence dataset) can be
fine tuned to operate in the real-world with limited labelled data from the new domain using transfer learning.
Fig. 12(a) showcases how the localization error of a pretrained model (pretrained on the OxIOD dataset) evolve
with the amount of labelled data in the new domain (agricultural robot positioning) available to the model. We
compared the error evolution against a model trained from scratch using the same amount of limited data. We
observed that the RTE of a pre-trained model with no fine-tuning reduces by 8× with only 1 minute of labeled
data in the new domain. Moreover, from the graph, we can observe that a model being trained from scratch
needs around 100 minutes of data in the new domain to match the RTE of the pre-trained model. Intuitively,
pre-trained models bring in stability in error evolution which models trained from scratch cannot bring with
limited data, even if the pre-trained model was trained on a different application. Fig. 12(b)(c)(d) shows trajectory
reconstructions on unseen data for a 20m trajectory on 1 minute, 5 minutes, and 20 minutes of data in the new
domain. The pre-trained model converges much faster to mimic the ground truth trajectory with an increase in
available data, while the classifier trained from scratch struggles to converge with limited data.
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(a) (b)

(c) (d)

Fig. 12. (a) Evolution of RTE with increase in availability of labelled data from new domain on pretrained TinyOdom model

(pretrained on OxIOD) versus TinyOdom model trained from scratch. (b)(c) and (d) Trajectory reconstructions for Agrobot

localization with a pretrained TinyOdom models (fine-tuned and not fine-tuned) and TinyOdom models trained from scratch.

The minutes of data used by the pretrained TinyOdom model for fine-tuning and the model trained from scratch are shown.

8 CONCLUSION AND FUTURE WORK

Inertial odometry extends the applicability of odometry to GPS and network-denied environments. Although
the conventional model-based inertial odometry approaches are computationally feasible, they demand expert
heuristics impacting their generalizability. Further, the current data-driven approaches for inertial odometry
models, at best, work on smartphone class devices and are not transferable to the URC devices. We show that the
proposed TinyOdom framework introduces a robust 3D inertial sequence learning formulation and a hardware-
aware NAS framework to train inertial odometry models. TinyOdom extends the neural-inertial odometry across
heterogeneous applications while achieving up to 134× smaller size than the current SOTA while maintaining or
exceeding localization resolution. Our evaluation shows that the performance of existing data-driven inertial
odometry is susceptible to the vanilla sequence learning formulation. The widely adopted heading displacement-
based formulation is adversely impacted by heading-rate singularity (e.g., during share turns in the trajectory). In
contrast, the introduced magnetometer, physics, and velocity-centric inertial sequence formulation of TinyOdom
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maintain or exceed the tracking performance over the SOTA, even though the model sizes are significantly smaller.
Finally, we showcased the challenges that arise when trying to transfer pre-trained neural-inertial models in the
real world and showcased transfer learning as a potential solution. There are several avenues of future work.
Firstly, we observed that in the absence of GPS or infrastructure-provided location fixes, the errors in TinyOdom
and other SOTA inertial odometry approaches are cumulative with time. This suggests for long-term usage,
inertial odometry necessitates intermittent error correction from the infrastructure within the available resource
budget. Secondly, we saw that complementing neural-inertial models with heuristics and physics improves the
robustness dramatically. Our physics metadata module is not trainable so far and uses domain knowledge. Possible
use of neurosymbolic reasoning [92], physics-aware embeddings [21][95], or signal temporal logic [60] may
help improve neural network robustness without domain expertise. Thirdly, neural-inertial models trained on
one dataset do not directly transfer to another dataset even when the application is the same, let alone different
applications. While our transfer learning approach with a few minutes of labeled data fine-tunes pre-trained
models for real-world usage, more work needs to be done for on-device fine-tuning [26] and possible use of
unsupervised pre-trained embeddings [7]. Finally, the resolution achieved by neural-inertial odometry models
depends on the best possible resolution of the ground truth hardware. However, developers may not have access to
high-resolution sub-mm accuracy motion capture systems, particularly when operating over a large geographical
region. Therefore, efficient ways to log high-resolution ground-truth data need to be explored.
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