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ARTICLE INFO ABSTRACT

Keywords: Empirical observations of how labs conduct research indicate that the adoption rate of open practices for trans-
Open science parent, reproducible, and collaborative science remains in its infancy. This is at odds with the overwhelming
Reproducibility evidence for the necessity of these practices and their benefits for individual researchers, scientific progress,
PME};I and society in general. To date, information required for implementing open science practices throughout the
MEG different steps of a research project is scattered among many different sources. Even experienced researchers
EEG in the topic find it hard to navigate the ecosystem of tools and to make sustainable choices. Here, we provide

an integrated overview of community-developed resources that can support collaborative, open, reproducible,
replicable, robust and generalizable neuroimaging throughout the entire research cycle from inception to publica-
tion and across different neuroimaging modalities. We review tools and practices supporting study inception and
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planning, data acquisition, research data management, data processing and analysis, and research dissemination.
An online version of this resource can be found at https://oreoni.github.io. We believe it will prove helpful for
researchers and institutions to make a successful and sustainable move towards open and reproducible science
and to eventually take an active role in its future development.

1. Introduction

Science is an incremental progress towards creating and organizing
knowledge through theories and testable predictions. Reproducibility is
a core part of science: being able to repeat or recreate scientific results
is essential for the complex process of knowledge accumulation. Due to
its relevance, different terms have been introduced to describe specific
aspects of the process, including “reproducibility” when the same data
and methods are used, “replicability” when new data but same meth-
ods are used, “robustness” when the same data but different methods
are used, and “generalizability” when new data and methods are used
(Whitaker, 2019). Here, we use “reproducibility” as an umbrella term,
encompassing all aspects of recreating scientific results (Poldrack et al.,
2020). Open science tools and practices have been developed to advance
reproducibility, as well as accessibility and transparency at all stages of
the research cycle and across all levels of society. Together, they remove
barriers to sharing and facilitate collaboration, with the goal of improv-
ing reproducibility and, ultimately, accelerating scientific discoveries.
Importantly, such practices facilitate, but do not guarantee, higher qual-
ity.

Empirical observations of how labs conduct research indicate that
the adoption rate of open practices and tools for reproducible and col-
laborative science, unfortunately, remains in its infancy. Even when
members of a specific scientific community have taken a central role
in open science advocacy and tool development, like in the neuroimag-
ing community, the impact on the rest of the very same community
is limited. A recent survey (Paret et al., 2022) including researchers
who are senior and likely to hold a positive attitude towards open
science, indicated that 42% have never pre-registered a neuroimaging
study and 34% have never shared their raw neuroimaging data. Many
of those who indicated that they pre-registered or shared their data at
least once likely did not do so in all their studies, and thus, the actual
rate of pre-registration and data sharing in neuroimaging is likely much
lower.

The limited adoption of open science practices is at odds with
the overwhelming evidence that a lack of open practices in gen-
eral can hinder reproducibility with costs for scientific progress and
for society. Indeed, reproducibility issues have been undermining
the foundation of scientific research in several fields, such as psy-
chology (Open Science Collaboration, 2015; Klein et al., 2018), so-
cial sciences (Camerer et al., 2016, 2018), neuroimaging (Munafo
et al., 2017; Botvinik-Nezer et al., 2020; Li et al., 2021), preclini-
cal cancer biology research (Errington et al., 2021; Errington et al.,
2021), and more (Hutson, 2018; Nissen et al., 2016; Serra-Garcia and
Gneezy, 2021). As a response, there has been a rise in the de-
velopment of tools and approaches to facilitate reproducibility and
open science, in the spirit of Findability, Accessibility, Interoper-
ability, and Reusability principles (FAIR) (Wilkinson et al., 2016;
Gorgolewski and Poldrack, 2016; Nosek et al., 2018; Nosek et al.,
2012; Nosek and Lakens, 2014; Poldrack et al., 2017; Poldrack et al.,
2020; Poldrack et al., 2019; Clayson et al., 2022). Beyond their
potential to mitigate transparency and reproducibility issues, these
practices provide important benefits for individual researchers by in-
creasing exposure, reputation, chances of publication, number of ci-
tations, media attention, potential collaborations, and position and
funding opportunities (Allen and Mehler, 2019; McKiernan et al.,
2016; Nosek et al., 2022; Markowetz, 2015; Hunt, 2019). Hence, one
could have expected a higher uptake for such beneficial practices and
tools.

Recently, a parallel top-down change of policies started to further
support the adoption of open science practices and tools. For example,
funding agencies are now enforcing the implementation of certain open
data practices for publicly funded research (e.g., the NIH in the U.S.
and the ERC in Europe; de San Roman 2021; de Jonge et al., 2021), and
some require a plan for research data storage and sharing, openly acces-
sible publication formats and dissemination plans beyond the classical
journal publication. Additionally, they provide funding for the devel-
opment of necessary software, hardware, and collaborative infrastruc-
ture to support the transition to open and reproducible neuroscience
(e.g., the NIH BRAIN Initiative, NIH ReproNim project (Kennedy et al.,
2019), NSF CRCNS, EU Human Brain Project, German NFDI). These ef-
forts by funding agencies are complemented by stakeholder institutions
like the OHBM, the International Neuroinformatics Coordinating Facil-
ity (INCF), the Chinese Open Science Network (COSN), and the Open
Science Framework (OSF), who provide platforms for the development
of standards and best practices of open and FAIR neuroscience research,
assemble training material, and promote open science practices. More-
over, journals have started changing their policies with regard to open
access options and data sharing. Together, these institutional measures
aim at fostering the benefits of open science practices, and the adoption
of open and reproducible science standards will be increasingly required
for labs and individual researchers.

Nevertheless, multiple barriers of entry to open science practices are
driving the modest rate of adoption in the general research community.
Among them are lack of knowledge or training and lack of skills or re-
sources. A survey by Borghi and Van Gulick (2018) found that 65%
of researchers reported openness and reproducibility as motivation for
implementing research data management in MRI, but between 40-50%
pointed to the lack of best practices/tools and knowledge/training as
main obstacles for embracing these practices. Likewise, a more recent
survey indicated that similar percentages of researchers in neuroimag-
ing have never learned how to pre-register or share their data online
and that they know too little about pre-registration platforms and suit-
able data repositories (Paret et al., 2022). These later challenges could
be alleviated by a simplified overview of the open resources available.
However, information required for implementing open science practices
over the full research cycle is currently scattered among many different
sources. Even experienced researchers in the topic often find it hard to
navigate the ecosystem of community-developed tools and to make sus-
tainable choices.

This manuscript provides an integrated overview of community-
developed resources critical to support open and reproducible neu-
roimaging throughout the entire research cycle and across different neu-
roimaging modalities (particularly MRI, MEG, EEG, and PET). Instead of
detailing, as others before, why one should adopt open and reproducible
practices (Munafo et al., 2017; Nosek et al., 2012; Poldrack et al., 2017;
McKiernan et al., 2016), we focus on providing a resource overview.
Our goal is to make it easier for scientists to select the most valuable in-
struments for their practice at every step of the research workflow, and
consequently accelerate the broader adoption of open science tools and
practices, increasing scientific reproducibility and openness. We provide
justification on why each implements good practices, as well as how to
integrate them into the research workflow.

In this review we do not aim to recommend particular tools over
others, as the ideal ones may depend on many factors that vary be-
tween researchers. However, we highlight some points to consider at
the time of selection. Typically it is advisable to choose tools that in-
tegrate with other tools and practices already established in the lab,
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have a relatively fast learning curve, and a long-term benefit. In or-
der to increase sustainability, tools should be relatively mature, well
maintained, and supported by an active community. Another indicator
is whether the tools and practices are integrated in already established
toolboxes or supported by large open science organizations. If still mul-
tiple tools meet these criteria, then it might be advantageous to choose
one that is used by peers and collaborating partners. When we recom-
mend practices, we state the problems they are supposed to address. We
also encourage the readers to join the development teams and leader-
ship of those tools, becoming an active part of the open neuroimaging
community. Contributions from individuals who are experiencing barri-
ers to the uptake of specific practices are particularly encouraged, since
they can help mitigate these barriers for the benefit of everyone.

The manuscript is organized following the different steps of the re-
search cycle: study inception and planning, data acquisition, research
data management, data processing and analysis, and research dissem-
ination. For each step we provide a figure with subgoals (subsections
in the text) in the headings, some recommendations on how to achieve
them in a bullet list, and supporting tools indicated by icons (see Figs. 1—
5). To further guide the readers, the manuscript is accompanied by
a detailed table containing links and pointers to the resources fea-
tured in the text of each section (see Table S1). In addition, the con-
tent is available online as a Jupyter Book at https://oreoni.github.io
(https://doi.org/10.5281/zenodo.7083031).

2. Study inception, planning, and ethics

Each individual decision from the beginning of the study will con-
tribute to facilitate or hamper reproducibility. In the current section,
we will describe practices and tools for preparation, piloting, pre-
registration, obtaining participants’ consent and ongoing quality control
and assessment (see Fig. 1).

2.1. Study preparation and piloting

Research projects usually begin with descriptions of general, theo-
retical questions in documents such as grants or thesis proposals. Such
foundations are essential but necessarily broad. When the project moves
from proposal to implementation, these descriptions are translated into
concrete protocols and stimuli, a process that can be streamlined by
the incorporation of open procedures and comprehensive piloting. The
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promise is that the more preparation and piloting is conducted prior to
data collection, the more likely it is that the project will be successful:
that analyses of its data can contribute to answering its motivating ideas
and questions (Strand, 2021).

Standard Operating Procedures (SOPs) can take different forms, and
are powerful tools for planning, conducting, recording, and sharing
projects. Ideally, SOPs describe the entire data collection procedure
(e.g., recruitment, performing the experiment, data storage, preprocess-
ing, quality control analyses), in sufficient detail for a reader to conduct
the experiment themselves with minimal supervision, thereby contribut-
ing to reproducibility. SOPs may begin as an outline with vague descrip-
tions, preferably during the pilot stage, and then become more detailed
over time. For example, if a session is lost due to a button box signal fail-
ure, an image of its correct settings could be added to the SOPs. At the
end of the project, its SOPs should be released along with its publications
and datasets, to provide a source of answers for the detailed procedu-
ral information that may be needed for experiment reproducibility or
dataset reuse, but are not included in typical publications.

Many resources can assist with experiment planning and SOP cre-
ation. Documents and experiences from similar studies conducted lo-
cally are valuable, but should not be the only source of informa-
tion during planning, since, for example, a procedure may be con-
sidered standard in one institution but not in another. Public SOPs
can serve as examples, as can protocols published on specialized sites
(e.g., Protocol Exchange, protocols.io, Nature Protocols; see Table S1).
Best practices guides are now available for many imaging modali-
ties (MRI: Nichols et al. 2017; MEG/EEG: Pernet et al. 2020; fNIRS:
Yiicel et al. 2021; PET: Knudsen et al. 2020). Open resources for stimu-
lus presentations and behavioral data acquisition are also recommended
to increase reproducibility (see Section 3.2).

Piloting should be considered an integral part of the planning pro-
cess. By “piloting” we mean the acquisition and evaluation of data prior
to the collection of the actual experimental data, verifying the feasibility
of the whole research workflow. While it is not a necessary prerequisite
for reproducibility, it is a good scientific practice to produce higher qual-
ity research, and facilitates reproducibility via better documentation and
SOPs. A piloting stage before starting data collection is important, not
only for ensuring that the protocol will go smoothly when the first par-
ticipant arrives, but also that the SOPs are complete and, critically, that
the planned analyses can be carried out with the actual experimental
data recorded. For example, pilot tests may be set up to confirm that

STUDY INCEPTION AND PLANNING
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Fig. 1. Study inception and planning
For each step, the figure contains the main goals (headings), specific recommendations (bullet list), and useful tools (icons).
Sources: Icons from the Noun Project: Registration by WEBTECHOPS LLP; Share by arjuazka; Computer warranty by Thuy Nguyen; Logos: used with permission by
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the task produces the expected behavioral patterns (e.g., faster reaction
time in condition A than B), that the log files are complete, and that im-
age acquisition can be synchronized with stimulus presentation. Pilot-
ing should also include testing the data storage and retrieval strategies,
which may include storing consent documents (Section 2.3), question-
naire responses, imaging data, and quality control reports. SOPs also
prescribe how data will be organized, preferably according to a schema
(e.g., the Brain Imaging Data Structure, Section 4.1). Data organization
largely determines the efficient implementation of analysis pipelines and
improved reproducibility, reusability, and shareability of the data and
results.

Analyses of the pilot data are very important and can take several
forms. One is to test for the effects of interest: establishing that the de-
sired analyses can be performed and that the data quality is sufficient to
produce valid and reproducible results (Sections 2.2. and 2.4; for power
estimation tools see Table S1). A second type of pilot analysis is to es-
tablish tests for effects not of direct interest, but suitable for controls.
As discussed further in Section 2.4, positive control analyses involve
strong, well-understood effects that must be present in a valid dataset. It
is worth mentioning that well structured and documented openly avail-
able datasets (see Section 4) could also serve for analysis piloting though
they would lack the test for potential site specific technical issues. Sim-
ulations could also be used to ensure that the planned analysis is doable
and valid.

2.2. Pre-registration

Pre-registration is the specification of the research plan in advance,
prior to data collection or at least prior to data analysis (Nosek and
Stephen Lindsay, 2018). Pre-registration usually includes the study de-
sign, the hypotheses and the analysis plan. It is submitted to a registry,
resulting in a frozen time-stamped version of the research plan. Its main
aim is to distinguish between hypothesis-testing (confirmatory) research
and hypothesis-generating (exploratory) research. While both are nec-
essary for scientific progress, they require different tests and the con-
clusions that can be inferred based on them are different (Nosek et al.,
2018).

Registered reports is a relatively novel publishing format that can
be seen as advanced pre-registration. This format is becoming very
common, with a growing number of hundreds of participating journals
(Hardwicke and loannidis, 2018; Chambers, 2019). In a registered re-
port, a detailed pre-registration is submitted to a specific journal, includ-
ing introduction, planned methods and potentially preliminary data.
Then, it goes through peer review prior to data collection (or prior
to data analysis in certain cases, for example for studies that rely on
large-scale publicly shared data). If the proposed plan is approved fol-
lowing peer review, it receives an “in-principle acceptance”, indicat-
ing that if the researchers follow their accepted plan, and their conclu-
sions fit their findings, their paper will be published. An in-principle
accepted registered report is sometimes required to be additionally pre-
registered. Recently, a platform for peer review of registered reports
preprints was launched, named “Peer Community in registered reports”
(see Table S1).

There are many benefits to pre-registration, from the field to the
individual level. Transparency with regard to the research plan, and
whether an analysis is confirmatory or exploratory, increases the cred-
ibility of scientific findings. It helps to mitigate some of the effects
of human biases on the scientific process, and reduces analytical
flexibility, p-hacking (Simmons et al., 2011) and hypothesizing af-
ter the results are known (Nosek et al., 2019; Munafo et al., 2017;
Nature, 2015; Kerr, 1998). There is initial evidence that the quality
of pre-registered research is judged higher than in conventional pub-
lications (Soderberg et al., 2021). Nonetheless, it should be noted that
pre-registration and registered reports are not sufficient to fully protect
against questionable research practices (Paul et al., 2021; Devezer et al.,
2021; Rubin, 2020) and their general impact will depend on the extent
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journals will implement them. Registered reports also mitigate publica-
tion bias by accepting papers based on hypothesis and methods, inde-
pendently of the findings. Indeed, it has been shown that pre-registered
studies and registered reports include more null findings (Allen and
Mehler, 2019; Kaplan and Irvin, 2015; Scheel, 2020) and report lower
effect sizes (Schifer and Schwarz, 2019) compared to other studies. For
the individual researcher, registered reports with a two-stage review are
an excellent example in which authors benefit from feedback on their
methods before even starting data collection. They can help improve the
research plan and spot mistakes in time, and provide assurance that the
study will be published (Wagenmakers and Dutilh, 2016; Kidwell et al.,
2016). It should be noted, though, that registered reports can require a
significant time commitment, that is likely to pay off in the long-term but
is not easily accommodated in many traditional project funding models.

While pre-registration is not the common practice yet, it is becom-
ing more common over time (Nosek and Stephen Lindsay, 2018) and
requirements by journals and funding agencies are already changing.
There are many available templates and forms for pre-registration, or-
ganized by discipline or study types, for example for fMRI and EEG (see
Table S1), and published guidelines for pre-registration in EEG are also
available (Govaart and Schettino, 2022; Paul et al., 2021). There are
different approaches as to what should be pre-registered. For instance,
some believe it should be an exhaustive description of the study, in-
cluding the background and justification for the research plan, while
others believe it should be a short and concise document, including
only the necessary details to reduce the likelihood of p-hacking and
allowing reviewers to review it properly during the peer review pro-
cess (Simmons et al., 2021). Pre-registration can also be flexible and
adaptive by pre-registering contingency plans or complex decision trees
(Benning et al., 2019).

Once researchers develop an idea and design a study, they can write
and pre-register their research plan (Nosek and Stephen Lindsay, 2018;
Paul et al., 2021). Pre-registration could be performed following the pi-
loting stage (Section 2.1), but studies can be pre-registered irrespective
of whether they include a piloting stage or not. There are many online
registries where researchers can pre-register their study. The three most
frequently used platforms are: (1) OSF, a platform that can also be used
to share additional information about the study/project (such as data
and code), with multiple templates and forms for different types of pre-
registration, in addition to extensive resources about pre-registration
and other open science practices; (2) aspredicted.org, a simplified form
for pre-registration (Simmons et al., 2021); and (3) clinicaltrials.gov,
which is used for registration of clinical trials in the U.S. (see Table S1).

Once the pre-registration is submitted, it can remain private or
become public immediately, depending on the platform and the re-
searcher’s preferences. Then, the researcher collects the data and ex-
ecutes the research plan. When writing the manuscript to report the
study, the researcher is advised to include a link to the pre-registration,
clearly and transparently describe and justify any deviation from the
pre-registered plan and also report all registered analyses. Additional
analyses to deepen some results or looking into unexpected effects are
encouraged, and are part of the routine scientific investigation. The
added benefit of pre-registration is that such analyses do not need to
reach pre-specified levels of significance because they are reported as
exploratory.

2.3. Ethical review and data sharing plan

The optimism of the scientific community about improving science
by making all research assets open and transparent has to take into ac-
count privacy, ethics and the associated legal and regulatory needs for
each institution and country. Whereas on the one hand sharing data
(most often collected with public funds) is critical to advance science,
on the other hand, sharing data can in some situations become infeasi-
ble to safeguard privacy. Data governance concerns the regulatory and
ethical aspects of data management and sharing of data files, metadata
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and data-processing software (see Sections 6.1-3). When data sharing
crosses national borders, data governance is called International Data
Governance (IDG). IDG depends on ethical, cultural and international
laws.

Data sharing is beneficial for both reproducibility and the explo-
ration and formulation of new hypotheses. Therefore, it is important
to ensure, prior to data collection, that the collected data could be later
shared. Open and reproducible neuroimaging thus starts by (1) plan-
ning which data would be collected; (2) planning how these data would
later be shared; (3) having ethical and legal clearance to share data; but
also (4) the infrastructural means for this sharing (for more informa-
tion about data sharing and available platforms, see Section 6; for data
governance see Section 4).

Since 2014, the Open Brain Consent project (see Table S1), which
was founded under the ReproNim project umbrella, provides examples
and templates translated to multiple languages to help researchers pre-
pare consent forms for data sharing, including the recent development
of an EU GDPR-compliant template (The Open Brain Consent working
group, 2021). Such consent should include a statement about how the
data will be shared, with whom, potential risks, and that the consent to
share can be withdrawn (which is separate from consent to participate
and withdraw from the study). Data sharing forms should also make
explicit how these factors determine to what extent a later withdrawal
or editing of the data on the repository is possible. Given the interna-
tional nature of the majority of neuroscience projects, IDG has become
a priority (Eiss, 2020). Further work will be needed to implement an
IDG approach that can facilitate research while protecting privacy and
ethics. Specific recommendations on how to implement IDG have been
proposed (Eke et al., 2022).

It should be noted that ethical review comprises more than data shar-
ing procedures. Its goals are safety, self determination, and the protec-
tion of rights of study participants. A central element is informed consent
to participate in the study, which requires that technical and scientific
aspects of the study as well as regulations for participation in the study
are transparently communicated to the participants. Clinical research
may require adherence to additional, country-specific regulations. Fi-
nally, when planning the recruitment procedures, it is important to aim
for equity, diversity and inclusivity (Henrich et al., 2010; Forbes et al.,
2021), avoiding obtaining results that may not generalize to larger
populations and improving the quality of research (e.g., Baggio et al.
2013).

2.4. Looking at the data early and often: monitoring quality

Inevitably, unexpected events and errors will occur during every ex-
periment and in every part of the research workflow. These can take
many forms, including dozing participants, hardware malfunction, data
transfer errors, and mislabeled results files. As data progresses through
the workflow, issues are likely to cascade and amplify, perhaps masking
or mediating experimental effects, thereby damaging the reliability of
the results. The impact of such surprises can range from the trivial and
easily corrected to the catastrophic, rendering the collected data unus-
able or conclusions drawn from it invalid. Identifying issues and errors
as early as possible is important to enable adding corrective measures
to the protocol, but also because some issues are much easier to detect
when the data are in a less-processed form. For example, a number of
typical artifacts in anatomical MRI are known to be easier to identify in
the background of the image and regions of no-interest (Mortamet et al.,
2009), and can easily remain undetected if the first quality control check
is set up after, e.g., brain extraction, which masks out non brain tissue.
Thus, it is fundamental to pre-establish within the SOPs (Section 2.1)
the mechanisms set in place to ensure the quality of the study. There
are several mechanisms available that help to ensure that all required
data are being recorded with sufficient quality and in a way that makes
them analyzable.
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Quality control checkpoints. Establishing quality control (QC) check-
points (Strother, 2006) is necessary for every project: which data are
usable for analyses, and which are not? At these key points in the pre-
processing or analysis workflow the data’s quality is checked, and if in-
sufficient, it does not move on to the next stage. Results from low quality
data are much less likely to be reproducible with new data or methods.
Critically, the exclusion criteria of each checkpoint must be defined in
advance (preferably stated in the SOPs and the pre-registration docu-
ment, see Sections 2.1 and 2.2) to preempt unintentional cherry-picking
(i.e., excluding data points to reinforce the results), which is a major con-
tributor to irreproducibility via undisclosed flexibility. Some criteria are
widely accepted and applicable, for example, that all neuroimaging data
should be screened to eliminate clear artifacts, such as data corrupted
by incidental electromagnetic interference or participants movements.
A similarly well-established checkpoint of the workflow is visualizing
and inspecting the outputs of surface reconstruction methods in MRI,
checking time activity curves in high binding regions for PET or power
spectral content in MEG and EEG; these fundamental QC checkpoints
and their implementation are heavily dependent on the immediately
previous processing step. Such QC may be conducted manually by ex-
perts using software aids, like visual summary reports or visualization
software such as MRIQC (Esteban et al., 2017). More objective, auto-
matic exclusion criteria, are currently an open and active line of work in
neuroimaging (e.g., Ding et al. 2019; Kollada et al. 2021; Esteban, Blair,
et al. 2019). Some QC checkpoints, such as for acceptable task perfor-
mance or participant movement, are often defined for individual tasks,
experiments and hypotheses.

Quality assurance (QA). Tracking QC decisions will also enable iden-
tifying structured failures and artifacts that require not just exclud-
ing affected datasets, but rather taking corrective actions to preempt
propagation to additional datasets. When a mishap occurs, the experi-
menters should investigate its cause, and if possible, change the SOPs
(Section 2.1) and related materials to reduce the chance of it happen-
ing again. For example, if many participants report confusion about
task instructions, the training procedure and experimenter script could
be altered. Automated checks and reports can be very effective, such
as real-time monitoring of participant motion during data collection
(Heunis et al., 2020), or validating that image parameters are as ex-
pected before storage (e.g., with XNAT Marcus et al. 2007 or ReproNim
tools Kennedy et al. 2019).

Positive control analyses. A final aspect of quality assurance is the in-
corporation of positive control analyses: analyses included not because
they are of interest for the scientific questions, but because they provide
evidence that the dataset is of sufficient quality to conduct the analyses
of interest, and that the analysis is valid. Ideally, positive control anal-
yses focus on strong, well-established effects that must be present if the
dataset is valid. For example, with task fMRI designs, button pressing,
which should be associated with contralateral motor activation, is often
a convenient target for positive control analysis. In MEG and EEG, par-
ticipants can be asked to blink their eyes, open their mouths, or clench
their jaws, and the recordings checked for the associated artifacts. Pos-
itive control analyses should also be carried out during piloting, when
changes to the protocol are still possible (see Section 2.1). For example,
if button presses are not clearly detectable during piloting, the acquisi-
tion sequence may not have sufficient SNR for the planned analyses and
thus should be modified. Positive controls can further serve for analy-
sis pipeline optimization prior to conducting the optimized analysis on
the outcome of interest, thus preventing legitimate optimization from
turning into p-hacking.

3. Data acquisition

Data acquisition is largely carried out with vendored systems. Man-
ufacturers typically keep their software and hardware closed or semi-
open at most. As a result, researchers often receive highly processed
(e.g., reconstructed) data as ‘raw’ data from the devices. The lack of
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transparency in the acquisition details and downstream proprietary pro-
cessing prevents end-to-end reproducible neuroimaging workflows. Re-
producibility is endangered, for instance, by heterogeneity in data for-
mats, definition of critical experimental parameters, and technological
differences that are translated into the data as spurious, non-biological
differences between acquisition devices.

A central issue is the proprietary nature of acquisition protocols.
Many imaging device manufacturers require developers to use building
blocks from vendor-exclusive toolboxes. This closes the door on open-
source development and hampers multi-center consensus for modern
imaging methods, especially in research. These shortcomings of mostly
closed solutions have triggered a growing interest in open-source ac-
quisition hardware and software (Winter et al., 2016), Here, we pro-
vide a brief review of these developments and accompanying solutions
aimed at fostering open and collaborative acquisition method develop-
ment across imaging modalities (see Fig. 2).

3.1. Brain data acquisition

A common approach advocated by MRI researchers is establishing
consensus protocols to standardize data acquisition. One of the flagship
applications of this strategy is the Human Connectome Project (HCP)
protocol, which achieved this within the confines of a single vendor
(Smith et al., 2013). The HCP acquisition sequences and reconstruc-
tion software are compiled for different MRI scanner versions of a sin-
gle vendor, openly distributed and maintained for fMRI applications
(Ugurbil et al., 2013). However, it is generally difficult to achieve good
inter vendor agreement using off the shelf software even for widely used
protocols, such as apparent diffusion coefficient and longitudinal re-
laxation time (Sasaki et al., 2008; Lee et al., 2019). In addition, not
all software options are available from all vendors (for example, com-
pressed sensing (Lustig et al., 2008) and frequency-domain based paral-
lel imaging methods (Breuer et al., 2005; Griswold et al., 2002). More-
over, even seemingly simple image enhancement protocols, such as im-
age inhomogeneity corrections, are often scarcely documented and vali-
dated but can affect inferences drawn from an experiment (Schmitt and
Rieger, 2021; Jellts and Kannengiesser 2014). Users typically have ac-
cess to key parameters of pulse sequences, which are at the center of data
acquisition. The exact pulse sequence descriptions are vendor-specific
and may even change between software upgrades of a single vendor.
This makes it difficult to evaluate multi-center replicability of new ac-
quisition methods or to acquire longitudinal data with confidence.
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Fortunately, in the last decade, several vendor-neutral data ac-
quisition pulse sequences and reconstruction frameworks have been
developed to mitigate this problem: Pulseq (Layton et al., 2017),
PyPulseq (Ravi et al., 2019), GammaStar (Cordes et al., 2020),
TOPPE (Nielsen and Noll, 2018), ODIN (Jochimsen and von Menger-
shausen, 2004), and SequenceTree (Magland et al., 2016) (see Table
S1). Although these tools vary in vendor compatibility and the flexibility
of their acquisition runtime, they enable vendor-neutral deployment of
pulse sequences with transparent access to all the details needed. Nev-
ertheless, vendor-neutral raw data (k-space, i.e. the 2D or 3D Fourier
space representation of the image) collection is half the battle.

To complete the puzzle of MRI acquisition, interoperable and open-
source reconstruction frameworks are essential. Thanks to ISMRM-RD
(Inati et al., 2017), a k-space data standard, community-developed re-
construction tools can have a unified way to run advanced reconstruc-
tion algorithms against undersampled raw data (Maier et al., 2021).
Some of these tools include Gadgetron (Hansen and Sgrensen, 2013),
BART (Uecker et al., 2015), MRIReco.J]1 (Knopp and Grosser, 2021) (see
Table S1 for further tools and details). By streamlining these acquisi-
tion and reconstruction tools using data standards at multiple levels
(Karakuzu et al., 2021; Inati et al., 2017) on a data-driven and container-
mediated workflow engine (Di Tommaso et al., 2017), end-to-end repro-
ducible MRI workflows can be developed. A recent study has shown that
this approach can significantly reduce inter-vendor variability of quanti-
tative MRI measurements (Karakuzu et al., 2020; Karakuzu et al., 2022).
Given the growing open-source MRI acquisition ecosystem, a variety of
end-to-end workflows are possible. Therefore, community-driven vali-
dation frameworks have a key importance for interoperable solutions
(Tong et al., 2021). Facilitated by these standards, effective and open
communication methods development sets the future direction for re-
producible MRI research (Stikov et al., 2019).

In PET, the variety between different scanners is even larger than
in MRI. An overview over different scanner types based on their us-
age for a specific radiotracer targeting the serotonin transporter, namely
['1CIDASB, is given in (Ngrgaard et al., 2019). Different PET scanners
export images in slightly different data formats with little overlap in the
Digital Imaging and Communications in Medicine (DICOM) PET specific
tags. As with MRI, reconstruction is vendor/machine specific but open
source solutions to image reconstruction are being developed, for in-
stance the OMEGA toolbox (Wettenhovi et al., 2021). Data acquisition
for PET is further complicated by the use of different PET tracers, injec-
tion methods, scan duration and scan framing or injected radioactivity
dose.

In MEG and EEG, the problem of standardized data acquisition starts
even earlier: unlike the common DICOM data format used across ven-
dors in MRI or PET, MEG and EEG manufacturers do not use a common
data format, and format specifications are rarely made public. More im-
portantly, equipment implementation significantly differs between ven-
dors, for example with respect to MEG sensor types, software noise sup-
pression techniques, and EEG amplifiers and electrodes. There have been
some efforts on developing open versions of some proprietary tools, for
example, the Maxwell filtering for signal space separation by the MNE-
python team (Gramfort et al., 2014). Additionally, initiatives, such as
the OpenBCl, offer open EEG hardware and tools for biosensing and
brain computer interfacing through continuous community driven de-
velopment. As we have mentioned, very little is known on how the vari-
ability of data acquisition parameters affect downstream comparability
of results. The EEGManyLabs project (Pavlov et al., 2021) will provide a
comprehensive dataset in this regard, as many labs with different equip-
ment try to replicate the same studies.

Given the large variations across different vendors for all neuroimag-
ing modalities, which often cannot be overcome, it is crucial to report
all data acquisition parameters in a comprehensive and standardized
manner to make potential differences in data acquisition across stud-
ies and sites transparent (for a discussion of reporting guidelines see
Section 6.4).
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3.2. Stimulus presentation and behavior

Several actively maintained programs for stimulus presentation and
response logging are available. Open source software include PsychoPy
(Peirce et al., 2019) in Python and Psychtoolbox (Brainard, 1997;
Pelli, 1997; Kleiner et al., 2007) in MATLAB. Both have many users,
making it possible to get assistance and perhaps find an already-
implemented task protocol (e.g., on Pavlovia for Psychopy). Modality
specific resources also exist, for instance the ERP CORE (Compendium
of Open Resources and Experiments; Kappenman et al. 2021) openly
provides optimized paradigms for several widely used ERP components,
along with scripts, data processing pipelines, and sample data.

Using open stimuli and presentation software generally increases the
likelihood a dataset will be useful to others, and its results reproducible
(Strand and Brown, n.d.2022). Although desirable, it is not always pos-
sible to use fully open stimuli, particularly in the case of commercial
movies, audio plays, and image databases. Stimuli, presentation scripts,
behavioral tests and related material should be shared whenever pos-
sible (see DuPre et al. 2019 for a list of datasets sharing naturalistic
stimuli and Section 6). Researchers should always check the licenses on
the stimulus materials they plan to use or share. To facilitate stimuli fea-
ture analysis and exact reproducibility of the experimental paradigms,
such projects as ReproNim’s ReproStim (Connolly and Halchenko, 2022)
could automate recording and archival of audio-visual stimuli. When
specific stimuli or material can not be released, they should be described
as unambiguously as possible and, if possible, providing the source, such
as identification number (e.g., a GTIN), and scripts to (re)produce used
stimuli from the commercial media.

4. Research data management

Good research data management (RDM), i.e. how data are orga-
nized, maintained, annotated, tracked, stored, and accessed throughout
a research project, forms the basic foundations of result reproducibil-
ity, data reusability, and research efficiency (Wilkinson et al., 2016;
Gorgolewski and Poldrack, 2016; Nosek et al., 2018; Nosek et al., 2012;
Nosek and Lakens, 2014; Poldrack et al., 2017; Poldrack et al., 2020;
Poldrack et al., 2019; Borghi and Van Gulick, 2021a; Poline et al., 2022).
Consequently, Data Management Plans (DMPs) are widely required by
funders even at the application phase (e.g., NIH and NSF in the U.S., ERC
in Europe), increasingly expected by scientific peers, and holds consid-
erable benefits for individual researchers. It is good practice to develop,
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Organize your neuroimaging data
following the Brain Imaging Data
Structure (BIDS)

Utilize available tools, converters
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review and execute DMPs for every experiment, whether or not it is re-
quired by the funding agency. While specific RDM requirements vary
across subdisciplines, this section highlights RDM standards and tools
applicable across neuroimaging, ranging from data organization to an-
notation and publication (see Fig. 3).

4.1. Data organization and standards

Neuroimaging experiments result in complicated data that can be
arranged in many different ways. Historically, data were organized dif-
ferently between institutions and within labs. This lack of consensus
(or a standard) could lead to misunderstandings and suboptimal usage
of various resources: human (e.g., time wasted on rearranging data or
rewriting scripts expecting certain structure), infrastructure (e.g., data
storage space, duplicates), and financial (e.g., disorganized data have
limited longevity and value after first publication, because it is hard or
even impossible for other researchers to understand and use them). Fi-
nally, and most importantly, it produces poor reproducibility of results,
even within the lab where data were collected, because it is more likely
to include errors and less likely to be accessible to future lab members
(or even to the original researcher who obtained the dataset, months or
years after they worked on it). Therefore, the need for a data standard
in the neuroimaging community became essential.

The Brain Imaging Data Structure (BIDS) is a community-led
standard for organizing, describing, and sharing neuroimaging data
[RRID:SCR_016124]. BIDS is an evolving standard, which supports mul-
tiple neuroimaging modalities including MRI (Gorgolewski et al., 2016),
quantitative MRI (Karakuzu et al., 2021), MEG (Niso et al., 2018), EEG
(Pernet et al., 2019), intracranial EEG (Holdgraf et al., 2019), PET
(Norgaard et al., 2022), Microscopy (Bourget et al., 2022), and imaging
genetics (Moreau et al., 2020). Many more extensions are under active
development, for example, fNIRS, motion capture, and animal neuro-
physiology. The BIDS specification documents how to organize the data,
generally based on simple file formats (such as NIfTI for tomographic
data (Cox et al., 2004), and JSON for metadata) and folder structures.
This specification can be extended through community-driven processes
to incorporate new neuroimaging modalities or sets of data types.

Multiple applications and tools have been released to make it
easy for researchers to incorporate BIDS into their current workflows,
maximizing reproducibility, enabling effective data sharing, and sup-
porting good data management practices. For example, BIDS convert-
ers make it easier to convert data into BIDS format (e.g., MNE-BIDS
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Fig. 3. Research data management
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(Appelhoff et al., 2019) for MEG and EEG, dcm2bids, ReproNim’s
HeuDiConv (Halchenko et al., 2021) and Reproln (Visconti di Oleggio
Castello et al., 2020) for MRI and PET2BIDS for PET; see many more
on Table S1). The BIDS validator can help researchers make sure their
dataset is BIDS-valid following conversion.

Once data are in BIDS, tools are available to ease interaction with the
data. Two commonly used software packages are PyBIDS (Yarkoni et al.,
2019), and BIDS-Matlab (Gau et al., 2022). These tools facilitate useful
dataset queries—such as how many participants are part of a dataset
or what tasks were performed— as well as programmatically retrieving
specific files—such as all functional runs for a specific subject. Finally,
BIDS apps are containerized analysis pipelines that use full BIDS datasets
as their input and produce derivative data (Gorgolewski et al., 2017).
Examples of BIDS apps include MRIQC (Esteban et al., 2017) for MRI
quality control, fMRIPrep (Esteban et al., 2019) for fMRI preprocessing,
and PyMVPA (Hanke et al., 2009) for statistical learning analyses of
large datasets (see more at Table S1).

BIDS is a community-led standard and strives to be open and inclu-
sive. The BIDS specification is the result of the ongoing collaboration,
shared knowledge, discussion, and consensus through the email discus-
sion list, shared Google docs, and GitHub. Questions are also answered
on the Neurostars forum and the Brainhack Mattermost channel. BIDS
has a well-specified governance structure where everybody is welcome
to participate (see BIDS Code of Conduct, Table S1), and the BIDS Starter
Kit is a growing resource intended to simplify the learning process for
newcomers.

4.2. Metadata and data annotation

Metadata and data annotation induces consistency and facilitates
data replication and reuse. It improves the clarity of the dataset, the
ability for collaborators to understand the conditions in which the data
were collected, and the ability to effectively share and reuse them. Com-
monly, metadata files are data dictionaries that map key terms from an
agreed-upon vocabulary to data values that contain detailed and stan-
dardized information about the key terms. For example, a key called
“SampleFrequency” might map to a numerical value, or a key “TaskDe-
scription” might map to a free-form text that describes the task used
in a specific experiment. The BIDS standard has proposed a consistent
metadata structure in its specification along with a set of specification
terms and tags.

Data annotation is also crucial for most data analyses in neuroimag-
ing. For example, when analyzing task-based data, an experiment’s
reproducibility is largely determined by the extent to which events
are clearly documented. Beyond reproducing previous findings, ex-
haustively annotated events can allow researchers to re-use the data
for means that were originally not thought of during data collection
(Bigdely-Shamlo et al., 2020). However, even if each study is fully an-
notated, without a standard to consistently describe facets of events, all
annotations will remain cumbersome and error-prone to work with, and
achieving a state of machine readability will require effortful labor.

To address this problem, the Hierarchical Event Descriptor (HED)
standard has been continuously developed over the past years
(Robbins et al., 2021; Robbins et al., 2021). Drawing on a set of hier-
archical vocabulary structures (the HED base schema) and application
rules, the HED standard allows for both human- and machine readabil-
ity, validation, and search of annotations across studies. HED is also
fully integrated with the BIDS standard (see Section 4.1), and can be
extended by researcher supplied schemas.

Additionally, the Neuroimaging Data Model (NIDM; Maumet et al.,
2016; Keator et al., 2013) effort aims to build a core structure for neuro-
science datasets to improve searching across publicly-available datasets.
The initiative also provides tools to create and use NIDM documents
from BIDS datasets (Appelhoff et al., 2019). To effectively describe
neuroscience data, well-developed community-driven vocabularies are
needed. NIDM is built using semantic web techniques and builds off the
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PROV (provenance) vocabulary (Moreau et al., 2015). Moreover, the
NIDM-Terms effort has begun to collect and extend sets of community-
developed controlled vocabularies and techniques for associating con-
cepts with selected study variables of publicly-available neuroimaging
datasets (e.g., OpenNeuro, ABIDE, ADHD200, and CoRR). This keeps a
registry of the domain-relevant vocabularies and concepts used to an-
notate datasets, further facilitating concept reuse, and improved inter-
dataset search. The NIDM team has developed a JavaScript web applica-
tion, as well as Python-based command line annotation tools, that allow
researchers to annotate their BIDS structured datasets and single tabular
files (e.g., csv and tsv spreadsheets), and export BIDS JSON-formatted
data dictionaries, NIDM JSON-LD data dictionaries, and NIDM seman-
tic web documents, into sidecar files that accompany the data files.
Currently, the NIDM-Terms annotation tools allow researchers to asso-
ciate their study variables with concepts available in the Cognitive Atlas
(Poldrack et al., 2011), the InterLex information resource, and those in
the canonical NIDM terminology/ontology as well as encourage them
to add descriptive information to improve the clarity of their variables.
Such an effort harmonizes and improves the consistency of neuroimag-
ing data and thus makes querying across neuroimaging datasets more
efficient.

4.3. Data management and tracking

Raw data and derivatives (outputs from processed data) form the
basis for scientific analyses and insights. Being able to efficiently store,
retrieve, and update data, derivatives, and metadata across a vari-
ety of available storage options is crucial to enable further research
(Borghi and Van Gulick, 2021b). As files change and evolve over the
course of a project, there is a need to identify which data have been
used in the generation of a result, and, in case the data were subject to
change or updates, which exact version of the data has been used. The
ability to manage data and metadata and track the data-analysis process
provides a basis for rigor and reproducibility.

Datalad (Halchenko et al., 2021) is an open-source, community-
developed, general purpose tool for managing and version controlling
digital files in a decentralized manner. It tracks data of any type or
size in a scalable, Git-repository-based overlay structure, called the
dataset (practically, a structure of folders and files). DataLad allows
tracking data and metadata files stored on local devices as well as re-
mote or cloud infrastructure. Datalad can retrieve public data from
major providers such as OpenNeuro, the Canadian Open Neuroscience
Platform, the International Neuroimaging Data-sharing Initiative, the
Healthy Brain Network Serial Scanning Initiative, Data sharing for Col-
laborative Research in Computational Neuroscience, the Human Con-
nectome Project’s open access dataset (Van Essen et al., 2013), and
many more. Beyond public data, with appropriate permissions or au-
thentication, it can retrieve data from web-based storage providers
including major cloud storage services, and local and remote paths
(Halchenko et al., 2021; Hanke et al., 2021). DatalLad implements this
decentralized data management functionality in order to ensure stream-
lined access to tracked data regardless of hosting service, and to ex-
pose datasets for easy access on repository hosting structure. It sepa-
rates management of file content from lean metadata management by
tracking pointers to the services that host managed files (i.e., local in-
frastructure, remote hosting services, or multiple storage solutions at
once). Using these pointers, it enables streamlined on-demand file re-
trieval in uniquely identified versions from the registered source. Im-
portantly, data retrieval works via streamlined commands regardless of
where the data are hosted. Information about Datalad can be found
in the Datalad Handbook (Wagner et al. 2021, see Table S1). Entire
computing environments could be efficiently managed in DataLad using
datalad-container extension (Meyer et al., 2021) developed in collabo-
ration between Datalad and ReproNim projects.

Brainlife is another open science project that allows data manage-
ment. Brainlife is a free and open community-oriented, non-commercial
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cloud platform that provides web services to support reproducible data
management and analysis. Brainlife tracks data provenance automati-
cally for the users. As data are analyzed using the Graphical User Inter-
faces (GUI) and the platform’s data processing applications, provenance
metadata information is automatically generated and associated with
the data derivatives. The users do not have to manually save data ver-
sions, the platform does that automatically and it allows visualizing data
provenance graphs.

Datalad and Brainlife are synergistic but not overlapping projects
that address different user bases and needs. Indeed, DataLad and Brain-
life interact nicely with one another and all published datasets retrieved
by DataLad are readily accessible at brainlife.io/datasets.

5. Data processing and analysis

Researchers typically execute a set of signal pre-processing steps
prior to advanced data analysis, to, for instance, identify and remove
noise, align data spatially and temporally, segment spatio-temporal re-
gions of interest, identify patterns and latent signal structures (e.g., clus-
tering), integrate the information from several modalities, introduce
prior knowledge about the device or the physiology of the specimen,
etc. The combination of the operations that take the unprocessed data
as the input, prepare the data for analysis, and finally, perform advanced
analysis, comprise a full analysis pipeline or workflow. In implementing
such analysis workflows, software has emerged as a critical research in-
strument greatly relevant to ensure the reproducibility of studies (see
Fig. 4).

5.1. Software as a research instrument

The digital nature of neuroimaging data along with the large, and
constantly increasing, net amounts of daily acquired data, place soft-
ware as a central instrument of the neuroimaging research workflow.
As a result, many toolboxes containing utilities ranging from early steps
of preprocessing to statistical analysis and visualization of results have
emerged, and some have largely shaped the software development in the
field, e.g., AFNI (Cox, 1996; Cox and Hyde, 1997), FSL (Jenkinson et al.,
2012), SPM (Penny et al., 2011; Litvak et al., 2011; Flandin and Fris-
ton, 2008), FreeSurfer (Dale et al., 1999; Dale and Sereno, 1993), Brain-
storm (Tadel et al., 2011, 2019), EEGLAB (Delorme and Makeig, 2004;
Delorme et al., 2021), MNE-Python (Gramfort et al., 2013, 2014), Field-
Trip (Oostenveld et al., 2011) (see Table S1). More recently, some
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software packages have been developed to cover additional aspects of
the neuroimaging workflow. For instance, nibabel (Brett et al., 2020)
to read and write images in many formats, the Advanced Normaliza-
tion Tools (ANTs) for image registration and segmentation, or Nilearn
(Abraham et al., 2014) for statistical analysis and visualization. Work-
flow engines conveniently connect between the building blocks and de-
termine how the steps are executed in the computational environment.
Solutions range from general-purpose scripting (e.g., Bash or Python) to
neuroimaging-specific libraries (e.g., NiPype; Gorgolewski et al. 2011).
Researchers have all these tools (and others) at their disposal to “mix-
and-match” in their workflow. Therefore, ensuring the proper devel-
opment and operation of the software engine is critical to ensure the
reproducibility of results (Tustison et al., 2013).

Relatedly, the variety of software implementations is an additional
motive of concern. As remarked by Carp (2012a, 2012b) based on the
analysis of thousands of fMRI pipelines, analytical flexibility in combi-
nation with incomplete reporting precludes the reproducibility of the re-
sults. A recent comprehensive investigation, the Neuroimaging Analysis
Replication and Prediction Study (NARPS; Botvinik-Nezer et al. 2020),
found that when 70 different teams were asked to analyze the same fMRI
data to test the same hypotheses, each team chose a distinct pipeline and
results were highly variable. Other studies suggest similar problems in
EEG (Soski¢ et al., 2021; Clayson et al., 2021), PET (Ngrgaard et al.,
2020) and diffusion MRI (Schilling et al., 2021).

There are two crucial aspects of the high analytical variability and
its effect on results in neuroimaging. First, when high analytical vari-
ability (that potentially affects results) is combined with partial report-
ing or with incentives to find significant effects, it can alarmingly un-
dermine the reliability and reproducibility of results. Second, even in
the apparently ideal scenario in which the researcher performs a sin-
gle pre-registered valid analysis and reports it fully and transparently,
it is still likely that the results are not robust to arbitrary analytical
choices. Therefore, new tools are needed to allow researchers to perform
a “multiverse analysis” (Section 5.4), where multiple data workflows
are used on the same dataset and all the results are reported and their
agreement or convergence discussed. Community-led efforts to develop
high-quality “gold standard” workflows may also reduce researchers’ de-
grees of freedom as well as accelerate data analysis, although different
pipelines may be optimal for different research questions and data.

Nevertheless, neuroimaging researchers frequently encounter gaps
that readily available toolboxes do not cover. These gaps, amongst a
number of other reasons (e.g., deploying a data workflow on a high-
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performance computer), pushes researchers into creating their own soft-
ware implementations. However, most neuroimaging researchers are
not formally trained in related fields of computer science, data science,
or software engineering, and formal software development practices are
often not included in undergraduate or graduate level neuroimaging
training. This mismatch often results in undocumented, hard to main-
tain, and disorganized code; largely as a consequence of unawareness
of software development practices. It also increases the likelihood of
undetected errors that may remain even after running tests on the code.

The first and foremost strategy available to maximize the trans-
parency of research methods is openly sharing the code with the mini-
mal restrictions possible (see Section 6.2; Barnes, 2010; Gorgolewski and
Poldrack, 2016). Complementarily, version control systems, such as Git
(Blischak et al., 2016, see Table S1), are the most basic and effective
tool to track how software is developed, and to collaboratively produce
code. Beyond making the code available to others, software tools can
implement further transparency strategies by thoroughly documenting
their tools and by supporting implementations with scientific publica-
tions (Barnes, 2010; Gorgolewski and Poldrack, 2016).

5.2. Standardizing preprocessing and workflows

Although the diversity in methodological alternatives has been key
to extracting scientific insights from neuroimaging data, appropriately
combining heterogeneous tools into complete workflows requires sub-
stantial expertise. Traditionally, researchers used default workflows dis-
tributed along with individual software packages, or alternatively, indi-
vidual laboratories have developed in-house analysis workflows that re-
sulted in highly specialized pipelines. Such pipelines are often not thor-
oughly validated and difficult to reuse due to lack of documentation or
accessibility to outside labs. In response, several community-led efforts
have spearheaded the development of robust, standardized workflows.

An early effort towards workflow standardization was the
Configurable Pipeline for the Analysis of Connectomes (C-PAC;
Craddock et al. 2013), which is a “nose-to-tail” preprocessing and anal-
ysis pipeline for resting state fMRI. C-PAC offers a comprehensive con-
figuration file, editable directly with a text editor or through C-PAC’s
graphical user-interface, prescribing all the tools and parameters to be
executed, and thereby making strides towards keeping methodolog-
ical decisions closely traced. Similarly, large-scale acquisition initia-
tives released workflows tailored for their official imaging protocols
(e.g., the HCP Pipelines Glasser et al. 2013 and the UK Biobank Alfaro-
Almagro et al. 2016).

Conversely, fMRIPrep (Esteban et al., 2019) proposed the alter-
native approach of restricting the pipeline goals to the preprocess-
ing step, while accepting the maximum diversity possible of the input
data (i.e., not tailored to a particular experimental design or analysis-
agnosticity). This approach has recently been proposed for additional
modalities (e.g., dMRI, ASL, PET) and population/species of inter-
est (e.g., fMRIPrep-rodents, fMRIPrep-infants) under a common frame-
work called NiPreps (NeuroImaging PREProcessing toolS). NiPreps is a
community-led endeavor with the goal of ensuring the generalization of
the building blocks of preprocessing across modalities (e.g., the align-
ment of fMRI and dMRI with the same participant / animal’s anatom-
ical image) and specimens (e.g., using the same brain extraction from
anatomical data using the same algorithm and implementation on both
human adults and rodents). Similar standardization efforts are starting
to be adopted for EEG (Desjardins et al., 2021) and MEG (e.g., MNE-BIDS
pipeline; Jas et al., 2018). Further examples of standardized workflows
are found in Table S1.

An additional and relevant premise of standardized workflows is
transparency — tools must be transparent not only in their implemen-
tation, but also in their reporting. For example, fMRIPrep produces vi-
sual reports with the double goal of assessing the quality of results, and
also providing the researcher with a resource to comprehensively un-
derstand every step of the workflow. In addition, the report includes
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a text description which comprehensively describes each major step in
the pipeline, including the exact software version and principle cita-
tion. This text, referred to as the “citation boilerplate”, is released un-
der a public domain license, and therefore can be included verbatim
in researcher’s manuscripts, facilitating accurate reporting and proper
referencing of academic software. A final relevant aspect towards trans-
parency is the comprehensive documentation of pipelines.

In most cases, standardized workflows preprocess datasets in a fully
automated manner, taking a BIDS dataset as input and outputting data
that is ready for subsequent analysis with little manual intervention.
Importantly, such workflows are typically designed to be as robust as
possible to diverse input data (e.g., with varying parameters or sam-
pling distant populations), a challenge that is facilitated by data stan-
dardization (i.e., BIDS). Additionally, workflows must be portable, en-
abling users to execute them in a wide variety of environments. A key
technology in this endeavor is containers—such as Docker and App-
tainer/Singularity—which facilitate packaging specific versions of het-
erogeneous dependencies while ensuring cross-platform compatibility
(e.g., high-performance computing clusters, desktop, or cloud services).
The BIDS apps framework (Section 4.1) leverages containers by stan-
dardizing input parameters to make it trivially easy to execute a wide
variety of standardized workflows on BIDS datasets. An example of a
higher-level combination of workflows is found in Esteban et al. (2020),
which describes an MRI research protocol using MRIQC and fMRIPrep.
Finally, recent efforts to standardize the outputs of workflows (BIDS
Derivatives), further enhances the interoperability of workflows, by en-
suring their outputs are compatible with subsequent analysis.

5.3. Statistical modeling and advanced analysis

Analysis of neuroimaging data is particularly heterogeneous and
prone to excessive analytical flexibility and underspecified reporting
(Carp 2012a,2012b). Whereas preprocessing is ideally performed once
per dataset, there is often a large number of types of analyses that may
be used with the preprocessed data. In MRI and fNIRS, for example,
analyses range from multi-stage general linear models (GLMs), multi-
variable decoding analyses, to anatomical and functional connectivity,
and more. In PET, analyses consist of region-wise averaging, although
voxel-wise approaches are gaining popularity, followed by kinetic mod-
eling and subsequent statistical analyses, which can be GLM or more ad-
vanced, such as latent variable models. In MEG and EEG, the broad vari-
ety includes analyses such as evoked response potentials, power spectral
density, source reconstructions, time-frequency, connectivity, advanced
statistics and more. Each type of analysis also has a wide variety of sub-
types, parameters, and statistical models that can be specified, and the
form of that specification varies across the dozens of analysis packages
that implement each type of analysis.

Data analysis reporting may be made more transparent by shar-
ing code that relies on open-source software. A prime example is SPM
(Flandin and Friston, 2008), which has been open source since its incep-
tion in 1991. Additional widely used open-source tools for data analysis
are FSL and AFNI for MRI, and some examples of reproducible pipelines
for MEG and EEG developed based on each of the following software:
EEGLAB (Pernet et al. 2020) Fieldtrip (Andersen, 2018b; Meyer et al.,
2021; Popov et al., 2018), Brainstorm (Niso et al., 2019; Tadel et al.,
2019), SPM (Henson et al., 2019) and MNE-Python (Andersen 2018a;
van Vliet et al., 2018; Jas et al., 2018) (see Niso et al. 2022 for a de-
tailed review on main EEG and MEG open toolboxes and reproducible
pipelines). Reproducibility is also improved when relying on modular
and well-documented software such as Nilearn, which offers versatile
methods to perform advanced analyses of fMRI data, from GLM to con-
nectomic and machine learning (Abraham et al., 2014). Ideally, a single
analysis script is created, from signal extraction, data analysis, and re-
producing all figures.

An additional challenge for the reproducibility of analysis workflows
is the representation of statistical models across distinct implementa-
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tions of analysis software. For example, GLM approaches to analyze
fMRI time series are prevalent and supported by all of the major statisti-
cal packages (e.g., AFNI, SPM, FSL, Nilearn). However, specifying equiv-
alent models across packages is non-trivial and requires time consuming
package specific model specification (Pernet, 2014), which obfuscates
details of the statistical model, exacerbates variability across pipelines,
and makes it difficult to perform multiverse analyses (see Section 5.4).
The BIDS Stats Model (BIDS-SM, see Table S1) specification has been
proposed as a implementation-independent representation of fMRI GLM
models. BIDS-SM describes the inputs, steps, and specification details of
GLM-type analyses, and encodes them in a machine readable JSON for-
mat. The PyBIDS library provides tooling to facilitate reading BIDS-SM,
and FitLins (Markiewicz et al., 2021) is a reference workflow that fits
BIDS-SM using AFNI or Nilearn. The transformative potential of BIDS-
SM is showcased by Neuroscout (de la Vega et al., 2022), a turnkey plat-
form for fast and flexible neuroimaging analysis. Neuroscout provides
a user-friendly web application for creating BIDS-SM on a curated set
of public neuroimaging datasets, and leverages FitLins to fit statistical
models in a fully reproducible and portable workflow. By standardizing
the entire process of statistical modeling, users can formally specify a
hypothesis and produce statistical results in a matter of minutes, while
simultaneously ensuring a fully reproducible and transparent analysis
that can be readily disseminated to the scientific community.

5.4. Multiverse analysis

The variety of data workflows reflects the enormous interest and
the need for novel software instruments, but it also poses an impor-
tant risk to reproducibility. The multitude of possible combinations of
methods and parameters in each of the analysis steps creates an ex-
tremely large number of combinations to select from. This problem
is often referred to as “researcher degrees of freedom” or “the gar-
den of forking paths” (Gelman and Loken, 2013). Importantly, analyt-
ical choices affect results. This has been shown for preprocessing of
fMRI data (Strother et al. 2004; Churchill et al., 2012; Churchill et al.,
2012). While this work focused mainly on the aspect of tailoring pre-
processing to e.g. maximize predictive models, recent efforts in fMRI
(task fMRI: Botvinik-Nezer et al., 2020; Carp, 2012a; preprocessing of
resting-state fMRI: Li et al. 2021) and PET (specifically for preprocess-
ing: Norgaard et al. 2020) focused more on the variability of outcomes
in general when analysis pipelines were varied. In addition, recent stud-
ies showed high variability in diffusion-based tractography dissection
(Schilling et al., 2021) and event-related potentials in EEG preprocess-
ing (Soski¢ et al., 2021; Clayson et al., 2021). Another large-scale at-
tempt to estimate the analytical variability for EEG, EEGManyPipelines
(see Table S1), is currently ongoing.

The converging findings of these studies across modalities suggest
that it is crucial to test the robustness of reported results to specific
analytical choices. One proposed solution to tackle the analytical vari-
ability, where many different analytical approaches are compared, is
multiverse analysis (Hall et al., 2022). There are two broad types of
multiverse tools. In a “numerical instabilities” approach, different se-
tups and numerical errors or uncertainties in computational tools are
evaluated, analyses are rerun several times, and variability, robust-
ness, and “mean answer” are estimated (Kiar et al., 2020). One tool
of this type that is being developed is “Fuzzy” (Kiar et al., 2021). Al-
ternatively, in a “classic multiverse analysis”, multiple pipelines are
used with the same data and the results are compared across pipelines.
Such an analysis could be conducted by a single or by multiple re-
searchers (Aczel et al. 2021). Although multiverse analysis was sug-
gested before in other fields (Simonsohn et al., 2020; Steegen et al.,
2016; Simonsohn et al., 2015; Patel et al., 2015), there are not yet ma-
ture “classic multiverse analysis” tools for high-dimensional data like
in neuroimaging. Explorable Multiverse Analyses is an R-tool that al-
lows the readers to explore different statistical approaches in a paper
(Dragicevic et al., 2019). Other tools, such as the Python-based Boba
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(Liu et al., 2021), aim to facilitate multiverse analyses by allowing users
to specify the shared and the varying parts of the code only once and
by providing useful visualizations of the pipelines and results. However,
these tools currently fit simpler analyses and datasets compared to the
ones common in neuroimaging.

In neuroimaging, recent progress has been made in creating in-
frastructure for multiverse analysis in fMRI, based on the C-PAC tool
(see Section 5.2; Li et al. 2021). Ongoing efforts to formalize machine-
readable standards for statistical models (BIDS-SM) and pipelines to esti-
mate them (e.g., FitLins; Markiewicz et al., 2021), and their integration
with datasets using platforms such as Brainlife (Avesani et al., 2019),
could facilitate the development of multiverse tools. In order to make
sense of a multiverse analysis, one needs methods to test for conver-
gence across results of diverse analysis pipelines with the same data.
Such a method for fMRI image-based meta-analysis was recently used
in NARPS (Botvinik-Nezer et al., 2020) as well as in subsequent projects
(Bowring et al., 2021). Another simple statistical approach to a mul-
tiverse analysis was presented with PET data (Ngrgaard et al., 2019),
although it lacks statistical power, due to the use of a very conser-
vative statistic. A different approach is to use active learning to ap-
proximate the whole multiverse space (Dafflon et al., 2020). Moreover,
Boos et al. (2021) provided an online application to explore the effects
of the choice of parameters on the results (data-driven auditory encod-
ing, see Table S1). Progress is still needed until such tools are mature
enough to allow scalable multiverse analysis in neuroimaging.

6. Research dissemination

Through the whole research cycle a range of outputs far beyond pub-
lications are produced, and each of them can have different levels of re-
producibility and openness (see Fig. 5). For shared resources to be use-
ful, they need to follow the FAIR principles (Wilkinson et al., 2016), to
ensure they are: Findable (e.g., using persistent identifiers, such as Dig-
ital Object Identifiers (DOI) or Research Resource Identifiers (RRIDs),
and described with rich metadata indexed in a searchable resource),
Accessible (e.g., shared in public repositories, under open access or con-
trolled access depending on regulations, so they can be retrievable by
their identifier using standardized communication protocols), Interoper-
able (e.g., following a common standard for organization and vocabu-
lary), and Reusable (e.g., richly described, with detailed provenance and
an appropriate license). Indeed, without a license, materials (data, code,
etc.) become unusable by the community due to the lack of permission
and conditions for reuse, copy, modification, or distribution. Therefore,
consenting through a license is essential for any material to be publicly
shared.

A useful generalpurpose resource, beyond neuroimaging, including
practical guidelines on reproducible research, project design, commu-
nication, collaboration, and ethics is The Turing Way (TTW, The Turing
Way Community et al. 2019, see Table S1). TTW is an open collabora-
tive community-driven project, aiming to make data science accessible
and comprehensible to ensure more reproducible and reusable projects.

6.1. Data sharing

Making data available to the community is important for repro-
ducibility, allows more scientific knowledge to be obtained from the
same number of participants (animal or human), and also enables sci-
entists to learn and teach others to reuse data, develop new anal-
ysis techniques, advance scientific hypotheses, and combine data in
mega- or meta-analyses (Poldrack and Gorgolewski, 2014; Laird, 2021;
Madan, 2021). Moreover, the willingness to share has been shown to
be positively related to the quality of the study (Wicherts et al., 2011).
Because of the many advantages data sharing brings to the scientific
community (Milham et al. 2018), more and more journals and fund-
ing agencies are requiring scientists to make their data public (curated
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and archived with a public record, but controlled access) or open (pub-
lic data with uncontrolled access) upon the completion of the study, as
long as it does not compromise participants’ privacy, legal regulations,
or the ethical agreement between the researcher and participants (see
Sections 2.3 and 7).

For data to be interoperable and reusable, it should be organized
following an accepted standard, such as BIDS (Section 4.1) and with
at least a minimal set of metadata. Free data-sharing platforms are
available for publicly sharing neuroimaging data, such as OpenNeuro
(Markiewicz et al., 2021), Brainlife (Avesani et al., 2019), GIN (G-Node
Infrastructure), Ebrains, Distributed Archives for Neurophysiology Data
Integration (DANDI), International Neuroimaging Data-Sharing Initia-
tive (INDI), NeuroImaging Tools & Resources Collaborator (NITRC), etc.
(see Table S1). Data could also be shared on institutional and funder
archives such as the National Institute of Mental Health Data Archive
(NDA); on dedicated repositories, such as the the Cambridge Centre for
Ageing and Neuroscience, Cam-CAN (Shafto et al., 2014; Taylor et al.,
2017) or The Open MEG Archive, OMEGA (Niso et al., 2016); or on
generic archives that are not neuroscience or neuroimaging specific,
such as figshare, GitHub, the Open Science Framework, and Zenodo.
If allowed by the law and participants’ consent (see Section 2.3), data
sharing can be made open, or at least public.

Once curated and archived, data can further benefit the individual
researcher, for example by adding them to the scientific literature in the
form of data descriptors. Such an article type is not intended to commu-
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nicate findings or interpretations but rather to provide detailed informa-
tion about how the dataset was collected, what it includes and how it
could be used, along with the shared data. In addition, an “open science
badge” for data sharing is available in an increasing number of scientific
journals (Kidwell et al., 2016) and some prizes are also available as a
recognition for such efforts (e.g., OHBM’s Data Sharing prize).

It is important to note that there are unresolved issues with interna-
tional data sharing that some researchers should consider before sharing
their neuroimaging data. First, privacy regulations can differ tremen-
dously between cultural, legal, and ethical regions, and these differences
have an impact on whether certain data can be shared (e.g., unprocessed
MRI images) and if so, under which restrictions (e.g. openly or after sign-
ing a data user agreement). Data sharing platforms vary in physical loca-
tion and access policies, adding complexity to the choice of site. There is
an ongoing discussion of these issues (see e.g., Jwa and Poldrack, 2022;
Eke et al., 2022) and solutions are under development, for instance via
the EBRAINSs infrastructure (Amunts et al., 2019, 2016). It can be ex-
pected that data sharing procedures will undergo further transforma-
tions as privacy laws in some jurisdictions shift towards GDPR-type laws,
and more adequacy decisions will be made by the EU Commission (e.g.
the Consumer Privacy Protection Act in Canada, or the California Con-
sumer Privacy Act). Second, it is unclear how researchers are properly
credited for data they collected and shared. Sharing data with a DOI,
or as a data paper when appropriate, allows the researchers to receive
some academic credit via citations.
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6.2. Methodological transparency

Documenting performed analysis steps is key for reproducing stud-
ies’ results. For studies containing a small number of procedures, the
methods section of an article could detail them in full length. This is,
however, often not the case in current neuroimaging studies, where
authors may need to summarize content in order to fit into the des-
ignated space, likely omitting relevant details. Therefore, the program-
ming code itself becomes the most accurate source of the exact analysis
steps performed on the data, and is anyway needed for reproducibil-
ity. Thus, it needs to be organized and clear (see recommendations sug-
gested by Sandve et al. 2013; van Vliet 2020; Wilson et al. 2017), other-
wise, results may not be reproducible, or even correct (Casadevall and
Fang, 2014; Pavlov et al., 2021). It should be noted that sharing an im-
perfect code is still much better than not sharing at all (Barnes, 2010;
Gorgolewski and Poldrack, 2016).

While GUIs are a great and interactive way to learn to analyze data,
one has to pay special attention to properly report the steps followed, as
manual operations are more difficult to be reported and reproduced than
automated code (Pernet and Poline, 2015). Some toolboxes using GUIs
keep track of data ‘history’ and ‘provenance’ (e.g., Brainlife, Brainstorm,
EEGLAB, FSL’s Feat tool) facilitating this task. Efforts are being put to
improve these features.

To ensure long-term preservation of the shared code, we suggest us-
ing version control systems such as Git, and social coding platforms
such as GitHub in combination with an archival database for assign-
ing permanent DOI to code served for research, for instance, Zenodo
(Troupin et al., 2018), brainlife.io/apps (Avesani et al., 2019) or Soft-
ware Heritage (Di Cosmo, 2018). These platforms help keep a snapshot
of the version of the code used for the paper published, allowing exact
reproduction in case of later code updates.

6.3. Derived data sharing

Sharing data derivatives is perhaps the most critical yet most chal-
lenging aspect of data sharing in support of reproducible science. The
BIDS standard provides a general description of common derivative data
(e.g., preprocessed data and statistical maps) and is actively working
towards extending advanced specific derivatives for the different neu-
roimaging modalities. Yet, standards for the description of advanced
derivatives (such as activation or connectivity maps, or diffusion mea-
sures) are currently not available or mature for wide use. As a result,
to date, the community lacks clear guidance and tools on how derived
data should be organized to maximize its reuse and to encompass its
provenance, and where such data could be shared.

Solutions for sharing derivatives comprise a mixture of in-house and
semi-standardized data-tracking and representation methods. Examples
of data-derivative sharing are the high-profile, centralized projects,
such as the Human Connectome Projects (Van Essen et al., 2012),
Ebrains of the Human Brain Project (Amunts et al., 2019, 2016), the
UK-Biobank (Alfaro-Almagro et al., 2016), the NKI-Rockland sample
(Nooner et al., 2012), and the Adolescent Brain Cognitive Development
(ABCD; Feldstein Ewing and Luciana, 2018) to name a few (see Table
S1). These projects have developed project-specific solutions and in do-
ing so also have provided a first-level implementation of what could be
considered a data derivative standard. Yet, these projects are far from
being open or community-developed as they must be centrally governed
and mandated by the directives of the research plan.

As a result of the paucity of community-oriented standards, archives
and software methods, sharing highly-processed neuroimaging data is
still the frontier of reproducible science. One community-open archive
for highly processed neuroimaging data derivatives is NeuroVault
(Gorgolewski et al., 2015). The archive accepts brain statistical maps
derived from fMRI with the goal of being reused for meta-analytic stud-
ies. Data upload is open to researchers world-wide and the archive can
accept brain maps submitted using most major formats but preferably

13

Neurolmage 263 (2022) 119623

using the NeuroIlmaging Data Model (NIDM; see Section 4.2). Another
interesting example for automated and standardized composition and
sharing of derived data is TemplateFlow (Ciric et al., 2021), which pro-
vides an open and distributed framework for establishment, access, man-
agement, and vetting of reference anatomies and atlases.

Another general neuroimaging platform, which allows lowering the
barrier to sharing highly processed data derivatives, is Brainlife. Brain-
life provides methods for publishing derivatives integrated with the
data-processing applications used for generating results from the data
via easy-to-use web interfaces for data-upload, processing, and publish-
ing. Different licenses can be selected when publishing a record, allow-
ing reuse of data and derivatives to other researchers (see sources that
support the selection of an appropriate license listed in Table S1).

Sharing lighter-weight data products such as tables and figures is
easier using generic repositories (e.g., OSF, Figshare, Github or Zenodo)
under, for example, CC-BY license. This allows authors to retain rights
on the figures they created, and others to re-use their figures, either
in other publications or for educational purposes, while giving credit to
the originating team. Additional material, such as slide presentations, or
supporting content, should be shared using accessible formats (e.g., im-
age files, pdf, PowerPoint slides, Markdown, jupyter notebooks, etc) via
online repositories or institutional platforms, with appropriate licenses
to indicate how the work could be reused. Whenever possible, using plat-
forms that ensure long-term preservation is recommended (e.g., Zenodo,
FigShare, OSF). Using platforms that provide a DOI is particularly en-
couraged, because it ensures that the shared data would be identifiable
in the future.

6.4. Publication of scientific results

Scientific papers are currently the most important means for dissem-
inating research results. However, they should also be written with re-
producibility in mind. Guidelines to improve reproducibility can sup-
port the writing. The OHBM Committee on Best Practices in Data Anal-
ysis and Sharing (COBIDAS), has been promoting best practices, in-
cluding open science. Recommendations from the committees for MRI
(Nichols et al., 2017) and MEG and EEG (Pernet et al., 2020) provide
guidance on what to report. Other recent community efforts also led
to guidelines for PET (Knudsen et al., 2020) and EEG reporting (e.g.,
Agreed Reporting Template for EEG Methodology - International Stan-
dard (ARTEM-IS) Styles et al. 2021). One tool that could help authors
follow these guidelines while writing their report are their web-based
apps (see Table S1). For the data description and preprocessing as-
pects, some tools (pyBIDS, bids-matlab) or pipelines (fMRIPrep) can also
generate reports automatically, and/or method templates are provided
(see Section 5.2). Exact description of methods is mandatory for repro-
ducibility alongside detailed reporting of results.

In recent years, it has become very common in neuroimaging to
publish papers as preprints, on servers such as bioRxiv, medRxiv,
PsyArXiv or OSF (see Table S1), prior to peer review in scientific jour-
nals. Preprints are publicly available, expedite the process of releas-
ing new findings, and also, importantly, allow authors to get feed-
back on their paper from a broader audience prior to final publication
(Moshontz et al., 2021). There are also initiatives for open community
reviews of preprints, such as PREreview. Other initiatives have emerged
to adapt to this paradigm shift, such as the recently launched Open Eu-
rope Research platform for publication and open peer review, which
also includes the different outputs obtained throughout the research cy-
cle (e.g., study protocol, data, methods and brief reports through the
process) for research stemming from Horizon 2020 and Horizon Europe
funding. In addition, novel publication formats have been developed,
like NeuroLibre (Karakuzu et al., 2022), a preprint server to publish
hybrid research objects including text, code, data, and runtime environ-
ment (DuPre et al., 2022). More traditional publishers have successfully
partnered with companies such as CodeOcean (Cheifet, 2021) to provide
similar services.
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Crucially, papers should be accessible to others, preferably to every-
one. Many scientific publications are hidden behind paywalls, practi-
cally denying access from many people who could have gained from
them. This is now slowly changing (Piwowar et al., 2018), with both re-
searchers and funding agencies pushing towards open access, meaning
that papers are fully open to all. Although the adoption of the concept of
open access by major publishers is in itself a positive development, the
way it was adopted could be considered arguable. For example, several
journals considerably increased article processing charges (Khoo, 2019;
Budzinski et al., 2020), increasingly excluding research produced in labs
with lower levels of resources, particularly in Low and Middle Income
Countries, from being published open access (Nabyonga-Orem et al.,
2020). Additionally, some publishers implement massive tracking tech-
nology with the argument to protect their rights and offer the data or
derivatives of them for sale, as a recent report published by the German
Research Foundation criticizes (DFG, 2021). This raises many questions,
related, for example, to the influence publishers and their algorithms
will have in the future on strategic decisions of science institutions and
freedom of science.

6.5. Beyond publication

The research lifecycle continues beyond paper publication. Dissem-
inating scientific results to the broader scientific community and to the
society in general is of utmost importance, to translate the newly ac-
quired knowledge and give back to society. Oral and poster presenta-
tions at conferences contribute to the dissemination of results (including
preliminary or intermediate results) within the scientific community,
and also provide opportunities for feedback prior to publication. Work-
shops and other educational events contribute to expand the knowl-
edge further and induce new communities. Popular and social media
(e.g., press releases, interviews, podcasts, blog posts, twitter, facebook,
linkedin, youtube, etc.) may reach an even wider and more heteroge-
neous audience. Different types of audiences may have different degrees
of expertise and scientific knowledge, hence, for an effective commu-
nication, each of the outreach events should adapt accordingly (e.g.,
avoiding jargon and over interpretation, identifying your audience, pro-
moting accessibility in content and language (Amano et al. 2021), and
considering disabilities). See the TTW Guide for Communication for rec-
ommendations (The Turing Way Community et al., 2019). Slides presen-
tations, and further outreach content should be shared FAIRly for higher
impact (see Section 6.3).

Hackathons - such as the Brainhacks in the neuroimaging community
(Gau et al., 2021) - typically offer times for “unconferences” in which
attendees can propose a short talk to present some work-in-progress, an
open question, or any other topic they wish to discuss with other partic-
ipants. This deviates from more typical conferences in which only well-
polished, finalized results can be presented. Other initiatives, such as
Neuromatch Academy, Neurohackademy, OHBM Open Science Room,
and Brainhack school MLT facilitate open science and provide opportu-
nities for researchers to learn and get hands-on experience with open
science practices, and also to engage with other researchers in the com-
munity. Those hackathons and the related online communities are also
well-known as kick-starters for the development of community tools and
standards in which researchers and engineers from different labs join
forces. As those tools and standards get shaped, typically in multi-lab
collaborations, researchers get the chance to exchange their views and
practices. Overall, such events, slowly but surely, help shape a research
culture that is driven by open collaborative communities rather than
single groups of researchers.

6.6. Towards inclusive, diverse and community driven research
Taken to the next level, the described developments and introduced

tools provide an opportunity for a paradigm shift: rather than carrying
out a study from inception to results and only then disseminating the
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findings to the community, researchers now get multiple opportunities
to share their ideas and results as they are being developed. Scientific
research can now become more transparent, inclusive and collaborative
throughout the research cycle.

Inclusivity, in particular, has the potential to increase reproducibil-
ity (and more specifically, the generalizability and robustness) and re-
search results quality, by diversifying neuroimaging research, from the
participants included in the samples to the views and ideas of the re-
searchers (Henrich et al., 2010; Laird, 2021; Forbes et al., 2021; Hofstra
et al., 2020). Publishing Code of Conduct for collaborative projects is
one practice that helps ensure a more welcoming and inclusive space
for everyone regardless of background or identity. Initiatives such as
TTW (The Turing Way Community et al., 2019) or the OHBM Confer-
ence have detailed Code of Conducts that can be of inspiration to adapt
and use in new collaborative projects. Over the past years, the awareness
and number of initiatives to mitigate bias and inequity at individual and
institutional levels are growing (Llorens et al., 2021; Levitis et al., 2021;
Malkinson et al., 2021; Schreiweis et al., 2019). These aim to produce
better research powered by a broader range of perspectives and ideas
and to reduce the negative impact on the careers, work-life balance, and
mental health of underrepresented groups. By providing open resources
and promoting welcoming and inclusive spaces, we are also improving
access to the tools, training and infrastructure which can facilitate re-
producible research, which will accelerate discoveries, and ultimately,
advance science.

7. Conclusions

Recent years have marked the rise of “open science”, producing
numerous tools and practices that enhance the reproducibility, trans-
parency, inclusivity and diversity of research in general and in neu-
roimaging specifically. These tools and practices yield benefits at mul-
tiple levels ranging from the individual researcher to the society. At
the societal level, they can increase transparency and credibility of re-
search, foster the public understanding of scientific findings, and pro-
mote participation. Higher public credibility in research results can
support decision-makers in basing their decisions on scientific knowl-
edge. For the scientific community, such practices can increase the
quality and generalizability of scientific products. They also increase
the cost-effectiveness of invested resources (money, time, personnel,
etc.), by, for example, enabling reuse of collected data and developed
methods and tools (Milham et al., 2018). Acquiring and analyzing data
also has a substantial environmental cost, which can be minimized
when research data and products are shared and reused' https://ohbm-
environment.org/. For individual researchers, the application of open
science practices can improve their chances for funding and recognition
in the community by meeting related requirements from funding insti-
tutions, agencies, and scientific journals. Furthermore, the use of open
science tools and practices can ease the use of novel analysis techniques
and open the researcher new opportunities for collaborations and con-
tributions, which in turn transform the research culture.

In this review we have attempted to comprehensively summarize a
broad range of open and reproducible science practices. However, to
maximize their impact it is important to position these efforts in the
broader scientific reform debate. In particular in psychology, many have
argued that the very theories that guide the design of experiments lack
rigor (Oberauer and Lewandowsky, 2019), and overreach due to im-
proper use of inferential statistics (Yarkoni, 2022). It has been suggested
that a formalization of theoretical models and claims (Lee et al., 2019;
Guest and Martin, 2021; Devezer et al., 2021) — including claims made
in favor of the open and reproducible practices and tools reviewed here
— is critical to truly advance the field. Although these issues require
ongoing deep introspection and cannot be solved solely by adopting the

! https://ohbm-environment.org/.
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practices we reviewed, these practices increase our field’s rigor by help-
ing scientists ensure they achieve their stated standards and constitute
first steps towards better formalization of designs, models, and conclu-
sions (e.g. with SOPs, formalized statistical models, and pre-registrations
which could lead to better formalization of theory-based experimental
designs and predictions).

The abundance of tools and practices for open and reproducible neu-
roimaging is both promising and challenging. They should support sci-
entific practices rather than setting up new hurdles, for example with
exceedingly rigid rules, particularly time consuming processes, or re-
quiring highly developed programming skills. This review was written to
assist neuroimaging researchers in making informed and sustainable im-
plementation choices in their own research, by means of understanding
the purpose of each tool, how they interact together, how to use them,
and where to look for further information. We believe it will prove help-
ful for researchers and institutions to make a successful and sustainable
move towards open and reproducible science, contributing to improving
scientific research and, ultimately, accelerating scientific discoveries.
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