Android Malware Identification and Polymorphic
Evolution Via Graph Representation Learning

Miguel Quebrado
Computer Science dept.
Boise State University

Boise, ID, USA
miguelquebrado@u.boisestate.edu

Abstract—Developing techniques to identify malware is critical.
The polymorphic nature of malware makes it difficult to detect,
especially if the detection is done with Hash-based based tech-
niques. Image-based binary representations have been shown to
be more robust to popular polymorphic obfuscation techniques.
In contrast to image-based techniques, in this paper, we employed
a graph-based technique that extracts control flow graphs from
Android APK binary. To process the resulting graph, we use
a procedure combining a new graph representation learning
method, called Inferential SIR-GN for Graph representation, that
preserves graph structural similarities, with XGboost, which is a
standard machine learning model. Then, we apply this procedure
to MALNET, which is a publicly available cybersecurity database
that provides image and graph-based Android APK binary
representations for a total 1,262,024 million Android APK binary
with 47 types and 696 families. Experimental results show that
this graph-based procedure is even more accurate than the image-
based approach. Moreover, this paper provides a procedure that,
by leveraging Inferential SIR-GN is able to create malware
polymorphic evolution representations to use during the train
of the XGboost that strengthens the malware classification tasks
when the train and test datasets are split temporally according
to the binary creation date. This means that our procedure can
predict malware polymorphic evolution.

Index Terms—Obfuscation, Neural Networks, Structural
Graph Representation Learning, Malware Polymorphism.

I. INTRODUCTION

The economic costs that malicious cyber activity has on
the U.S. economy can be challenging to determine, but these
attacks cost the economy anywhere between $57 billion and
$109 billion in 2016[1]. In a data-driven business world, hack-
ers leverage advanced techniques, technologies, and polymor-
phic methods to compromise networks. Cyberattacks are often
highly sophisticated, targeting governments and large-scale
enterprises to interrupt critical services and steal intellectual
property[2].

Malware applications are one of the main reasons why
such attacks are possible and successful. Identifying malware
is a difficult task, but there are two common approaches to
analyzing malware static code analysis and dynamic code
analysis. Static analysis works by disassembling the code
and exploring the control flow of the executable to look for
malicious patterns without actually running the code. Dynamic
analysis involves executing the code in a virtual environment;

Edoardo Serra
Computer Science dept.
Boise State University
Boise, ID, USA
edoardoserra@boisestate.edu

Alfredo Cuzzocrea
iDEA Lab
University of Calabria,
Rende, Calabria, Italy
alfredo.cuzzocrea@unical.it

this approach is behavior-based, so the important methods can
be identified.

The static analysis offers complete coverage, but it usually
suffers from code obfuscation. The executable has to be
unpacked and decrypted before analysis, and even then, the
analysis can be hindered by problems of intractable com-
plexity. The dynamic analysis does not need the executable
to be unpacked or decrypted. Unfortunately, as noted in [3],
dynamic analysis can still be time-intensive and resource-
consuming. Moreover, some malicious behaviors might be
unobserved because the environment does not satisfy the
triggering condition [3]. For windows and android malware,
the industry has turned to image-based malware presentations
as they are quick to generate, require no feature engineering,
and are resilient to some common obfuscation techniques (e.g.,
section encryption [3]).

However, in the specific context of Android OS, static
analysis is effective, and extracting the control flow graph is
doable. Moreover, similar to the image, once the graphs are
produced, they do not need any specific future engineering
process since the well-established field of graph representation
learning automatically creates the feature representing the
graph.

Graph representation learning methods have emerged across
many scientific fields and are driving the development of
representation learning techniques. Graph representation learn-
ing techniques encode structured information into low di-
mensional space for a variety of important downstream tasks
(e.g., toxic molecule detection, community clustering, malware
detection)[4].

Graph representation learning methods are divided into
methods preserving the connectivity information of the nodes
and the methods preserving nodes’ structural information.
While there are a lot of works that focus on preserving node
connectivity, only a few works focus on preserving nodes’
structure. Properly encoding nodes’ structural information is
fundamental for many real-world applications as it has been
demonstrated that this information can be leveraged to suc-
cessfully solve many tasks where connectivity-based methods
usually fail [5]. Malware analysis through the extraction of
control flow graphs is another field where the structural pattern
of the graph can distinguish malicious from benign activities.

In this paper, we leverage a graph representation learning
method called Inferential Structural Iterative Representation
learning approach for Graph Nodes(Inferential SIR-GN).
Inferential SIR-GN is a graph representation learning method.
Theoretically, it guarantees the preservation of graph structural
similarities. Our method combines Inferential SIR-GN with
XGbosst (which is a standard classification machine learning
model) to perform malware detection,android APK type clas-
sification, and android APK family classification.

Then, we apply our method on MALNET TINY a subset
of MALNET which is a public dataset containing 1,262,024
million Android APK files with 47 types and 696 families.
MALNET results as one of the best repository freely available
because it is larger and it has various types when compared
to other such as [[1], [3], [6], [7], [8], [9], [10], [11], [12],
[13],[14].

Our experiments on MALNET TINY, shows that Inferential
SIR-GN for malware classification and detection is often better
or, in the worst-case comparable to RESNET (an image neural
network) that classify the images extracted from the Android
APKs [1].

In addition, we define a procedure that combines the repre-
sentations extracted from Inferential SIR-GN of malware and
benign Android APK to obtain obfuscated polymorphic evolu-
tion of the malware. In our experiments, we show the benefit
of adding in the training of the XGbosst the representations
of the obfuscated polymorphic malware evolutions in the case
where the train and test split is done temporally according to
the APK creation date.

II. RELATED WORK

The classic virus-detection techniques look for the presence
of a virus-specific sequence of instructions, called a virus
signature, inside the program: if the signature is found, it
is highly probable that the program is infected [15]. In [10]
publication, images are created to train convolutional neural
networks on malware detection. With their approach feature
engineering is done by the neural network after adding domain
knowledge. This ensures an automatic feature space while
achieving high performance. Different levels of semantics
have different results, peaking at 92% accuracy by combining
domain-expert knowledge with the feature engineering by the
neural network [10]. Due to the open nature of Android,
countless malware applications are hidden in a large number
of benign apps in Android markets that seriously threaten
Android security. Deep learning is a new area of machine
learning research that has gained increasing attention in artifi-
cial intelligence [16]. In [16] publication, they propose to as-
sociate the features from the static analysis with features from
dynamic analysis of Android apps and characterize malware
using deep learning techniques. MALNETS dataset contains
images that are fast to generate, require no feature engineering,
and are resilient to popular obfuscation methods. MALNET
offers unique opportunities to advance the frontiers of graph
representation learning, Table I contains publications enabling

research into imbalanced classification, explainability, and the
impact of class hardness.

TABLE I: Graph based research learning areas.

Application Dataset Graphs Classes

Cybersecurity MALNET([1] 1,262,024 696
Google Play[17] 147,950 2
GCD[18] 1,361 2
DMA[19] 2,000 2
Small molecule Molpcba[20] 437,929 2
Yeast[21] 79,601 2

NCI1[22] 812 10
RDT-M5K][23] 5,000 5
Delaney[24] 2,874 2

Computer Vision Digit[25] 3,500 10
Fingerprint[25] 2,800 4

COIL-RAGI25] 3,900 100

COIL-DELI25] 3,900 100
Bioinformatic PROTEINS|[26] 1,178 2
CTD-DDA[27] 12,765 2
Social Network Reddit-T[28] 203,088 2
Twitch Ego Nets[29] 127,094 2
Github Stargazers[29] 12,725 2
Reddit-12K[28] 203,088 2

Comparison of MALNET properties with common graph
classification datasets found in other research areas. MAL-
NET offers over 1.2 million Android APK files averaging
17k nodes and 39k edges with a hierarchical class structure
containing 47 types and 696 families. This makes MALNET
the largest public database constructed to date, offering 105x
more Android APK files, 44x larger graphs on average, and
63x the classes compared to several datasets in I. To put this
in perspective, MALNET’s smallest class contains only 113
samples of the Click graph, while 884,455 of the Adware
type[4]. A majority of newly identified malware samples
are packed, meaning that the binary code is obfuscated to
evade signature-based detection, the predominant form of
malware detection [30]. Fortunately, research has shown that
image-based binary representations are resilient to common
packing techniques since they typically perform a monotonic
transformation of the binaries, failing to conceal common byte
patterns present in the original binaries[30]. With the release
of MALNET, researchers will now have access to a critical
resource to develop advanced, image-based, or graph-based
malware detection and classification algorithms [1]. Previous
research on classic desktop malware has shown that some
high-level characteristics of the code, such as function call
graphs, can be used to find similarities between samples while
being more robust against certain obfuscation strategies[17].
The study of graph representation learning is a critical tool
in the characterization and understanding of complex inter-
connected systems. Currently, no large-scale database exists
to accurately assess the strengths and weaknesses of these
techniques [4]. Such data represents a benchmark for testing
machine learning model for cybesecurity. In [31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43] are reported several related
works in the field of machine learning.

APK Distribution Across 43 Types

17500

15000

12500
5]

& 10000
£

2 7500

5000

154X imbalance
2500
0 ; ; : ; ; : ; :
0 5 10 15 20 L3 30 35 40 45
Type Index
APK Distribution Across 246 Families

12000

10000

2 BOOD
=9
=

E oo
=

4000

2000

908X imbalance
0

0 50 100 150 200

Family Index
Fig. 1: MALNET-TINY contains 87,430 Android APK file
across a hierarchy of 43 types and 246 families. Both type
and family have distributions with imbalance ratios of 7,827x
and 16,901x, respectively.

III. BACKGROUND

MALNET is the largest cybersecurity dataset to date that
has been released; it contains 1,262,024 Android APK files
across 47 types and 696 families of malware. Both types and
families have distributions with imbalance ratios of 7,827x and
16,901x, respectively. In this paper we will be working with
MALNET-TINY, both type and family have distributions with
imbalance ratios of 154x and 908x the distribution can be
seen in Figure 1. MALNET-TINY contains 61,201 training,
8,743 validation, and 17,486 tests Android APK files, for
type-level classification experiments by removing the 4 largest
types in MALNET. The goal of MALNET-TINY is to enable
users to rapidly prototype new ideas since it requires only
a fraction of the time needed to train a new model[1]. We
analyze MALNET-TINY by performing type level classifica-
tion experiments against the optimal model found in Freitas,
Duggal, and Chau [1], ResNetl8 trained from scratch on
grayscale images using cross-entropy loss and class reweight-
ing—where the model achieves a macro-F1 score of 0.651,
macro-precision of 0.672, and a macro-recall of 0.646[1].
We will also explore evolution prediction experiments with

MALNET-TINY with the help of VirusTotal. VirusTotal tells
you whether a given antivirus solution detected a submitted
file as malicious, but also displays each engine’s detection
label (e.g., [-Worm.Allaple.gen) [44]. Malware signatures are
updated frequently by VirusTotal as they are distributed by
antivirus companies, this ensures that the service uses the latest
signature sets which is important for scan dates of the malware.

We begin by analyzing 5 key properties of the MALNET-
TINY (1) scale (number of graphs, average graph size, average
number of nodes, average number of edges), (2) class hierar-
chy (3) class diversity, and (4) class imbalance.

APK Fakeapp
Type
APK
Family
Artemis Deng Dowgin Fakeflash Genbl

Fig. 2: Example of the graph type “fakeapp” and its 5 families,
graphs can share several families.

Scale. MALNET-TINY contains 87,430, Android APK files
across 43 types and 246 families of malware. When stored on
disk, MALNET-TINY takes over 35 GB of space in edge list
format. In Table II, we provide descriptive statistics on the
number of nodes, edges, and average degree of MALNET-
TINY.

Hierarchy. Android APK contains function call graphs that
are assigned a general type (e.g., Fakeapp) and specialized
family label (e.g., Artemis) using the Euphony [45] classifi-
cation structure (see Figure 2). In [45] 4 fields are defined
type (the kind of threat, i.e., trojan, worm, etc.), platform
(the OS that the threat is designed to work on, i.e., Windows,
Android, etc.), family (the group of threats it is associated
with in terms of behavior), information (extra description
of this threat, including its variant). In this paper, we focus
specifically on type and family.

Diversity MALNET-TINY offers 43 types, 246 families and
graphs averaging 17,588 nodes, 40,105 edges and 2 degrees.
The type and family distribution is imbalanced with ratios
of 154x and 908x as seen in Figure 1. The graphs have a
long-tailed distribution which is difficult to classify because
neglecting rare scenarios is likely to result in high-severity
errors during our testing. Typically if there are differences in
the scales across the input variables it increases the difficulty
of the problem being modeled. Figure 1 has large input values
the spread of hundreds or thousands of types and families can
result in a model that learns large weight values which is an
undesired behavior.

Imbalance Models learning from longtailed distributions
tend to favor the majority class, leading to poor generaliza-

TABLE II: Graph statistics for MALNET-TINY dataset.

Nodes Edges Avg. Degrees
Type #G #F min mean max std min mean max std min mean max std
Addisplay 17,458 38 37 12,862 97,816 14,556 37 28,072 245,593 33,546 0.92 1.97 438 037
Spr 13,822 46 12 27,876 168,591 20,943 7 67,389 368,861 51,844 0.58 2.27 4.7 0.44
Spyware 6,590 19 12 5,289 55,409 6,364 7 10,946 121,351 13,954 0.58 1.95 427 046
Exploit 5,581 13 19 23,842 101,955 14,145 14 45,430 250,498 30,344 0.74 1.88 334 033
Downloader 4,997 7 37 20,454 106,537 27811 37 46,397 321,478 63,239 0.96 1.68 353 0.66
Smssend++Trojan 4,294 25 16 33,928 146,744 19,122 13 82,441 386,818 47,942 0.81 2.39 378 023
Troj 3,309 36 14 6,496 64,472 7,698 11 14,846 115,181 18,468 0.79 1.98 5.6 0.52
Smssend 3,266 12 15 19,523 111,452 14,393 12 49,184 337,483 37,847 0.8 2.34 461 047
Clicker++Trojan 2,867 3 220 6,037 28,970 3,210 471 13915 71,628 7,321 1.52 2.33 292 0.8
Adsware 2,651 16 368 11,462 52,631 12,738 564 25,625 142,795 28,110 1.02 2.19 427 0.26
Malware 2,506 19 6 7,543 118,853 12,670 5 16,487 286,126 28,778 0.83 1.9 397 0.67
Adware++Adware 2503 2 192 8,845 55,312 6,379 289 19,500 138,170 15,602 1.49 2.16 3.17 027
Rog 1,975 22 26 15,154 101,963 19,435 31 34,798 23,1976 46,247 091 2.05 479 049
Spy 1,645 7 48 21,591 106,985 14,830 44 49,261 271,063 39,756 0.92 2.17 3.07 025
Monitor 1,357 5 329 3,777 41,236 5,124 580 7,196 102,166 12,044 153 1.83 3.09 021
Ransom++Trojan 1,153 7 556 5,0924 138917 22,009 965 114,731 318,871 48226 1.59 2.26 259 021
Banker++Trojan 1,106 6 29 33,119 102,744 16,193 36 71,950 236,977 37,509 1.22 2.15 299 024
Trj 940 18 29 12,675 171,089 16,355 36 29,903 402,259 39,402 1.15 2.2 444 049
Gray 922 10 51 16,342 65,738 13,446 56 38,880 152,626 31,376 0.88 2.09 433 0.58
Adware++Grayware++Virus 835 4 22 5,884 83,833 13,052 20 13,777 193,294 28,681 0.86 2.79 3.17 034
Fakeinst++Trojan 718 10 51 14,855 93,646 17,395 58 36,648 229,433 43,608 0.99 2.12 2.84 048
Malware++Trj 609 1 52,001 52,107 55,855 596 118,354 118,713 127,640 1,420 2.28 2.28 2.29 0.0
Backdoor 602 10 25 13,485 146,339 21,826 21 33,031 427,245 57,066 0.84 2.19 355 037
Dropper++Trojan 592 8 47 4,518 67,387 6,734 50 11,355 174,826 18,004 1.06 1.98 3.92 0.7
Trojandownloader 568 7 1,018 38,158 102,061 18,893 1,626 86,200 257,627 44,721 1.34 2.19 254 021
Hacktool 542 7 668 169,64 40,938 9,263 1,691 37,242 92,124 20,260 1.63 2.21 3.64 025
Fakeapp 425 5 24 3,677 49,776 6,830 21 7,886 107,441 15,947 0.88 1.67 279 037
Clickfraud++Riskware 369 5 1,702 17,730 19,808 2,105 3,647 37,821 42,741 4,621 1.95 2.13 225 0.04
Adload 333 4 2,319 18,518 53,009 17,889 4,472 47,829 149,291 47,842 1.46 229 3.13 0.4
Addisplay++Adware 294 1 3,253 19,804 49,603 8,739 5,748 41,184 107,862 19,802 1.65 2.03 245 021
Adware++Virus 274 9 38 14,629 58,735 15,457 38 33,069 138,157 34,872 1.0 222 3.17 054
Clicker 265 5 47 3,082 75,209 7,333 43 6,369 189,716 17,133 091 1.62 332 051
Fakeapp++Trojan 256 1 44 21,452 72,055 14,505 39 40,628 162,426 33,888 0.88 1.74 2.3 0.27
Riskware++Smssend 247 7 12 2,368 59,834 5,757 7 5,127 154,316 14,257 0.58 1.68 3.0 0.45
Rootnik++Trojan 223 5 210 15,985 83,987 20,863 395 38,766 197,031 50,278 1.15 2.59 321 047
‘Worm 220 7 64 14,466 94,028 15,308 78 30,659 203,623 34250 0.99 1.99 3.42 0.4
Fakeangry 211 2 516 6,000 98,236 11,094 946 14,755 279,102 29,350 1.7 2.35 329 027
Virus 191 3 681 15,213 79,880 19,075 1,192 34,892 176,862 45,885 1.32 2.12 3.18 033
Trojandropper 178 4 220 20,043 78,496 17,769 236 38,829 185,129 38,505 1.03 1.83 436 032
Adwareare 152 3 893 26,369 57,069 13,751 1,680 60,462 144,487 31,544 1.88 2.25 2.6 0.2
Risktool++Riskware++Virus 152 3 37 16,229 64,558 15,956 37 36,045 158,271 37,407 1.0 1.92 3.17 048
Spy++Trojan 119 5 54 31,386 118,239 24,886 66 74,924 293,488 60,837 1.22 2.31 326 037
Click 113 1 1,821 4,053 11,518 1,984 4,285 7,989 25,508 3,512 1.8 2.04 274 021

tion performance on rare classes. While class imbalance is
traditionally solved by resampling the data (undersampling,
oversampling) [4, 46]. Undersampling has been widely used in
the class-imbalance learning area. The main deficiency of most
existing undersampling methods is that their data sampling
strategies are heuristic-based and independent of the used
classifier and evaluation metric. Thus, they may discard in-
formative instances for the classifier during the data sampling
[46]. The two most common preprocessing techniques are
random minority oversampling (ROS) and random majority
undersampling (RUS) [47]. In ROS, instances of the minority
class are randomly duplicated. In RUS, instances of the major-
ity class are randomly discarded from the dataset. In one of the
earliest attempts to improve upon the performance of random
resampling, Kubat and Matwin [48] proposed a technique
called one-sided selection (OSS). One-sided selection attempts
to intelligently undersample the majority class by removing
majority class examples that are considered noise, we will
not be taking this approach. We will be combining malware
minority samples with ’benign’ samples in order to predict the
evolution of the malware.

IV. METHODOLOGY

We propose a methodology to create a malware classifier
that provides a degree of robustness to malware polymorphism.
Our procedure is composed of four pieces:

o Given a graph representing an android application, ex-
tract for each node in the graph the structural vectorial
representation via Inferential SIR-GN.

o Use the vectorial representations of all the nodes of a
specific graph representing an android application to cre-
ate the structural pseudo-adjacency matrix. The structural
pseudo-adjacency matrix represents the graph, then the
android app.

e Combine the structural pseudo-adjacency matrix of the
malware with the matrix of the benign android application
to create a potential polymorphic version of the malware.

o Use the representations of the android applications (be-
nign and malware) with the representations of the poten-
tial polymorphic version of the malware to train a random
forest algorithm to identify and classify malware.

In the following, we describe the Inferential SIR-GN, the
structural pseudo adjacency matrix, and the matrix combina-

tion for potential polymorphic combination.

A. Inferential SIR-GN

The algorithm Inferential SIR-GN, used for extracting node
representations from the directed graph, is described in de-
tail in Layne and Serra [49]. The model relies upon the
methodology of SIR-GN, first described in [50], wherein a
node’s representation is iteratively updated by describing then
aggregating its neighbors. The size of a node’s representation
at each iteration is equal to a user-chosen hyperparameter
nc. Node descriptions are generated by clustering the current
node description (which initializes as the node degree) into nc
KMeans clusters. Normalization of the representation occurs
before the clustering step at each iteration, then the distance
from each cluster centroid is converted into a probability
of membership of the node in each cluster. Once a node’s
structural description has been updated, its neighbors are
aggregated into its description by summing for each cluster
all neighbors’ probabilities of membership per cluster. The
resulting node representation is equal to the expected number
of neighbors that node possesses in each cluster. Each itera-
tion corresponds to an added depth of exploration, where &
iterations will generate a node description incorporating the
k-hop neighborhood structure of a node.

Inferential SIR-GN differs from the standard model via
multiple modifications, the first being that at the end of each
iteration, we concatenate each node’s structural description
into a larger representation that captures the evolution of the
structural information through deeper neighborhood explo-
ration. After the final iteration, a Principle Component Anal-
ysis (PCA) is used to prevent degradation of the information
as the representation size grows. The final representation is
condensed to a size chosen as a hyperparameter. For directed
graphs, a node’s initial representation begins as two vectors
of size nc, one containing the node’s in-degree, the other
containing its out-degree. These two are concatenated together
before clustering. At each iteration, clustering of this larger
node vector is performed, followed by aggregation of the
neighbors. For directed data, the aggregation is performed sep-
arately for a node’s in-neighbors and out-neighbors into two
intermediate vectors, then once again concatenated together for
the next iteration. Inferential capability of our proposed model
is accomplished by pre-training the KMeans and scalers for
each iteration - a new KMeans and Scaler are used for every
depth of exploration - along with the PCA model that will be
used to generate the final node representation. We pre-train on
random graphs and store each model for use in inference. At
inference time, repeated normalization followed by clustering
and aggregation is accomplished using the pre-trained models,
and the PCA fit during training is used to generate the final
node representations. This drastically increases inference time,
and the same pre-trained model can be used on a variety
of different data sources. This is demonstrated extensively
in Layne and Serra, along with a detailed algorithm and
description of the time complexity of the model.

B. Structural Pseudo-Adjacency Matrix

Given the vectorial representation of SIR-GN, [49] provides
a procedure to create a unique graph representation tech-
nique. Such techniques identify groups of nodes in a fixed
number. Each group contains nodes with similar vectorial
representations. Given this set of groups, the method creates
a structural pseudo-adjacency matrix working on the groups
that, once flattened, represents the vectorial representation of
the graph. Then, the vectorial representations of the two graphs
are comparable if the computation of the node representations
and the definition of the groups of nodes for the structural
pseudo-adjacency matrices are identical for the two graphs.
This approach guarantees this property because inferential
SIR-GN [49] is a procedure able to perform inferences and that
is pretrained on a specific family of directed random graphs.
Note that since the groups are created on the basis of structural
similarities among the nodes, the graph representation is
invariant.

More specifically, these node representations are used to
train a final scalar and KMeans, that clusters the entire graph
data at inference time. Unlike the incremental KMeans, which
only see the node representation/aggregation for the current
level of depth being explored, this final KMeans is fit using
the concatenated iterative node representations condensed by
PCA. During inference, the nodes of the target graph are em-
bedded as described above, then clustered one final time using
the KMeans pre-trained on the full graph data. The distances
to the cluster centroids are transformed into probabilities of
membership in a cluster, as above. However, the aggregation
method is markedly different for graph representation than
for nodes. Graph representations are often created from node
representations by sum or mean-pooling node representations.
In Layne and Serra [49], a new method is presented for node
pooling, which creates a structural pseudo-adjacency matrix of
the size ngc X ngc, where the matrix is the sum of each node
vector multiplied by the transpose of each of its neighbors.
This creates a matrix that is not only unique to a specific
graph structure but also indifferent to node ordering, unlike
typical adjacency matrices. The linearized matrix yields a set
of features for use in downstream graph classification tasks.

C. Malware Polymorphic Generation Approach

By using the structural pseudo-adjacency matrix repre-
senting each android application, we design a procedure to
create a polymorphic version of existent malware. Given
an android application a, SPAM (a) denotes the structural
pseudo-adjacency matrix of the graph of the application a. The
procedure for each android malware m, searches among the
benign applications the application b which has SPAM (b)
close in terms of euclidean distance to SPAM (a). The
computation of the closest benign application is performed fast
by using the k-nearest neighbor algorithm. Given the android
malware ¢ and the closets benign application b, a polymorphic

representation pr, of a is obtained by using the following
weighted mean of the two representations:

prqo =08 SPAM(a) +0.2- SPAM (b)

The weights are used in order to slightly modify the
malware representation SPAM (a). Then for each malware,
its polymorphic representation is created, then all the poly-
morphic representations are used in the training of the clas-
sification model, in our case a random forest, to make the
classification model robust to polymorphic changes of the
malware applications.

V. EXPERIMENTS

A. Experimental Setup

For type level classification experiments, MALNET-TINY
5k is split into 3,500 training, 500 validation, and 1,000
graphs. MALNET-TINY is split into 61,201 training, 8,743
validation and 17,486 graphs. MALNET-TINY and MALNET-
TINY 5k are split for type-level classification experiments
and evolution prediction classification. We compare against
Freitas, Duggal, and Chau [1], using a ResNetl8 model,
trained from scratch on grayscale images using cross-entropy
loss and class reweighting where the model achieves a macro-
F1 score of 0.651, macro-precision of 0.672, and a macro-
recall of 0.646 [1]. We will also analyze MALNET-TINY and
MALNET-TINY 5k by performing type-level classification
experiments on different data splits (1) A random split into
61,201 training, 8,743 validation, and 17,486 graphs. (2) A
temporal split where training data contains 69,944 and 17,86
test graphs. (3) A temporal split and we apply obfuscation
methods to increase our model’s performance. Each dataset
is transformed with the SIR-GN method which encodes node
structure and applies an iterative process that takes advantage
of node clustering and node neighborhood relations in order to
learn rich structural representations [5]. SIR-GN’s final output
is a structural representation vector fed into an XGBoost
classifier. Every model is evaluated on its macro-F1 score, we
also provide additional performance metrics such as precision,
and recall.

B. Empirical Results

We present results for SIR-GN graph representation tech-
nique [49] found in III and results for MALNET-TINY
5k found https://mal-net.org/ and MALNET-TINY split into
61,201 training, 8,743 validation and 17,486 test graphs [1].
We perform our experiments in Python3 using an Intel (R)
Core(TM)i7-7700HQ CPU @ 2.80 GHz.

We use the following two datasets:

« MALNET-TINY 5k dataset contains 5 types Addisplay,
Adware, Benign, Downloader, and Trojan with each
containing 1000 graphs.

« MALNET-TINY 61K 61,201 training, 8,743 validation
and 17,486 test graphs for type level classification exper-
iments.

o MALNET-TINY 81K 81,201 training, 8,743 validation
and 27,486 test graphs for type level classification exper-
iments and evolution prediction.

TABLE III: We compare SIR-GN driven model against
ResNet18 using MALNET-TINY 60k. The ResNet18 model
is outperformed.

Type
Model F1 PrecisionRecall
ResNet18 0.651 0.672 0.646
SIR-GN XGB 0.718 0.729 0.794

TABLE IV: Evaluating the performance of three different
dataset splits containing 5,000 graphs (MALNET-TINY 5k).
SIR-GN algorithm produces the following macro-F1, macro-
precision, and macro-recall. Performance is similar across data
splits.

Binary Type
Tiny Dataset F1 PrecisionRecall F1 PrecisionRecall
Random TINY-5k 0.851 0.832 0876 0916 0917 00915
Temporal TINY-5k 0.716 0.716 0.777 0.725 0.739 0.807
Evolution TINY-5k 0.752 0.744 0.807 0.741 0.740 0.819

TABLE V: Comparison of Inferential SIR-GN driven model in
MALNET-TINY 5k against several other graph based methods
reported in [51]

Model Type Accuracy

SIR-GN XGB 0.92
Feather [52] 0.86
LDP [53] 0.86
GIN [54] 0.90
GCN [55] 0.81
Slag-LSD [56] 0.76
NoG [57] 0.77
Slag-VNGE [56] 0.53

TABLE VI: Evaluating the performance of three different
dataset splits containing 87,430 graphs (MALNET-TINY 81k).
SIR-GN algorithm produces the following macro-F1, macro-
precision, and macro-recall. Performance is similar across data
splits.

Binary Type
Tiny Dataset F1 PrecisionRecall F1 PrecisionRecall
Random TINY 81K 0468 0.605 0471 0.741 0813 0.702
Temporal TINY 81K 0.474 0.648 0466 0.725 0.739 0.807
Evolution TINY 81K 0.476 0.653 0496 0.741 0.740 0.819

Table III contains the results for the MALNET-TINY dataset
containing macro-F1, macro-precision, and macro-recall on
random splits of 61,201 training graphs, 8,743 validation
graphs, and 17,486 test graphs. We compared against [1] where
they achieved a macro-F1 score of 0.651, macro-precision of
0.672,and a macro-recall of 0.646 and we achieve a macro-F1

score of 0.718, macro-precision of 0.729,and a macro-recall of
0.794. Using the SIR-GN algorithm improves the performance
of the classifier as seen by the results.

Table IV contains the results for the MALNET-TINY 5k
dataset containing macro-F1, macro-precision, and macro-
recall on random splits of 3,500 training graphs, 500 validation
graphs, and 1000 test graphs. Table IV contains the macro-F1
score, macro-precision, and a macro-recall for random splits.
For the random split we get a macro-F1 score of 0.916, a
macro-precision of 0.917, and a macro-recall of 0.915. [51]
provides accuracy scores for several graph based methods, as
seen in Table V, the Inferential SIR-GN approach stands out
as the best at 0.92 accuracy. The table also has scores for a
temporal split where the training consisted of a date range from
2012 to 2019 and the test date range was from 2020 to 2021.
For the temporal split and type classification, we achieved a
macro-F1 score of 0.725, a macro-precision of 0.739, and a
macro-recall of 0.807. When we apply evolution prediction
we get a performance boost for a macro-F1 score of 0.741 vs
0.725.

In Table VI we evaluate MALNET-TINY and include
benign malware type to generate a score on a random split.
This table contains the macro-F1 score, macro-precision, and
a macro-recall for random a split and temporal split. The
table also has scores for a temporal split where the training
consisted of a date range from 2012 to 2019 and the test
date range was from 2020 to 2021. For the temporal split and
type classification, we achieved a macro-F1 score of 0.725, a
macro-precision of 0.739, and a macro-recall of 0.807. When
we apply evolution prediction we get a performance boost for
a macro-F1 score of 0.741 vs 0.725.

VI. CONCLUSION

In this work we focused on MALNET and highlighted
graph representation learning methods which have emerged
across many scientific fields and are driving the development
of representation learning techniques. Graph representation
learning techniques encode structured information into low
dimensional space for a variety of important downstream tasks.
We proposed a methodology to create a malware classifier
that provides a degree of robustness to malware polymor-
phism. Given a graph representing an android application, we
extracted for each node in the graph the structural vectorial
representation via Inferential SIR-GN. In this research we used
the representations of the android applications (benign and
malware) with the representations of the potential polymorphic
version of the malware to train a model to identify and classify
malware. Experimental results

In the experimental setup and we cover the empirical results.
We present results for SIR-GN graph representation technique.
We find that Malware applications are dangerous and create
huge damages. Therefore, the detection and classification of
malware are essential for their mitigation. Transforming binary
executables into images represents a feasible and accurate way
to detect and classify malware with image neural networks.
Differently from the Image-based approach, in this work, we

proposed a procedure based on control flow graph, structural
graph representation learning, and XGboost. Such a procedure
was tested on MALNET in terms of malware classification
and provided better results than the one image-based working
using the neural network ResNet. In addition, by using the
structural pseudo-adjacency matrix representing each android
application, we designed a procedure to create a polymorphic
version of existent malware application to improve the training
phase and the classification performances.

ACKNOWLEDGMENT

This research was made possible by the National Science
Foundation award #1820685 and Idaho Global Entrepreneurial
Mission/Higher Education Research Council #IGEM22-001.

REFERENCES

[1] S. Freitas, R. Duggal, and D. H. Chau, “Malnet: A
large-scale cybersecurity image database of malicious
software,” CoRR, vol. abs/2102.01072, 2021. [Online].
Available: https://arxiv.org/abs/2102.01072

[2] S. Freitas, A. Wicker, D. H. Chau, and J. Neil, “D2M:
dynamic defense and modeling of adversarial movement
in networks,” CoRR, vol. abs/2001.11108, 2020.
[Online]. Available: https://arxiv.org/abs/2001.11108

[3] L. Nataraj, S. Karthikeyan, G. Jacob, and
B. S. Manjunath, “Malware images: Visualization
and automatic classification,” in Proceedings of the
8th International Symposium on Visualization for Cyber
Security, ser. VizSec ’11. New York, NY, USA:
Association for Computing Machinery, 2011. [Online].
Available: https://doi.org/10.1145/2016904.2016908

[4] S. Freitas, Y. Dong, J. Neil, and D. H. Chau, “A large-
scale database for graph representation learning,” 2020.

[5] M. Joaristi and E. Serra, “Sir-gn: A fast
structural iterative representation learning approach
for graph nodes,” ACM Trans. Knowl. Discov. Data,
vol. 15, no. 6, May 2021. [Online]. Available:
https://doi.org/10.1145/3450315

[6] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and
M. Ahmadi, “Microsoft malware classification chal-
lenge,” 2018.

[71 A.S. Bozkir, A. O. Cankaya, and M. Aydos, “Utilization
and comparision of convolutional neural networks in
malware recognition,” in 2019 27th Signal Processing
and Communications Applications Conference (SIU),
2019, pp. 1-4.

[8] T. M. Mohammed, L. Nataraj, S. Chikkagoudar, S. Chan-
drasekaran, and B. S. Manjunath, “Malware detection
using frequency domain-based image visualization and
deep learning,” CoRR, vol. abs/2101.10578, 2021.
[Online]. Available: https://arxiv.org/abs/2101.10578

[9] L. Chen, R. Sahita, J. Parikh, and M. Marino, “Stamina:

Scalable deep learning approach for malware classifica-

tion,” 2020.

J. Gennissen and J. Blasco, “Gamut : Sifting through

images to detect android malware,” 2017.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

K. Kancherla and S. Mukkamala, “Image visualization
based malware detection,” 2013 IEEE Symposium on
Computational Intelligence in Cyber Security (CICS), pp.
40-44, 2013.

S. Choi, S. Jang, Y. Kim, and J. Kim, “Malware detection
using malware image and deep learning,” in 2017 Inter-
national Conference on Information and Communication
Technology Convergence (ICTC), 2017, pp. 1193-1195.
H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and
A. Kumar, “Classification of ransomware families with
machine learning based on n -gram of opcodes,” Future
Generation Computer Systems, vol. 90, 08 2018.

J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra,
Y. Feng, and K. Sakurai, “Lightweight classification
of iot malware based on image recognition,” in 2018
IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), vol. 02, 2018, pp. 664—669.
I. Yoo, “Abstract visualizing windows executable viruses
using self-organizing maps.”

Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android mal-
ware characterization and detection using deep learning,”
Tsinghua Science and Technology, vol. 21, no. 1, pp.
114-123, 2016.

H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Struc-
tural detection of android malware using embedded call
graphs,” in In Proceedings of the 2013 ACM Workshop
on Artificial Intelligence and Security (AlSec’13, 2013.
S. Ranveer and S. Hiray, “Comparative analysis of fea-
ture extraction methods of malware detection.”

M. Nunes, “Dynamic Malware Analysis kernel and
user-level calls,” Mar. 2018. [Online]. Available:
https://doi.org/10.5281/zenodo.1203289

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu,
M. Catasta, and J. Leskovec, “Open graph benchmark:
Datasets for machine learning on graphs,” 2021.

X. Yan, H. Cheng, J. Han, and P. Yu, “Mining significant
graph patterns by leap search,” in SIGMOD 2008, ser.
Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Dec. 2008, pp. 433—
444, 2008 ACM SIGMOD International Conference on
Management of Data 2008, SIGMOD’08 ; Conference
date: 09-06-2008 Through 12-06-2008.

X. Kong and P. Yu, “Multi-label feature selection for
graph classification,” 12 2010, pp. 274-283.

H. NT, C. J. Jin, and T. Murata, “Learning graph neural
networks with noisy labels,” 2019.

A. Lusci, G. Pollastri, and P. Baldi, “Deep architectures
and deep learning in chemoinformatics: The prediction
of aqueous solubility for drug-like molecules,” Journal
of chemical information and modeling, vol. 53 7, pp.
1563-75, 2013.

K. Riesen and H. Bunke, “lam graph database repos-
itory for graph based pattern recognition and machine
learning,” in Joint IAPR International Workshops on
Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition (SSPR).

[27]

[33]

[34]

Springer, 2008, pp. 287-297.

K. M. Borgwardt, C. S. Ong, S. Schonauer, S. Vish-
wanathan, A. J. Smola, and H.-P. Kriegel, “Protein
function prediction via graph kernels,” Bioinformatics,
vol. 21, no. suppl_1, pp. i47-i56, 2005.

X. Yue, Z. Wang, J. Huang, S. Parthasarathy,
S. Moosavinasab, Y. Huang, S. M. Lin, W. Zhang,
P. Zhang, and H. Sun, “Graph embedding
on biomedical networks: methods, applications
and evaluations,” Bioinformatics, vol. 36, no. 4,
pp- 1241-1251, 10 2019. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btz718

B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate club:
An api oriented open-source python framework for un-
supervised learning on graphs,” 2020.

, “Karate Club: An API Oriented Open-source
Python Framework for Unsupervised Learning on
Graphs,” in Proceedings of the 29th ACM International
Conference on Information and Knowledge Management
(CIKM °20). ACM, 2020, p. 3125-3132.

L. Nataraj, P. Porras, and V. Yegneswaran, “A compar-
ative assessment of malware classification using binary
texture analysis and dynamic analysis abstract.”

M. Ceci, A. Cuzzocrea, and D. Malerba, “Supporting
roll-up and drill-down operations over olap data cubes
with continuous dimensions via density-based hierarchi-
cal clustering.” in SEBD. Citeseer, 2011, pp. 57-65.
E. Serra, M. Joaristi, and A. Cuzzocrea, “Large-scale
sparse structural node representation,” in 2020 IEEE
International Conference on Big Data (Big Data). 1EEE,
2020, pp. 5247-5253.

P. Braun, A. Cuzzocrea, T. D. Keding, C. K. Leung, A. G.
Padzor, and D. Sayson, “Game data mining: clustering
and visualization of online game data in cyber-physical
worlds,” Procedia Computer Science, vol. 112, pp. 2259—
2268, 2017.

A. Guzzo, D. Sacca, and E. Serra, “An effective approach
to inverse frequent set mining,” in 2009 Ninth IEEE
International Conference on Data Mining. 1EEE, 2009,
pp. 806-811.

K. J. Morris, S. D. Egan, J. L. Linsangan, C. K.
Leung, A. Cuzzocrea, and C. S. Hoi, “Token-based
adaptive time-series prediction by ensembling linear and
non-linear estimators: a machine learning approach for
predictive analytics on big stock data,” in 2018 17th
IEEE International Conference on Machine Learning
and Applications (ICMLA). IEEE, 2018, pp. 1486-1491.
E. Serra and V. Subrahmanian, “A survey of quantitative
models of terror group behavior and an analysis of strate-
gic disclosure of behavioral models,” IEEE Transactions
on Computational Social Systems, vol. 1, no. 1, pp. 66—
88, 2014.

L. Bellatreche, A. Cuzzocrea, and S. Benkrid, “F&A
: A methodology for effectively and efficiently design-
ing parallel relational data warehouses on heterogenous
database clusters,” in International Conference on Data

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Warehousing and Knowledge Discovery. Springer, 2010,
pp- 89-104.

O. Korzh, M. Joaristi, and E. Serra, “Convolutional
neural network ensemble fine-tuning for extended trans-
fer learning,” in International Conference on Big Data.
Springer, 2018, pp. 110-123.

S. Ahn, S. V. Couture, A. Cuzzocrea, K. Dam, G. M.
Grasso, C. K. Leung, K. L. McCormick, and B. H. Wodi,
“A fuzzy logic based machine learning tool for sup-
porting big data business analytics in complex artificial
intelligence environments,” in 2019 IEEE international
conference on fuzzy systems (FUZZ-IEEE). 1EEE, 2019,
pp. 1-6.

E. Serra, A. Sharma, M. Joaristi, and O. Korzh, “Un-
known landscape identification with cnn transfer learn-
ing,” in 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining
(ASONAM). 1EEE, 2018, pp. 813-820.

E. Serra, A. Shrestha, F. Spezzano, and A. Squicciarini,
“Deeptrust: An automatic framework to detect trustwor-
thy users in opinion-based systems,” in Proceedings of
the Tenth ACM Conference on Data and Application
Security and Privacy, 2020, pp. 29-38.

M. Joaristi, E. Serra, and F. Spezzano, “Inferring bad
entities through the panama papers network,” in 2018
IEEE/ACM International Conference on Advances in So-
cial Networks Analysis and Mining (ASONAM). 1EEE,
2018, pp. 767-773.

——, “Detecting suspicious entities in offshore leaks
networks,” Social Network Analysis and Mining, vol. 9,
no. 1, pp. 1-15, 2019.

G. Sood, virustotal: R Client for the virustotal API, 2017,
r package version 0.2.1.

M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé,
Y. Le Traon, J. Klein, and L. Cavallaro, “Euphony:
Harmonious unification of cacophonous anti-virus vendor
labels for android malware,” in 2017 IEEE/ACM 14th In-

[49]

[50]

ternational Conference on Mining Software Repositories
(MSR), 2017, pp. 425-435.

M. Peng, Q. Zhang, X. Xing, T. Gui, X. Huang, Y.-G.
Jiang, K. Ding, and Z. Chen, “Trainable undersampling
for class-imbalance learning,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01,
pp. 4707-4714, Jul. 2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAl/article/view/4396

J. Van Hulse, T. Khoshgoftaar, and A. Napolitano, “Ex-
perimental perspectives on learning from imbalanced
data,” vol. 227, 01 2007, pp. 935-942.

M. Kubat, “Addressing the curse of imbalanced train-
ing sets: One-sided selection,” Fourteenth International
Conference on Machine Learning, 06 2000.

J. Layne and E. Serra, “Inferential sir-gn: Scalable graph
representation learning,” 2021.

M. Joaristi and E. Serra, “Sir-gn: A fast structural iter-
ative representation learning approach for graph nodes,”

ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 15, no. 6, pp. 1-39, 2021.

S. Freitas, Y. Dong, J. Neil, and D. H. Chau, “A large-
scale database for graph representation learning,” 2021.
B. Rozemberczki and R. Sarkar, “Characteristic functions
on graphs: Birds of a feather, from statistical descriptors
to parametric models,” 2020.

C. Cai and Y. Wang, “A simple yet effective baseline for
non-attributed graph classification,” 2019.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How
powerful are graph neural networks?” 2019.

T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” 2017.

A. Tsitsulin, M. Munkhoeva, and B. Perozzi,
“Just slaqg when you approximate: Accurate spectral
distances for web-scale graphs,” Proceedings of The
Web Conference 2020, Apr 2020. [Online]. Available:
http://dx.doi.org/10.1145/3366423.3380026

T. H. Schulz and P. Welke, “On the necessity of graph
kernel baselines,” 2019.

