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Abstract—As online image sharing has become commonplace,
researchers have acknowledged the need to assist users in
detecting sensitive (or private) images. However, image privacy
classification tasks have shown to be nontrivial, as the designation
of an image sensitivity requires considerations of the visual
concepts in the image. In this paper, we propose an innovative
framework that combines the power of knowledge transfer for
efficient, personalized learning of individuals’ privacy preferences
toward images.

Our approach defines a meta-model, which, given the query
image and a small set of labeled images (used for the user-
privacy customization), identifies if the query image is private
for a target user. A generic user can efficiently customize this
model by providing a small labeled training set. Moreover, our
proposed framework includes transfer learning techniques to
import basic patterns for image processing learned from other
domains. Transfer learning enables fast and accurate processing
of images, and allows few shot learning to focus on customization.
This helps speed up the training process and avoid risk of
overfitting. Our proposed framework significantly outperforms
several baselines, including advanced object-oriented approaches
and other CNN-based methods.

I. INTRODUCTION

The steep increase in the number of images that are shared
online through social media apps and portals has highlighted
the need for effective and efficient methods to assist users in
identifying private images [3], [15]. Accordingly, a plethora
of learning models attempting to learn image privacy desig-
nations has been recently proposed [20], [24], [25], [28]. Yet,
automated classification of an image as private or public has
shown to be challenging due to the need of capturing images
sensitivity, when the definition of sensitive or private content
may be subjective, and similar labeled images may be scarce.
In general, a user’s privacy expectation for a given image is
related to specific contents therein, the users’ privacy pref-
erence, and other contextual factors (expected audience, etc.)
[32]. Contextual data surrounding an online image is however
often difficult to collect, either unavailable, inconsistent, or
hard to obtain without violating others’ privacy or platforms’
terms of use.

A customized algorithm for privacy designation for a given
image would require that each user make available a repre-
sentative data set for an algorithm to learn from and provide
predictions. Ideally, the dataset should be sufficiently large to
offer high accuracy guarantees. Yet, assuming the availability
of such an (individualized) large representative dataset is

unrealistic. The average user may not have a large number
of images, nor be motivated to go through the manual labor
of labeling their data, or even be willing to disclose their data
to sophisticated software for privacy analysis.

We argue that an effective approach to help users identify
private or sensitive images needs to learn from small data,
and yet be specific to the visual content therein. Small data
should not only enable personalized models, but also limit
expensive and controversial profiling approaches. As such,
typical machine learning approaches that learn from big data
cannot be immediately used.

In this paper, we present an innovative framework that com-
bines the power of knowledge transfer with efficient, person-
alized learning. Our approach provides a trained meta-model
that, combined with a small training set of labeled images
(from 4 to 16 private and public images in our experiments),
helps users identify images with private content according to
their own small training set. The meta-model takes advantage
of transfer learning during training, so as to import basic
patterns for image processing that are learned from other
domains. Once the meta-model is trained, a generic user can
customize this model by providing a small labeled training
set. Customization is based on a few shot learning method
and is therefore immediate: it does not require expensive
computational resources and can be done simply on the user’s
machine.

Our experimental results, carried out on a large dataset of
social network images, show that our method significantly
outperforms several baselines, including advanced object-
oriented approaches and other CNN-based methods. Precisely,
our framework achieves an overall accuracy of 85% F-1 score
with only 16 private and public images used for customization,
showing a significant performance gain against classic transfer
learning method and (65%) object-oriented few-shot learning
(33%).

Our model generalizes well even with new private categories
(not used for meta-training) and achieves f1-scores in the
[0.82, 0.85] range, depending on the new category considered.

Our contributions can be summarized as follows:
• We provide a customized learning model for image

privacy. The model requires a minimal amount of labeled
data and computational resources.

• We provide a robust modification of the few-shot learning
approach that better supports user’s customization of the



model. This solves the problem of multiple inconsistent
labels generated by different user profiles.

• We integrate few-shot learning with transfer learning to
improve generalization during the training and customiza-
tion phases of our model.

• We collect and test our approach on a new large image
dataset with different potential private categories.

The remaining of the paper is organized as follows. In
the next section, we review related work. Next, we present
our methodology, including a brief discussion of the two
main models underlying our framework. In Section IV-A2,
we present our experimental results carried out on our own
dataset. In Section V we conclude the paper with pointers for
future directions.

II. RELATED WORK

Several recent works have developed approaches for auto-
mated privacy settings of images [2], [10], [13], [20], [26],
[28], [34], [35], [37]. For instance, Buschek et al. [4] presented
an approach to assign privacy settings to shared images using
metadata (location, time, shot details) and visual features
(faces, colors, edges). Zerr et al. [35] proposed privacy-aware
image classification, and learned classifiers on Flickr photos
using content features. These approaches mostly rely on the
assumption that users make privacy decisions consistent with
socially accepted definitions of privacy [32]. Accordingly, the
authors focus on finding “universal” features and a univer-
sal model for image privacy detection, using a combination
of features drawn from text or meta-data analysis, object
detection or other conventional image-specific features (e.g.,
Scale-invariant feature transform (SIFT), color histogram deep
learning (DL)) [20], [24]. However, these methods fail to
account for individual preferences and rely on the assumption
that a large universal model exists and can be trained.

Consistent with the recent success of Convolutional Neural
Networks (CNNs) on a large scale dataset used for object
recognition, e.g. [11], Tonge and Caragea analyzed various
CNN architectures and modalities and achieve more accurate
binary privacy predictions than earlier models [24], [25], [27],
reaching a F-1 score of 86.3%. Tonge and colleagues [26] also
looked into the combination of user tags and object tags for
an alternative to analysis based on visual features alone.

Our approach, discussed next, also employs neural networks
for part of the framework but is significantly superior as
it reaches comparable if not higher performance than prior
approaches, and it provides superior adaptability and person-
alization, which are key concerns in privacy problems [32].

To address these limitations, few studies have explored
personalized privacy models using DL features [19], [38].
Spyromitros’ approach is based on a trained logistic regression
model for every user, using a dataset with both personalized
labels and a generic label sample. This method relied on
many labeled examples from each user [19]. Zhong and
colleagues [38] offered a statistical approach attempting at a
a compromise between these strategies, with more flexibility
than the single model approach, less personalization than a

truly customized approach, but borrowing statistical strength
from alike users to reduce labeled data requirements. With
a baseline profile of 15 images per user’s group or profile,
authors achieve an accuracy of 79.31%.

Yu et al. [33] proposed a framework that identifies a
large set of privacy-sensitive object classes and their privacy
settings by using a large set of labeled public and private
images. This framework is based on object segmentation and
provides recommendations of regions needing to be blurred.
The recommendations are based on the privacy settings of
the objects detected in the images. This approach varies from
our proposed solution, in that it does not cater to the cases
of limited labelled image availability. It also requires a large
amount of training data to achieve high accuracy.

Fig. 1: Example of meta learning

III. METHODOLOGY

Our goal is to provide a powerful and personalized model
that quickly identifies images deemed private by an individual.
Our framework relies on the observation that users typically
apply their own privacy definitions (or profiles, in what fol-
lows) when selecting images as private or public [1], [30].
These privacy profiles may result in the same image having
different decisions (or labels) by different individuals, but can
be learned given sufficient labeled images.

To capture individuals’ models, our framework aims at
learning users’ privacy profiles based on few personal images,
and integrates labeling preferences of similar users’ for higher
accuracy. Operationally, this is achieved by developing a learn-
ing framework that carefully combines learning approaches
blending knowledge transfer with customized models.

Next, we provide some background information on two key
learning models underlying our solution. We then discuss our
proposed centroid-based framework, that integrates few-shot
learning and transfer learning successfully. In addition, as a
possible baseline for our approach, we propose a modification
of the centroid-based approach that integrates object detection.



A. Background Methods

We rely on two key building blocks for our framework:
1) transfer learning to extract knowledge from small data
samples, and 2) few-shot learning to allow training models
to be customized based on few examples.

1) Transfer Learning: Transfer learning leverages knowl-
edge from a related domain (called source domain) to improve
learning performance or minimize the number of labeled
examples required in a target domain. The closer the source
and target domains are, the more effective is the transfer of
knowledge.

We consider homogeneous learning [31], which addresses
learning when source and target domains have the same feature
space. In particular, we use Network-based deep transfer
learning. Network-based deep transfer learning refers to the
reuse of a partial network, along with its network structure and
connection parameters that is pre-trained in the source domain.
This structure is transferred to be a part of the deep neural
network to be used in the target domain [23]. The reuse of such
a network is done by fine-tuning the network for a few epochs.
The learning rate is specific for each layer of the network
with the initial layers having a smaller learning rate and the
subsequent deep layers having an increasingly larger learning
rate. The intuition is that the layers at the beginning of the
network learn generic image patterns, such as edges. Deeper
layers learn more specific patterns for the application, e.g.,
cat, mountain, wolf, etc. The fine-tuning affects the patterns
specific for the application domain (in the deeper layers)
and less the generic patterns (in the initial layer) useful to
process generic images. As we present in Section IV-A2, we
use Inception V3 [22] ResNet50 [8] and DenseNet201 [9]
networks for transfer learning pre-trained on the Image Net
dataset [5]. These networks offer a good compromise between
the size of the network and the performance in terms of image
recognition accuracy.

2) Few-Shot Learning: Few-shot learning attempts to dis-
criminate between N classes with K examples of each (N-
way-K-shot classification). Few-shot learning approaches the
problem of a small data set by learning from similar prob-
lems (i.e., meta-learning). Accordingly, this learning model is
effective in scenarios where training data is hard to find or
where labelling data is expensive [6], [7]. These two issues
are acute in privacy prediction tasks, making few-shot learning
an excellent candidate for our image privacy problem. One
popular way to deploy few-shot learning is through meta
learning. Figure 1 illustrates am application of meta-learning
for our binary image privacy classification problem. The goal
of the meta-leaner is to learn from the given meta-training set
and make a prediction on the query set of the meta test set.
Each row pertaining to a user acts as a task which mimics a N
way K shot classification task. Here, the goal is to classify the
query set for uM+1. The meta learner learns from the N-way-
K-shot classification of the previous M users. The support set
and query set in every task are used to mimic the support set
and the query set of the meta test set. The support and query

set of the meta training sets include labelled data. The support
set of the meta test set is also labelled.

Model parameters are updated at each step of the meta
training. The loss function, a cross-entropy function [16],
varies with the performance of the model on the query set
based on the knowledge of the support set.

One the most largely used networks for few-shot learning is
the matching network proposed in [29]. Two networks, g and
f , extract features from the images of the support set and the
query image, respectively. Then, similarity a score, based on
cosine similarity, is computed among the features of the query
image and the features of each image in the support set. Given
a query image Q, a set of public images {IMG1, . . . , IMGk}
and a set of private images {IMGk+1, . . . , IMG2·k}, the
above mentioned similarities are used in a nearest-neighbours
classification described by the equation below:

ŷ =

∑k
i=1 a(g(IMGi), f(Q))−

∑2·k
i=k+1 a(g(IMGi), f(Q))∑2∗k

i=1 a(g(IMGi), f(Q))

where a(x, y) = expx · y and ŷ ∈ [−1, 1] is the predicted
class (1 public and −1 private).

A weakness of this approach is that the use of the nearest-
neighbor classification function limits the expressive power of
this classifier.

These limitations can lead to an under-fitting behavior. We
confirm this under-fitting issue through our empirical eval-
uation in Section IV-B1. Our proposed approach (discussed
next) extends and customizes the matching network [29]. We
add a decision function (see Sect. 3.2.) represented by a fully
connected neural network that increases the expressive power
of the model and better deals with the inconsistent labels
typical of our application domain.

B. A Centroid-based Few-Shot Transfer Learning Model

We propose a Centroid-based Few-Shot Transfer Learning
(CFSTL) model for fast customized learning. The framework’s
architecture is shown Figure 2, and described next.

As shown, the model takes as input one query image IMGQ

that is to be classified as private or public, K sample images
IMGpu

1 , . . . , IMGpu
K labeled by user u as public and K sam-

ple images IMGpr
1 , . . . , IMGpr

K labeled by the user as private.
Both sets of private and public images represent the support set
for few-shot learning. Each image is initially processed with
a unique convolutional neural network (the network and its
weights are the same for each image), extracting feature em-
beddings from the image. To extract the embeddings, we adopt
Inception V3 convolutional neural networks (NNs) [22]. We
denote the embedding vector extracted from image IMG with
the Inception V3 as V 3(IMG), with V 3(IMG) ∈ Rh.

The embeddings of all the private images are averaged,
and a private embedding centroid Cpr is calculated, i.e.,
Cpr =

∑K
i=1 V 3(IMGpr

i )

K . Similarly, a public embedding

centroid Cpu =
∑K

i=1 V 3(IMGpu
i )

K is calculated. The private
and public centroids (Cpr and Cpu, respectively) are accurate
representations of the user’s u privacy preferences, as defined
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Fig. 2: CFSTL architecture

by the support set since V 3( ) is fine-tuned during the meta
training set.

Next, a concatenation of the embedding of the query image
V 3(IMGQ) and the two public and private centroids Cpr and
Cpu is passed through a fully connected neural network with
two layers. Such a fully connected neural network represents
the decision function determining the final image label.
Model The CFSTL model is more formally defined as follows:

Q = V 3(IMGQ) (1)

Cpu =

∑K
i=1 V 3(IMGpu

i )

K
(2)

Cpr =

∑K
i=1 V 3(IMGpr

i )

K
(3)

r = [Q ‖ Cpu ‖ Cpr] (4)
hl = tanh(W1 ∗ r +B1) (5)
p̂ = σ(W2 ∗ hl + b2) (6)

Equations 5 and 6 represent the fully connected network
where W1 ∈ Rh×h, B1 ∈ Rh, W2 ∈ R1×h, b2 ∈ R. tanh( )
denotes the tangential function, and σ is the sigmoid function.
p̂ in Equation 6 denotes the probability that image IMGQ is
private, and 1− p̂ is the probability that the image is public.
Meta-training The meta training of the CFSTL model is
performed by minimizing the cross-entropy on the output of
the fully connected network. Let exi be a generic example
in the training set TR of the form exi = (IMGQ, [IMGpu

1 ,
. . . , IMGpu

K ], [IMGpr
1 , . . . , IMGr

K ]), the cross entropy func-
tion is defined as follows:

loss =
∑

exi∈TR

pi · log p̂i + pi · log (1− p̂i) (7)

where pi is the ground truth label of IMGQ in exi and p̂i
is the estimated probability that the IMGQ is private (p̂ in
Equation 6) returned by CFSTL model for the example exi.
Note that each example i, as per Figure 1, is formed by a
support set (i.e., private and public lists of images) and a query
image.

C. An Object-Centric Framework for CFSTL

We modify the CFSTL model to develop an object-centric
framework, referred to as OBJ-CFSTL. This is a strong
baseline of our proposed CFSTL model. The reasoning for this
object-centric model is intuitive. As the privacy of an image
can revolve around identifying some key visual elements [33],
[37], object segmentation offers the possibility of identifying
and labeling different objects contained in an image.

We extract an object detection binary vector from an input
image, using the pyramid scene parsing network [36]. The
object vector denotes the presence (or absence) of objects
contained in the image.

Specifically, given an image IMG, ObS(IMG) denotes
the binary vector output of the object segmentation network.
The size of the vector ObS(IMG) is the possible kinds of
objects that the network can recognize 1. In our experiments,
we use an object recognition model that has l = 1000 different
kind of objects. Rather than the location or the number of
different objects present in the image, it is important to
perform image attribution, i.e. learn what content is in fact
in the image. ObS(IMG) is passed through a neural network
feature transformer, i.e. a fully connected layer with a number
of inputs equal to the number of outputs. The transformer
produces the final h-dimensional embedding of the image. We
denote the feature transformer network as FT : Rl → Rh.

Accordingly, the object detection module represents a pre-
processing step, and it does not change the overall learning
framework past the meta training step: the feature transformer
function is a part of the entire network and will be trained by
the few-shot learning meta-training. We modify the CFSTL
formulation (eq. (2), (3), and (4)) as follows:

1Clearly, an image may include multiple objects of the same kind



Q = FT (ObS(IMGQ)) (8)

Cpu =

∑K
i=1 FT (ObS(IMGpu

i ))

K
(9)

Cpr =

∑K
i=1 FT (ObS(IMGpr

i ))

K
(10)

Equations (5) to (7) are the same as the original architecture.
Meta-training is also performed with the same cross-entropy
function of the CFSTL model (Eq 7).

IV. EXPERIMENTS

A. Dataset, Experiment Design, and Metrics

1) Dataset: In order to generate a representative dataset,
we took a two-pronged approach. First, we characterize a set
of visual concepts {c1, ..ck}, with each ci being a potentially
sensitive concept (e.g. nudity, violence or gore etc). Images
may include one or more distinct visual concepts (e.g., a
tattooed person drinking alcohol).

Accordingly, we selected eight visual concepts. The selected
visual concepts are based on known sensitive concepts ac-
cording to the existing literature on privacy and images [1],
[14], [19], [30], [38]. Next, we collected images with an
open commons license from the Flickr platform, using search
functions of each visual concept and manually curated for
accuracy. We considered images with at least two sensitive
visual concepts to be private.

TABLE I: Image categories and count

Category ID Description Size
1 Public images 21,869
2 Kids 200
3 Weapons 250
4 Documents 192
5 Alcohol 247
6 Nudity in closed space 200
7 Closed space 220
8 Tattoo 211
9 Violent scenes 207

Total 23596

Public images were instead taken from the Picalert reposi-
tory [34]. The original study released a collection of images
downloaded by Flickr. Images were annotated manually as
private or public. We selected images that were not labeled
by any original human labeler as private. Note that we could
not use Picalert private images as the majority of the original
private images are no longer available or unsuitable (e.g. too
small or not licensed for public use) for research use.

Per Table I, the final dataset included 23,596 images, with
92% of them being of public nature. This ratio is consistent
with the actual public vs. private image ratio in online plat-
forms [20], [26].

For testing purposes, we introduce the notion of user privacy
profiles, which may be defined as the combination of visual
concepts deemed either private or public by an individual. A

privacy profile is denoted as the subset S of the visual concepts
deemed private by a given individual. In other words, given a
user u, the list Su ⊆ {c1, · · · , ck}, denotes the types of images
considered private by user u. In our dataset, 28−1 user privacy
profiles can be identified, i.e., all possible combinations in the
set of categories from 2 to 9 after removing the empty set.

We acknowledge that this dataset has some limitations,
in that it does not actually come from users’ private image
repositories. However, our dataset is created consistently with
a vast state of the art, that has shown how users rely on
privacy mental models for decision making, which support
use of generic categories for private concepts [3], [12], [26].
Further, as acknowledged by recent studies, the careful design
of a realistic dataset against prototypical users’ archetypes
allows us to experiment with sensitive and private content
without raising ethical concerns, given that personal images
are naturally challenging to obtain, and platforms’ terms of
use prohibit crawling of protected content [37].

2) Training and Model Settings: Recall that CFSTL com-
bines the power of two approaches, transfer learning, and few-
shot learning. In regards to pure transfer learning, we perform
5-fold cross-validation according to the public and private
label specific to a given user profile upp. For each fold, a
training set is provided to fine-tune the pre-trained convolu-
tional neural network from the transfer learning approach, and
the obtained model is tested on the test set. Performance results
are averaged for each privacy profile and each fold.

In regards to few-shot learning and its combination with
transfer learning, we use the following settings. Given a user
privacy profile, we randomly select a subset of users’ profiles,
denoted as UPPtr, to use in the meta training. The remaining
profiles, denoted as UPPte, are for meta testing.

Once user profiles are divided into meta training and meta
testing, we perform, within the meta training and meta testing
sets, 5-fold cross-validation stratified according to the cate-
gories of the image. For each fold, the set of images for the
meta training IMGtr and the set of images for the meta test
IMGte are disjointed, i.e., IMGtr∩IMGte = ∅. Specifically,
to create the meta training for each of the five folds, given
UPPtr, we created 10 versions of every profile by randomly
selecting K images from the image training set IMGtr that
were classified as public by upp, K images classified as private
by upp, and one image in IMGtr used as the query image. We
perform the same steps for meta testing, with IMGtr replaced
by IMGte and UPPtr replaced by UPPte.

The user privacy profiles amount used for training is equal
to |UPPtr| = 128 and |UPPte| = 127 (the total amount is
127 that is the number of all the subsets of the categories
included in Table I except the public image category and the
excluding the empty set), and the number of images K for
each class (private and public) in the support set is 16.

Note that we purposely set a large percentage of user
profiles in the test set (around 50%) as we need to check
the ability of the few-shot learning framework infer profiles
that are different from the one in the training set, and make
inference non-trivial, so as to verify the quality of our perfor-



mance.
During neural network training, the meta training is gen-

erated again at each epoch to guarantee a significant diversi-
fication of the examples provided to the model. In the meta
test, the number of examples, for each privacy user profile in
UPPte, is pushed to 100 instead of 10. The training process
is performed over Nvidea 2080Ti GPU card with batch size
32 (please note that one instance of the bach contains K
private images, k public images and the query images) over
100 epochs. We use macro precision, recall and f1-score for
performance metrics.

B. Experimental Results

We carried out two sets of experiments. First, we compared
our proposed CFSTL approach with several powerful base-
lines, and second, we analyzed the performance of CFSTL
under various conditions. CFSTL is deployed using Inception
V3 for feature extraction, with the embeddings size h set
to 1000. The resolution of the image in input is set by the
as 224 × 224 × 3 where the third dimension indicates three
RGB channels. We also present in Section IV-C our qualitative
attribution analysis, related to the ability of our model to detect
sensitive portions of images that lead to a private label.

1) Baselines and Transfer Learning Networks.: We com-
pare our Centroid-based Few Shot Learning (CFSTL) method
(using Inception V3) with the following three baselines:

• Inception V3 Transfer Learning (IV3-TL): A pre-
trained network (with Image Net over 1000 classes)
provided by the Keras library that we use as a transfer
learning approach. It is fine-tuned (by discarding the last
classification layer) for each user privacy profile with the
90% of the dataset, as described in Section III-A1. The
parameters of this network since it already trained are
fixed and a details can be found in Keras library. This
approach is not directly comparable with the few shot
learning approaches, since alone it does not customize
with few example the privacy profile of the user. Then
it is not applicable but we report its results only for
comparison.

• Matching Network Few Shot Learning (MN-FSL): A
highly popular few-shot learning approach described in
Section III-A2 that uses Inception V3. The parameter of
this network depends by retrained Inception V3 (from
the Keras library) which provides a representation of
size 1000. The construction of the marching network
is done on the representation size of Inception V3 and
the remaining parameters are the same of our CFSTL
approach.

• Object Segmentation Few Shot Learning (OS-FSL):
A modification of our centroid based few-shot learn-
ing approach based on the Object Segmentation tasks
(see Section III-C). In term of parameters, this model
present the same parameters of our CFSTL approach. The
unique difference is the substitution of the Inception V3
automatic feature extraction with precomputed features

TABLE II: Baseline Comparison

Techniques Precision (%) Recall (%) F1-score (%)
IV3-TL 84 61 66

MN-FSL 51 51 51
OS-FSL 25 50 33
CFSTL 85 85 85

TABLE III: Different transfer learning networks in CFSTL

Techniques Precision (%) Recall (%) F1-score (%)
CFSTL Inception V3 85 85 85

CFSTL ResNet50 83 82 83
CFSTL DenseNet201 85 83 84

extracted by the object segmentation task and describing
the type of objects found in the segmentation.

In Table II we report our results in terms of average
macro precision, recall, and f1-score. The results show that
CFTSL approach has the highest values across all performance
measures. The matching network (MN-FSL) performs poorly.
This can be explained by the lack of personalization offered by
MN-FSL, and as a consequence ignores the fact that different
profiles can assign a different label to the same image. As
such, in the training set, the model observes many apparent
inconsistencies justified only by the support set. MN-FSL uses
a nearest-neighbors classification function based on cosine
similarity, and such function has a small movement margin
to justify such inconsistencies. In fact, we observed during
the training phase, a strong under-fitting behavior.

In the OS-FSL case, the lower performance is likely due
to the predefined number of object categories used for object
recognition that is not sufficiently fine-grained for our multi
privacy profile characterization. Another noticeable result is
that even if the transfer learning approach (IV3-TL) provides
a large training set for each user privacy profile, the results
in terms of recall and then f1-score are significantly below
CFSTL.

In Table III, we report the experimental results of using
CFSTL with different transfer learning networks (Inception
V3, ResNet50, and DenseNet201). All the results are similar to
one another, with Inception V3 achieving highest performance,
followed by DenseNet201.

2) Impact of Images’ Support Set and of the User Privacy
Profiles: We test the ability of our model to work with a
varying number of images during the training phase. This is
important, as it allows us to verify whether CFSTL can adapt
and learn even in non-ideal training conditions.

We carry out two sets of experiments. First, we evaluate
the performance of CFSTL varying the number of images in
the support set and the amount of the user profiles used in the
meta training phase (k= 4, 8, 12, 16, respectively). In this case,
the percentage of user privacy profiles considered in training
is 50% of the possible profiles (255 user privacy profiles). As
shown in Figure 4, we observe that with only 12 or 16 private
and public images, our approach is able to provide around



Fig. 3: CFSTL performance by removing one image category from the meta training phase

Fig. 4: Performance with varying number of images in the
support set

Fig. 5: Performance with varying user privacy profiles in meta-
training

85% of f1-score, precision, and recall. However, reducing the
number of images in training (k = 4) significantly impacts all
three metrics.

In our second experiment, we vary the number of user
privacy profiles in the training set. The number of images K
for each of the two classes in the support set is fixed at 16.
Figure 5 shows that as the number of user privacy profiles
increases in the meta training phase, performance increases
across all metrics. Notably, with only 30% of the available
user privacy profiles for training, our approach reaches 84%
F-1 score, and other metrics are equivalently strong.

3) Unknown Category in the Meta Test: We test the ability
of our model to work with categories of images that were
not used during meta training. Accordingly, we modify the
meta training steps by removing all the images belonging to
a given category, and we evaluate precision, recall, and f1-
score on the meta test set, which also includes the previously
removed category.

In Figure 3 we report three performance measurements
(precision, recall, and f1-score) for each removed category (x-
axis). The number of images K for each of the two classes in
the support set is fixed at 16. As shown, removing a class from
the meta-training does not change the overall performance
of our approach. This result is confirmed regardless of the
exact category removed, showing our approach’s potential to
generalize to unknown categories.

C. Qualitative Attribution Analysis

We use attribution techniques to interpret the classification
results of our model according to the specific private category
of images used in the support set. More specifically, an
attribution procedure highlights the region of the image that
is most relevant to the classification result. Specifically, for
attribution we employ: gradient [17], saliency map [18], and
integrated gradient [21].
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Fig. 6: CFSTL sample attribution analysis on different private categories with gradient, saliency maps, and integrated gradient.

Query Image       Gradient Saliency Maps Integrated Gradient

Fig. 7: CFSTL sample attribution analysis for public images with gradient, saliency maps, and integrated gradient.

In Figure 6, we report three different query images, their
categories, and their attribution results. We randomly sample
a support set where the private images only belong to the
specific category of the query image. We can observe that
gradient and integrated gradients provide the clearest results.
Specifically, in the case of the document image, the integrated
gradient highlights mostly the documents placed on the desk.
In the weapon image, the highlights focus on the gun and
the hands that are holding it. Finally, in the bottom image,
the entire figure of the child is highlighted. Figure 7 shows
attribution results for public images. The evident result is that
consistently, all of the tested methods highlight the entire
area of the image. This preliminary result shows that our
model reliably understands the privacy concept provided in
the support set. Privacy concepts may be used to provide an
explanation of the labels applied.

V. CONCLUSION

In this paper, we presented an effective learning framework
to address image privacy binary classification. Our proposed
approach combines the power of unlabeled images with per-
sonalization models to achieve high accuracy on a variety
of types of images. Our experiments are carried out on a
large dataset of social network images and significantly out-
perform several baselines, including advanced object-oriented
approaches and other CNN-based methods.

We plan to extend our framework in several ways. First, we
will extend our explanatory analysis, so as to provide system-
atic spatial attribution and offer end-users some justifications
of the classification results. Further, it would be helpful to
provide mechanisms to help users with a selection of images
that can help improve the support set for effective learning.
The support set is crucial for the customization steps of our
framework, and a carefully selected support set can improve



our classification performance further. We will explore how
to integrate more user-specific labels, as well as extend our
binary classification into a multi-label problem in order to
support more fine-grained labels beyond the two public/private
extremes currently used.
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