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Abstract—We consider the problem of automating the map-
ping of observed vulnerabilities in software listed in Common
Vulnerabilities and Exposures (CVE) reports to weaknesses listed
in Common Weakness Enumerations (CWE) reports, a hierar-
chically designed dictionary of software weaknesses. Mapping of
CVEs to CWEs provides a means to understand how they might
be exploited for malicious purposes, and to mitigate their impact.
Since manual mapping of CVEs to CWE:s is not a viable approach
due to their ever-increasing sizes, automated approaches need to
be devised but obtaining highly accurate mapping is a challeng-
ing problem. We present a novel Transformer-based learning
framework (V2W-BERT) in this paper to solve this problem
by bringing together ideas from natural language processing,
link prediction and transfer learning. Our method outperforms
previous approaches not only for CWE instances with abundant
data to train, but also for rare CWE classes with little or no
data. Using vulnerability and weakness reports from MITRE
and the National Vulnerability Database, we achieve up to 97%
prediction accuracy for randomly partitioned data and up to
94% prediction accuracy in temporally partitioned data. We
demonstrate significant improvements in using historical data to
predict weaknesses for future instances of CVEs. We believe that
our work will would influence the design of better automated
mapping approaches, and also that this technology could be
deployed for more effective cybersecurity.

Index Terms—Cyber-security, Transformer, Link Prediction

I. INTRODUCTION

Specific vulnerabilities in software products and protocols
can be understood and mitigated by mapping them to hi-
erarchically designed security dictionaries that detail attack
mechanisms [1, 2, 3]. However, this mapping is a slow process
done manually by humans that are overwhelmed by the huge
amount of new vulnerabilities discovered each day. Automated
mapping of vulnerabilities to weaknesses, especially in a
timely manner, enables faster mitigation of vulnerabilities,
and we address this problem in this paper. A weakness is
an architecture, design, or implementation bug, error, or fault
that occurs in cyber products (such as software, operating
systems, or hardware) and allows unintentional and exploitable
behaviors of the product. Common Weakness Enumerations
(CWE) reports provide a hierarchically designed dictionary of
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product weaknesses (§II-A). A vulnerability is a set of one
or more weaknesses in a specific cyber product that can be
potentially exploited by an attacker for malicious operations.
Common Vulnerabilities and Exposures (CVE) reports capture
the vulnerabilities as they are discovered and documented by
cybersecurity experts (§II-A).

Unpatched vulnerabilities are a leading cause of cybersecu-
rity incidents that result in significant economic damages to
organizations. In particular, newly discovered and unpatched
vulnerabilities known as zero-day vulnerabilities are only
known to and actively exploited by hackers before the vulnera-
bilities can be patched [4]. Vulnerabilities are product-specific,
are numerous, and new vulnerabilities are discovered each day
by both attackers and defenders. For example in the year 2020,
the United States Computer Emergency Readiness Team (US-
CERT) reported about 17K newly discovered vulnerabilities
(of which 4K were high-severity, 10K medium-severity, and
3K low-severity). Since weaknesses are independent of spe-
cific products, the number of weaknesses remains relatively
constant and increases slowly.

Mapping or classifying existing and newly discovered vul-
nerabilities to hierarchically-structured weakness enumerations
(§IV) is an important tool to swiftly understand and mitigate
the vulnerabilities [1, 2, 3]. Currently the mapping is done
by humans, does not scale to ever-increasing numbers of
products and cyber-attacks, and it is error-prone. Consequently,
automating the process becomes a necessity. However, there
are several challenges for automation, such as semantic gaps in
the languages of CVEs and CWEs, the non-disjoint hierarchy
of CWE classes (multiple paths to the same weaknesses at a
lower level of the hierarchy), and lack of sufficient training
data where rare CWE classes have few or zero CVEs mapped
to them (detailed in §II-B).

In this paper we present a novel Transformer-based [5]
learning framework, V2W-BERT, that outperforms existing
approaches for mapping CVEs to the CWE hierarchy at finer
granularities. In particular V2W-BERT is especially effective
for rare CVEs. The Bidirectional Encoder Representations
from Transformers (BERT) is designed to pre-train deep



bidirectional representations from unlabeled text by jointly
conditioning on both the left and right sides of the context of
a text token during the training phase [6]. Pre-trained BERT
models can be enhanced with additional custom layers to
customize for a wide range of Natural Language Process-
ing (NLP) tasks [6, 7]. We exploit this feature to transfer
knowledge from the security domain and use it to map CVEs.
A second aspect of novelty in our work is formulating the
problem as a link prediction problem, which differs from
previous efforts. We use the Siamese model [8] to embed
semantically different text forms in CVEs and CWE:s into the
same space for mapping through link prediction (detailed in

§V).

Contributions: The key contributions of our work are:

1) We present a novel Transformer-based learning frame-
work, V2W-BERT, to classify CVEs into CWEs (§V), includ-
ing a detailed ablation study (§VI-B). Our framework exploits
both labeled and unlabeled CVEs, and uses pre-trained BERT
models in a Siamese [8] architecture to predict links between
CVEs and CWEs (§V-A). Rare and unseen vulnerabilities are
classified using a transfer learning procedure. The Reconstruc-
tion Decoder (§V-C) ensures that the pre-trained model on
unsupervised data is not compromised by overfitting the link
prediction task.

2) This is the first work to formalize the problem of
mapping multiple-weakness definitions into a single vulner-
ability (multi-class) as a link prediction task. The hierarchical
relationships among the CWEs are also incorporated during
training and prediction phases. Unlike the traditional classi-
fication based methods, adding new CWE definitions to the
corpus does not require changes to the model architecture.

3) V2W-BERT outperforms related approaches for all
types of CWEs (both rare and frequently occurring) (§VI-C).
We simulate a challenging real-world scenario in our experi-
ments where future mappings (2018-2020) are predicted based
on past years’ (1999-2017) data. We map a vulnerability to
finer granularities in the CWE hierarchy (from a node to a
descendant leaf), and the user can control the precision.

4) For frequently occurring cases, V2W-BERT predicts
immediate future mappings with 89%-98% accuracy for pre-
cise and relaxed predictions (definitions of these modes of
prediction are provided in §VI). For rarely occurring CVEs,
the proposed method achieves 48%-76% prediction accuracy,
which is 10% to 15% higher than existing approaches. Addi-
tionally, the proposed method can classify CVEs to previously
unseen types of CWEs with up to 61% accuracy.

V2W-BERT is the first Transformer-based framework
that builds on link prediction to efficiently map CVEs to
hierarchically-structured CWE descriptions, especially when
little or no data exists for training. We believe that it will
motivate the development of new methods as well as practical
applications of the framework to solve increasingly challeng-
ing problems in automated organization of shared cyber-threat
intelligence [9].

II. BACKGROUND

A. The Problem Domain: CVEs, CWEs, & CAPEC

Common Vulnerabilities and Exposures (CVE: https://cve.
mitre.org/cve/) reports are uniquely identified computer secu-
rity vulnerabilities, where a vulnerability is defined as a set of
one or more bugs in a specific product or protocol that allows
an attacker to exploit the behaviors or resources to compromise
the system. CVEs are brief and low-level descriptions that
provide a means to publicly share information on vulnera-
bilities. The CVE system also provides a metric to rank the
vulnerabilities on a scale from 0 to 10 (with 10 being the most
severe score). Common Weakness Enumerations (CWE: https:
/lcwe.mitre.org) provide a blueprint for understanding software
flaws and their impacts through a hierarchically designed dic-
tionary of common software weaknesses. Weaknesses are bugs,
errors and faults that occur in different aspects of software
such as architecture, design, or implementation that lead to
exploitable vulnerabilities. The classes of CWEs are organized
in a hierarchical (directed acyclic graph) structure, where
higher level classes provide general definitions of weaknesses,
and lower level classes inherit the characteristics of the parent
classes and add further details. Thus, analyzing the correct
path from a root to lower level nodes provides valuable insight
and functional directions to learn a weakness. Weaknesses are
also connected with Common Attack Pattern Enumeration and
Classification (CAPEC: https://capec.mitre.org/) reports that
provide well-structured taxonomy of possible attacks using
weaknesses.

Figure 1 shows an example of two vulnerabilities, CVE-
2020-1350 and CVE-2017-1000121, linked with the weak-
ness CWE-119, which is connected with the attack pattern
CAPEC-14. Mapping CVE:s to corresponding CWEs provides
understanding of new vulnerabilities and potential strategies
for mitigation. For instance, connecting CVE-2020-1350 with
CWE-119, provides a clear and direct definition of the product
flaws in a standardized language commonly understood and
accepted by the security community. It also provides examples
of how a malicious user can use the weaknesses generated
by the vulnerability. Further, the mapping also provides a
means to predict the severity score as a function of the other
vulnerabilities to the same weakness, for example CVE-2017-

Windows Domain Name System servers when they fail to properly
handle requests, aka 'Windows DNS Server Remote Code Execution
Vulnerability'. Base Score: 10

e

CWE-119: The software performs
operations on a memory buffer, but it
can read from or write to a memory —>
location that is outside of the
intended boundary of the buffer.

\

CVE-2017-1000121: The UNIX IPC layer in WebKit, including h
WebKitGTK+ prior to 2.16.3, does not properly validate message size

( CVE-2020-1350: A remote code execution vulnerability exists in 1

CAPEC-14: This type of attack
exploits a buffer overflow
vulnerability in targeted client
software through injection of
malicious content from a
custom-built hostile service.

s

metadata, allowing a compromised secondary process to trigger an
integer overflow and subsequent buffer overflow in the Ul process.
This vulnerability does not affect Apple products. Base Score: 9.8

Fig. 1: Example showing two vulnerabilities (CVE-2020-1350 and
CVE-2017-1000121) linked with the weakness CWE-119, which is
connected with the attack pattern CAPEC-14.
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1000121 mapped to CWE-119 (Figure 1).
B. Challenges
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Fig. 2: Distribution of the number of CVEs per CWE in the National
Vulnerability Database, bucketed into four categories: 12 CWEs with
500 or more CVEs per CWE, 15 CWEs with 100 to 500 CVEs per
CWE, 84 CWEs with 1 to 100 CVEs per CWE, and 13 CWEs with
zero CVE. Data is partitioned into two time periods — 1999-2017
(used for training) and 2018-2020 (used for testing) — to simulate
testing for future CVEs. Cumulative numbers of CVEs are plotted
on the Y-axis.

>500 (12)

Accurate mapping of CVEs to CWEs will enable one
to understand the means, measure the impact, and devise
ways to mitigate attacks; hence it is an important problem
in cyber-security [1, 2, 3]. However the problem is riddled
with several challenges. A CVE can be mapped to multiple
and interdependent CWEs that belong to the same path,
which leads to ambiguity. Since CVEs are currently mapped
manually to CWESs, which is neither scalable nor reliable, there
is a lack of high-quality mapping information. Only about
2% of CVEs are mapped in the MITRE database. Although
the NIST National Vulnerability Database (NVD) provides a
higher percentage of mapping, about 71% (CVEs to CWEs),
the number of CWEs that are mapped is considerably small
(about 32% of total CWEs). As of February 2021, there are a
total of 157,325 CVEs registered in NVD, and 916 CWEs in
the MITRE CWE database. Since new CVEs are created at a
fast pace, manual mapping of CVEs is not a viable approach.
Therefore efficient methods to automate the mapping of CVEs
to CWEs are critical to address ever-increasing cybersecurity
threats. We propose a novel method in this paper to address
this challenging problem.

Automated mapping is limited by several challenges such as
lack of sufficient training data, semantic gaps in the language
of CVEs and CWEs, and non-disjoint hierarchy of CWE
classes. Our work focuses on one of the hardest problems
in mapping CVEs — rare CWE classes that do not have any
CVEs mapped to them. As illustrated in Figure 2, a significant
number of CVEs are currently mapped to a small set of
CWE classes. Currently, about 70% of the CWE classes have
fewer than 100 CVEs about 10% have no CVEs mapped to
them, and only 10% have more than 500 CVEs. The current
approaches of classification work well only when a sufficient
amount of data is available to train [10, 11, 12, 13]. Although
recent efforts using neural networks and word embedding

based methods to process CVE reports have showed better
performance [14, 15, 16], they fail when little or no training
data exists. Consequently, a large set of rare CWEs are
completely ignored in literature. Rare CWE cases have been
appearing more frequently in recent years, exacerbating this
problem. A second challenge that we address in this work is
the practical scenario of classifying the vulnerabilities based
on past data (1999—2017) to predict future data (2018—2020).

C. Brief Overview of BERT

BERT [6] stands for Bidirectional Encoder Representations
from Transformers. Transformers are attention-based Neural
Networks that can effectively handle sequential data like text
by learning the relevance to the current token of more distant
tokens [5]. Unlike directional models, which read the text
input sequentially (left-to-right or right-to-left), BERT is a
bidirectional model that learns the context of a word based
on its surroundings. Training on large unlabeled text corpora
helps BERT to learn how the underlying languages work.
Devlin et al. [6] reported two BERT models, BERTgasg (L =
12, H = 768, A = 12, Total parameters=110M), BERTarGg
(L =24,H = 1024, A = 16, Total parameters=340M), where
L,H, A stand for number of layers (Transformer blocks),
hidden size, and number of self-attention heads, respectively.

The original BERT models are pre-trained considering two
tasks: (¢) Masked Language Model (MLM), and (i¢) Next
Sentence Prediction (NSP). In the MLM task, 15% of random
tokens are masked in each text sequence. Among those masked
tokens, 80% are replaced with token [MASK], 10% are
replaced with random tokens, and 10% are kept the same.
These masked inputs are fed through the BERT encoder model,
and the hidden states are passed to a decoder containing a
linear transformation layer with softmax activation over the
vocabulary. The model is optimized using cross entropy loss.

As for Next Sentence Prediction (NSP) task, a pre-training
batch consists of pairs of sentences C,D where 50% of
the time D, the sentence next to C, appears in the training
samples, and for the remainder they do not. NSP helps
downstream Question Answering (QA) and Natural Language
Inference (NLI) tasks by directly learning the relationship
between sentences. The pre-trained BERT models (BERTgsE,
BERT | argg) are trained over BooksCorpus (800M words) and
the English Wikipedia (2500M words) datasets, considering
both MLM and NSP tasks together.

BERTgasg uses WordPiece embeddings with 30,522 vo-
cabulary tokens to convert text sequences to vector forms.
The first token is always [CLS] and end of a sentence is
represented with [SEP ]. The final hidden state corresponding
to this [CLS] token usually represents the whole sequence as
an aggregated representation. In this work, BERTgasE is used,
and other variants of sequence representation are considered
through different pooling operations.

III. RELATED WORK

Several studies have investigated the CVE to CWE classi-
fication problem. However, CBERT is the first approach that



formulates the problem as a link prediction problem using
Transformers. Recent work by Aota et al. [11] uses Random
Forest and a new feature selection based method to classify
CVEs to CWEs. This work only uses the 19 most frequent
CWE definitions and ignores CWEs with fewer than 100
instances, achieving an F'1-Score of 92.93% for classification.
Further, it does not support multi-label classification and does
not consider the hierarchical relationships within CWEs. All
these limitations are addressed in our work.

Na et al. [10] predict CWEs from CVE descriptions using
a Naive Bayes classifier. They focused only on the most
frequent 2-10 CWEs without considering the hierarchy. When
the number of CWEs considered increases from 2 to 10, their
accuracy drops from 99.8% to 75.5%. Rahman et al. [13] use
Term Frequency-Inverse Document Frequency (TF-IDF) based
feature vector and Support Vector Machine (SVM) technique
to map CVEs to CWEs. They use only 6 CWE classes and
427 CVEs without considering the CWE hierarchy.

Recent work by Aghaei et al. [14] uses TF-IDF weights of
the vulnerabilities to initialize single layer Neural Networks
(NNs). They use the CWE hierarchy to predict classes iter-
atively. However, this is a shallow NN with only one layer,
and comparative performance with more complex networks is
not discussed in their work. Further, they consider all classes
with scores higher than a given threshold as a prediction.
This approach decreases the precision of prediction and is less
desirable when higher precision is needed, a limitation that is
addressed in our work. Depending on the level of hierarchy,
they achieve 92% and 94% accuracy for a random partition
of the dataset. In contrast, we study a more representative
partition of data based on time.

We note that each study uses different sets of CVEs for
learning and testing. The choice of the number of CWEs used
and evaluation methods are also different. Therefore, there is
no consistent way to compare the accuracy numbers presented
by different authors. Some studies use CVE descriptions to
perform fundamentally different tasks than mapping to CWEs.
For example, Han et el.[15] and Nakagawa et al. [16] use
word2vec for word embedding and a Convolutional Neural
Network (CNN) to predict the severity of a vulnerability
(score from O to 10). Neuhaus et al. [12] use Latent Dirichlet
Allocation (LDA) to analyze the CVE descriptions and assign
reports on 28 topics.

To the best of our knowledge, CBERT is the first BERT [6]
based method to classify CVEs to CWEs. We fine-tune
the pre-trained BERT model with CVE and CWE descrip-
tions, and then learn a function Fjy (Equation 1), using a
Siamese network incorporating BERT. A Siamese network
shares weights while working in tandem on two different
inputs to compute comparable outputs. A few recent studies
have used the Siamese BERT architecture for information
retrieval and sentence embedding tasks [17, 18]. Reimers et
al. [17] proposed Sentence-BERT (SBERT), which uses a
Siamese and triplet network for sentence pair regression and
achieves the state-of-the-art performance in Semantic Textual
Similarity (STS) [19]. CBERT is conceptually similar to
SBERT, but with notable differences. CBERT has a different

architecture where Reconstruction Decoder is coupled with the
Siamese network to preserve context to improve performance
in classifying rare and unseen vulnerabilities. Also CBERT
is designed to classify CVEs into CWEs hierarchically, i.e., it
has significantly different training and optimization processes.

IV. PROBLEM FORMULATION

The Common Vulnerabilities and Exposures (CVEs) reports
comprise the input text data, and the Common Weakness
Enumerations (CWEs) are the target classes. The CWEs
have textual details (Name, Description, Extended Description,
Consequences, etc.), which are ignored in classification based
methods. To utilize CWE descriptions and make the model
flexible, we convert this multi-class multi-label problem into
a binary link prediction problem. We propose a function, Fy,
that takes a CVE-CWE description pair (v, w) and returns a
confidence value measuring their association:

I = Fp(v,w). (D

Here Fp is a learnable function and the vector 6 denotes
learnable parameters. If a particular CVE (v) is associated
with a CWE (w), then the function Fy returns a value | =~ 1;
and, [ =~ 0 otherwise. To learn 6, both positive and negative
links from the known associations are used. If a CVE has a
known mapping to some CWE in the hierarchy, we consider all
associations between them and their ancestors as positive links.
The rest of the CVE-CWE associations are negative links. To
predict the CWEs associated with a CVE report, we find the
link with the highest confidence value in the hierarchy, from
the root to a leaf node, using Fy. The function Fjy also helps to
easily incorporate new CWE definitions into the classification
model.

V. A NOVEL FRAMEWORK: V2W-BERT

In this section we present a novel framework V2W-BERT
to classify CVEs to CWEs hierarchically. V2W-BERT opti-
mizes the learnable parameters 6 of Fy (§IV) in two steps.
In the first step, the pre-trained BERT language model is
further fine-tuned with CVE/CWE descriptions specific to
cyber security. In the second step, the trained BERT model
is employed in a Siamese network architecture to establish
links between CVEs and CWEs. The architecture takes a
specific CVE-CWE pair as input, and predicts whether the
CVE is mapped to the CWE or not, along with a confidence
value. V2W-BERT includes a Mask Language Model (LM)
based Reconstruction Decoder to ensure that the descriptions’
contexts are not changed too much during the training process.

Figure 3 shows the overall architecture of the V2W-BERT
framework. V2W-BERT contains two primary components:
(z) Link Prediction (LP), and (7z7) Reconstruction Decoder
(RD). The LP module’s primary purpose is to map CVEs
to CWEs while the RD module preserves the context of the
descriptions of CVEs and CWEs. During the backpropagation
step, the trainable BERT layers are updated while optimizing
LP and RD loss simultaneously. Figure 3 shows a simplified



architecture where the attention, fully connected, dropout, and
layer-normalization layers have been omitted.

A. Unsupervised Pre-training of BERT

Specific downstream inference tasks benefit from pre-
training BERT with language associated with the domain-
specific unlabeled data and the addition of custom Neural
Network layers to the base model. To incorporate the cyber-
security specific data on top of the base model, we pre-train
BERT further with CVE and CWE descriptions. This is useful
as a significant number of CVE descriptions are not labeled
and thus do not help with supervised learning. Since the pre-
training process does not require CWE class labels, we utilize
both labeled and unlabeled CVE descriptions to learn the
cyber-security context. The original BERT model is trained
considering Masked Language Model (LM) and Next Sentence
Prediction (NSP) tasks. Like NSP, CVE and CWE are linked
using the Link Prediction (LP) component as the second step
of the V2W-BERT algorithm. Therefore the BERT encoder
is tuned on the Masked LM task only over available CVE
and CWE descriptions. All layers of BERT are allowed to
be updated in the pre-training step incorporating the cyber-
security context. Section VIII-C in the Appendix shows the
architecture of the Masked Language Model in more detail.

B. Link Prediction Component

In the original problem, ! = Fy(v,w), both CVE and
CWE descriptions need to be processed together to establish
links between them. There are many ways to tackle this.
For example, TF-IDF or word embeddings (word2vec, glove,
etc.) could be used to get vector representations of CVEs
and CWEs, and these representations could be combined and
classified with any learnable method that returns confidence
about the association. However, the pre-trained BERT model
knows the context of this problem domain, and can map
relevant descriptions to similar vector spaces better than word
embeddings [17]. Furthermore, we need BERT to be tuned
for the function Fj, and the multi-layer Neural Network is the
most compatible classification approach.

Link Prediction (LP)

Xy Yuw

Reconstruction Decoder (RD)

CWE LM Loss
Masked l Masked
Language Model (LM) Language Model (LM)
Hidden State, (T, H) Hidden State, (T, H)

Hidden State, (T, H) ‘ ‘ Hidden State, (7', H)

Reconstruction Decoder (RL

CVE LM Loss

Pooling, x,, l l Pooling, x,, l

BERT,
layer f to A, Trainable

BERT,
layer f to A, Trainable

BERT,
layer 1 to f, Fixed

BERT,
layer 1 to f, Fixed

T T

CVE desc"riplion, v CWE desc"riplion, w

Fig. 3: An overview of the architecture of V2W-BERT framework
with the Link Prediction module (shown in the middle) and the
Reconstruction Decoder modules (shown on the left and right). The

left and right components share weights.

Therefore in the Link Prediction (LP) component of V2W-
BERT, the pre-trained BERT model is used to transform the
CVE/CWE descriptions. We fix the parameters of first f out
of A layers (A = 12 in BERTgasg) to allow minimal changes
to the model to preserve previously learned context [7]. We
used f = 9 in this study. LP adds a pooling layer on top of the
pre-trained BERT encoder model to get a vector representation
of the input sequence. These individual representations are
then combined and passed through a classification layer with
the softmax activation function. The output values create the
relationship between a CVE and a CWE description with a
degree of confidence.

Pooling: By default, the hidden state corresponding to the
[CLS] token from the BERT encoder is considered as a
pooled vector representation. However, recent work [7] has
shown that other pooling operations can perform better de-
pending on the problem. Two additional pooling methods,
MAX-pooling (it takes MAX of the representation vectors of
all tokens), and MEAN-pooling (which takes the MEAN of the
vectors), are considered in our work. The pooled representa-
tions are passed through another transformation layer to get
the final vector representation. In the CVE classification task,
we found MEAN-pooling to be the best performing. The pooled
vector representations are denoted as x, for a CVE and y,,
for a CWE.

Combination: The pooled representations of input sequence
pair can be combined in different ways [17, 20]. Some com-
mon operations are: Concatenation, multiplication, addition,
set-operations, or combinations of these. In the current prob-
lem, concatenation of absolute difference and multiplication
(|xy — Yuls Xu X ¥,,) Operation has shown best performance.
Appendix VIII-D shows that there are significant differences
in the results from these choices.

Link Classification: The combined representations are classi-
fied into the link and unlink confidence values using the linear
output layer with two neurons and softmax activation function.
The softmax value ranges between [0, 1] and represents the
confidence value of associating a CVE with a CWE. For a
specific CVE-CWE pair, if the link value is higher than the
unlink value, then the CVE is associated with that CWE. A
single neuron can also classify a link/unlink when the value
is close to 1.0, indicating a high link association. However,
experiments show that an output layer with two neurons
outperforms a single neuron classifier. The cross-entropy loss
is used to optimize link prediction:

CL(v,w) = CE(LPy(v,w), Real(v,w)), (2)

where C'L(v,w) is the link classification loss between pre-
dicted and real values of the CVE-CWE relation. LPy(v, w)
generates a 2-dimensional vector where first and second in-
dices represent unlink and link association confidence values,
respectively. If v belongs to w, ideally these values should be
~ 0 for first index, and ~ 1 for the second index.

C. Reconstruction Decoder Component

The classification challenge comes from three types of
CVEs associated with rare CWEs classes: (¢) The CVEs



belonging to a CWE class with few training instances, (it)
the CVEs of a particular CWE that appear in the test set but
not in the training set, and (¢42) CVEs with description styles
that differ from the training set, or instances where the labels
are erroneous.

The advantage of transfer learning is that it helps classify
cases with few training instances [7] as pre-trained BERT can
produce correlated transformed vector representations from
similar input sequences. The Link Prediction (LP) component
learns to relate a CVE with the available CWEs by establishing
links even when the training instances are few or do not exist.

For a new CVE type, we expect to have a low link
association value with CWEs that exist in the training set
(due to negative training links), and a high value for CWEs
not included in the training set with similar text descriptions.
However, due to learning bias towards available CWEs in
Link Prediction (LP), we will have a higher link association
to existing CWEs compared to new CWEs. Therefore, if
we could preserve the original context that BERT learned
during the pre-training phase while changing the LP model, it
could improve the performance for rare CVE cases, and for
completely unseen CWE classes. Note that for unseen cases
this approach would work only if the corresponding CVE and
CWE descriptions have some textual similarity. Preserving
context can also be useful for detecting unusual or differently
styled CVE descriptions during the test as they may not create
any links with the available CWEs.

To preserve context while updating LP, we add a Re-
construction Decoder (RD) component (Figure 3). When
the BERT encoder transforms a CVE/CWE description, the
last hidden state is passed to the Masked Language Model
(LM) and optimized for Masked tokens. LP and RD share
BERTSs’ hidden states, and the trainable layers are updated
considering both link classification loss and reconstruction
loss simultaneously. In this way, V2W-BERT trains for link
classification while preserving context. Cross-Entropy loss is
used to optimize the difference between original input and
reconstructed tokens.

Let RL(v) denote the reconstruction loss of an input se-
quence v; and RDy(BERT 4 (v)) be a reconstruction decoder
that takes the last hidden state of BERT and reconstructs
masked v tokens. We can express the reconstruction loss as
follows:

RL(v) = CE(RDy(BERT4(v)), Masked(v)), 3)
RL(w) = CE(RDy(BERT 4(w)), Masked(w)).

D. Training Details

To learn the parameters 6 of the model Fy, we have to
train V2W-BERT with positive and negative link mappings
between CVEs and CWEs. A single CVE can belong to
multiple CWEs at different levels of the hierarchy. According
to the MITRE classification, a CWE can have multiple parents
and multiple children. When a CVE belongs to a CWE, that
CVE-CWE pair is considered a positive link, and all ancestor
CWEs of that weakness are also considered as positive links.
The remaining CWEs available during training are used for
negative links (unlinks).

Let B, be a mini-batch of CVEs selected randomly. The set
CWE(v) denotes the CWEs associated with a vulnerability
v, and ance(w) is the set of all ancestors of the weakness w.
Similarly, U,, is a set of CWEs available only to the training
data. The positive and negative links (P, N) for training are
generated as follows:

-y U

vEB, we CWE(v)

{(v,w) U {(v,v) : ¢ € ance(w)}},

4)

N = |J {(v,w) : w € k random {U,, — CWE(v)}}. (5)
veEB,

Using Equations 2 and 3, the losses for the (P, N) links
from the LP and RD components can be expressed as

Lp= Y CL(v,w)+RL(v)+RL(w);  (6)
(v,w)eP

Ly= Y  CL(v,w)+RL(v)+RL(w). (7

(v,w)eN

Here, C'L and RL refer to link classification and reconstruc-
tion loss, respectively. Since a single CVE can belong only
to a few CWEs, only a few positive link pairs are present in
a batch compared to the possible negative links. In the loss
function, it is necessary to balance P and NN to prevent bias,
and this can be prevented either by repeating positive links in
a batch or putting more weight on positive links P. The total
loss, Lp,, in a mini-batch of CVEs is given by:

Lp, =71 X Lp+y2 x Ly. ®)

Here, v; and ~» refers to weights on positive and negative
links, respectively. The parameters ¢ of the model Fy are
updated after processing the links from each mini-batch.

E. CVE to CWE Prediction using V2W-BERT

V2W-BERT considers the same CWE hierarchy during
learning and prediction. CVE data in NVD use only a subset of
the CWEs from MITRE, and the hierarchical CWE relations
available in NVD omit some of the parent-child relations
available in MITRE. Therefore, we use the same 124 CWEs
used in NVD, but their hierarchical relationships are enriched
using the data from MITRE.

These 124 CWEs are distributed in three levels in the
hierarchy, with 34 in the first level, 78 in the second level,
and 16 in the third level. Some CWEs have multiple parents
in different levels and are counted twice. At the first level,
there are 34 CWEs, and the prediction is made among these
34 CWE:s initially. For a single CVE, we create 34 CVE-CWE
pairs and get the predicted link values from the Link Prediction
(LP) component. The link value with the highest confidence
is considered as the CWE prediction. Next, we consider the
children of the predicted CWE, and continue until we reach a
leaf node.

To illustrate, Figure 4 shows a partial hierarchy of CWEs
extracted from MITRE. At the first level, there are three CWEs
(‘CWE-668°, ‘CWE-404°, ‘CWE-20°), and prediction will be
made among these three at first. If ‘CWE-668° is predicted,



we predict the next weakness among its three children (‘CWE-
200¢, ‘CWE-426°, ‘CWE-427°), and continue until it reaches
a leaf node. Based on the user preference it is useful to have
precise or relaxed prediction. For a precise prediction, we can
select the best (k; = 1) from first level, the best (ko = 1)
from second level (if exists), and the best (k3 = 1) from
the third level (if exists). For a relaxed prediction, we can
select the top k1 < 5 confident CWEs from the first level, the
top ko < 2 from each of their children in the second level,
and the best k3 < 2 from the third level. This type of user-
controlled precision is useful to get better confidence about
the predictions.

VI. EXPERIMENTAL RESULTS

We begin by discussing experimental settings for CVE to
CWE classification, and then in an ablation study we evaluate
each component of the V2W-BERT framework to investigate
how the best performance may be obtained. Finally we com-
pare the V2W-BERT framework with related approaches.

A. Experimental Settings

Dataset Description: The CVE dataset is collected from the
NVD website. After processing and filtering, we get 137,101
usable CVE entries dating from 1999 to 2020 (May). Among
these 82,382 CVE entries are classified into CWEs. MITRE
categorizes CWEs based on Software Development, Hardware
Design, and Research Concepts. Research Concepts cover
all of the 916 weaknesses, but NVD uses only 124 of these
CWEs. We use the same 124 CWEs used in NVD, but
also include their hierarchical relations from MITRE. We
simulate real-world CVE-CWE classification scenarios by
temporally partitioning the dataset by years. CVEs from the
years 1999-2017 are included in the training set, CVEs of the
year 2018 are used as Test Set 1, and CVEs of 2019-2020
are used as Test Set 2. Test Sets 1 and 2 act as a near-future
and far-future test cases, respectively. There are 46,003
instances in training, 14,176 instances in Test Set 1, and
22,203 instances in Test Set 2. This temporal split creates a
forecasting scenario when future CVEs need to be classified
using currently available data, but it makes accurate CVE
classification more difficult as CVE description styles change
with time, and new CVEs occur in more recent years. We also
report results from a random partition of the data (stratified
k-fold cross-validation), where we randomly take 70% of the
data from each category for training, 10% for validation of
early stopping criteria and for hyperparameter settings, and
20% for testing.

V2W-BERT Settings: In the pre-training phase of
V2W-BERT, we allow weights of all BERT layers to be
updated. The model is trained for 25 epochs with a mini-batch
size of 32. In the CVE to CWE association phase, we freeze
the first nine out of twelve layers of BERT and allow the
last three layers to be updated. The model is trained for 20
epochs with a mini-batch size of 32. The number of random
negative links for a CVE is set to 32, and positive links

are repeated (or can be weighted) to match the number of
negative links to prevent bias. The Adamw [21] optimizer
is used with a learning rate of 2¢~% and with warm-up
steps of 10% of the total training instances. For training the
V2W-BERT algorithm we used two Tesla P100-PCIE-16GB
GPUs and 20 CPUs. V2W-BERT processes about 5K links
for a mini-batch of 32 CVEs. For optimization, we compute
the pooled representation of the CVE and CWE mini-batches
separately, and combine them later as per training links (P,
N). For each configuration, the experiments were repeated
five times and the results were averaged. The method with
the best performance is highlighted in bold in the Tables.

Evaluation Process: The 124 CWEs are distributed in
three levels in the MITRE hierarchy, and the CWEs that
each CVE belongs to are predicted at each level down the
hierarchy. There are 34 first-level CWEs, and each class
has three child CWEs on an average, with a maximum of
nine. At the second level, each CWE has an average of
three child CWEs and a maximum of five. A few examples
are provided in Figure 4. When reporting performance, we
take different top k; values of CWEs from each level. The
choice (ky = 1,ko = 1,ks = 1) gives precise prediction
with only one path in the hierarchy. With moderate precision
(kv = 3,ko = 2,k3 = 1), there are at most six possible
paths. Finally, a more relaxed prediction can be obtained
with (k1 = 5, ks = 2, ks = 2), with at most twenty paths. If
the true CWE(s) are present along the predicted paths, the
prediction is considered to be accurate. Additionally we use
the Fi-score of correctly classified links to evaluate the link
prediction performance. Table VI in the Appendix lists the
key notations used in the paper.

B. Ablation Study

We evaluate each component of the V2W-BERT
framework to find the best configuration for solving the
problem. Additionally, we show how preserving the pre-
trained BERT context using Reconstruction Decoder (RD)
improves classification performance in rare and unseen cases.
The temporal partition of the dataset is used for evaluation.
Experimental results show that MEAN-Pooling works best
among the CLS, MEAN, and MAX pooling operations. When
combining the vector representations of a CVE and CWE,
concatenation of the absolute difference and multiplication
(|xp = Yo ls X0 X ¥,,) performs best, and these two operations
are used for further experimentation. Due to page limitations,
comparative details of different combinations and pooling
operations are given in Appendix VIII-D and VII-E
respectively.

Unsupervised Pre-training and Reconstruction Decoder:
To highlight the contribution of each component, we train
V2W-BERT using only the Link Prediction (LP) module
with BERTgpasg as a pre-trained model. This establishes
our baseline for comparing the performance of additional
pre-training and Reconstruction Decoder (RD). Next, we
fine-tune BERTgasg with all labeled and unlabeled CVE/CWE
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Fig. 4: Partial hierarchy of CWE extracted from MITRE to demonstrate how precise and relaxed prediction is performed.

descriptions in the training years and train LP using this
updated model. We refer this updated BERT model as
BERTcyg. Finally, we have a third experiment that uses LP
and RD together using BERTcyg as a pre-trained model.

Fig 5 shows precise and relaxed prediction accuracy of
Test 1 (near future) data. The use of BERTcyg outperforms
BERTgasg in the near future as learned cyber-security
contexts help to transfer domain knowledge better. The
addition of the Reconstruction Decoder (RD) component
helps preserve the context of BERTcyg, which improves
performance in classifying CVEs of rare and unknown CWE
classes, thus improving overall performance. Appendix VIII-F
shows the quantitative details of these experiments for Test
1 (near future) and Test 2 (far future). Test 2 has a lower
accuracy than Test 1 as we predict two years into the future,
containing different descriptions’ style.
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Fig. 5: Precise and relaxed prediction accuracy of Test 1 (near future)

for different components of V2W-BERT. Left: All data. Right: CVEs
with unseen (zero-shot) CWEs.
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Reconstruction Decoder for Few/Zero-shot Learning:
The Reconstruction Decoder (RD) component helps preserve
the context of BERTcyg, which improves performance
in classifying CVEs of rare and unknown CWE classes.
We evaluate LP with and without the RD to highlight
the improvement. We consider the CVEs of CWEs that
appear in the test set but not in the training set or have few
instances. We call these two cases zero-shot and few-shot,
respectively. We use BERTcyg as the pre-trained model for
experimentation.

Zero-shot Performance: We removed all CVEs of the
descendants and ancestors of these unseen CWEs from the
training process to avoid any bias for zero-shot evaluation.
Table I shows that the addition of Reconstruction Decoder
(RD) improves the accuracy for unseen cases. The precise
and relaxed prediction accuracies are evaluated for the CWEs
that were absent during training. Here, “Test 1 (k1, ko, k3),
89” refers to 89 CVEs instances in year 2018 whose corre-
sponding CWEs were unavailable during training. The precise
accuracy is relatively low but significantly higher than random
prediction. For relaxed prediction, we get about (86% accuracy

for Test 1 and (61% for Test 2 (illustrated in Figure 5). The
performance of predicting unseen CVEs completely depends
on inherent textual similarities between a CVE and CWE
description.

TABLE I: Zero-shot accuracy with and without RD

Model Test 1 (k1, ko2, k3), 89 Test 2 (k1, ko, k3), 247
Ly 321 622 | ALY (321D (522)
Random | 0.0032 0.0196 0.0653 | 0.0032 0.0196 0.0653
LP 0.1263  0.5454 0.8483 | 0.0273  0.2568  0.5902
LP+RD 0.2809 0.6954 0.8558 | 0.1012 0.3475 0.6104

Few-shot Performance: Table 11 shows the performance
of CVEs where the corresponding CWEs have total train-
ing instances between ([n1,nz]). The “Test 1, n = [1,50],
1057 refers to 1057 test CVE instances from 2018 whose
corresponding CWEs had training examples between 1 to 50.
With addition of RD, the model achieves significantly higher
precise-prediction accuracy than Link Prediction (LP) alone.
The model achieves 71%-84% prediction accuracy in 2018
when we have only 51 — 100 training instances in the past
(1999-2017). This improvement in rare cases is significant
compared to related work, as detailed in §VI-C.

TABLE II: Few-shot accuracy evaluated for rare CWE classes with
different training instances between [n1, na]

Model Test 1, n=[1, 50], 1057 Test 2, n=[1, 50], 2632
(F1, k2, k3) | LLD) 32D (522 [ ALD) @32D) (22)
LP 02142 04991  0.671 | 0.2462 0.5151  0.6306
LP+RD 0.3199 0.6176  0.705 | 0.2474 0.5569  0.6736
Test 1, n=[51, 100], 800 Test 2, n=[51, 100], 1221
LP 0.5687  0.8075 0.8400 | 0.5652 0.7771  0.8054
LP+RD 0.7087 0.8087 0.8375 | 0.6457 0.7870  0.8035
Test 1, n=[101, 150], 690 | Test 2, n=[101, 150], 1643
LP 0.6645  0.8373  0.9097 | 0.4221  0.6605  0.7639
LP+RD 0.7238  0.8475  0.9222 | 0.5091 0.6648  0.7849

C. Comparison with Related Approaches

We compare the performance of the V2W-BERT frame-
work (using settings from §VI-B) with related work. V2W-
BERT is compared against three classification methods and
a link association approach similar to ours. We compare
with three classification approaches, a Convolutional Neural
Network (CNN), a TF-IDF based Neural Network (NN) [14]
and a fine-tuned BERT classifier (this work). While fine-tuning
the BERT classifier, we use the same pre-trained BERTcvg
algorithm and MEAN-Pooling as with V2W-BERT. Custom
layers with dropout and fully connected Neural Networks
are added on top of the pooling layer to predict all usable
CWEs. Additionally, we implement a TF-IDF feature-based
link association method to train the model Fy. We use the TF-
IDF feature directly and use the same (|X, — ¥, |, X0 X ¥ )
combination operation and classification layer as we did in
V2W-BERT. The training links are also kept same as V2W-
BERT.



In the Convolutional Neural Network (CNN) based text
classification method, the sentences are converted into
sequences of vectors using word2vec representation. We
pad the sequences to a max-length. Therefore, each CVE
description is transformed into a max-length x300 matrix,
and CNN is performed on this. We experimented with the
Long Short Term Memory (LSTM) based Recurrent Neural
Network (RNN) method on the word2vec vectors of tokens.
However, the RNN didn’t achieve competitive performance
and is thus omitted from the comparison. We highlight the
classification and link prediction based method with prefix
‘Class’ and ‘Link’ in the table.

Performance in the random partition of the dataset:
Table III shows the comparative performance of the related
methods. We take 70% of the data for training from each
category, 10% for validation for hyper-parameter settings,
and 20% for testing. With more training data and examples
overlapping all years, V2W-BERT achieves 89% — 97%
precise and relaxed prediction accuracies.

TABLE III: Performance with randomly partitioned dataset

Test Set (k1, ka2, k3)
Model TLD  G2D 622
Class, CNN 0.8596 0.9468 0.9645
Class, TF-IDF NN 0.8606 0.9464 0.9668
Link, TF-IDF NN 0.8642 0.9502 0.9693
Class, BERTcyg 0.8812 0.9503 0.9689
Link, V2W-BERT 0.8916 0.9523 0.9723

Performance in the temporal partition of the dataset
Unlike random partition, where we have taken training
examples from each category, temporal partition is more
challenging and reflective of the application. Table IV
compares the accuracy of V2W-BERT trained with data
from 1999-2017, and tested for 2018 (Test 1) and 2019-2020
(Test 2). Key results are illustrated in Figure 6. To highlight
the performance of CVEs of rare and frequently occurring
CWEs, we split the test sets by CWEs having 1 — 100 training
examples, and by CWEs with more than a hundred training
examples. The V2W-BERT outperforms the competing
approaches in both precise and relaxed predictions, overall as
well as in rare and frequently occurring cases. For CWEs with
> 100 training instances, V2W-BERT achieves 89% — 98%
precise and relaxed prediction accuracy in Test 1 (2018).
The performance on Test 2 data is lower than that of Test
1, since the former is further into the future. To demonstrate
sustainability of V2W-BERT, we experimented by adding
recent data (from 2018) for training, and it improves the
performance on Test 2 data (Appendix VIII-G).

F'1-Score of predicted links: We evaluate both link and
unlink pairs that are correctly classified. Only the two link-
based methods (V2W-BERT and Link, TF-IDF NN) predict
links. V2W-BERT achieves Fj-Scores of 0.93 for Test 1,
and 0.92 for Test 2, where as TF-IDF NN achieves 0.91 and
0.88 respectively (§VIII-H). Performance for predicting links
is higher than the precise CWE predictions since predicting
a CWE accurately down to the leaf node requires all links to
the ancestor to be correctly predicted.

>100 (87% of total data)
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g Link, TF-IDF NN
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Fig. 6: A summary of the key results for Test 1 (T1) showing supe-
rior performance of V2W-BERT with respect to other approaches,
especially for rare CWE classes. Details are provided in Table IV.

TABLE IV: Performance comparison of V2W-BERT
Test 1 (k1, k2, k3) Test 2 (k1, k2, k3)

Model TLD  G2) 622 [ LD GaLD (622

Class, CNN 0.2926  0.5636 0.6373 | 0.2430 0.4894 0.5823

1-100 Class, TF-IDF NN 0.2631 0.5656  0.6537 0.2519  0.4838 0.5739
Link, TF-IDF NN 0.3626  0.5998 0.6791 0.3395 0.564 0.659

Class, BERTcyg 0.4138  0.6602  0.7466 | 0.2914 0.6105 0.6902

Link, V2W-BERT | 0.4765 0.6933 0.7564 | 0.4072 0.6293 0.7179

Class, CNN 0.8674 09513 0.9721 0.7897  0.9041 0.9430

=100 Class, TF-IDF NN 0.8524  0.9425 0.9616 | 0.7815 0.8953 0.9404

Link, TF-IDF NN 0.8463 0.9227 0.9485 0.7604  0.8738 09153

Class, BERTcyg 0.8852 09479 0.9649 | 0.8067 0.9064 0.9414

Link, V2W-BERT | 0.8905 0.947 0.9763 | 0.8113 0.9123  0.9492

Class, CNN 0.7887 0.8982 0.9263 | 0.6853 0.8330 0.8822

All Class, TF-IDF NN 0.775 0.893 0.9298 | 0.6886 0.8231 0.8761

Link, TF-IDF NN 0.7828 0.8803 09132 | 0.6863 0.8196  0.8706

Class, BERTcyg 0.8232 09101 0.9363 0.7163 0.8578 0.9038

Link, V2W-BERT | 0.8362 0.914 0.9442 | 0.7345 0.8594 0.9151

Zero-shot performance of link methods: Table V captures
classification performance of CVEs associated with CWESs not
seen in training. Only the link-based methods are compared
since classification-based approaches do not support this task.
The link-based TF-IDF NN performs worse than random
choice since it is over-fitted to the available training CWE:s.

TABLE V: Zero-shot accuracy of link-based methods

Model Test 1 (k1 k2, k3), 89 Test 2 (k1, k2, k), 247
@LLY) 320 (22 | 4L,L)  G2D (22
Random 00032 0019 00653 | 0.0032 00196 0.0653
Link, TE-IDF NN | 0.0000 0.1158 ~ 0.4875 | 0.0000 0.0562 0.1717
Link, V2W-BERT | 0.2809 0.6954 0.8558 | 0.1012  0.3475  0.6104

Predicting a new CWE definition: For a given CVE,
V2W-BERT gives link and unlink values to all available
CWEs. If the link value is higher than unlink, we consider
the CVE to be associated with that CWE. The link
value represents the confidence about the association of a
vulnerability to a weakness. We can push this confidence
boundary for a more robust prediction and consider the link
only if the value is greater than a threshold . For a CVE
description, if all link values to the available CWEs are
less than 3, then the CVE description has a different style,
or we need a new CWE definition. Appendix VIII-I shows
experimental evidence where we get most occurrences of all
unlinks in the case of unseen CWEs.

VII. SUMMARY AND FUTURE WORK

We presented a Transformer-based framework (V2W-
BERT) to efficiently map CVEs (specific vulnerability reports)



to hierarchically structured CWEs (weakness descriptions).
Using data from standard sources, we demonstrated high
quality results that outperform previous efforts. We also
demonstrated that our approach not only performs well for
CWE classes with abundant data, but also for rare CWE
classes with little or no data to train. Since classifying rare
CWEs has been an explored problem in literature, our frame-
work provides a promising novel approach towards a viable
practical solution to efficiently classify increasing more and
diverse software vulnerabilities. We also demonstrated that
our framework can learn from historic data and predict new
information that has not been seen before. Our future work
will focus on scaling larger pre-trained BERT models with
high-performance computing platforms to further enhance
the classification performance, and automated suggestions for
defining new weaknesses to match novel vulnerabilities.
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VIII. APPENDIX

In the appendix, we discuss in more detail some components
of the V2W-BERT framework.
A. Reproducibility

The source code' along with the dataset is shared in an
anonymous github public repository. The necessary commands
for installation and execution are also provided in the readme
file.

B. Notation

TABLE VI: Key notations used in the paper

Notation Meaning

BERTgASE Original pre-trained BERT model [6]

BERTcvE Additional pre-training with CVE/CWE descriptions

LP Link Prediction component only

LP+RD Link Prediction coupled with Reconstruction Decoder
V2W-BERT | LP+RD, with BERTcyg

>n CVEs from CWEs with more than n training instances
[n1,n2] CVEs from CWEs with training instances between n1 to na
(k1,k2,k3) Top k1, ks, k3 predictions for the k;-th level in the hierarchy
Test 1 Test instances from 2018 (near-future)

Test 2 Test instances from 2019-2020 (far-future)

Link Formulated as link prediction problem

Class Formulated as classification problem

C. Masked Language Model for Pre-training

Fig 7 shows a simplistic view of fine-tuning BERT with
Masked LM. We allow all layers of BERT to update in this
step as we are learning the relevant cyber-security context.
A custom Language Model (LM) layer is added on top of
the BERT encoder, which takes the last hidden state tensor
from the BERT encoder and then passes that to a linear
layer of input-output size (H, H). Then layer normalization
is performed, and values are passed to a linear layer with
an input-output feature size (H, Nyocab) to predict masked
tokens. The cross-entropy loss is used on the predicted masked
tokens to optimize the model.

(CE Loss on masked tokens]

Linear, (input, output) (H, Nyocab)
Layer Normalization
Linear, (input, output) (H, H)

[

Last Hidden State Tensor, (T, H)

|
BERT, Layer 1 to A, Trainable |

T

CVE and CWE descriptions, Ucye, Ucwe
Fig. 7: Architecture of Masked Language Model.

D. Link Prediction (LP) with Different Combination Opera-
tions

Following recent work [17, 20], the V2W-BERT is evaluated
by different combination operations. For simplicity, only the
Link Prediction (LP) component is used with CLS-pooling.

Thttps://github.com/anonymousauthors001/V2W-BERT
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The BERTgasg is used as the pre-trained model for experi-
mentation, and experiments are run for ten epochs only.

Table VII shows comparative performance of some com-
bination operations. The concatenation operation (x,y) does
not achieve good performance, but multiplication, (x X y),
performs better than absolute difference, (|x —y|). Their com-
bination (|x —y|,x x y) shows the overall best performance,
and is used for further experiments.

TABLE VII: Accuracy of Link Prediction (LP) component
over different combination operations.

C con Test 1 (k] ko, kg) Test 2 (k1, ko, ka)

OLLDH 32D (522 [ GLLD 32D (522
(x,y) 0.2631  0.5401  0.6517 | 0.2237  0.5063  0.6288
(Jx—yl) 0.6471 0.8816 09175 0.544  0.8237 0.8742
(x xy) 0.7657  0.8885  0.9279 | 0.6897 0.8395  0.8953
(Jx—yl,xxy) 0.7829  0.8794 09209 | 0.6995 0.8337  0.8879
(x,y,x Xy 0.7628  0.8846  0.9225 | 0.6915 0.8411 0.8880
(x,y,|x =yl 0.7769 0.8828 09233 | 0.6839  0.822  0.8823
(x,y,|x—y|l,xxy) | 07815 0.8827 0.9211 | 0.6833 0.8203 0.8766

E. Link Prediction (LP) with different Pooling operations

Reimers et. al. [17] have shown that other pooling oper-
ations can outperform CLS-Pooling. In this work, we have
investigated V2W-BERT with three pooling operations, CLS-
pooling, MAX-pooling, and MEAN-pooling. Table VIII shows
comparative performance of different BERT poolers with
(|0 =¥ |, Xv X¥,,) as the combination operation. BERTgasE
is used as the pre-trained model and the experiments are
run for ten epochs only. MEAN-pooling has shown marginally
better performance than CLS-Pooling, and is used for V2W-
BERT.

TABLE VII: Accuracy of Link Prediction (LP) component
over different pooling approaches.

. Test 1 (k1, k2, k3) Test 2 (k1, ka2, k3)
Pooling LD 32D (522 | LD (32D (5,22
CLS-Pooling 0.7829 0.8794  0.9209 | 0.6995 0.8337 0.8879
MAX-Pooling 0.7592 0.872 09175 0.6705 0.818 0.8748
MEAN-Pooling 0.782 0.8886 0.9244 | 0.6874 0.8364 0.8897

F. Link Prediction (LP) and Reconstruction Decoder (RD)
with different pre-trained models.

Table IX shows precise and relaxed prediction accuracy
of the three scenarios of V2W-BERT: 1) Link Prediction
(LP) component with BERTpasg as pre-trained model, 2) LP
with fine tuned BERT using with CVE/CWE descriptions
(BERTcvE), 3) LP with Reconstruction Decoder (RD) using
BERTyg as pre-trained model.

TABLE IX: Prediciton accuracy of LP and RD components
with different pre-trained models.

Model Test 1 (k1, ko, k3) Test 2 (k1, ko, k3)
OLLh  @2D) (22 | AL @2  (522)
LP, BERTgAsE 0.7829  0.8794 09209 | 0.6995 0.8337  0.8879
LP, BERTcyg 0.8169 09137 09429 | 0.7132  0.8505  0.9049
LP+RD, BERTcyg | 0.8310 09144 09425 | 0.7274 0.8592  0.9051

G. Training on 1999-2018

We have performed additional training with CVEs from
the year 2018 to predict Test 2 (2019-2020). As expected,
recent data improves the performance of the immediate future


https://github.com/anonymousauthors001/V2W-BERT

predictions. Fig 8 shows prediction accuracy improvement of
V2W-BERT in Test 2 (2019-2020) with additional training
data from 2018 and Table X shows comparative details.

1.0
. [ Train 1999-2017
§ 0.9 B Train 1999-2018
3
Q
b 0.8

0.7

(1,1,1) (3,2,1)
Fig. 8: Accuracy of Test 2 before and after adding data from
the year 2018 in training.

(5,2,2)

TABLE X: Accuracy of Test 2 including 2018 in the training.

Test 2 (k1, k2, k3)
Model LD GaD 522
Class, TF-IDF NN 0.7109 0.8444  0.8962
Link, TF-IDF NN 0.7302 0.8636 0.9162
Class, BERTcyg 0.7527 0.8683  0.9090
Link, V2W-BERT | 0.7666  0.8901 0.9273

H. Fy-Scores of predicted links

Table XI shows the link prediction performance of the
V2W-BERT algorithm and the TF-IDF based link prediction
method.

TABLE XI: F}-score of correctly predicted links.

F-score
Model Test T (2018) | Test 2 (2019-2020)
Tink, TF-IDF NN 0.9095 0.8816
Link, V2W-BERT 0.9343 0.9156

1. Predicting a new CWE definition

Fig 9 shows fraction of instances we get all link values less
than 8 = 0.90. Here “Test 1 (1-100)” refers to CVEs asso-
ciated with CWEs in Test Set 1 with total training instances
between 1-100. As expected, CVEs of unseen CWEs have
the highest fraction of occurrences, because these CVEs have
different styles not seen by training method. Also, the rare
type CVEs have higher unlinks to links ratio than frequent
ones. Therefore, if we see only high unlink values to CWEs
for some CVE description, we could suggest that experts take
a closer look at the description, and if needed provide a new
CWE.

1
~

o
w

e
)

[=1
—_

Fraction of occurrences

:07 I_I 1 |_| ] :

Test 1 (1-100) Test 1 (>100) Test 2 (1-100) Test 2 (>100) Unseen CWEs

Fig. 9: The fraction of occurrences of all unlinks with link
threshold set to 8 = 0.90 in different scenarios.

Table XII shows how many times we get all link values less
than 5 = 0.90, and the fraction of such instances. We partition
the Test sets based on the number of CVEs per CWE class in
training.
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TABLE XII: Count of how many times all link values of a
CVE to available CWEs are less than 5 = 0.90 in different

scenarios.

Dataset Count  #Instances Fraction of
Occurrences

Test 1, 1-100 189 1,851 0.1021

Test 1, >100 372 12,236 0.0304

Test 2, 1-100 357 3,851 0.0927

Test 2, >100 823 18,105 0.0454

Unseen CWEs 117 377 0.3103

J. Data Augmentation to handle Class Imbalance

We experimented with data augmentation [22] techniques to
handle class imbalance during training. New CVE descriptions
are created from the available training CVE descriptions. For
CWEs with less than 500 training instances, we gather all
text descriptions of the associated CVEs to create a pool of
CVE sentences. We take random sentences from the pool
of sentences, replace some words with synonyms, and create
augmented CVEs description. Table XIII shows performance
comparison before and after the augmentation. Augmentation
makes overall convergence faster but achieves similar perfor-
mance.

TABLE XIII: Performance of V2W-BERT before and after
data augmentation.

Model Test 1 (k1, k2, k3) Test 2 (k1, k2, k3)
OLLD G20 (22 [ AL G2 (522)
V2W-BERT 0.8362 0914 0.9442 | 0.7345 0.8594 09151
V2W-BERT, Aug500 | 0.8299 0.9138 0.9425 | 0.7374 0.8584 0.9107
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