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Abstract—Botnets are an ever-growing threat to private users,
small companies, and even large corporations. They are known
for spamming, mass downloads, and launching distributed denial-
of-service (DDoS) attacks that have a destructive impact on large
corporations. With the rise of internet-of-things (IoT) devices,
they are also used to mine cryptocurrency, intercept data in
transit and send logs containing sensitive information to the
master botnet. Many approaches have been developed to detect
botnet activities. A few approaches employ graph neural networks
(GNN) to analyze the behavior of hosts using a directed graph
to represent their communications. However, while designed
to capture structural graph properties, GNN may overfit, and
therefore fail to capture these properties when the network is
unknown. In this work we hypothesize that structural graph
patterns can be used to effectively detect Botnets. We then propose
a structural iterative representation learning approach for graph
nodes, which is designed to perform well on unseen data, called
Inferential SIR-GN. Our model creates a vector representation
for each node that epitomizes its structural information. We
demonstrate that this set of node representation vectors can be
used with a neural network classifier to identify bot nodes within
an unknown network with better performance than the current
state-of-the-art GNN based method.

Index Terms—Botnet Detection,Structural Graph Representa-
tion Learning, Machine Learning.

I. INTRODUCTION

Current works on botnet detection heavily depend on opera-
tors’ ability to identify their behavior, and requires extensive
monitoring. Additionally, many works rely on additional data,
such as further traffic patterns, packet sizes, prior blacklisted
addresses and port numbers. This data can unavailable or
manipulated to create unidentifiable patterns. In previous works
focusing on the topology features of botnets, the size of the
communications networks can make it difficult to discern botnet
communication patters from background internet traffic. A few
promising works focus on the communication network of the
machines to extract patterns defining the bot’s behavior using
GNN. However, we will show that GNN do not generalize
well to unseen data. This is likely because GNN, while capable
of capturing structural information, also rely partially upon a
notion of similarity that is based upon node proximity. In this
case, machines interacting with bot machines will be considered
likely to be a bot as well. This can result in poor detection
performance if the GNN is trained on a network different from
that for which inference is needed. In this work, we present

the graph representation learning technique Inferential SIR-
GN, combined with a neural network classification model, to
automatically identify topology features that belong to botnets
within large graphs. Using Inferential SIR-GN, we aim to
better preserve the structural information of a graph even in the
inference phase, on networks entirely unseen, and leverage that
to detect bot machines. We show that Inferential SIR-GN plus
a neural network classifier performs nearly identically to the
state-of-the-art GNN model on tasks where the training data and
test data topology are the same. Moreover, Inferential SIR-GN
outperforms the state-of-the-art GNN when training topologies
differ from the test data. Given the ever-changing nature of
botnets, this feature suggests that our model is a superior
automatic botnet detection method. This paper is organized
as follows. In Section 2, previous detection approaches are
presented. A description of the datasets used in this work is
presented in Section 3. The Inferential SIR-GN methodology
is described in Section 4, and we evaluate our approach in
Section 5. Finally, conclusions are presented in Section 6.

II. RELATED WORK
A. Botnet Detection

Due to the versatile nature of botnets, there is an extensive
list of use cases. As a result, botnets and their attacks are ever
evolving, and increasing in complexity. As they evolve, so too
must methods to detect them. It is well known that botnets
take actions to thwart detection strategies. For example, many
honeypots, designed to attract botnets, can be identified and
therefore avoided, allowing these botnets to remain undetected
[1].

The emerging trait that has made botnets most difficult to
combat lies with P2P. Past botnet detection approaches were
able to isolate the C&C control node, and so end the entire
botnet. P2P botnets are able to share C&C command when
seized, and have only limited information about the remaining
botnets [2]. Previous works such as BotMiner [3] used node
clusters with similar communication and malicious traffic to
perform cross-cluster correlation and isolate the central control
node. P2P botnets have rendered these approaches ineffective.
Additionally, botnets are able to intentionally manipulate their
C&C server address frequently, using fast flux server networks
for example, to evade traffic monitoring [4]. This hinders works,
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Figure 1: Loglog Plot to show the degree distribution of the Data used in the experiments

such as those presented in [5], which rely on statistical feature
representations computed from the network traffic. Additional
approaches require more extensive knowledge of the network,
including uncompromised botnet information, such as domain
names [6] and DNS blacklists [7]. These approaches work well
unless the data is unavailable, or has been altered by the botnet,
as is often the case.

B. Graph Representation Learning

The need for effective and efficient unsupervised repre-
sentation learning techniques for graph data are becoming
increasingly recognized. Networks capture a wealth of infor-
mation about any dataset with relational structure, in a simple
data structure as a list of entities, called nodes, and their
connections, referred to as edges. The botnet structure lends
itself well to automated detection using graph representation
learning. However, standard machine learning applications
operate upon a list of features, requiring graph data structures
to be transformed into representations. It is imperative that
these representations fully capture the similarity between nodes
in the feature space. The notion of similarity, however, can
be based upon the nodes structural role in the graph, or it’s
proximity to neighbors. As an example, when capturing a
node’s proximity, highly connected nodes will be found close
to one another in the feature space. However, representations
that capture a node’s structural role should not require that a

path even exists between two nodes to consider them similar,
only that the structure of their neighborhood is alike.

There have been many different representation learning
techniques applied in multiple areas of study that have met
with great success. DeepWalk [8] utilizes the well known NLP
Skip-Gram model, a.k.a. Word2Vec [9] [10] which generates
word representations by taking advantage of word sequences
(sentences) to optimize a neighborhood. DeepWalk generalizes
the Skip-Gram model from sequences of words to graphs
using a procedure similar to a Depth-First traversal of the
graph in combination with the neighborhood. This results in a
connectivity-based representation learning method where nodes
sharing similar neighbors in a direct (first-order proximity) or
indirect(higher-order proximity) fashion are located closer in
the resulting latent space. Following DeepWalk’s idea to use
Depth-First traversal, LINE [11] proposed using a Breadth-
First traversal where nodes sharing the same edge (first-order
proximity) are located closer in the latent space. A notable
problem arises when the graph is not fully connected, a require-
ment for Breadth-First graph traversal. The above-described
approaches are similar to Node2vec [12], which uses a random
walk procedure that interpolates between both the Depth-First
and Breadth-First topology. This removes the connectivity
requirement and demonstrates improved performance. Each
of these approaches tends to capture connectivity information
among nodes, but is weaker in preserving structural properties



that are crucial for detecting bot machines in a network.

The most relevant representation learning approaches preserv-
ing structural information are: 1) graph neural networks [13]
such as Graph Convolutional Neural Network, Struct2Vec [14],
GraphWave [15] and Iterative procedures [16], [17]. Among
these methods, only graph neural networks and the iterative
approach Inferential SIR-GN are able to perform inference,
that is, can produce predictions for graphs entirely different
than those used for training. Our core techniques for the bot
detection tasks will focus on structural representation learning
methods with inference capability. In [18]—[30] are reported
several other related works in the field of machine learning
and Al

III. DATA DESCRIPTION

We consider multiple communication patterns of botnets
observed in networks for our approach. C&C botnets are easily
identified, as they have a single bot which is centralized and
has a star pattern. P2P botnets are decentralized without a star
pattern and contains a handful of nodes which connect most
the network with one or two hops. The P2P botnet clusters
are harder to identify as there is no single center point. In
these experiments, the P2P is used to demonstrate that graph
representation learning is able to detect anomalies that are
more difficult to detect using other methods.

The datasets used are composed of real background traffic
collected in 2018 from the IP backbone from CAIDA (2018)’s
monitors [31]. The traffic graph is aggregated as it would be in
a real case scenario for user’s protection. Then, at random, a
subset of nodes is selected from the background traffic as botnet
nodes for embedding the different P2P topologies. There are
four different P2P topologies used to create controlled networks
in our experiments. The synthesized networks are DE BRUIIN
[32], KADEMLIA [33], CHORD [34], and LEETCHORD [35].
We also consider a real P2P network which captures botnet
attacks from 2011 [36] which contain attack behavior with
communication traffic.

The Log-Log plot shown in Figure 1 represents the degree
distribution within our graphs. As the degree (number of edges)
of nodes increase, the frequency (number of nodes) decreases.
This shows that there are few nodes that are highly connected,
and the majority of nodes have degree less than two. The
average cluster in the graphs are 0.007.

Each network contains 960 P2P graphs each with an average
of 144k nodes, over 1.5 million edges and 10k botnet nodes
within each synthetic graph (Figure 2). This number is based
on the real botnet network which contains 144k nodes and 3k
botnet nodes. The datasets used for training contain 10k botnet
nodes, and the test set uses a mix of 10k/1k/100 botnet nodes
within the networks. All the networks are highly unbalanced
with less than a tenth of the network containing botnet nodes.

IV. INFERENTIAL SIR-GN PROPOSED METHODOLOGY

Our methodology is based on the Inferential SIR-GN [17]
a structural iterative representation learning procedure with

Dataset Average Nodes Average Edges Average Bot Nodes

Chord 143745 1501242 9990
Debru 143745 1671000 9990
Kadem 143745 1521258 9990
Leet 143745 1509858 9990

p2p 143745 1621586 3088
combined 14263 1544005 8617

Figure 2: Average node structure in the Datasets used in Data
Description

inference ability. Table I reports the symbols we use for the
methodology explanation.

Inferential SIR-GN is used for extracting node representa-
tions from directed graphs, and is described in detail in Layne
and Serra [17]. The model relies upon the methodology of SIR-
GN, first described in [16], wherein a node’s representation is
iteratively updated by describing then aggregating its neighbors.
The size of a node’s representation at each iteration is equal
to a user-chosen hyperparameter nc. Node descriptions are
generated by clustering the current node description (which
initializes as the node degree) into nc KMeans clusters.
Normalization of the representation occurs before the clustering
step at each iteration, then the distance from each cluster
centroid is converted into a probability of membership of the
node in each cluster. Once a node’s structural description has
been updated, its neighbors are aggregated into its description
by summing for each cluster all neighbors’ probabilities of
membership per cluster. The resulting node representation is
equal to the expected number of neighbors that node possesses
in each cluster. Each iteration corresponds to an added depth of
exploration, where k iterations will generate a node description
incorporating the k-hop neighborhood structure of a node.
Inferential SIR-GN differs from the standard model via multiple
modifications, the first being that at the end of each iteration,
we concatenate each node’s structural description into a larger
representation that captures the evolution of the structural
information through deeper neighborhood exploration. After the
final iteration, a Principle Component Analysis (PCA) is used
to prevent degradation of the information as the representation
size grows. The final representation is condensed to a size
chosen as a hyperparameter. For directed graphs, a node’s
initial representation begins as two vectors of size nc, one
containing the node’s in-degree, the other containing its out-
degree. These two are concatenated together before clustering.
At each iteration, clustering of this larger node vector is
performed, followed by aggregation of the neighbors. For
directed data, the aggregation is performed separately for a
node’s in-neighbors and out-neighbors into two intermediate
vectors, then once again concatenated together for the next
iteration. Inferential capability of our proposed model is
accomplished by pre-training the KMeans and scalers for
each iteration - a new KMeans and Scaler are used for every



Table I: Notations used in Model Description.

Notation Description
nc The number of clusters chosen for node representation
ngc The number of clusters chosen for graph representation
k The depth of exploration, equal to a node’s k-hop neighborhood

depth of exploration - along with the PCA model that will be
used to generate the final node embedding. We pre-train on
random graphs and store each model for use in inference. At
inference time, repeated normalization followed by clustering
and aggregation is accomplished using the pre-trained models,
and the PCA fitted during training is used to generate the
final node representations. This drastically decreases inference
time, and the same pre-trained model can be used on a variety
of different data sources. This is demonstrated extensively
in Layne and Serra, along with a detailed algorithm and
description of the time complexity of the model. The SIR-
GN node structural representation vectors can be used in any
classifier to learn the botnets topology for automated detection.
In this work, we use a 3-layer neural network to obtain a final
prediction of a node’s (machine’s) status as a bot.

V. EXPERIMENTS
A. Setup

Section 2 describes the four different botnet topologies that
are used to create synthetic datasets. For each topology, 960
different graphs are created by applying that specific topology
to real-world traffic. The number and size of the graphs is
made comparable to an actual P2P dataset that contains 960
graphs of real botnet attacks. Our Inferential SIR-GN model is
used to generate structural node representations for each set of
graphs. As described in the methodology, Inferential SIR-GN
is not trained using any of the graphs from the dataset, but
rather a set of generated random graphs. Because the node
representations calculated by Inferential SIR-GN so effectively
capture the structural description of each node, we are able to
use a drastically decreased subset of these node representations
to train a downstream classifier, and still obtain excellent results.
Inferential SIR-GN can be used upstream of any classifier, and
we will show that transfer learning can be used to train a neural
network (NN) classifier that outperforms the current state-of-art
model trained in a similar manner. For comparison, we will
use the model described in [37] (ABD-GN), a GNN tailored
for botnet detection. We will demonstrate the effectiveness of
Inferential SIR-GN to generalize to unseen data by performing
the following comparisons:

1. Inferential SIR-GN plus NN classifier trained on 50 graphs
from a dataset (botnet topology) and used to classify the a test
set of 96 graphs from that dataset. This is for comparison to
ABD-GN trained on 80% (768) of the graphs from the dataset
and used to classify a test set of 20% (the same 96 graphs)
from the same topology.

2. Inferential SIR-GN plus classifier trained on 50 graphs
from a single topology and used to classify the test set of 96
graphs from each of the other topology datasets, plus the actual

P2P attack data. This will be compared to ABD-GN trained
on 768 graphs from one topology and used to classify the test
set.

For simplicity, we will refer to the Inferential SIR-GN plus
neural network classifier as isirgnl in the description of results.

B. Results

Table II shows the results of the NN classifier on the node
representations generated from Inferential SIR-GN, compared
to those produced by ABD-GN. For all datasets, isirgn] obtains
very similar performance, despite that the model used to
generate the node representations was trained purely on random
graph data, and the neural network classifier was trained on
only 50 graphs from the dataset. This is compared to the ABD-
GN neural network in which 80% of the data was used for
training.

Table II: Botnet detection results on synthetic and real botnet
topologies. FP represents the false positive rate, FN represents
the false negative rate, ACC represents the accuracy, F1
represents the F1 score. All the scores are rounded to the
nearest two decimals, and are an average over all the graphs
in the test set.

Chord
“ Model FP FN ACC F1 H
ABD-GN  0.02 147 99.88 99.12
isirgnl 0.01 060 99.87 99.39
DE Bruijn
H Model FP FN ACC F1 H
ABD-GN  0.00 0.09 9999 99.93
isirgnl 0.00 032 9998 99.50
KADEM
H Model FP FN ACC F1 H
ABD-GN  0.03 205 99.83 98.77
isirgnl 0.02 269 9831 99.10
LEET
H Model FP FN ACC Fl1 H
ABD-GN 0.02 1.18 9990 99.30
isirgnl 0.00 036 99.92 99.78
P2P
“ Model FP FN ACC F1 H
ABD-GN  0.01 096 9997 99.29
isirgnl 0.02 215 99.00 97.85

The ABD-GN model [37] produces strong results when
targeting a single topology as shown in Table II. However, when
these same trained models are tested against an unseen topology,
the results vary from good to very poor (Figure 3). When trained
on the Kadem topology (Figure 3(b)), the isirgn model and
ABD-GN perform similarly with respect to testing on all of the
other synthetic datasets. However, when testing classification
on the real-world P2P dataset, isirgn shows excellent capability,
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while the F1 score for ABD-GN drops below 10%. The same is
true for training on Leet and Chord data, with small variations
in performance on the other synthetic datasets. Interestingly,
when the Debru data is used to train each model, ABD-GN not
only fails to correctly identify bots in the real-world dataset,
but also performs poorly at classification in all other topologies
as well, while isirgn maintains this capability. When trained

on the real-world dataset (Figure 3(b)), isirgn and ABD-GN
perform similarly on a testset generated from the same dataset.
However, isirgn also performs well at classification tasks in
the four unseen topologies, while ABD-GN drastically loses
performance.

This data suggests that Inferential SIR-GN node representa-
tions, coupled with a neural network classifier, far outperform
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Figure 4: Training on one graph compared to training on 50 graphs tested on the same 96 graphs.

even the state-of-the-art botnet detection method on unseen
data, despite being trained on a significantly smaller dataset.
Additionally, the results demonstrate that the ABD-GN model
is only able to detect bots in real-world data if given prior
knowledge about the structure of that botnet.

Inferential SIR-GN was then used to generate node represen-
tations for a combined topology. When these representations
are used to train the Random Forest, a highly improved
performance is observed. Figure ?? shows that using many
different botnet attacks structures combined with the SIR-GN

model approach obtains highly performant classifications on
each dataset, including vastly improved performance on the
real-world P2P dataset.

We next test the training requirement for a neural network
classifier using node representations obtained from the Inferen-
tial SIR-GN model. Keeping in mind that isirgn outperformed
ABD-GN on classification of real world botnets after transfer
learning with 50 graphs, we now demonstrate that a vanishingly
small amount of data is required, even for transfer learning,
for isirgn. Figure 4 shows that using only one graph from



a synthetic dataset to train a neural network classifier on
structural node representations (output from Inferential SIR-
GN) is remarkably successful, even on real-world test data.
Indeed, comparing Figures 3 and 4 shows that a neural network
trained with transfer learning on a single graph’s structural node
representations from Inferential SIR-GN is more successful
than transfer learning with an 80% training set with ABD-GN.
This is also considering that the Inferential SIR-GN model
used to generate the node representations is itself trained using
transfer learning on random synthetic graphs.

VI. CONCLUSION

We propose that Inferential SIR-GN can generate vector
representations that retain all necessary structural information
of nodes in a network. We further propose that this graph
representation learning solution can be implemented in auto-
mated botnet detection. Additionally, Inferential SIR-GN can be
implemented in other GNN-applicable problems for an efficient
and effective unsupervised representation learning technique.

Unlike works [37] which rely on the knowledge of the target
graph’s exact topological structure, Inferential SIR-GN, coupled
with a neural network classifier, is able to identify botnets with
any topology, regardless of the training topology.

As previously stated in section 3.1, the appearance of a
botnet’s network structure can change very rapidly. As botnet’s
applicability increases, the variety of observed topologies
is expanding. We propose that employing Inferential SIR-
GN coupled with a neural network for classification, will
show superior ability to detect a variety of botnets, including
those with never-before-seen topologies, where other GNN
methodologies may fail to adapt to new botnet designs.
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