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Abstract—Interpretability is a key feature to broaden a con-
scious adoption of machine learning models in domains involving
safety, security, and fairness. To achieve the interpretability of
complex machine learning models, one approach consists in
explaining the outcome of machine learning models through input
features attribution. Attribution consists in scoring the features of
an input instance by establishing how important is each feature
value in a fixed instance to obtain a specific classification outcome
from the machine learning model. In literature, several attribution
methods are defined for specific machine learning models (e.g.,
neural networks) or more general ones that are model agnostic
(i.e., can interpret any machine learning models). Attribution
is particularly appreciated for its easy understanding of the
interpretation, which is the attribution. In domains involving
safety, security, and fairness, properties of the explanation such
as precision and generality are crucial to establish human trust
in machine learning interpretability and then on the machine
learning model itself. However, even if precision and generality are
clearly defined in rule-based interpretation models, they are not
defined or measure on attribution models. In this work, we propose
a general methodology to estimate the degree of precision and
generality in attribution methods. In addition, we propose a way
to measured consistency in attribution between two attribution
methods. Our experiments focus on the two most popular model
agnostic attribution methods, SHAP and LIME, and we evaluate
them to two real applications in the field of attack detection.
Our proposed methodology shows in these experiments that both
SHAP and LIME lack precision, generality, and consistency and
that still more investigation in the attribution research field is
required.

Index Terms—Machine Learning Interpretability, Attribution
Methods, Evaluation Methodology.

I. INTRODUCTION

Machine learning models are widely adopted for solving
various problems. From the range of movie recommendation
systems to personal voice assistants, or in highly regulated
domains involving decisions of significant impact, such as
mortgage approval models or healthcare decision support
systems, the democratization of Artificial Intelligence (A.I.)
in our society is undeniable [1]. Though the use of the ML
model is expanding, most machine learning models’ inner
logic and mechanism are still hidden to the users and experts.
These models are considered black boxes [2]. Relying on
ML algorithms for sophisticated decision-making like aircraft
collision detection systems without understanding the models

can result in severe consequences [3]. Hence many interpretable
models and explanation methods [2] are developed.

As the social impact of ML algorithms are becoming more
significant day by day, the necessity of understanding the reason
behind the decision-making process is also increasing [4]–[7].

A large amount of study has been done to address the
issue. Explainable Artificial Intelligence (X.A.I.) is a field
of study that aims to develop interpretable ML models and
to make a shift of transparent A.I. [2]. This research field
aims to develop a more explainable model and methods to
explain existing black box models without compromising their
predictive performance. A notable initiative in this research field
is the Defense Advanced Research Projects Agency (DARPA),
funded by the U.S. Department of Defense, which created the
X.A.I. program for funding academic and military research [8].
Another example of government initiative is ”Preparing for the
Future of Artificial Intelligence”- a report published by the
White House Office of Science and Technology Policy (OSTP),
emphasized that A.I. systems should be open, transparent, and
understandable so that people can interrogate the assumptions
and decisions behind the models’ decisions [9]. Outside the
U.S.A., several countries have already taken the initiative for
transparent A.I. . French Strategy for Artificial Intelligence, The
United Kingdom’s Academy of Sciences, Portugal government,
has published their roadmap towards interpretable A.I. [10]–
[12]. European Union stated that ”A.I. systems should be
developed in a manner which allows humans to understand
(the basis of) their actions” to increase transparency and to
minimize the risk of bias error [13].

The Tech industry has already started to practice interpretable
A.I. in various A.I.-related fields. In addition, to invest
in interpretable A.I. research, companies are focusing on
interpretability for commercializing interpretable A.I. products.
Google is advocating interpretability by including planning for
interpretability, treating interpretability as a core part of the
user experience, designing the model to be interpretable, under-
standing the trained model, and communicating explanations
to model users [14]. FICO, the renowned credit score company,
has published a white paper titled ”Developing Transparent
Credit Risk Scorecards More Effectively: An Explainable
Artificial Intelligence Approach” to address interpretable credit
scoring systems [15].



This paper focuses on outcome explanations that are methods
that explain the outcome (e.g., classification result) of machine
learning models for the specific instance. In the category of the
outcome, explanation includes rule-based methods (explaining
instances with simple logic rules) and attribution procedures
(which gives an important score for each feature in input to the
machine learning model). For rule-based outcome explanation,
[16] is the first in introducing the requirement of precision and
generality. Precision imposes that a rule explaining an instance
with a classification outcome (e.g., classification 1) should
not explain instances with a different classification outcome
(e.g., classification 0). While generality implies that a rule
explaining an instance of a particular classification outcome
(e.g., classification 1) should potentially explain also other
instances with the same classification outcome. Precision and
generality are meaningful requirements increasing human trust
in explanation models. These requirements are only defined
and measured on rules, but they are not tested or even enforced
in the attribution methods.

This paper provides an overview of model agnostic (the
machine learning model is a black box, and it can only
classify instances, but how the classification is performed is not
considered) attribution procedures and provides a methodology
to evaluate attribution procedures in terms of precision and
generality. In addition, this work also provides a methodology
to measure consistency between different generic attribution
procedures.

The paper is organized as follows. In Section II is provided
an overview of the outcome explanation methods. In Section III
is provided our methodology to evaluate the performance of
the outcome explanation methods. While in Section IV are
reported the empirical evaluations of the explanation models.
Ultimately, in Section V conclusion are provided.

II. OVERVIEW OF OUTCOME MODEL AGNOSTIC
EXPLANATION METHODS

In a model agnostic method, the explanation is separated
from the ML model. It gives the flexibility to use any
interpretable ML method regardless of the ML model is defined,
i.e., the ML model is used as an oracle model. This category
includes basic approaches such us partial dependency plot
(PDP) [17], individual conditional expectation [18], feature
interaction based on H-statistic [19], and local surrogate models.
The local surrogate models, differently from the other, focus
on the explanation of a specific outcome of a single instance.
In [20]–[34] are reported several related works in the field of
machine learning.

In the following are reported the three relevant local surrogate
models. Two of them LIME and SHAP are attribution methods,
i.e., they provide an importance score for each feature in input
to the classification model. In contrast, ANCHOR as a surrogate
model uses simple rules.

A. LIME

LIME explains an outcome of a model by learning an
interpretable model locally around the instance. LIME modifies

a single instance data sample by tweaking the feature values
and observes the resulting impact on the output.

The idea behind LIME is: for each individual instance that
is passed to the model and for each outcome it makes, it
performs a “local sensitivity analysis” in order to understand
how sensitive is the prediction with regards to each feature
of a particular instance. Figure 1 shows how LIME works in
theory.

Figure 1: Lime abstraction from [35].

The original decision function is represented by the
blue/orange background and is clearly nonlinear. The largest
red X is the instance to explain. The approach simply perturbs
instances around X and assigning weight according to their
proximity to X. The weights here are represented by the
sizes of the symbols — blue circles and red Xs. Given the
model’s outcome confidence on these perturbed instances, the
approach learns a linear model (black line) that approximates
the complex model well in the proximity of X . Please note that
the explanation, in this case, is not true globally, but it is true
locally around the instance X . The explanation produced by
LIME at a local point x is obtained by the following generic
formula:

ξ(x) = argmin
gϵG

L(f, g, πx) + Ω(g)

Where f is the real function (aka the machine learning model
to explain), g — is a surrogate model used to approximate f in
the proximity of x and πx defines the locality. This formulation
can be used with different explanation families G, fidelity
functions L, and complexity measures Ω. Here it is assumed
that the complexity is opposed to explainability. Typically, g
would belong to the family of linear functions (low complexity).
The loss function L (measuring fidelity) minimizes the local
mismatch between the complex machine learning function
f and the approximating function g. Typically, g is a linear
combination of the input features of the predictive model, and
L is the well-familiar root mean square error loss function
RMSE.

Under the use of the linear model, the coefficients of the
linear model determine the importance scores of each feature.
Then, LIME is an attribution method.



B. SHAP

SHAP (SHaply Additive exPlanations) [36] introduces
a unified approach for interpreting model prediction from
different interpretable techniques. For a particular prediction,
SHAP assigns each feature an importance value. It unifies
six explanation techniques LIME [35], Shapley sampling
values [37], DeepLIFT [38], QII [39], Layer-wise relevance
propagation [40], Shapley regression values [41] by defining the
class of additive feature attribution method. SHAP employees
game theory to compute the attribution and, in particular, uses
the Shapley value to compute the attribution. The Shapley value
indicates the reward that each player receives in a coalition
game for his participation in the coalition. Such computation
is done in the following way. Let F be the set of all features
in input to the ML model and given an instance x and a
machine learning model f , the attribution score ϕf

i (x) for each
feature i ∈ S is obtained by the following formula (which is
an adaptation of the Shapely values):

ϕi =
∑

S⊆F\{i}

|S|! (|F |−|S|−1) !

F !

[
fc(xS∪{i})− fc(xS)

]
where fc is the confidence value of the ML model f for a
particular outcome (e.g., a specific class) and xS is the instance
x where each value x[u] of the feature u ∈ F \S is substituted
with the mean of all the values that u has among all the
possible instances. Then, this score indicates how relevant is
in the instance x the specific value assigned to a feature u for
the classification compared with the mean value of the feature.

As it is possible to observe, the computation of the feature
score is exponential in the number of features. To overcome
such complexity, approximations are provided.

One of these approximations is called Kernel SHAP [36]
which is based on fitting a linear model defined as follows:

g(S) = ϕ0 +
∑
j∈S

ϕj

The fitting procedure consists in minimizing the following
loss function: ∑

S⊆F

µ(S)(g(S)− fc(xS))
2

where the kernel µ(S) is defined as µ(S) = |F |−1

(|F |
|S|)|S|(|F |−|S|

.

The speed up is obtained by considering in the loss function
only a random subsamples H ⊂ {S|S ⊆ F} and the optimizing
the loss function

∑
S∈H µ(S)(g(S)− fc(xS))

2.
This kernel approximation aligns SHAP with LIME.
The work [42] provides fast algorithm computation for SHAP

when the machine learning model to explain is based on the
decision tree, e.g., Random Forest.

C. Anchor

Anchor [16] explains individual prediction by defining a
decision rule that ”anchors” the prediction.

Anchor usages perturbation-based strategies like LIME for
generating local explanations. Unlikely LIME, it uses If-Then

rules for the explanation rather than a linear surrogate model.
The goal of Anchor if produce rules that are precise and general.
As explained in the introduction, this is the first approach that
studying the problem to create rules precise and general.

Given x an instance to be explained, A is the anchor such
that when all feature predicates defined by A correspond to
x’s value, such that A(x) = 1, f is the model to be explained,
Dx(.|A) is the neighbor distribution of x, considering τ as
precision threshold, anchor A can be defined as:

EDx(z|A)[1f(x)=f(z)] ≥ τ,A(x) = 1

The anchors are constructed bottom-up in combination with
beam search. It starts with an empty rule or anchor and
incrementally adds an if-then rule in each iteration until the
minimal confidence constraint is satisfied. If multiple valid
anchors are found, the one with the largest coverage is returned.

Anchor usages modified beam search or greedy search for
searching be best candidate rules. Anchor can produce precise
but not so general and some time due to its non-determinism,
for the same instance may return different rules.

III. MEASURING ATTRIBUTION PRECISION, GENERALITY,
AND CONSISTENCY

In this section, we describe the methodology to measure
Precision, Generality, and Consistency in attribution models.
Ways how to measure precision and generality for rules are
already defined in [16], but not yet for attributions. In addition,
this section proposes a method to measure the consistency
between two generic attribution techniques.

A. Precision

Precision imposes that a rule explaining an instance with
a classification outcome (e.g., classification 1) should not
explain instances with a different classification outcome (e.g.,
classification 0). Intuitively, providing a rule that both explains
two different outcomes of a machine learning model result
inconsistent and not trustable by a human. In [16], the precision
of a rule r explaining an outcome a is measured inversely
by the percentage of instances obtaining from the machine
learning model an outcome different from a and r applies to
such instances. To define precision to attribution results, we
first introduce two functions. The first one is sel(S, x) which
returns a vector in R|S| which is the selection of the values of
the feature in S. More formally, given S = i1, . . . , ik the subset
of features for each j ∈ {1, . . . , k}, sel(S, x)[j] = x[ij ]. The
second function is topk : Rn → 2|k| which given the attribution
att vector returns the top-k feature according to att. Let Ia be
the set of instances receiving the outcome a and I¬a be the
set of instances not receiving the outcome a, given an instance
x ∈ Ia and its attribution attx, the attribution precision can be
inversely measured by the Reverse Precision (RP) as follows:

RP k(x, attx) =
|{x̂|x̂ ∈ I¬a, sel(S

x
at, x) = sel(Sx

at, x̂)}|
|I¬a|

where Sx
at = topk(attx). Intuitively, the reverse precision

measures the percentage of instances with outcome a that have



the same values of top-k feature with the specific explained
instance. Given a particular outcome a we compute the average
of the reverse precision scores at k for each instance in Ia as

avgRP k(Ia) =

∑
x∈Ia

RP k(x, attx)

|Ia|

B. Generality

Generality implies that a rule explaining an instance of
a particular classification outcome (e.g., classification 1)
should potentially explain also other instances with the same
classification outcome. Given two instances x1 and x2 with
their attribution vectors attx1

and attx2
, the function that

measures how many top-k features are in common between
attx1 and attx2 is defined as follow:

commonk(attx1 , attx2) = |topk(att1) ∩ topk(att2)|

where the functions topk is defined in the section of the
precision. Given an instance x ∈ Ia we measure the generality
of hits attribution attx in the context of the top h neighbour
instances in Ia of x with the function generality(x, k, h, agg)
defined as follows:

agg({commonk(attx, attx̂)|x̂ ∈ topNeighbourh(x, Ia)})

where agg ∈ {sum,min,max} and topNeighbourh(x, Ia)
selects the top h neighbour instances in Ia of x. The different
aggregation function provides more information on how the
commonalities of the attributions are distributed among the op
h neighbor instances. Please note that the function commonk

does not consider the values of the topk features from the
attributions; this is justified because, in the generality function,
the common function is used only between nearest neighbors,
then we assume that the values of these instances should be
similar. Given a particular outcome a we compute the average
of the generality scores at k for the top-h neighbour instances
for each instance in Ia as

avgGen(Ia, k, h, agg) =

∑
x∈Ia

generality(x, k, h, agg)

|Ia|

C. Consistency

Since SHAP is an attribution method that unifies multiple
attribution methods, one of them LIME, then we propose a
simple procedure to compare the attribution of two different
methods. Given an instance x and an attribution method m,
we denote attrm(x) the attribution scores for the instance x
provided by the method m.

Given the set of instances Ia with outcome a and two
attribution methods m1 and m2, the consistency score for
the top-k features between m1 and m2 is defined as follows:

consk(Ia,m1,m2) =

∑
x∈Ia

commonk(attm1(x), attm2
(x))

|Ia|

where the function commonk is defined in the section gener-
ality.

IV. EXPERIMENT

In this section, we apply our methodology to evaluate
attribution methods in two attack detection contexts: network
traffic and power system. In particular, we focus on the
explanation (attribution) of attack instances. We first describe
the two datasets. Second, we show the classification results
of different classification models in detecting such attacks.
Then, we select the best classification model, and we use or
methodology to evaluate LIME and SHAP attribution approach
in interpreting the attack instances correctly classified by the
best classification model.

A. Datasets

The datasets of the two attack detection contexts are provided
below.

1) UNSW-NB 15: Network Traffic: This dataset [43] repre-
sents a comprehensive network-based dataset that can reflect
modern network traffic scenarios, wide varieties of low footprint
intrusions, and depth structured information about the network
traffic. The raw network packets of this dataset were created
by the IXIA PerfectStorm tool in the Cyber Range Lab of the
Australian Centre for Cyber Security (ACCS). It contains real
normal behavior and synthesized attack activities of network
traffic. The simulation period was 16 hours on Jan 22, 2015,
and 15 hours on Feb 17, 2015. It consists of 2, 540, 044 records.
It contains 49 distinct features.

2) ICS: Power System: This dataset [44] captures various
scenario of power system disturbance. This dataset is derived
from one initial dataset which contains 15 sets with 37 power
system event scenario each (28 attack events and 9 normal
events). It consists of total 128 features and 78, 377 records.

B. Classification Results

Before starting the classification, we transform all the
nonnumeric features with one-hot encoding. We first split
the dataset in 70% trainingset and 30% testset. In the case
of “UNSW-NB 15”, the split was already provided but with
the same percentages. Then, we train and test the following
classification models: Logistic Regression, Random Forest,
KNN, Support Vector Classification (with RBF kernel). Table I
and Table IV shows the classification results (Precision, Recall,
F1-score and Accuracy) for all the classification models. As
it is possible to see, the best results are provided by the
KNN and Random Forest, which are comparable. Then, to
apply our methodology to evaluate the attribution methods, we
only focused on the Random Forest classifier because SHAP
computation is more efficient.

C. Attribution Precision Analysis

In Figure 2 and Figure 3 is shown avgRP k(Ia) for LIME
and SHAP by varying the number k in “UNSW-NB 15” and
“ICS: Power System”, respectively.

As it is possible to see, even for k = 6 in both the datasets,
the values of the top-6 features , according to the attributions
of the attack instance for both the methods (LIME and SHAP),
are the same for the normal behavior.In fact, avgRP 6(Ia) is



Table I: Precision, Recall, F1-score and Accuracy of Linear
regression, Random Forest, KNN and SVC algorithms for
“UNSW-NB 15”.

Logistic regression Random Forest
precision recall f1-score precision recall f1-score

Not Attack 0.82 0.87 0.84 0.90 0.98 0.94
Attack 0.90 0.86 0.88 0.98 0.92 0.95

Accuracy 0.86 0.95
Macro avg. 0.86 0.87 0.86 0.94 0.95 0.94

Weighted avg. 0.87 0.86 0.86 0.95 0.95 0.95
KNN SVC

precision recall f1-score precision recall f1-score
Not Attack 0.92 0.98 0.95 0.88 0.92 0.86

Attack 0.99 0.93 0.96 0.93 0.84 0.91
Accuracy 0.95 0.86

Macro avg. 0.95 0.96 0.95 0.88 0.92 0.90
Weighted avg. 0.96 0.95 0.95 0.89 0.86 0.87

Table II: Precision, Recall, F1-score and Accuracy of Linear
regression, Random Forest, KNN and SVC algorithms for “ICS:
Power System”.

Logistic regression Random Forest
precision recall f1-score precision recall f1-score

Not Attack 0.54 0.03 0.05 0.94 0.78 0.85
Attack 0.72 0.99 0.83 0.92 0.98 0.90

Accuracy 0.72 0.92
Macro avg. 0.63 0.51 0.44 0.93 0.88 0.90

Weighted avg. 0.67 0.72 0.61 0.92 0.92 0.92
KNN SVC

precision recall f1-score precision recall f1-score
Not Attack 0.94 0.78 0.85 0.88 0.92 0.86

Attack 0.92 0.98 0.95 0.93 0.84 0.91
Accuracy 0.92 0.86

Macro avg. 0.93 0.88 0.90 0.88 0.92 0.90
Weighted avg. 0.92 0.92 0.92 0.89 0.86 0.87

Figure 2: avgRP k(Ia)% for LIME and SHAP by varying the
number k in “UNSW-NB 15”.

greater than zero. This shows that both LIME and SHAP are
not so precise since the explanation provided for the attack
instances also applies to normal behavior instances. In addition,
there is no attribution technique that is better than another. It is
also impressive to see that the value of the top-1 most important
feature (according to the specific attribution procedure) is the
same in so many normal behavior instances, more than 70% in
“ UNSW-NB 15” and 50% in “ICS: Power System”. This gives
an intuition of how precision remains still an open problem in
the attribution methods.

Figure 3: avgRP k(Ia)% for LIME and SHAP by varying the
number k in “ICS: Power System”.

Table III: avgGen(Ia, k, h, agg) by varying k (the number of
top features) and h (the number of close neighbours) for LIME
and SHAP in “UNSW-NB 15”.

Mean Lime intersection size Mean SHAP intersection size
Max Mean Min Max Mean Min

No of Neighbors (h) No of Features (k)

1
1 1.00 0.21 0.00 1.00 0.78 0.00
5 5.00 1.66 0.00 5.00 4.21 0.00
10 10.00 4.47 1.00 10.00 8.50 1.00

5
1 0.60 0.14 0.00 1.00 0.75 0.00
5 2.80 1.50 0.20 5.00 4.08 0.80
10 6.20 4.23 2.40 10.00 8.29 3.00

10
1 0.50 0.13 0.00 1.00 0.73 0.00
5 2.50 1.50 0.50 5.00 4.03 0.70
10 5.80 4.23 2.60 10.00 8.19 3.30

D. Attribution Generality Analysis

In Table IV and Table III are shown the values of
avgGen(Ia, k, h, agg) by varying k (the number of top fea-
tures) and h (the number of close neighbours) for LIME
and SHAP in “UNSW-NB 15” and “ICS: Power System”,
respectively. From the results, the attributions of both the
methods it is not so general since even the closest instances
produce attributions that are drastically different. Then each
attribution seems unique for the specific instance rather than
generic.

E. Attribution Consistency Analysis

In this experiment, we show how LIME and SHAP are consis-
tent, especially in consideration that SHAP should be a model
that unifies several other attribution models included LIME.
Figure 4 and Figure 5 shows consk(Ia, LIME,SHAP ) by
varying the number k in “UNSW-NB 15” and “ICS: Power
System” respectively. As it is possible to see both LIME and

Table IV: avgGen(Ia, k, h, agg) by varying k (the number of
top features) and h (the number of close neighbours) for LIME
and SHAP in “ICS: Power System”.

Mean Lime intersection size Mean SHAP intersection size
Max Mean Min Max Mean Min

No of Neighbors (h) No of Features (k)

1
1 0.00 0.00 0.00 1.00 0.39 0.00
5 2.00 0.24 0.00 5.00 2.18 0.00
10 5.00 1.16 1.00 10.00 4.78 1.00

5
1 0.20 0.00 0.00 1.00 0.195 0.00
5 1.00 0.29 0.00 3.6.00 1.47 0.20
10 2.40 1.17 0.20 6.60 3.67 0.80

10
1 0.10 0.01 0.00 0.7 0.12 0.00
5 0.80 0.30 0.00 2.90 1.20 0.10
10 2.30 1.20 0.40 5.80 3.17 0.60



SHAP agree over less than half of the top-k features for both
the datasets. Especially in terms of top-1, top-2, and top-3
features, the two attribution methods are in strong disagreement.
This analysis shows that the attributions provided by the two
attribution are different, and due to the poor performances in
precision and generality, it is difficult to determine the best
attribution model.

Figure 4: consk(Ia, LIME,SHAP ) by varying the number
k in “UNSW-NB 15”.

Figure 5: consk(Ia, LIME,SHAP ) by varying the number
k in “ICS: Power System”

V. CONCLUSION

Attribution models are important to evaluate the inter-
pretability of machine learning models. In this paper, a
new methodology to evaluate the precision, generality, and
consistency of attribution models is provided. We used such
methodology to evaluate two of the most popular model
agnostic attribution models, LIME and SHAP, on two attack
classification tasks involving network traffic and power systems
in the industrial control system field. Our methodology showed
that both LIME and SHAP lack precision and generality and
none of the two was better than the other. Even if SHAP
is proposed as the unification model and should generalize
LIME, we observed that the attribution results of the two
attribution methods in many cases were very different. From
this evaluation, we have determined that there is no a better
model in the attribution field and that still research is needed

to overcome the precision and generality limitations in this
field.
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