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Abstract The solar tachocline is a shear layer located at the base of the solar
convection zone. The horizontal shear in the tachocline is likely turbulent, and it
is often assumed that this turbulence would be strongly anisotropic as a result of
the local stratification. What role this turbulence plays in the tachocline dynamics,
however, remains to be determined. In particular, it is not clear whether it would
result in a turbulent eddy diffusivity, or anti-diffusivity, or something else entirely.
In this paper, we present the first direct numerical simulations of turbulence in
horizontal shear flows at low Prandtl number, in an idealized model that ignores
rotation and magnetic fields. We find that several regimes exist, depending on the
relative importance of the stratification, viscosity and thermal diffusivity. Our results
suggest that the tachocline is in the stratified turbulence regime, which has very
specific properties controlled by a balance between buoyancy, inertia, and thermal
diffusion.

1 The Turbulent Tachocline

Characterizing and understanding the solar tachocline was one of Michael Thomp-
son’s many fundamental contributions to the subject of solar physics [9]. Discovered
in the late 1980s [1], the tachocline is now thought to play a fundamental role in
the solar dynamo because it combines substantial radial and horizontal shear while
being at the interface between the convection zone and the radiation zone. The first
model of the solar tachocline [8] was, however, purely hydrodynamical. Noting that
the horizontal shear in the tachocline is likely unstable (see [11, 3]), Spiegel and
Zahn argued that the latter should be turbulent. In addition, the strong stratification
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would cause the turbulence to be highly anisotropic, so the transport of angular
momentum in the horizontal direction should be much larger than in the vertical
direction. With these assumptions, they were able to propose a simple steady-state
model in which the tachocline effectively operates as a turbulent internal boundary
layer, across which the latitudinal shear in the convection zone is rapidly reduced
down to the negligible levels observed in the radiation zone below.

To model this idea mathematically, Spiegel and Zahn argued that the transport of
angular momentum in the tachocline should be governed by the following equation,
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where vertical advection terms as well as vertical turbulent transport terms have
been neglected. In this equation, » and 0 are the radius and co-latitude, respectively,
Qo is the mean rotation rate of the Sun while € is the deviation away from that
mean, uy is the latitudinal velocity, and v, is the turbulent horizontal momentum
diffusivity. It is important to note that the term on the r.h.s. is a model for the effect of
the turbulence—whether the latter actually behaves in this manner is a question that
one should attempt to answer. This equation must be completed with a model for the
dynamics of the meridional flow, which can be obtained by considering geostrophic
balance and thermal equilibrium:
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where p and T are the mean background density and temperature in the tachocline,
p and T are perturbations away from the background means, respectively, N is
the buoyancy frequency, g is gravity, and k7 is the local thermal diffusivity. When
combined together with incompressibility, these equations ultimately lead to a
fourth order differential equation for €, which after some further simplifications
(notably, a boundary layer approximation) reads
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where u is the eigenvalue of an associated latitudinal eigenvalue problem (and is
approximately equal to 5), and r; is the radius of the base of the convection zone.

Spiegel and Zahn showed that the solution of this equation that satisfies appropriate
boundary conditions in the radial direction has a characteristic thickness
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using values commonly associated with the tachocline, namely €29 ~ 3 x 1070571,
N ~ 1073 s by ~ 20 cm?/s and kr ~ 2 x 107 cm?/s. We therefore see that
in order to match observations, where /4 is estimated to be a few percent of ry,
the turbulent viscosity vy, in this model needs to be about 8 orders of magnitude
larger than the microscopic viscosity v. A posteriori verification of the conditions
under which the model applies also reveals that the ratio of the horizontal to vertical
turbulent viscosity should be much larger than (r;/h)?> ~ 10* for the model to be
valid, therefore requiring v, < 10™%v, ~ 10*v ~ 103cm?/s.

The Spiegel and Zahn model was later criticized by Gough and Mclntyre [4],
who argued by analogy with observations of strongly stratified turbulence in the
Earth’s atmosphere, that

[...] horizontal turbulence controls the distribution of angular momentum in such a way as
to drive the system away from, not towards, uniform rotation. Meteorologists once called
this negative viscosity.

In particular, they argued that the use of a turbulent viscosity prescription adopted
by Spiegel and Zahn (leading to Eq. 1) is inappropriate, and proposed an alternative
model of the tachocline that involves the presence of a large-scale primordial
magnetic field embedded in the radiation zone.

Today, the question of whether turbulent angular momentum transport in the
tachocline is diffusive or anti-diffusive remains open. For purely two-dimensional
flows, Tobias, Diamond and Hughes [10] confirmed that turbulence in the presence
of rotation drives large-scale shear rather than quenches it. What form it takes in a
more realistic three-dimensional system, and whether this conclusion holds or not,
remains to be determined. In this paper, I will present recent work on the subject
of horizontal shear instabilities in strongly stratified low Prandtl number flows, that
will go part-way towards answering these questions.

2 Horizontal Shear Instabilities in Stars

Horizontal shear instabilities in stellar interiors were recently studied by Cope et
al. [2] in a series of numerical experiments. This section summarizes their results,
and presents additional experiments that provide important clues on the nature and
relevance of horizontal shear instabilities in stars in general and in the tachocline in
particular.

2.1 Model Description

In Cope et al. [2], we consider what is possibly the simplest model for stratified
horizontal shear instabilities. We ignore the effect of curvature, rotation, magnetic
fields, and compositional stratification, to consider a uniformly thermally stratified,
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and otherwise triply-periodic Cartesian domain with z pointing in the upward
direction. A body force F is applied to drive a flow in the streamwise direction
x, that varies in the spanwise direction y, so F = Fysin(ky)e,. The system of
equations governing the flow, in the Spiegel-Veronis-Boussinesq approximation [7]
(which is valid in the tachocline) are:
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where u = (uy,uy,u;), g = —ge; is gravity, o is the coefficient of thermal
expansion, roughly equal to 1/7, 97 /dz is the background mean temperature
gradient, and d7,4/0z = —g/c) is the background adiabatic temperature gradient,

where ¢, is the specific heat at constant pressure. The quantities T and p are
perturbations away from the background state.

The equations are non-dimensionalized using the shear lengthscale k! and the
anticipated horizontal velocity of the turbulent flow U, obtained by assuming a
balance between the forcing and the inertial terms on a scale k1, s0
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are the Reynolds number, Péclet number and buoyancy parameters, respectively.
Note that in stars, Pr is always much smaller than one (it is for instance of order
107 in the solar tachocline). In addition, Re is always very large. As a result, we
only consider cases where Pr < 1 and Re >> 1. The remaining parameters, B and
Pe, can be either large or small. In the limit of low Péclet number, an interesting
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asymptotic reduction of the equations can be made [6, 5], whereby the dominant
balance in the temperature equation is given by

i, = Pe”'V?T. (14)

Substituting this into the momentum equation leads to

ou
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which is called the low Péclet number approximation [5]. We see that in that limit,
the parameters B and Pe combine to form a single parameter, B Pe. As such, we
expect the flow dynamics to be controlled by the product B Pe rather than by B and
Pe individually whenever thermal diffusion is important.

2.2 Low Péclet Number Results

The study of Cope et al. [2] specifically focusses on the case of small Pe, using
both the standard governing equations at low Pe (10)—(12) (here, low Pe is loosely
defined as Pe < 1), as well as the low Péclet number approximation (15). The two
are found to be in excellent agreement for Pe < 0.1.

2.2.1 Qualitative Results

In [2], we present a number of Direct Numerical Simulations (DNSs), evolving the
governing equations from some initial conditions until a statistically stationary state
is reached (the final state achieved is, to our knowledge, always independent of the
initial conditions in this system). In all cases, the domain size is 47 x 27 x 27.
When started from quiescent initial conditions (1 = 0), the imposed force first
drives a vertically-invariant flow that is sinusoidal in the y direction. Once it has
reached a sufficient amplitude that flow becomes unstable to shear instabilities.
The fastest-growing mode is always two-dimensional (2D, i.e. vertically invariant),
and is therefore unaffected by the stratification. This 2D mode causes a horizontal
meandering of the original shear flow. Depending on the parameter regime, other
modes of instability are then also excited, which now depend on z. These modes
cause a vertical modulation of the phase of the horizontal meanders, and thereby
generate vertical shear (see Fig. 1). This vertical shear drives further dynamics that
eventually saturate the primary instability.

We found that the system dynamics, once a statistically stationary state is
achieved, only depend on Re and the product B Pe, as expected from the argument
above. We also found that there are (at least) four distinct regimes (in addition to
the laminar solution at low Reynolds number) depending on the respective values
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Fig. 1 Snapshot of the streamwise flow i in a simulation with Re = 300, Pe = 0.1 and B =
30,000, during the initial phase of exponential growth of the instability, showing the presence
of horizontal meanders of the basic flow, that are vertically modulated. This creates shear in the
vertical direction. Figure adapted from Cope et al. [2]

of Re and BPe, see Fig.2. The boundaries between the various regimes can
be determined from dominant balance arguments when possible, and empirically
otherwise (see [2] for more detail). Snapshots of two simulations taken in the
stratified turbulence regime and stratified intermittent regime are shown in Fig. 3.
In the stratified turbulent regime, vertical shear instabilities ubiquitously develop
between the meanders of the streamwise flow. The vertical size of the eddies
is controlled by a balance between buoyancy, inertia, and thermal diffusion, see
Sect.2.2.2. Interestingly, we find that the eddies are relatively isotropic, with a
horizontal scale that is commensurate with the vertical scale.

As stratification continues to increase, the system enters a regime where tur-
bulence is only found intermittently (both in time and space). Turbulence within
these localized patches is similar that found in the stratified turbulence regime. On
the other hand, the effect of viscosity becomes important outside of these patches,
which are increasingly sparse as B Pe increases. For sufficiently large B Pe, the
system enters a viscously dominated regime.

2.2.2 Scaling Laws

In order to gain a more quantitative understanding of the dynamics of the various
regimes identified in the low Péclet number case, we extracted various diagnostics
from the DNSs. In particular, we measured the vertical eddy scale /, (using the
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Fig. 2 Partitioning of parameter space in the low Péclet number limit (Pe < 0.1). Each regime
(except the intermittent regime) corresponds to a well-defined dominant balance in the momentum
equation, between the forcing, the inertial terms, the buoyancy term, and the viscous terms. The
intermittent regime contains regions that are viscously-dominated as well as regions that are in the
stratified turbulent regime. Figure from Cope et al. [2]

autocorrelation function of the vertical velocity field), the r.m.s. vertical velocity

s = (ﬁ%)l/ 2. the r.m.s. temperature 7™ and the mixing efficiency 1, which is
defined as

~

—B(i.T)
—B(ii,T) + Re=1(|Va|2)’

n= (16)

where (-) denotes an average over the entire computational domain. These quantities
were then time-averaged during the statistically stationary phase, and the results
are shown in Fig.4. The significance of 1 can be understood by noting that in
a statistically stationary state, the kinetic energy equation (which is obtained by
dotting the momentum equation by @ and integrating over the domain, using
periodicity to eliminate boundary terms) reduces to

(a-F) = —B@i,T) + Re~ ' (|Vi]?). (17)
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Stratified turbulent

Stratified intermittent

Fig. 3 Snapshots of i, and i, in the stratified turbulent regime (top, B = 100) and intermittent
regime (bottom, B = 10,000) at Re = 300, Pe = 0.1. Note how the meanders of the streamwise
flow are still visible even in the fully turbulent flow, and note the small vertical scale of the turbulent
eddies in both cases. Figure adapted from Cope et al. [2]

We therefore see that the energy input into the system by the force F (on the Lh.s.) is
either converted into potential energy (first term on the r.h.s.) or viscously dissipated
(second term on the r.h.s.). As such, the ratio n measures how efficiently the total
energy input into the system is used to mix the background stratification. This
quantity turns out to be an excellent diagnostic of the properties of the flow, as
shown by Cope et al. [2].

In the stratified turbulent regime, which is of potential relevance to stellar
interiors, we found that the vertical lengthscale of the turbulent eddies scales as
iz ~ (BPe)~!/3. This scaling can be understood from a simple dominant balance
in the vertical component of the momentum equation between the nonlinear terms
and buoyancy term, a- Vii; >~ B T. Meanwhile from the low Péclet number thermal
energy equation, we have i1, >~ Pe 'V2T. From a scaling perspective, these two
equations result in

—uﬂniugms ~ BT™S and s ~ Pe! r ,

I, 2

4

(18)
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where i)™ ~ O(1) is the expected horizontal velocity in the non-dimensionalization
chosen. Combined, this results in fz ~ (B Pe)"/ 3 as observed.

In the same regime, we also observe that 1 is constant and roughly equal to
0.4, which shows that about 40% of the total energy input into the system is spent
mixing the background stratification, while about 60% is dissipated viscously. By
construction, the non-dimensional energy input rate is of order one, so we find that
B(uZT) = O0(1) as well, which implies that Bﬁm“Trms = O(1). Combining this

with (18) above, we then predict that
Q™ ~ (BPe)”!/® and T™ ~ Pe(BPe)/°. (19)

Both scalings are indeed observed in high Reynolds number and low Péclet number
simulations (see Fig. 4). The prefactor in both cases is found to be of order unity.

As discussed by Cope et al. [2], the stratified turbulent regime is valid for Pe <
0.1 and 1 < BPe < 0.0016Re?. When B Pe increases beyond that threshold,
the fraction of the domain that is turbulent decreases and is gradually replaced by
laminar regions that are viscously dominated.

2.2.3 Mixing by Horizontal Shear Flows at Low Péclet Number

If a star is known to exhibit a horizontal shear flow with amplitude U and
wavenumber k, then one can easily construct the parameters Re, Pe and B from
(13). If the Péclet number is then found to be small, the scalings obtained above can
be expressed dimensionally to yield

NZ —1/3
lZN(BPe)_1/3k_1~( ) , (20)
UKT
N2 —1/6
~ (BPe) VU ~ [ ———— , 21
(BPe) T Q1)

with proportionality constants of order unity. A vertical mixing coefficient can then
be formed as

N2\ 12
D ~ Lu™s ~ (—> Uk~ (22)

2.3 Low Prandtl Number/High Péclet Number Results

Unfortunately, the results described in the previous section are not a priori applicable
to the solar tachocline because the latter is not a low Péclet number shear layer, at
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least when the Péclet number is computed using properties of the mean flow. Indeed,
using a typical lengthscale k! ~ r,/4 and typical velocity U = r,AQ, where
re ~ 5 x 10%m and AQ ~ 3 x 107 7s~! is the difference between the angular
velocity of the equator and the pole, we find that

Re ~ 0(10%), Pe~ 0(107), and B ~ 0(10%), (23)

so clearly Pe >> 1. In that limit, the low Péclet number approximation that is central
to the derivation of the scaling laws presented in the previous section does not apply
a priori. To see how having a large Péclet number modifies the results, we ran a
number of simulations at Pr = 0.1 and large Reynolds number, so that Pe = 0.1Re
remains large. This is computationally challenging, since a high Péclet number with
a low Prandtl number requires an even larger Reynolds number, which demands
very high resolution. The preliminary results presented here are therefore limited to
Re = 100(Pe = 10), Re = 300(Pe = 30) and Re = 600(Pe = 60).

Surprisingly, we found that many of the trends observed in low Péclet number
flows continue to hold in this case, at least qualitatively speaking. In particular, we
find that the instability of the base flow continues to give rise to vertically-modulated
meandering of the streamwise velocity field, that then creates strong vertical shear.
For weak to moderate stratification, the vertical shear becomes in turn unstable,
causing vertical mixing. The same regimes can be identified (unstratified turbulence,
stratified turbulence, intermittent and viscous). In the stratified turbulent regime,
snapshots of the flow look qualitatively very similar to those obtained in the low
Péclet number regime (see Fig. 5).

In each case, we extracted again quantities such as [, 7™, 4™ and 7. Results
for moderate to large B are presented in Fig. 4 (green symbols) and reveal a number
of very interesting findings. Crucially, we find for instance that the data for 7™

Fig. 5 Snapshots of the horizontal velocity #, and vertical velocity &, taken in the statistically
stationary state of a simulation with Re = 600, Pe = 60 and B = 10, which is in the stratified
turbulence regime
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collapses onto the same approximate scaling of 7™ ~ Pe(BPe)~5/¢ found in
the low Péclet limit, suggesting that the flow dynamics continue to be thermally
diffusive even though Pe is large. We also find that the new high Péclet number data
collapse with the low Péclet number data in the viscous regime (this is particularly
apparent for the Re = 100 runs (circles), for which the viscous regime starts around
BPe =~ 1000). Finally, and most importantly, our results tentatively suggest that
the same scaling laws apply in the stratified turbulent regime, albeit with a different
pre-factor that depends on the Prandtl number.

These results are surprising at first, since the scaling laws derived in Sect. 2.2.2
require the low Péclet number approximation to the thermal energy equation (14)
to hold, which should not be the case at high Pe. To understand why these low
Péclet number scalings might still apply to the low Prandtl number/high Péclet
number cases, it is important to remember that the derivation of the low Péclet
approximation [5] relies on the assumption that the turbulent Péclet number
Pe; = Ul/kt be small, where Pe; is computed using the r.m.s. velocity of the
fluid (for which U is a good approximation, at least in the horizontal direction) and
the actual eddy scale [. By contrast, the input parameter Pe defined in (13) is based
on the largest possible physical scale of the system, which is that of the imposed
shear, k~!. We have seen that the emergent scale of the eddies in the stratified
turbulent regime is much smaller than k~! in all directions, so it is quite likely
that our simulations are in a regime where Pe; < 1. This would explain why the
emergent dynamics remain thermally diffusive even though Pe > 1.

Based on the very limited simulations available at high Péclet number/low
Prandtl number, we therefore argue that the scalings in the stratified turbulent
regime likely remain the same as those described and derived in Sect. 2.2.2, with the
exception of constant prefactors that depend weakly on Pr (perhaps logarithmically
s0), and tend to the ones obtained in the low Péclet limit when Pr — 0. The regime
boundaries for the stratified turbulent regime remain to be determined, but it is quite
likely that these will also only depend logarithmically on Pr, when Pr < 1. To test
these predictions will require simulations at lower Prandtl number and ideally higher
Péclet number, which will be very challenging computationally, but not impossible.
If they are confirmed, this will have important consequences for stellar interiors.

3 Discussion

The findings presented in this paper suggest that horizontal shear instabilities in
stars (i.e. at low Prandtl number) generate vertically modulated meanders of the
basic flow, on vertical scales that are sufficiently thin to be thermally diffusive. As a
result, diffusive vertical shear instabilities can develop, and give rise to small-scale
turbulence and vertical mixing. The turbulence is relatively isotropic on the small
scales, but becomes more anisotropic on the larger horizontal scales associated with
the meanders, as illustrated in Figs. 3 and 5.
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This is quite different from the effect of horizontal shear flows in geophysical
systems, where the Prandtl number is large. Indeed, in that case thermal diffusion
is always negligible if the flow is turbulent (since k7 < v). This implies that
secondary vertical shear instabilities cannot be excited if the stratification is strong,
but are instead limited to localized regions where the stratification is weakened.
By and large, the turbulence therefore remains almost two-dimensional, and in
a rotating system, this two-dimensional turbulence would indeed have an anti-
diffusive behavior, as seen in the Earth’s atmosphere and invoked by Gough and
Mclntyre to argue against the Spiegel and Zahn model of the tachocline. Our
simulations at low Prandtl number however demonstrate that the turbulence is
clearly three-dimensional and almost isotropic on the small scales, and only become
anisotropic on the larger scales. Whether this ultimately behaves in a diffusive or
anti-diffusive manner in the presence of rotation therefore remains to be determined.

Tentatively, we propose new scaling laws for the vertical eddy scale, vertical
velocity, and vertical mixing coefficient in horizontal shear instabilities in the
stratified turbulent regime, given in Egs. (21) and (22). The prefactors are of order
unity when the Péclet number is small (see [2] for more detail), but might depend
logarithmically on Pr if Pr < 1 but Pe > 1. If this is confirmed then simple
order-of-magnitude estimates for [, u™, T"™ and D in the tachocline are

I, ~ O(10km), «™ ~ O(10cm/s), T™ ~ O(100K) and D ~ O(10’cm?/s),
(24)

since the tachocline is likely in the stratified turbulent regime (with B Pe ~ 10'3 «
0.002Re?). With this estimate, we see that one of the fundamental assumptions of
the Spiegel and Zahn model may not be satisfied: indeed, if the vertical turbulent
momentum diffusivity is of order v, ~ D ~ 107 cm?/s, then it is too large to
neglect in Eq. (1), and would therefore invalidate the model. A possible solution
to the problem (other than Gough and Mclntyre’s magnetic idea) is that the model
holds with v, > 108v, and that the actual tachocline is in fact much thinner than
~ 0.01r;—this cannot be ruled out by observations.

Of course, much remains to be done to characterize mixing by shear instabilities
in the tachocline (and in stars more generally). Several effects have indeed been
neglected, that will have to be included before definite conclusions can be made.
First, it will be important to include the effect of rotation. Indeed, while the latter
is not expected to influence the turbulence on the smaller scales (where the Rossby
number is large), it could alter or even suppress the development of the primary
instability, which occurs on the larger scales. Second, magnetic fields will also need
to be included, since they are expected to be present and significant in the tachocline.
Finally, the tachocline has both large-scale vertical and horizontal shear, and the
former may influence the nonlinear saturation of the latter.
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