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Abstract
Cell therapies have been explored for regenerative medicine;
however, this immense promise has been met with limited
clinical success. While many clinical trials aim to demonstrate
product safety and efficacy, a number of issues remain related
to product heterogeneity that must be addressed in order to
fully realize the potential of cell therapies. A critical unmet need
in cell manufacturing is a lack of critical quality attributes
(CQAs) that predict the quality of different cell products. To
address this need, researchers have begun exploring the po-
tential of morphological profiling, using various imaging ap-
proaches and analytical tools, to identify morphological
features that could serve as CQAs and enable better quality
control of cell manufacturing, and thus improved clinical out-
comes. Here, we present recent efforts that successfully use
morphology as a CQA, as well as identify other potential uses
of morphological profiling to improve cell manufacturing and
ultimately accelerate clinical translation.
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Introduction
Although the promise of advanced cell therapies has been
apparent for decades, there are very few Food and Drug
Administration-approved cell therapy products (21)

compared with more traditional pharmaceutical drug
products. Most biologics are cord blood-derived products
for hematopoietic cell transplantation and engineered T
cells for treating a limited number of cancers (e.g. lym-
phoma) [1]. To fully realize the potential of cell therapies,
a number of challenges must be addressed to ensure high
quality (i.e. safe and effective) cell therapies become
licensed and available for widespread patient use.

! Functional heterogeneity: defined here as differences
in therapeutic function of cells derived from different
donors, tissue sources, and manufactured under
myriad conditions.

! Lack of reliable critical quality attributes (CQAs): the
CQA is defined by the International Conference on
Harmonisation (ICH) guideline ICH Q8 (R2) as ‘a
physical, chemical, biological, or microbiological
property or characteristic that should be within an
appropriate limit, range, or distribution to ensure the
desired product quality.’ [2] Combined with inherent
functional heterogeneity, a lack of reliable CQAs
makes it difficult to predict how a given product will
perform before patient administration.

! Scale-up: As cell therapy doses can range from
107d109 cells per patient [3], significant
manufacturing and scaling are necessary (in many
cases ex vivo) to achieve adequate doses for a single
patient (autologous) or many patients (allogeneic).

! Unknown effects of manufacturing changes: related
to scale-up, changes in manufacturing such as
different culture media, culture vessels, isolation
techniques, cryoprotectants, and so on can have sig-
nificant effects on product quality. Demonstrating
product comparability after major manufacturing
changes during clinical trials has been difficult owing
to a lack of CQAs and understanding of how these
changes impact quality.

Identification of meaningful CQAs could significantly
accelerate translation of cell therapies as these CQAs
would help address many of the other challenges, for
example, CQAs to identify ‘good donors’ versus ‘bad
donors’ or CQAs to demonstrate comparability of cell-
derived products when switching from one
manufacturing condition (e.g. reagent) to another. Ef-
forts to identify novel CQAs using omics approaches
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(population-based or single cell-based) have yielded
promising candidate CQAs, but these approaches can be
costly, require significant data processing, cannot be
performed in a standard cell manufacturing laboratory,
and in many cases are not high throughput. Cell
morphology has emerged as a promising candidate CQA
as it can effectively represent a visual readout of intra-
cellular signaling. This review serves to illustrate how
morphological profiling can be used to not only improve
cell therapy quality control but also aid in elucidating
mechanism of action (MoA) and guiding future
manufacturing strategies (Figure 1).

Morphological profiling — current state of
the art
High content imaging (HCI) is a powerful technique
that can acquire images in a high-throughput manner
using automated microscopy. Morphological profiling
most commonly refers to the shape and intensity dis-
tributions of cells or subcellular components (e.g. or-
ganelles). Owing to the broad availability and diversity
of fluorophores, ease of cell segmentation and imaging
speed, widefield fluorescent imaging has been the most
used approach to acquire morphology of cells and their
organelles. However, advances in image quality and

image processing have led to the broader use of label-
free contrast modes such as brightfield and phase
contrast imaging techniques that can potentially enable
nondestructive imaging of live cultures [4]. Without
disruption of cellular processes, nondestructive imaging
is a cost-effective technique to monitor and control the
quality of manufactured cells.

Morphological profiling enables quantification of features
including staining intensities, textural patterns, size, and
shape of the labeled cellular structures, as well as spatial
relationships between cells and among subcellular struc-
tures [5]. Morphological profiling performed on fixed
samples imaged using fluorescent microscopy provides
high resolution, well-defined approaches for extracting
morphological data; however, this approach is destructive
and typically only provides a snapshot of the current cell
state. Therefore, label-free, nondestructive imaging stra-
tegies are being developed to enable in-process moni-
toring of cells, which affords greater feedback control.
Besides widely studied brightfield and phase contrast
imaging techniques [6,7], quantitative oblique back-
illumination microscopy was developed in previous
studies to separate white blood cells from umbilical cord
blood collection bags in a noninvasive manner [8,9].

Figure 1

Morphological profiling as a tool to accelerate translation of cellular therapies. Cellular therapies can be imaged using different types of imaging
modalities to extract morphological data. The morphological data can then be used to assess cell quality, mechanism of action, or in a high-throughput
manner to systematically screen manufacturing conditions that can impact final cell quality. Figure created using BioRender.
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Furthermore, autofluorescence imaging and lifetime
measurement are promising label-free nondestructive
strategies to accurately classify T-cell activation as well as
mesenchymal stromal cell (MSC) senescence under
controlled expansion conditions by correlating MSC
morphology with differentiation potential [10e12].
Emerging strategieshaveexplored thepotential ofmoving
into 2-photon phenomena using multiphoton auto-
fluorescence intensity and lifetime imaging tomeasure T-
cell activation [11] and second-harmonic generation of
collagen production for osteogenic differentiation. Finally,
high-throughput imaging systems based on flow cytom-
etry are being used to enable morphological profiling (and
sorting) of large numbers (>106) of cells, which would
enable imaging of suspension cells, as well as adherent
cells harvested during the manufacturing process, for
example, duringpassaging orbefore cryopreservation [13].

After acquiring a large image set using HCI, image
preprocessing should be performed to obtain analyzable
and quantitative information. General strategies to
recover image features include illumination correction,
noise reduction, and background subtraction. After
image preprocessing, the use of open-source image
analysis software (e.g. CellProfiler, CellCognition Ex-
plorer, BioImageXD) enables custom, automated seg-
mentation, and assessment of quantitative
morphological data from thousands of images at sub-
cellular, single-cell, or population levels [14,15]. These
image analysis approaches produce large, multivariate
morphological data sets that are then filtered and/or
merged and analyzed using dimensionality reduction
techniques (e.g. t-distributed stochastic neighbor
embedding [16], principal component analysis [17],
uniform manifold approximation, and projection [11]),
which are necessary to effectively characterize
morphological responses to microenvironmental cues in
the context of cell manufacturing.

In short, with destructive and nondestructive imaging
techniques as well as advanced computational analysis,
cell morphological data sets can be used to reliably and
reproducibly identify cell quality and subpopulations
with desired properties, such as proliferation or
immune-suppressive function, in an effort to improve
cell manufacturing and clinical outcomes [18].

Morphology as a predictor of cell quality
The heterogeneity and highly responsive nature of cells
necessitate rigorous quality control measures to be
implemented throughout manufacturing. By not
addressing cellular heterogeneity, there could be major
safety concerns (such as tumorigenesis) or efficacy
concerns (i.e. minimal therapeutic effect) [19]. To
mitigate these concerns, efforts are being made to
identify robust CQAs that are predictive of cell quality.
Cell evaluation techniques that assess traditional

biological outputs such as protein or gene expression are
very commonly used to determine cellular behavior and
predict CQAs [20]. However, conventional biological
analytical techniques are invasive, which requires
disruption of cellular processes. Moreover, such analyt-
ical techniques are also costly and time-consuming
[20,21]. There is an emerging need for flexible, cost-
effective techniques to efficiently control the cell
processing variables and manufacturing of reproducible
high-quality cell-based products. Recent advances in
imaging techniques have presented image-based quality
assessment as an attractive alternative to investigate cell
phenotypes and make inferences about cell quality.
Image-based analysis is being successfully implemented
in different research laboratories and clinical settings
combined with (or independent of) more common bio-
logical analytical techniques to assess cell quality
[22,23].

Image processing technologies are being developed to
obtain single-cell and multicellular morphological data
that could be predictive of cell quality [24,25]. Using the
widely investigated cell therapy candidate MSCs as an
example, Marklein et al. [16] developed a machine
learning-based approach for assessing the functional
heterogeneity in MSCs based on identification of
morphological subpopulations (Figure 2a). It was
discovered that the amount of a specific morphological
subpopulation, when stimulated with a functionally
relevant inflammatory cytokine (interferon-gamma),
could predict the immunosuppressive capacity of MSCs
from multiple donors/passages. Imboden et al. [17]
related differences in MSC morphology with eight
common surface markers using label-free imaging com-
bined with artificial intelligence-based methods (deep
convolutional neural network). In another study, nonde-
structive, label-free assessment of induced pluripotent
stem cell (iPSC) colony morphology was performed to
examine the quality (i.e. expression of pluripotent
markers) of iPSCs during culture. The use of time-course
imaging process for tracking iPSC colonies helped to
identify the morphological parameters that can be used
for monitoring of iPSC loss of pluripotency (as indicated
by Oct3/4 staining) (Figure 2b) [26]. Using another
nondestructive imaging modality, label-free auto-
fluorescence lifetime imaging, Walsh et al. [11] were able
to determine the heterogeneity in T-cell population
activation, which could help in the prediction of T cell
immunotherapy function (Figure 2c). These studies
demonstrate that functionally relevant morphological
parameters provide insight into identify novel CQAs for
therapeutic cell manufacturing.

The relationship between cell morphology and function
has been significantly strengthened owing to identifi-
cation of mechanotransduction regulators, for example,
yes-associated protein (YAP) and transcriptional coac-
tivator with PDZ-binding motif (TAZ). YAP/TAZ can
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regulate stem cell self-renewal, maintenance of plurip-
otency, and differentiation [27,28]. In a study by Wang
et al. substrate stiffness and micropatterning-altered
YAP/TAZ activation and MSC differentiation. Specif-
ically, MSCs seeded on stiff substrates had larger surface
areas and higher nuclear localization of YAP/TAZ,
whereas MSCs seeded on soft substrates adopted more
rounded morphology, lower spread areas, and had cyto-
plasmic localization of YAP/TAZ [29]. In another study,
surface topography (in the form of structured grooves)
impacted overall iPSC colony shape, which was guided
by single-cell localization of both pluripotent markers
(Oct4/nanog) and YAP/TAZ intracellular localization
[30]. Considering the critical role of YAP/TAZ in
maintenance of the stemness and phenotype of stem
cells, Bonnevie et al. developed a neural network model
that integrates morphology, YAP/TAZ signaling, and
biochemical cues of multiple cell types to measure the
cell behavior at a single-cell level [31].

Advances in cell image analysis provide a unique op-
portunity to associate morphological responses and
biological processes to predict cell growth and differ-
entiation, as well as cell responses to changes in their
microenvironment that are manufacturing conditions.
These tools could be used to better understand func-
tional heterogeneity of cell therapies to identify CQAs

for cell manufacturing [19,25]. Moving forward, a tran-
sition toward nondestructive, automated imaging may
be necessary as in-process sampling could enable real-
time monitoring of manufacturing parameters to better
meet desired specifications and identification of ‘out of
spec’ or ‘poor’ batches of cells.

Elucidating mechanism of action based on
cell morphology
Besides characterizing properties of the cell therapies
themselves, it is crucial to develop potency assays that
can be indicative of a therapeutically relevant function
that is MoA. This MoA can take the form of modulating
a specific target cell type (or multiple cell types) asso-
ciated with a particular disease. As heterogeneity is a
hallmark of all cellular systems [32], there is a need to
develop improved approaches to assess cell heteroge-
neity with respect to target cell types to better under-
stand how cell therapies exert their therapeutic effect.
Advanced single-cell profiling based on genomic and
proteomic technologies has revealed great insight;
however, these approaches require significant resources
in terms of computational infrastructure, equipment,
and materials [33,34]. Morphological profiling using
HCI provides a cost-effective, high-throughput
approach to profile target cells under healthy and
diseased conditions as a potency assay to determine cell

Figure 2

Morphology predicts cell quality of MSCs, iPSCs, and T cells (a) Representative images of IFN-g-stimulated MSC distinct morphological sub-
populations.MSCsubpopulations correlate stronglywith overall immunosuppressive capacity. (Scale bar: 100mm) (P<0.05). Reproducedwith permission
from (Marklein et al., 2019) (b) Representative images of iPSC colony unstained (phase-contrast imaging) and green stained with OCT3/4 (fluorescence
image). Blue plots indicate the root mean square error (RMSE) values of Oct3/4 staining area predictions. iPSC colonymorphology is highly correlated with
the undifferentiated marker in the final stage, with a lower correlation in the initial stages. Scale bar: 400 mm. Reproduced with permission from (Yoshida
et al., 2019) (c) The representative optical redox ratio and NAD(P)H tmautofluorescence images of quiescent (columns 1, 3) and activated (columns 2, 4)
CD3+ T cells from two different donors. Autofluorescence lifetime imaging classified quiescent and activated T-cells based on function (Scale bar: 20 mm),
(***p < 0.001). Reproduced with permission from (Walsh et al., 2021). IFN-g, interferon-gamma; iPSC, induced pluripotent stem cell;
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therapy MoA. This is predicated on the fact that many
cell types possess distinct morphologies that enable
them to function properly or improperly in healthy and
diseased conditions, respectively. For instance, brain-
resident microglia transition from a ramified morphology
to an ameboid morphology in response to neuro-
inflammation [35]. Similarly, tumor metastasis also leads
to morphological changes in cancer cells and can be used
as prognostic markers to indicate the cell state [36e38].
In addition, distinct morphological responses were
observed for multiple neuronal cell types (microglia,
astrocytes, neurons) in a porcine model of ischemic
stroke [39].

Morphological profiling as a readout of cell therapy po-
tency can be performed in multiple formats: in vitro (
two-dimensional [2D] and three-dimensional [3D]); and
in vivo (Figure 3). In vitro 2D cultures present the most
simplified platform for morphological assessment of in-
dividual cells and their subcellular structures, allowing
preliminary screens of target therapeutics in a high-

throughput manner. For instance, cancer cells defined
in terms of their mitochondrial morphology (Figure 3a)
[40] can be treated with potential cell therapies to reveal
the activated pathways and thus the MoA. Transwell
systems, such as an air-liquid interface model using
human small airway epithelial cells, allow for modeling
the tissue microenvironment in 2D toward a clinically
relevant outcome involving multiple cell types [41].
Although 2D morphology may not fully reflect
morphology observed in vivo, it can provide valuable
insight into the various phenotypic attributes that can be
further validated and explored in more complex in vitro
models and in vivo. Morphological profiling of more
complex in vitro cultures, such as 3D spheroids or orga-
noids, may have greater clinical relevance owing to
recapitulation of the in vivomicroenvironment. As shown
by Schnalzger et al. chimeric antigen receptor (CAR)
natural killer 92 cell specificity and efficiency can be
tested in a tumor organoid coculture system [42] through
serially combining z-stack images of the complete 3D
structure (Figure 3b). Nonetheless, the complexity

Figure 3

Morphological screening of therapeutic cells viable across all culture platforms. (a). Representative images of KPDC145 (Drp1−/−), KPDC253
(Drp1+/+), and KPDC143 (Drp1+/−). Qualitative analysis of mitochondrial morphology indicates that KDPC145 is morphologically distinct from KPDC253
and KPDC143. Scale bars: 10 mm. Reproduced with permission from (Rohani et al., 2020). (b). Exemplary data with DsRED-expressing normal organoids
(red), GFP-expressing EGFRvIII-positive tumor organoids (green), and anti-CD45-APC-labeled EGFRvIII-CAR NK 92 cells (magenta) at 0 h and 10 h of
coculture. Maximum intensity projections are shown. Outlines of tumor organoids are automatically detected. Scale bars: 200 mm. Reproduced with
permission from (Schnalzger et al., 2019). (c). Representative image of microglia cells stained for Iba-1 in medial hippocampus CA1 of control (CTRL) and
EV-treated (EVs) 3xTg Alzheimer’s Disease (AD) mice. Scale bars = 30 mm. Reproduced with permission from (Losurdo et al., 2020). Figure created using
BioRender.
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involved with establishing the right microenvironment as
well as the extracellular matrix is a significant challenge
for organoid-based cultures and may not be transferable
between cell types. Morphology as a readout of in vivo
therapeutic performance has been successfully imple-
mented, for example, using a mouse model of Alzheim-
er’s disease by quantifying microglia morphology after
treatment with MSC extracellular vesicles (Figure 3c)
[43]. However, in vivo studies cannot be performed in a
rapid, high-throughput manner, and it is likely that a
combination of screening methods using different cul-
ture platforms will be needed to determine MoA. This
information can then be used to inform the
manufacturing of cell therapies (in combination with
CQAs) to more effectively and reproducibly target cell
types associated with specific diseases.

High-throughput screening of
morphological responses
Advances in HCI and computing have enabled image-
based high-throughput screening (HTS) of cell pheno-
types. Inspired by drug screening approaches, this high-
throughput morphological profiling combines simulta-
neous testing of millions of perturbations (genetic,
chemical) with broad morphological outputs, allowing
functionally similar grouping of treatments and cell re-
sponses [44,45]. The ability of high-throughput
morphological profiling to rapidly assess the response
of cells to different treatments makes the technique
desirable in the context of cell manufacturing. A typical

HTS workflow consists of cell culture and plating in
multiple well plates; high-throughput, multichannel
image acquisition; high content morphological feature
extraction; and hit identification, the last two steps
often performed using machine learning [46]. One such
well-recognized assay is the cell painting assay, which
uses six fluorescent dyes to stain eight broadly appli-
cable cellular components and organelles for profiling
with 1500 morphological features per cell [5].

High-throughput morphological screens have been
applied in a cell manufacturing context to assess the
identity and potency of multiple cell types. For iPSCs,
unstained andunlabeled livemurine iPSCswere screened
for the pluripotency level using a novel ‘phase
distribution’ imaging system. Known mitochondrial
structural changes related to functional changes in meta-
bolic shifts from oxidative phosphorylation to glycolysis
when reprogramming somatic cells to iPSCs allowed
intracellular, organelle-based morphological profiling
analogous to whole-cell morphological profiling. Phase
distribution imaging distinguished and quantified the
degree of somatic cell reprogramming and, conversely,
iPSCdifferentiation, serving as a screening tool to identify
higher quality (i.e. greater pluripotency) iPSCs before
more rigorous biological assays [47]. High-throughput
morphological profiling has been used to efficiently
group functional responses to treatments such as growth
factors and material cues as well [48,49]. Notably, the
phenotypic response of MSCs to 2176 surface

Table 1

Candidate morphological features and biomarkers for screening applications.

Morphological Feature Definition Biomarker Definition

Mean radius [7] The median distance of any pixel in
the object to the closest pixel
outside of the object

Type IIa1 collagen [7] Chondrogenic marker gene

Circularity (form factor) [7,16,36] Calculated as 4*p*Area/Perimeter2 Oct-3/4 [20] Master regulator of pluripotency
transcription factor

Aspect (length-width) ratio
[16,21,36] [37]

Ratio of the number of pixels in the
major axis to the minor axis of the
best fitting ellipse to the mask

Caspase 3/7 [48] Apoptosis marker

Major axis length [21] The number of pixels in the major
axis of the best fitting ellipse to the
mask

GFAP [21,39] Astrocyte surface marker

Minor axis length [21] The number of pixels in the minor
axis of the best fitting ellipse to the
mask

VCAM-1 [49] Cellular adhesion marker gene

Area [16,36]
[37]

Number of pixels in the mask TNF-a [22] Activated macrophage-secreted
cytokine

Compactness [16] The mean squared distance of the
object’s pixels from the centroid
divided by the area

IL7R [38] Interleukin receptor that plays a role
in cancer progression

Perimeter [16] The total number of pixels (2D) or
voxels (3D) around the boundary of
each region in the image

YAP/TAZ [30,31] Proliferation transcription factor

TAZ, transcriptional coactivator with PDZ-binding motif; YAP, yes-associated protein.
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topographies was investigated in terms of migration, pro-
liferation, protein synthesis, apoptosis, and differentiation
using quantitative image analysis after clustering the
surfaces into 28 archetypical cell shapes. Transcriptomics
analysis revealed a strong link between cell shape, mo-
lecular signatures, and phenotype, meaning manipulation
of cell shape may be a useful route for achieving different
molecular signatures and functions [49]. Considering the
relationship between cell shape and molecular readout,
Table 1 shows examples of morphological features and
biomarkers associated with function that could be used in
screening applications. These morphological features and
biomarkers can be analyzed at a subcellular, cellular, and
population level to better understand cellular heteroge-
neity and provide mechanistic insight into how
manufacturing can impact cell function.

High-throughput morphological profiling is widely used
for prediction of treatment efficacy d screening target
cell morphological response to therapy to inform effica-
cious therapies and MoA. Wu et al. probed cancer cell
heterogeneity andMoA using 216morphological features.
The results show single cell-derived clone morphological
traits are heritable and correlatewith specific genomic and
transcriptomic phenotypes. Furthermore, unsupervised
clustering ofmorphological subtypespredicts tumorigenic
and metastatic potential in an in vivo mouse model of
breast cancer [38]. CRISPR technologies have enabled
genome-scale, multivariate gene perturbation morpho-
logical screens.Thousands ofperturbationswere screened
and related to phenotypic changes in cellular morphology
or the staining pattern of a marker of the nuclear pore
complex in both HeLa and U2OS cells [50]. Such HTS
approacheshavebeencommonly adapted to iPSC-derived
and cancer organoids to retain features of complex physi-
ology anddiseasewhile still allowing screening at scale. For
instance, iPSC-derived kidney organoid culture condi-
tions were screened with fluorescent staining to enhance
differentiation. Subsequently, genetically induced poly-
cystic kidney disease organoids were screened with mul-
tiple compounds, revealing a role of myosin in polycystic
kidney disease. Thus, in this study, HTSwas used first for
manufacturing of organoids and then for target response to
treatment [51].

Conclusion
HCI shows increasing promise to fulfill an unmet need for
robust and simple measurement of CQAs of cell thera-
peutics. As we have discussed in this article, imaging-
based readouts of cell shape, organelle distribution, and
metabolism d broadly referred to as cell morphology d
are associated with a range of relevant biomanufacturing
outcomes. Offline cell potency assays are one critical area
of need and morphological imaging (in 2D and 3D) can
provide valuable insight into in vitro or even in vivo out-
comes, for instance, by imaging the anti-cancer effect of

CAR-Tcells in tumor organoid cultures. Other emerging
functional applications of HCI include elucidating the
method of action of intrinsically multifunctional cell
therapeutics. Much of the current cutting-edge HCI
promises to move toward integration with manufacturing
pipelines by identifying quality attributes such as differ-
entiation, cell activation, and immunomodulatory sub-
populations across iPSCs, MSCs, and T-cells. However,
challenges and opportunities remain in idevntifying key
targets and desired outcomes, as well as in organizing and
integrating data sets across manufacturing platforms.
Furthermore, this work exists at the nexus of many fields;
requiring collaboration between data scientists, imaging
hardware development experts, biomanufacturing spe-
cialists, and clinical end-users to maximize the potential
impact on cell therapies. As technologies advance from
labeled off-line analysis strategies to inline, nondestruc-
tive label-free imaging outcomes, HCI is poised to trans-
form the cell biomanufacturing field and human health.
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