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Local Re-encoding for Coded Matrix Multiplication

Xian Su, Student Member, IEEE, Jared Parker, Xiaomei Zhong, Xiaodi Fan, Jun Li, Member, IEEE

Matrix multiplication is a fundamental operation in various algorithms for big data analytics and machine learning. As the size

of the dataset increases rapidly, it is now a common practice to distribute the computation on multiple servers. As straggling servers

are inevitable in a distributed infrastructure, various coding schemes have been proposed to tolerate potential stragglers. However,

as resources are shared with other jobs in a distributed infrastructure and their performance can change dynamically, the optimal

way of encoding the input matrices is not static. So far, all existing coding schemes require encoding input matrices in advance,

and cannot change the coding schemes or adjust their parameters flexibly. In this paper, we propose a framework that can change

the coding schemes and/or their parameters by locally re-encoding the coded task on each server. We first present this framework

for entangled polynomial codes, which changes the coding parameters with marginal overhead and saves job completion time. We

then extend the framework for matrices with bounded entries, achieving a higher level of flexibility for local re-encoding while

maintaining better numerical stability.

Index Terms—big data infrastructure, matrix multiplication, re-encoding, numerical stability

I. INTRODUCTION

M
ATRIX multiplication is an essential building block in

various algorithms for big data analytics and machine

learning. With the growing sizes of the dataset and the model,

it is now common that the input matrices are so large that

their multiplication cannot be computed on a single server.

Therefore, it becomes inevitable to run the multiplication

on multiple servers in a distributed infrastructure, e.g., in a

cloud, where each server executes a task multiplying two

smaller submatrices. However, it is well known that servers

in a distributed infrastructure may experience temporary

performance degradation, due to load imbalance or resource

congestion [2]–[5]. Therefore, when distributing computation

on multiple servers, the progress of the multiplication can be

significantly affected by the tasks running on such slow or

failed servers, which we call stragglers.

In order to tolerate stragglers in distributed matrix multipli-

cation, a naive method is to replicate each task on multiple

servers. For example, with two input matrices A =

[

A0

A1

]

and B =
[

B0 B1

]

, we have AB =

[

A0B0 A0B1

A1B0 A1B1

]

, or

AB = [AiBj ]2×2 for simplicity. Then we split the job into

four tasks AiBj , i ∈ [0, 1], j ∈ [0, 1], and replicate each of

such four tasks on multiple servers. This method, however,

requires a large number of tasks to tolerate just a small number

of stragglers. To tolerate only r stragglers, we need to replicate

all tasks r + 1 times.
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On the other hand, coding-based approaches for distributed

matrix multiplication have been proposed to tolerate stragglers

more efficiently [3]–[10], where each server multiplies coded

matrices encoded from submatrices in A or/and B. Using the

same example above, we still partition A and B into two

submatrices, and encode them into (A0 +A1) and (B0 +B1),

respectively. Then an additional coded task can be created to

compute (A0 +A1)(B0 +B1). Since (A0 +A1)(B0 +B1) =

A0B0+A0B1+A1B0+A1B1, a sum of the result of the four

original tasks, we can recover the four submatrices in AB once

we have the results of any four of the five tasks. Compared

with replicating each task on two servers, this coding scheme

can tolerate any single straggler with 75% fewer additional

tasks.
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Fig. 1: The model of coded matrix multiplication with global

re-encoding.

Conceptually, we illustrate the workflow of conventional

coded matrix multiplication in Fig. 1. To create additional

coded tasks, the original input matrices need to be partitioned

and encoded, and such coded tasks are initially stored on

n servers, which we call workers. Each worker returns the

result of the multiplication of its coded matrices to a master

server. With a carefully designed coding scheme, the master can

decode from a subset of the n workers without waiting for the

stragglers. However, since it takes time to generate all coded

matrices, and the execution of tasks may not start immediately

after encoding (e.g., due to the task scheduling), the coding
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scheme and its parameters chosen before encoding may not

be the best choice when the tasks are being executed, as the

performances of resources in a distributed infrastructure are

subject to change due to the shared nature of resources in the

distributed infrastructure, especially in the cloud. To the best of

our knowledge, we can only change the coding scheme or its

parameters by global re-encoding, i.e., re-encoding coded tasks

from scratch. In the global re-encoding, it is necessary to read

the input matrices, split them into submatrices in a different

way, encode them into coded tasks with a different coding

scheme or with different values of parameters, and finally store

them on workers. Inevitably, it consumes a significant amount

of time and network bandwidth to encode and distribute new

coded matrices.

In this paper, we propose a framework for distributed matrix

multiplication that supports changing the coding schemes and/or

the values of their parameters by locally re-encoding the coded

matrices on each server, without receiving any additional data

from any other server. Local re-encoding makes it possible

to determine the coding scheme and/or its parameters almost

immediately before the start of the computation, as shown

in Fig. 2, thanks to its very low overhead. In other words,

local re-encoding also gives a second chance to choose the

coding scheme and/or its parameters after the initial encoding,

especially when coded tasks will not run immediately after

encoding. We first propose a framework of local re-encoding for

entangled polynomial codes [7]. It not only supports changing

the values of parameters, but also allows changing the coding

schemes from the other two representative codes for matrix

multiplication, i.e., polynomial codes [8] and MatDot codes [9],

to entangled polynomial codes.
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Fig. 2: The model of coded matrix multiplication with local

re-encoding.

Besides local re-encoding for entangled polynomial codes,

we further extend the original framework to mitigate the issue

of numerical stability. As all the three coding schemes above

are constructed as polynomials (elaborated in Sec. V-A), they

are known to suffer from poor numerical stability for the

multiplication of matrices with real numbers. The decoded

result may be significantly different from the actual result due

to even small perturbations during decoding, caused by the

imprecision of floating-point numbers in the computer. This

is because generator matrices of these three coding schemes

are all Vandermonde matrices, known as numerically unstable

with real numbers [11], [12].1 Then the numerical error after

local re-encoding may become significantly higher than the

original one. Hence, we extend our framework to support a

variation of the entangled polynomial code for matrices with

bounded entries, which maintains better numerical stability [13].

Meanwhile, a more flexible tradeoff between numerical stability

and computational overhead can be achieved in the extended

framework.

II. RELATED WORK

In order to tolerate stragglers in a job of distributed

computing, a common method is to relaunch the affected tasks

on a replacement server after the straggler is detected [14], [15].

While relaunching a task on another server may still consume

a significant amount of time, we can launch each task in the

job multiple times on different servers at the beginning of the

job [8], [14], [16]–[19]. In this way, only one of the replicas

will be sufficient to complete each task. However, replication-

based methods suffer from high resource consumption. On

the other hand, existing literature has proposed a number of

coding-based methods that can tolerate the same number of

stragglers by adding fewer additional tasks than replication-

based methods. In the first effort made by Lee et al. [3], a

coding scheme based on MDS codes was proposed for the

matrix-vector multiplication, where the matrix is horizontally

split and encoded to create coded tasks. More coding schemes,

such as sparse coding [6] and rateless coding [20], were also

proposed for the matrix-vector multiplication.

As for matrix-matrix multiplication, the coding schemes

will need to split and encode two input matrices, as both of

them may be large. Coding schemes based on product codes

create the coded tasks in two steps [21]–[24]. A job is firstly

encoded into intermediate coded tasks by applying one coding

scheme to one matrix, and each intermediate task is encoded

again by applying another (or the same) coding scheme on the

other matrix. However, since the actual tasks are created from

intermediate coded tasks, the patterns of stragglers tolerable

are limited as each intermediate tasks need to be decodable.

On the other hand, polynomial codes [8] and MatDot [9] codes

can directly encode the two input matrices while tolerating any

patterns of stragglers, as long as the number of stragglers is less

than a given number. However, each input matrix can only be

split in one dimension, either vertically or horizontally in such

two coding schemes. More generally, entangled polynomial

codes [7] and PolyDot [9] codes support to split the two input

matrices vertically and horizontally at the same time.

1This issue does not exist when the multiplication is performed on matrices

on a finite field. We focus on the multiplication of matrices of real numbers

in this paper.
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Many existing coding schemes for distributed matrix mul-

tiplication are constructed based on polynomials [3], [7], [8].

Two input matrices A and B are encoded as the evaluations

of two polynomial(s) of Ã(x) and/or B̃(x), where the value

of x in each task must be unique. By carefully designing

the polynomial, decoding can be done by interpolating the

coefficients of C̃(x) = Ã(x)B̃(x), such that all submatrices

of AB appear in the coefficients of C̃(x). However, given

multi-point evaluations of C̃(x), the interpolation is equivalent

to solving a linear system with a Vandermonde matrix, which

is known to have a large condition number, i.e., a small

perturbation in the Vandermonde matrix, which is inevitable

due to the limited precision of floating point numbers in the

computer, may lead to a large error after decoding [12]. Hence,

numerically stable codes have been proposed to achieve the

same level of tolerance against stragglers with much lower

errors after decoding [11], [13].

Conventionally the computation is considered as the major

bottleneck in distributed systems. In order to make use of

more resources efficiently, the coding schemes that leverage

partial stragglers have also been proposed recently [25], [26].

On the other hand, other resources such as the bandwidth

may also become a bottleneck, and communication-efficient

coding schemes for distributed matrix multiplication have

been proposed, e.g., squeezed polynomial codes that introduce

replicated coded matrices [10] and local error-correcting codes

in serverless systems [5]. However, the existing works above

have only considered one kind of resource with a fixed coding

scheme and parameters, while in practice the performances of

different resources may vary with time.

The tradeoff between different resources makes the choice

of coding schemes and the values of parameters more difficult.

Moreover, the optimal choice may change dynamically with

time in many cases, so the optimal choice of the coding scheme

and its parameters also keeps changing dynamically. To address

this problem, re-encoding was proposed in distributed storage

systems, where Maturana and Rashmi proposed convertible

codes allowing the change of the parameters of MDS codes

with the optimal overhead of data transfer [27], [28]. However,

it only works in the distributed storage systems without

considering the computation on such data. Even worse, it

requires obtaining additional data from remote workers.

In this paper, we, for the first time, propose a coding

framework that supports the local re-encoding of tasks for

distributed matrix multiplication, which allows changing the

coding scheme or/and its parameters without data transfer.

This feature gives a second chance to choose the coding

scheme and/or its parameters just before the start of the

job. Moreover, we further extend our framework to support

maintaining numerical stability. By local re-encoding with low

overhead, flexible tradeoffs can be easily achieved, such as that

between computation and communication, and that between

numerical stability and job completion time.

III. BACKGROUND AND EXAMPLES

A. Background: Coding Schemes for Distributed Matrix

Multiplication

In this paper, we demonstrate that coded tasks with polyno-

mial codes [8] or MatDot codes [9] can be locally re-encoded

into those with entangled polynomial codes [7], or be updated

with different values of their parameters. We will first present

the preliminary knowledge about such three coding schemes,

and our framework in the rest of this paper will be based on

this background knowledge. We assume that coded tasks are

created for the multiplication of two large matrices A and B,

i.e., AB.

Polynomial codes assume that the input matrices A and B

can be horizontally and vertically split into m and n subma-

trices, respectively. In other words, A =
[

AT
0 · · · AT

m−1

]T

and B =
[

B0 · · · Bn−1

]

. Hence, AB = [AiBj ]m×n, and

the result of the multiplication can be obtained if we can

have the mn submatrices in AB. An (m,n) polynomial code

encodes A and B as two polynomial functions of x, i.e.,

ÃP(x) =
m−1
∑

i=0

Aix
ni and B̃P(x) =

n−1
∑

j=0

Bjx
j , respectively. A

coded task will then multiply ÃP(x) with B̃P(x). Note that the

values of x must be different among all coded tasks. Hence,

we have

ÃP(x)B̃P(x) =
m−1
∑

i=0

n−1
∑

j=0

AiBjx
ni+j , (1)

which is also a polynomial function of x with degree mn−

1, where AiBj , i ∈ [0,m − 1], j ∈ [0, n − 1], appears as

the coefficient of xni+j . In other words, if we run tasks of

ÃP(x)B̃P(x) with different values of x on multiple servers, we

can recover all the coefficients from the results of any mn

tasks by polynomial interpolation or Reed-Solomon decoding.

Hence, its recovery threshold, i.e., the number of tasks that is

sufficient for decoding regardless of their patterns, is mn.

MatDot codes assume that A and B are split vertically and

horizontally into p submatrices, respectively. In other words,

A =
[

A0 · · · Ap−1

]

and B =
[

BT
0 · · · BT

p−1

]T

. Then

AB =
p−1
∑

k=0

AkBk. A MatDot code also encodes A and B as

two polynomial functions of x, i.e., ÃMD(x) =
p−1
∑

k=0

Akx
k and

B̃MD(x) =
p−1
∑

k=0

Bp−1−kx
k, respectively. Still, each coded task

multiplies such two polynomials with a unique value of x. We
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the performance of different resources when choosing the

way in which the tasks are encoded for distributed matrix

multiplication. For example, if CPU is the bottleneck, it is

then desirable to split A and B into more submatrices, i.e.,

making the recovery threshold higher in exchange for a lower

complexity of each task. On the other hand, if the network

bandwidth is limited, it becomes desirable to split A and

B into fewer submatrices, making it possible to complete

the computation on fewer tasks with lower communication

overhead.

Furthermore, to demonstrate the impact of different resources

on the performance of distributed matrix multiplication, we run

a job that multiplies the same two 4096×4096 matrices in our

local cluster. The job is implemented with Open MPI [29]. We

use a master server in the cluster with the same configuration

as workers, which calculates the result of coded tasks. Each

worker uploads the result of its task to the master. The number

of workers in each job equals the corresponding recovery

threshold of the coding scheme plus the number of stragglers

to tolerate, and we set to tolerate 5 stragglers. When the number

of results received by the master reaches the recovery threshold,

the master will stop receiving any new result and decode

such results. Hence, job completion time includes the time of

executing tasks on workers, uploading the results to the master,

and decoding the results on the master.

In our experiment, we observe how the performance of

the job, in terms of its completion time, changes with the

available network bandwidth. We encode the tasks in the job

with different coding schemes, and compare their completion

time with different available network bandwidth. In order to

change the available network bandwidth, we use iperf to

send additional traffic at a fixed throughput of 3 Gbps from

another server to the master, which competes for the network

bandwidth with all workers. With the additional traffic, the job

will get less available bandwidth and need more time to finish.

However, as we run the same job with different coding schemes,

different coding schemes can be affected differently with the

loss of available bandwidth, and we present two examples in

Fig. 4.

In Fig. 4a, we first compare the performance of a (2, 2)

polynomial code with a (2, 4, 2) entangled polynomial code.

With the traffic described above, the entangled polynomial

code completes the job 11.1% slower than the polynomial

code. When such traffic is stopped, however, its time becomes

34.2% faster. We can also observe the same overtaking in

Fig. 4c, between a MatDot code with p = 2 and a (2, 1, 4)

entangled polynomial code. The time of the MatDot code is also

originally 6.7% faster when there is less available bandwidth,

but becomes even 32.5% slower when there is no such traffic.

From the examples above, we can see that the two entangled

polynomial codes can be more easily affected by the available

bandwidth than the polynomial code and the MatDot code.

This is because the master also needs to receive more data

from workers before decoding, even if the task encoded by the

entangled polynomial code has a lower complexity. As resource

availability is subject to frequent changes, it is challenging to

choose the optimal coding scheme and parameters in advance.

Therefore, we propose a local re-encoding framework that will

allow changing the coding scheme and/or the values of their

parameters dynamically with marginal overhead.

As local re-encoding proposed in this paper allows changing

the coding scheme and its parameters by re-encoding each task

locally, we can easily skip the computation and communication

required by re-encoding all tasks globally from scratch. As

shown in Fig. 4b, if we re-encode all necessary tasks globally,

the time spent will be even longer than the completion time

with traffic. However, with local re-encoding, we can directly

change the coding scheme with marginal overhead.

IV. LOCAL RE-ENCODING FOR ENTANGLED POLYNOMIAL

CODES

In this section, we present a framework of local re-encoding

for entangled polynomial codes.

Definition 1: The local re-encoding of a task originally

encoded with an (m,n, p) entangled polynomial code converts

it into a new one encoded with a (λmm,λnn, λpp) entangled

polynomial code without obtaining additional data, where

λm, λn, and λp are positive integers.

More specifically, if a job is originally encoded with an

(m,n, p) EP code, we are able to further split ÃEP(x) and

B̃EP(x), and re-encode them directly into a new coded task

which is equivalent to the task encoded with a (λmm,λnn, λpp)

EP code. First, we can see an illustrative example that re-

encoding a task encoded with p = 2 MatDot code into a

new task encoded with an (m = 2, p = 2, n = 2) entangled

polynomial code. The original partitions of matrix A and

B with p = 2 MatDot code are A =
[

A0 A1

]

and

B =

[

B0

B1

]

, respectively. Therefore, the original coded tasks

are Ãold(x) = A0x
0 + A1x

1 and B̃old(x) = B1x
0 + B0x

1.

Through the global re-encoding, the master partitions the matrix

A and B as A =

[

A0,0 A0,1

A1,0 A1,1

]

and B =

[

B0,0 B0,1

B1,0 B1,1

]

and encodes them with (m = 2, p = 2, n = 2) entan-

gled polynomial code directly from scratch to obtain the

tasks, ÃEP(x) = A0,0x
0 + A0,1x

1 + A1,0x
4 + A1,1x

5 and

B̃EP(x) = B0,1x
0 + B0,0x

1 + B1,1x
2 + B1,0x

3. Compared

with re-encoding the original input matrices A and B in

global re-encoding, local re-encoding further partitions the

original coded tasks Ãold(x) and B̃old(x). In other words,
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we have Ãold(x) =

[

A0,0x
0 +A0,1x

1

A1,0x
0 +A1,1x

1

]

and B̃old(x) =

[

B0,1x
0 +B0,0x

1 B1,1x
0 +B1,0x

1
]

. Then each worker can

run the encoding on the above partition to obtain the new coded

tasks, Ãnew(x) = (A0,0x
0+A0,1x

1)x0+(A1,0x
0+A1,1x

1)x4

and B̃new(x) = (B0,1x
0 +B0,0x

1)x0 + (B1,1x
0 +B1,0x

1)x2.

We can see that ÃEP(x) = Ãnew(x) and B̃EP(x) = B̃new(x).

In other words, local re-encoding can obtain the new coded

tasks successfully. Moreover, while conventionally the original

matrices A and B need to be re-encoded again from scratch,

local re-encoding requires no additional data from any remote

server, leading to marginal overhead. Saving the complexity of

each task by λmλnλp times, our framework achieves a flexible

tradeoff between computation and communication overheads.

The change of coding schemes can also be supported by

this result. From Sec. III-A we can easily verify that ÃP(x) =

ÃEP(x) when p = 1, and ÃMD(x) = ÃEP(x) when m = n = 1.

The same equivalence can also be found in B̃. Hence, as a

special case, we can also change the coding schemes and the

parameters of a polynomial code or MatDot code.

In the rest of this section, we will present this framework

in detail. For convenience, we may omit EP in ÃEP(x) and

B̃EP(x) in the rest of this section when there is no ambiguity,

i.e., Ã(x) = ÃEP(x) and B̃(x) = B̃EP(x).

A. Changing p to λpp

We first show that a task with an (m,n, p) EP code can be

locally re-encoded into a task with an (m,n, λpp) EP code.

We assume that the two input matrices A and B are originally

split into mp and np submatrices, i.e., A = [Ai,j ]m×p and

B = [Bi,j ]p×n, and has been encoded into coded tasks with

Ã(x) and B̃(x).

In order to re-encode Ã(x) and B̃(x), we will further

split Ã(x) vertically into λp submatrices, and B̃(x) hori-

zontally into λp submatrices. Hence, we define Ã(x) =

[

Ã0(x) · · · Ãλp−1(x)
]

and B̃(x) =









B̃0(x)
...

B̃λp−1(x)









.

Since Ã(x) and B̃(x) are linear combinations of Ai,l and

Bl,j , i ∈ [0,m−1], j ∈ [0, n−1], and k ∈ [0, p−1], we are also

equivalently splitting them into p submatrices vertically and

horizontally, respectively. In other words, we can re-write A and

B as A = A′ = [A′
i,j ]m×(λpp) and B = B′ = [B′

i,j ](λpp)×n.

In other words, we split Ai,k as
[

A′
i,λpk

· · · A′
i,λpk+λp−1

]

,

and Bk,j as









(B′
λpk,j

)
...

(B′
λpk+λp−1,j)









. Then we have

[

Ã0(x) · · · Ãλp−1(x)
]

= Ã(x)

=
m−1
∑

i=0

p−1
∑

k=0

Ai,kx
pni+k

=
m−1
∑

i=0

p−1
∑

k=0

[

A′
i,λpk

· · · A′
i,λpk+λp−1

]

· xpni+k

=

[

m−1
∑

i=0

p−1
∑

k=0

A′
i,λpk

xpni+k · · ·

m−1
∑

i=0

p−1
∑

k=0

A′
i,λpk+λp−1x

pni+k

]

,

(4)

and

[

B̃0(x)
T · · · B̃λp−1(x)

T
]T

= B̃(x)

=

n−1
∑

j=0

p−1
∑

k=0

Bp−1−k,jx
pj+k

=

n−1
∑

j=0

p−1
∑

k=0

[

(B′
(p−1−k)λp,j

)T · · ·

(B′
(p−1−k)λp+λp−1,j)

T
]T

xpj+k

=





n−1
∑

j=0

p−1
∑

k=0

(B′
(p−1−k)λp,j

xpj+k)T · · ·

n−1
∑

j=0

p−1
∑

k=0

(B′
(p−1−k)λp+λp−1,jx

pj+k)T





T

.

(5)

In other words, Ãl(x) =
m−1
∑

i=0

p−1
∑

k=0

A′
i,λpk+lx

pni+k and B̃l(x) =

n−1
∑

j=0

p−1
∑

k=0

B′
(p−1−k)λp+l,j

xpj+k, where l = 0, . . . , λp − 1.

Now we can re-encode Ãi(x) and B̃i(x) into a new coded

task. By defining x = σλp , we can rewrite Ãl(x) and

B̃l(x) as Ãl(x)=
m−1
∑

i=0

p−1
∑

k=0

A′
i,λpk+lσ

(pni+k)λp , and B̃l(x)=

n−1
∑

j=0

p−1
∑

k=0

B′
(p−1−k)λp+l,j

σ(pj+k)λp ,l = 0, . . . , λp − 1. Then we

can re-encode Ã(x) and B̃(x) as

λp−1
∑

l=0

Ãl(x)σ
l

=

λp−1
∑

l=0

m−1
∑

i=0

p−1
∑

k=0

A′
i,λpk+lσ

(pni+k)λp+l

=
m−1
∑

i=0

λpp−1
∑

k=0

A′
i,kσ

λppni+k,

(6)
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and

λp−1
∑

l=0

B̃λp−1−l(x)σ
l

=

λp−1
∑

l=0

n−1
∑

j=0

p−1
∑

k=0

B′
(p−1−k)λp+λp−1−l,jσ

(pj+k)λp+l

=

n−1
∑

j=0

λpp−1
∑

k=0

B′
λpp−1−k,jσ

λppj+k.

(7)

From (6) and (7) we can see that the task after re-encoding

is equivalent to Ã(x) and B̃(x) encoded with an (m,n, λpp)

EP code.

B. Changing m to λmm

Now we show that a task with an (m,n, p) EP code can

be locally re-encoded into a task with a (λmm,n, p) EP

code. In this case, we will split Ã(x) into λm submatrices

horizontally, i.e., Ã(x) =









Ã0(x)
...

Ãλm−1(x)









. Similar to the case

above, A will also be equivalently split into λmm subma-

trices, i.e., A = [A′
i,j ](λmm)×p. In other words, we have

Ax,z =









A′
λmi,k

...

A′
λmi+λm−1,k









, and then

[

Ã0(x)
T · · · Ãλm−1(x)

T
]T

=Ã(x) =
m−1
∑

i=0

p−1
∑

k=0
[

(A′
λmi,k)

T · · · (A′
λmi+λm−1,k)

T
]T

· xpni+k (8)

=

[

m−1
∑

i=0

p−1
∑

k=0

(A′
λmi,kx

pni+k)T · · ·

m−1
∑

i=0

p−1
∑

k=0

(A′
λmi+λm−1,kx

pni+k)T

]T

. (9)

Since B̃(x) is not a function of m, we only need to re-

encode Ã(x) when we adjust the value of m. When m is

changed to λmm, we will re-encode Ã(x) as

λm−1
∑

l=0

Ãl(x)x
lpmn

=

λm−1
∑

l=0

m−1
∑

i=0

p−1
∑

k=0

A′
λmi+l,kx

pni+k+lpmn

=

λm−1
∑

l=0

m−1
∑

i=0

p−1
∑

k=0

A′
λmi+l,kx

pn(lm+i)+k.

Here, after re-encoding, we generate Ã′′(x) which is encoded

by a (λmm,n, p) EP code from a matrix A′′ with rows in A

switched as in (10).

A′′ =





















































A′′
0,0 · · · A′′

0,p−1

A′′
1,0 · · · A′′

1,p−1
...

...
...

A′′
m−1,0 · · · A′′

m−1,p−1

A′′
m,0 · · · A′′

m,p−1
...

...
...

A′′
2m−1,0 · · · A′′

2m−1,p−1

...
...

...

A′′
(λm−1)m,0 · · · A′′

(λm−1)m,p−1
...

...
...

A′′
(λm−1)m+(m−1),0 · · · A′′

(λm−1)m+(m−1),p−1





















































=





















































A′
0,0 · · · A′

0,p−1

A′
λm,0 · · · A′

λm,p−1
...

...
...

A′
λm(m−1),0 · · · A′

λm(m−1),p−1

A′
1,0 · · · A′

1,p−1
...

...
...

A′
λm(m−1)+1,0 · · · A′

λm(m−1)+1,p−1

...
...

...

A′
λm−1,0 · · · A′

λm−1,p−1
...

...
...

A′
λm(m−1)+λm−1,0 · · · A′

λm(m−1)+λm−1,p−1





















































.

(10)

Although the sequence of rows in A is switched, it will not

change the result of multiplication after decoding as we can

always switch the rows in the result back to the original order,

i.e.,

λm−1
∑

l=0

m−1
∑

i=0

p−1
∑

k=0

A′
λmi+l,kx

pn(lm+i)+k

=

λm−1
∑

l=0

m−1
∑

i=0

p−1
∑

k=0

A′′
lm+i,kx

pn(lm+i)+k

=

λmm−1
∑

i=0

p−1
∑

k=0

A′′
i,kx

pni+k.

Therefore,

(

λm−1
∑

l=0

Ãl(x)x
lpmn

)

·

(

n−1
∑

j=0

p−1
∑

k=0

Bp−1−k,jx
pj+k

)

is a polynomial of degree λmmnp + p − 2. Given t ∈

[0, λmmnp + p − 2] where t can be uniquely written as

t = pn(l0m+ i0) + pj + s, l0 ∈ [0, λm − 1], i0 ∈ [0,m− 1],

j ∈ [0, n − 1], and s ∈ [0, 2p − 2], the coefficient of xt is
∑p−1

l=0 A′
λmi0+l0,l

Bl,j if s = p− 1.
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C. Changing n to λnn

Similar to Sec. IV-B, we assume that B̃(x) will be

further split into λn submatrices vertically, i.e., B̃(x) =
[

B̃0(x) · · · B̃λn−1(x)
]

. It means that B is equivalently

split into λnn submatrices vertically, i.e., B = [B′
i,j ]p×(λnn).

In other words, Bk,j =
[

B′
k,λnj

· · · B′
k,λnj+λn−1

]

. We can

then have
[

B̃0(x) · · · B̃λn−1(x)

]

= B̃(x)

=
n−1
∑

j=0

p−1
∑

k=0

[

B′
p−1−k,λnj

· · · B′
p−1−k,λnj+λn−1

]

xpj+k

=

[

n−1
∑

j=0

p−1
∑

k=0

B′
p−1−k,λnj

xpj+k · · ·

n−1
∑

j=0

p−1
∑

k=0

B′
p−1−k,λnj+λn−1x

pj+k

]

.

When we change n to λnn, we only need to re-encode

B̃(x) as
λn−1
∑

l=0

B̃l(x)x
lpmn. As we will show below, although

it cannot be directly written as B̃(x) with an (m,λnn, p) EP

code, we show that it is equivalent to an (m,λnn, p) EP code,

as they achieve the same recovery threshold. Since

Ã(x) ·

λn−1
∑

l=0

B̃l(x)x
lpmn

=Ã(x) ·





λn−1
∑

l=0

n−1
∑

j=0

p−1
∑

k=0

Bp−1−k,λnj+lx
pj+k+lpmn





=

(

m−1
∑

i=0

p−1
∑

k=0

Ai,kx
pni+k

)

·

(

λn−1
∑

l=0

n−1
∑

j=0

p−1
∑

k=0

Bp−1−k,λnj+lx
pj+k+lpmn

)

=

m−1
∑

x=0

λn−1
∑

l=0

n−1
∑

j=0

2p−2
∑

s=0

min{p−1,s}
∑

k=max{0,s−p+1}

Ai,kBp−1−k,λnj+lx
pmnl+pni+pj+s, (11)

the degree of the polynomial above is pmn(λn−1)+pn(m−

1)+p(n−1)+2p−2 = pmλnn+p−2, and it’s the same as that

of an (m,λnn, p) EP code. However, after the interpolation,

the sequence of submatrices in AB will be different from their

order in the EP code and should be shuffled back.

In order to retrieve the original order of submatrices in

AB, we first consider the order before re-encoding. From

(3) we can see that for any t ∈ [0,mnp + p − 2], it can

be uniquely written as t = pni + pj + s. When s = p − 1,

the coefficients of xt are
p−1
∑

l=0

Ai,lBl,j . In (11), instead, we can

uniquely rewrite the exponent of xt as t = pmnl+pni+pj+s,

t ∈ [0, pmnλnn + p − 2]. When s = p − 1, we can find
p−1
∑

k=0

Ai,kBp−1−k,λnj+l as its coefficient.

D. Changing (m,n, p) to (λmm,λnn, λpp)

In general, when we need to change the values of m, n,

and p at the same time, we can simply apply the three steps

above individually. We note that when λm 6= 1 or λn 6= 1,

we will not construct the exact Ã(x) or B̃(x). Rows in A

are virtually shuffled when λm 6= 1. If λn 6= 1, B̃(m,λnn, p)

is not constructed exactly, but it can maintain the recovery

threshold of the corresponding EP code.

Therefore, we will first change p to λpp, then m to λmm,

and finally n to λnn. Assume that each task is originally

encoded with an (m,n, p) EP code. If A and B are of sizes

Λmm×Λpp and Λpp×Λnn, then each task can be re-encoded

into any (λmm,λnn, λpp) EP code, if λm|Λm, λn|Λn, and

λp|Λp. The more divisors Λm, Λn, and Λp have, the more EP

codes can be re-encoded to.

Moreover, even though λm/λn/λp is not a divisor of

Λm/Λn/Λp, we can still add all-zero additional rows or columns

into Ãi or/and B̃i so that they can be divisible. As Ãi and B̃i are

linear combinations of submatrices in A and B, respectively, it

is equivalent to adding additional rows or/and columns in A and

B, which will only add additional rows or/and columns with

zero elements but not change any existing element in the result.

The overhead of such padding is at most
(

1 + λm

Λm

)(

1 +
λp

Λp

)

of Ãi and
(

1 + λn

Λn

)(

1 +
λp

Λp

)

of B̃i, which is marginal if

λm ≪ Λm, λn ≪ Λn, and λp ≪ Λp. Since A and B

are supposed to be large matrices, it is easy to satisfy such

requirements.

E. Complexity Analysis

We now discuss the complexity of our framework, especially

the complexity of re-encoding, and compare it with the

complexity of the encoding and the complexity of the task. We

find that the complexity of re-encoding is marginal compared

with both of them.

Since the overhead of the addition is much cheaper than that

of multiplication, we analyze the complexity as the number

of multiplications. For convenience, we rewrite the sizes of

A and B as M × P and P ×N , i.e., M = Λmm, N = Λnn,

and P = Λpp. Then the sizes of Ã(x) and B̃(x) are M
m

× P
p

and P
p
× N

n
, respectively.

When we encode a task with an (m,n, p) EP code, both

Ã(x) and B̃(x) are encoded as a linear combination of the

mp submatrices in A and the np submatrices in B. Therefore,

each element in A and B will be multiplied with a constant,

and the complexity of Ã(x) and B̃(x) is O(MP ) and O(NP ),

respectively. Moreover, the constants are powers of x, leading
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to pn(m−1)+(p−1) multiplications. However, this complexity

can be ignored as we assume A and B are large matrices.

As a comparison, when we adjust the values of x, the

complexity of re-encoding is much lower. When p changes to

λpp, Ã(x) and B̃(x) should be further split into λp subma-

trices and re-encoded into their linear combinations. Hence,

their numbers of multiplications are O(MP
mp

) and O(NP
np

),

respectively. Similarly, when the value of m or n changes,

its complexity is also O(MP
mp

) or O(NP
np

). Hence, in the

general case when (m,n, p) is changed to (λmm,λnn, λpp),

the overall complexity is O(MP
mp

+ NP
np

).

Given the sizes of Ã(x) and B̃(x), the complexity of the

matrix multiplication in a task with an (m,n, p) EP code

is MNP
mnp

. After re-encoding, the complexity of the multipli-

cation becomes MNP
λmm·λnn·λpp

. Therefore, the complexity of

a task, including re-encoding and the matrix multiplication,

is O
(

P
p

(

M
m

+ N
n
+ MN

λmm·λnn·λp

))

= O( MNP
λmm·λnn·λpp

) if M

and N are large. In other words, the complexity of re-encoding

is also marginal to that of the task.

Compared with a job with a (λmm,λnn, λpp) EP code,

the decoding overhead of the EP code after re-encoding will

be the same, since the new code will be equivalent to a

(λmm,λnn, λpp) EP code.

V. LOCAL RE-ENCODING FOR

TANG-KONSTANTINIDIS-RAMAMOORTHY CODES

In Sec. IV, we have proposed a framework of local re-

encoding for EP codes, which are constructed based on polyno-

mials, i.e., the coded task is essentially a multiplication of two

polynomials. Therefore, the decoding requires interpolating

a polynomial from multiple evaluation points, as the results

of matrix multiplication are located in the coefficients of this

polynomial. Although it is numerically stable for polynomials

on finite fields, as shown in the classical coding theory, it

is not the case for matrix multiplication with real numbers.

The interpolation of a polynomial effectively solves a linear

system with a Vandermonde matrix, and Vandermonde matrices

are well known to have large condition numbers [12], [30].

Therefore, small perturbations due to numerical precision errors

can lead to large errors, especially for the polynomial with a

large degree.

Compared with re-encoding all tasks from scratch, the

numerical stability can be more easily affected after local

re-encoding. If we re-encode all tasks from scratch, we can

easily change the evaluation point of the polynomials in any

task. However, the evaluation points chosen for the original

polynomial cannot be changed after local re-encoding, and

thus the evaluation points after local re-encoding may lead

to arbitrarily high condition numbers in the corresponding

Vandermonde matrix.

In this section, we present an extension of the local re-

encoding framework, by supporting a variation of EP codes

which maintains the numerical stability for bounded entries in

the matrices and allows achieving a flexible tradeoff between

the numerical stability and the computational overhead, without

changing the recovery threshold. Hence, the error after re-

encoding can be significantly lower than that with EP codes.

Moreover, we can now change the complexity of a task

without changing the recovery threshold, while maintaining

the numerical stability.

A. Background and Examples

We now briefly introduce the code construction and its

properties. For convenience, we name it as Tang-Konstantinidis-

Ramamoorthy codes or TKR codes.2 Interested readers may

find more details of TKR codes in [13].

Assume that the input matrices A and B are originally split

as A = [Ai,j ]m×p and B = [Bi,j ]p×n. In addition, all entries

in A and B are non-negative integers.3 We first demonstrate

a special case of TKR codes. Assuming that ζ is a large

enough integer, A and B are then encoded as ÃTKR(x) =
m−1
∑

i=0

p−1
∑

k=0

Ai,kζ
kxni and B̃TKR(x) =

n−1
∑

j=0

p−1
∑

k=0

Bk,jζ
−kxj . In par-

ticular, the value of ζ is the same in all tasks, while the values

of x should be different. Hence, we have ÃTKR(x)B̃TKR(x) =
m−1
∑

i=0

n−1
∑

j=0

(

p−1
∑

t=−(p−1)

min{p−1,t+p−1}
∑

l=max{0,t}

Ai,lB−t+l,jζ
t

)

xni+j .

Similar to polynomial codes, we can decode

p−1
∑

t=−(p−1)

min{p−1,t+p−1}
∑

l=max{0,t}

Ai,lB−t+l,jζ
t, (12)

where i = 0, . . . ,m − 1, j = 0, . . . , n − 1, with mn

tasks since the values of x are different. Furthermore,

if ζ is large enough such that all entries in the coeffi-

cients are smaller than ζ
2 , Tang et al. have proved that

|
−1
∑

t=−(p−1)

min{p−1,t+p−1}
∑

l=max{0,t}

Ai,lB−t+l,jζ
t| < 1

2 . Therefore, we

can recover the coefficient of ζ0, i.e.,
p−1
∑

l=0

Ai,lBl,j , by rounding

(12) to the nearest integer and then computing the remainder

upon division by ζ. Although the first step of decoding still

involves a Vandermonde matrix, its degree is only mn−1, and

the error can be further mitigated in the second step. Hence, it

is shown in [13] that numerical errors of TKR codes are much

smaller than those of EP codes.

We can see that the above example of TKR codes has a

recovery threshold of mn, although the input matrices are

2Without modifying the code construction and its properties, we slightly

change the notations in the code construction to conform with existing ones

in this paper.
3Floating-point entries with limited precision can be handled with scaling.
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split into mp and np submatrices. In fact, when p = 1, it

downgrades to a polynomial code. TKR codes also support

a more general recovery threshold by trading off numer-

ical precision. Assume p′|p and q = p
p′

, we then have

ÃTKR(x) =
m−1
∑

i=0

p′−1
∑

k=0

q−1
∑

u=0
Ai,qk+uζ

uxp′ni+k and B̃TKR(x) =

n−1
∑

j=0

p′−1
∑

k=0

q−1
∑

u=0
Bq(p′−1−k)+u,jζ

−uxp′j+k. In other words, the

special case above corresponds to p′ = 1. Therefore,

ÃTKR(x)B̃TKR(x) =

m−1
∑

i=0

n−1
∑

j=0

2p′−2
∑

t′=0

min{p′−1,t′}
∑

l′=max{0,t′−p′+1}
(

q−1
∑

t=−(q−1)

min{q−1,t+q−1}
∑

l=max{0,t}

Ai,ql′+l

Bq(p′−1−t′+l′)−t+l,jζ
t

)

xp′ni+p′j+t′ .

(13)

As a polynomial of x, (13) has a degree of

mnp′ + p′ − 2 and hence has a recovery threshold

of mnp′ + p′ − 1. After interpolation, we can get
∑min{p′−1,t′}

l′=max{0,t′−p′+1}

∑q−1
t=−(q−1)

∑min{q−1,t+q−1}
l=max{0,t} Ai,ql′+l ·

Bq(p′−1−t′+l′)−t+l,jζ
t as the coefficient of xp′ni+p′j+t′ .

We then round it to the nearest integer and compute the

remainder upon division by ζ. Eventually we will obtain
p′−1
∑

l′=0

q−1
∑

l=0

Ai,ql′+lBql′+l,j =
p−1
∑

k=0

Ai,kBk,j , i = 0, . . . ,m − 1,

j = 0, . . . , n− 1.

In this paper, we show that with a non-trivial extension,

our local re-encoding framework can also be applied to TKR

codes.

Definition 2: The local re-encoding of a task originally

encoded with an (m,n, p, p′) TKR code converts it into a

new one encoded with a (λmm,λnn, λpp, λp′p′) TKR code

without obtaining additional data, where λm, λn, λp, and λp′

are positive integers, and λp′ |λp.

Note that when p = p′, the corresponding TKR code

downgrades to an (m,n, p) entangled polynomial code. As a

special case of this result, we can locally re-encode tasks from

the entangled polynomial code (or its special cases including the

polynomial code and MatDot code) to the TKR code. Similarly,

we first show an illustrative example that re-encoding a task

encoded with (m = 1, p = 2, n = 1, p′ = 2) TKR code into

a new task encoded with (m = 1, p = 4, n = 1, p′ = 2)

TKR code. In the original task, the partitions of A and

B are A =

[

A0

A1

]

and B =
[

B0 B1

]

, so we have the

coded tasks Ãold(x) = A0ζ
0x0 + A1ζ

0x1 and B̃old(x) =

B0ζ
0x0+B1ζ

0x1. By global re-encoding, the master partitions

the input matrices A and B as A =
[

AT
0 AT

1 AT
2 AT

3

]T

and B =
[

B0 B1 B2 B3

]

, respectively. Therefore, the

master can re-encode A and B from scratch to obtain the new

coded tasks ÃTKR(x) = A0ζ
0x0+A1ζ

1x0+A2ζ
0x1+A3ζ

1x1

and B̃TKR(x) = B0ζ
0x1 + B1ζ

−1x1 + B2ζ
0x0 + B3ζ

−1x0.

With local re-encoding framework, each worker locally fur-

ther partition the original coded tasks Ãold(x) vertically

and B̃old(x) horizontally. Using the local re-encoding for-

mula presented in Sec. V-B, we have the new coded tasks

Ãnew(x) = A0ζ
0x0 + A1ζ

1x0 + A2ζ
0x1 + A3ζ

1x1 and

B̃new(x) = B0ζ
0x1 + B1ζ

−1x1 + B2ζ
0x0 + B3ζ

−1x0. We

can see that ÃTKR(x) = Ãnew(x) and B̃TKR(x) = B̃new(x).

Therefore, the proposed local re-encoding framework can obtain

the same coded tasks as those encoded with the general TKR

code globally.

We can also see that in TKR codes the recovery threshold

does not change when p increases. In other words, with the

same values of m, n, and p′, TKR codes achieve a tradeoff

between the numerical stability and the complexity of the task.

Tang et al. have reported that numerical precision decreases,

i.e., the error after decoding increases when the value of

p increases [13]. Hence, we can also demonstrate that our

framework achieves a flexible tradeoff between numerical

precision and the complexity of the task (and hence job

completion time) through local re-encoding.

For convenience, we may also omit TKR in this section

when there is no ambiguity, i.e., Ã(x) = ÃTKR(x) and B̃(x) =

B̃TKR(x).

B. Changing (m,n, p, p′) to (m,n, λpp, p
′)

As described above, the recovery threshold of TKR codes,

i.e., mnp′ + p′ − 1 does not depend on p. Hence, different

from the local re-encoding for EP codes in Sec. IV where the

recovery threshold must be changed after re-encoding, it is

possible to re-encode a task encoded from TKR codes without

changing the recovery threshold. In other words, we can flexibly

achieve a different tradeoff between numerical precision and

task complexity.

In order to achieve a different tradeoff, we need to further

split Ã(x) vertically and B̃(x) horizontally, i.e., Ã(x) =

[

Ã0(x) · · · Ãλp−1(x)
]

and B̃(x) =









B̃0(x)
...

B̃λp−1(x)









. Equiv-

alently, by splitting Ã(x) and B̃(x), we are also splitting

A and B as Sec. IV-A. Similar to (4) and (5), we can get

Ãl(x) =
m−1
∑

i=0

p′−1
∑

k=0

q−1
∑

u=0
A′

i,λp(qk+u)+l
ζuxp′ni+k and B̃l(x) =

n−1
∑

j=0

p′−1
∑

k=0

q−1
∑

u=0
B′

λp(q(p′−1−k)+u)+l,j
ζ−uxp′j+k, l = 0, ..., λp−1.
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We can now re-encode Ã(x) and B̃(x) as:

λp−1
∑

l=0

Ãl(x)ζ
ql =

λp−1
∑

l=0

m−1
∑

i=0

p′−1
∑

k=0

q−1
∑

u=0

A′
i,λp(qk+u)+l·

ζu+qlxp′ni+k,

and

λp−1
∑

l=0

B̃l(x)ζ
−ql=

λp−1
∑

l=0

n−1
∑

j=0

p′−1
∑

k=0

q−1
∑

u=0

B′
λp(q(p′−1−k)+u)+l,j ·

ζ−u−qlxp′j+k.

Although the task after re-encoding is not exactly the

same as an (m,n, λpp, p
′) TKR code, we can show that

after multiplication, we can still decode the result of AB

with the same recovery threshold, i.e., it is equivalent to an

(m,n, λpp, p
′) TKR code.

Given A partitioned into m × λpp submatrices and B

partitioned into λpp× n submatrices, i.e., A = [Ai,j ]m×(λpp)

and B = [Bi,j ](λpp)×λn
, we shuffle the columns of A

and rows of B such that the result of matrix multiplica-

tion remains unchanged. Given any k ∈ [0, λpp − 1], it

can be uniquely written as v = q(λpk + l) + u where

l ∈ [0, λp − 1], u ∈ [0, q − 1], and k ∈ [0, p′ − 1]. We

define a mapping function f(v) = λp(qk + u) + l and

map A to A′′ = [A′′
i,j ]m×(λpp) = [A′

i,f(j)]m×(λpp). We also

define B′′ = [B′′
i,j ](λpp)×n = [B′

f(i),j ](λpp)×n. Therefore,

AB = A′B′ = A′′B′′ as we shuffle columns of A′ and rows

of B′ in the same way.

Applying an (m,n, λpp, p
′) TKR code on A′′, we have

Ã′′(x) =
m−1
∑

i=0

p′−1
∑

k=0

λpq−1
∑

u=0
A′′

i,λpqk+uζ
uxp′ni+k. In particular,

as we can uniquely have k0 and l such that u = ql + u0

where l ∈ [0, λp − 1] and u0 ∈ [0, q − 1], we then have

A′′
i,λpqk+u = A′

i,f(λpqk+ql+u0)
= A′

i,λp(qk+u0)+l
. Hence,

Ã′′(x) =
m−1
∑

i=0

p′−1
∑

k0=0

λp−1
∑

l=0

q−1
∑

u0=0
A′

i,λp(qk0+u0)+l
· ζql+u0xp′ni+k.

Similarly, we have

B̃′′(x) =

n−1
∑

j=0

p′−1
∑

k=0

λpq−1
∑

u=0

B′′
λpq(p′−1−k)+u,jζ

−uxp′j+k

=

n−1
∑

j=0

p′−1
∑

k=0

λp−1
∑

l=0

q−1
∑

u0=0

B′
f(λpq(p′−1−k)+ql+u0),j

·

ζ−(ql+u0)xp′j+k

=

n−1
∑

j=0

p′−1
∑

k0=0

λp−1
∑

l=0

q−1
∑

u0=0

B′
λp(q(p′−1−k0)+u0)+l,j ·

ζ−(ql+u0)xp′j+k.

The equations above show that the re-encoded task is

equivalent to that encoded with an (m,n, λpp, p
′) TKR code.

We can also see that after re-encoding, the recovery threshold

remains unchanged as mnp′ + p′ − 1. However, the sizes of

Ã and B̃ are reduced by λp times, reducing the complexity

of the multiplication by λp times. As we will demonstrate in

Sec. VI-C, the tradeoff between the complexity of the task and

the numerical precision can be achieved without changing the

number of workers.

C. Changing (m,n, p, p′) to (λmm,λnn, λpp, λp′p′)

By extending the special case above, we now demonstrate

the general case of local re-encoding for TKR codes, achieving

the most flexible tradeoff among the recovery threshold, task

complexity, and numerical precision. In particular, when p = p′

and λp = λp′ , it downgrades to local re-encoding of EP codes

from (m,n, p) to (λm, λn, λp). Instead of completing local re-

encoding in three steps as in Sec. IV-D, we can now complete

it in one step directly.

Before re-encoding, we first split Ã(x) and B̃(x) into

λmλp and λnλp submatrices, i.e., Ã(x) = [Ãi,j(x)]λm×λp
and

B̃(x) = [B̃i,j(x)]λp×λn
. Correspondingly, A and B should

also be further partitioned into λmm · λpp and λnn · λpp

submatrices, i.e., Ai,k = [A′
λmi+t0,λpk+t1

]λm×λp
and Bk,j =

[B′
λpk+t0,λnj+t1

]λp×λn
. In addition, we have Ãt0,l(x) =

m−1
∑

i=0

p′−1
∑

k=0

q−1
∑

u=0
A′

λmi+t0,λp(qk+u)+l
ζuxp′ni+k and B̃l,t1(x) =

n−1
∑

j=0

p′−1
∑

k=0

q−1
∑

u=0
B′

λp(q(p′−1−k)+u)+l,λnj+t1
· ζ−uxp′j+k, where

t0 = 0, . . . , λm−1, t1 = 0, . . . , λn−1, and l = 0, . . . , λp−1.

Given v ∈ [0, λpp−1], there is a uniquely tuple (z0, u, l1, l0)

where z0 ∈ [0, p′ − 1], u ∈ [0, q − 1], l1 ∈ [0, λp′ − 1], and

l0 ∈ [0, λp − 1], such that v = λpqz0 + λqql0 + ql1 + u,

and we define f(v) = λpqz0 + λpu + λp′ l1 + l0. Using

f(v), we can map A′ and B′ into A′′ and B′′ such that

A′′ = [A′′
i,j ]λmm×(λpp) = [A′

i,f(j)]λmm×(λpp) and B′′ =

[B′′
i,j ](λpp)×(λnn) = [B′

f(i),j ](λpp)×λnn, and still have AB =

A′B′ = A′′B′′.

We assume x = x
λp′

new, and define λq =
λp

λp′
. We also shuffle

the columns of A′ and rows of B′ to construct A′′ and B′′.

Hence, Ã(x) and B̃(x) can be re-encoded as

λm−1
∑

l=0

x
lλp′p

′mn
new





λp′−1
∑

l0=0

λq−1
∑

l1=0

Ãl,λp′ l1+l0(x)ζ
ql1xl0

new





(14)

=

λm−1
∑

l=0

x
lλp′p

′mn
new

( λp′−1
∑

l0=0

λq−1
∑

l1=0

m−1
∑

i=0

p′−1
∑

k=0

q−1
∑

u=0

A′
λmi+l,λp(qk+u)+λp′ l1+l0

ζuxp′ni+kζql1xl0
new

)
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=

λm−1
∑

l=0

x
lλp′p

′mn
new

(

m−1
∑

i=0

λpp
′−1
∑

k=0

λqq−1
∑

u=0

A′′
λmi+l,λqqk+uζ

ux
λp′p

′ni+k
new

)

=

λm−1
∑

l=0

m−1
∑

i=0

λpp
′−1
∑

k=0

λqq−1
∑

u=0

A′′
λmi+l,λqqk+u·

ζux
λp′p

′n(lm+i)+k
new

=

λm−1
∑

l=0

m−1
∑

i=0

λpp
′−1
∑

k=0

λqq−1
∑

u=0

A′′′
i+lm,λqqk+u·

ζux
λp′p

′n(lm+i)+k
new (15)

=

λmm−1
∑

i=0

λpp
′−1
∑

k=0

λqq−1
∑

u=0

A′′′
i,λqqk+uζ

ux
λp′p

′ni+k
new ,

where A′′′ is constructed by shuffling the rows of A′′ as in

(10), and

λn−1
∑

l=0

x
lλp′p

′λmmn
new

( λp′−1
∑

l0=0

λq−1
∑

l1=0

B̃λp′ l1+l0,l(x)·

ζ−ql1x
λp′−1−l0
new

)

(16)

=

λn−1
∑

l=0

x
lλp′p

′λmmn
new

( λp′−1
∑

l0=0

λq−1
∑

l1=0

n−1
∑

j=0

p′−1
∑

k=0

q−1
∑

u=0

B′
λp(q(p′−1−k)+u)+λ+p′l1+l0,λnj+lζ

−uxp′j+k·

ζ−ql1x
λp′−1−l0
new

)

=

λn−1
∑

l=0

x
lλp′p

′λmmn
new

(

n−1
∑

j=0

λpp
′−1
∑

k=0

λqq−1
∑

u=0

B′′
λqq(λp′p

′−1−k)+u,λnj+lζ
−ux

λp′p
′j+k

new

)

=

λn−1
∑

l=0

n−1
∑

j=0

λpp
′−1
∑

k=0

λqq−1
∑

u=0

B′′
λqq(λp′p

′−1−k)+u,λnj+l·

ζ−ux
λp′p

′(lλmmn+j)+k
new .

Therefore, we have

(

λmm−1
∑

i=0

λpp
′−1
∑

k=0

λqq−1
∑

u=0

A′′′
i,λqqk+uζ

ux
λp′p

′ni+k
new

)

·

(

λn−1
∑

l1=0

n−1
∑

j=0

λpp
′−1
∑

k=0

λqq−1
∑

u=0

B′′
λqq(λp′p

′−1−k)+u,λnj+l1
·

ζ−ux
λp′p

′(l1λmmn+j)+k
new

)

=

λmm−1
∑

i=0

λn−1
∑

l1=0

n−1
∑

j=0

2(λp′p
′−1)

∑

t′=0

min{λp′p
′−1,t′}

∑

l′=max{0,t′−λp′p
′+1}

(

λqq−1
∑

t=−(λqq−1)

min{λqq−1,t+λqq−1}
∑

l=max{0,t}

A′′′
i,λqql′+l·

B′′
λqq(λp′p

′−1−t′+l′)−t+l,λnj+l1
ζt

)

·

x
λp′p

′ni+λp′ (p
′j+l1p

′λmmn)+t′

new .

If we consider the equation above as a polynomial of xnew,

its degree is λmmλnnλp′p′ + λp′p′ − 2. Hence with any

λmmλnnλp′p′ + λp′p′ − 1 tasks, we can obtain all its coeffi-

cients. In particular, given a i ∈ [0, λmm− 1], j ∈ [0, λn − 1],

s ∈ [0, n − 1], the coefficients when t′ = λp′p′ − 1 are
∑λp′p

′−1

l′=0

∑λqq−1

t=−(λqq−1)

∑min{λqq−1,t+λqq−1}

l=max{0,t} A′′′
i,λqql′+l ·

B′′
λqq(λp′p

′−1−t′+l′)−t+l,λns+j
ζtnew, which can be consid-

ered as a polynomial of ζnew. When ζnew is large

enough, we can obtain the coefficient of ζ0new, i.e.,
λp′p

′−1
∑

l′=0

λqq−1
∑

l=0

A′′′
i,λqql′+lB

′′
λqql′+l,λns+j =

λpp−1
∑

k=0

A′′′
i,k · B′′

k,s′

where k = λqql
′ + l and s′ = λns+ j ∈ [0, λnn− 1]. Hence,

we can obtain the result of A′′′B′′. Since A′′′ is constructed

by shuffling the rows of A′′, we also obtain the result of

A′′B′′ = AB.

D. Complexity Analysis

The same as EP codes, the re-encoding framework for TKR

codes also maintains the same decoding complexity as the

new task is proved to be equivalent as one encoded with a

(λmm,λnn, λpp, λp′p′) TKR code.

As for the complexity of re-encoding, we can see from (14)

and (16) that it is also a linear combination of the λmλp and

λpλn submatrices in Ã(x) and B̃(x). Hence, the complexity of

local re-encoding is still O(MP
mp

+ NP
np

), which is still marginal

to the complexity of the task.

VI. EVALUATION

To demonstrate the performance of local re-encoding, we

still implement our framework with Open MPI [29]. If local

re-encoding is needed before a worker executes its task, it will

first re-encode Ã(x) and B̃(x) locally, then multiply the two

re-encoded matrices, and finally upload the result to the master.

As a comparison, we also allow the tasks to be re-encoded

globally, i.e., all tasks will be encoded again from scratch from

A and B. The new tasks will then be sent to all workers, and

all workers will then start to run such new tasks.

A. Overhead of Re-encoding

We compare the overhead of re-encoding between local re-

encoding and global re-encoding for EP codes and TKR codes





14

the entries of all matrices are integers. First we run the three

jobs in Table I with a (2, 2, 2) EP code, and then re-encode

such jobs with λm = 2, λn = 2, λp = 2, and λm = λn =

λp = 2. All other parameters, if they are not mentioned, remain

unchanged. To evaluate the numerical stability, we compare

the error of each job before re-encoding and after re-encoding.

The number of workers is still chosen to tolerate at most

5 stragglers after re-encoding. The error is measured as the

Frobenius norm, i.e., e = ‖C−Ĉ‖F

‖A‖F ∗‖B‖F
, where C is the precise

result of AB, and Ĉ is the result obtained after decoding [31].

The results of the errors are shown in Table II, where the

data of errors were obtained as the averages of running the

three jobs 50 times on Microsoft Azure. We can see from

Table II that before re-encoding the three jobs all have very low

numerical errors. After re-encoding, the errors are significantly

increased. Compared with global re-encoding, the errors of

local re-encoding are even higher, as the choices of xs cannot

be changed with local re-encoding, making them less desirable

for the new (λmm,λnn, λpp) EP codes.

TABLE II: Comparison of errors of EP and TKR codes before

and after re-encoding.

EP Job 1 Job 2 Job 3

before re-encoding 1.78× 10
−9

9.54× 10
−10

1.31× 10
−9

global

λm = 2 5.28× 10
−3

5.90× 10
−3

6.79× 10
−3

λn = 2 4.99× 10
−3

7.67× 10
−3

5.77× 10
−3

λp = 2 5.62× 10
−3

5.82× 10
−3

6.41× 10
−3

λm = λn = λp = 2 2.51× 10
−2

2.61× 10
−2

3.10× 10
−2

local

λm = 2 1.87× 10
−2

1.70× 10
−2

2.21× 10
−2

λn = 2 1.61× 10
−2

1.65× 10
−2

2.18× 10
−2

λp = 2 1.56× 10
−2

1.60× 10
−2

1.14× 10
−2

λm = λn = λp = 2 3.53× 10
−2

3.36× 10
−2

3.66× 10
−2

TKR Job 1 Job 2 Job 3

before re-encoding 0 0 0

global

λm = 2 0 0 0

λn = 2 0 0 0

λp = 2 0 0 0

λm = λn = λp = 2 0 0 0

local

λm = 2 0 0 0

λn = 2 0 0 0

λp = 2 0 0 0

λm = λn = λp = 2 0 0 0

We also demonstrate that the numerical stability of the

three jobs with TKR codes before and after re-encoding in

Table II. The three jobs are now originally encoded with a

(2, 2, 2, 2) TKR code so that they are split in the same way

as the (2, 2, 2) EP code above. In each job, we change the

parameters with four configurations: λm = 2, λn = 2, λp = 2,

and λm = λn = λp = 2. Since changing p′ does not change

the way how matrices are split, we always have λp′ = 1 in

this experiment. We will discuss how changing λp′ can lead

to a tradeoff between completion time and numerical stability

in Sec. VI-C. We can see that the numerical stability of TKR

codes after local re-encoding can be maintained — the errors

remain as 0 for different values of parameters. Compared with

the errors of EP codes, we can see that the numerical stability

is significantly improved by TKR codes, and meanwhile local

re-encoding does not hurt the numerical stability, as opposed

to EP codes.

C. The Tradeoff between Completion Time and Numerical

Stability

Besides achieving high numerical stability, TKR codes allow

changing the complexity of the task without changing the

recovery threshold. From Sec. V-B, we can see that a task

with an (m,n, p, p′) TKR code can be re-encoded into a task

with an (m,n, λpp, p
′) TKR code. Hence, the sizes of the two

coded matrices in the task are reduced by λp times, reducing

the complexity of the task by λp times as well. Since the

recovery threshold of the TKR code does not depend on p, the

recovery threshold does not change after re-encoding. However,

Tang et al. have pointed out that the error will increase when

p is increased [13]. In other words, there is a tradeoff between

completion time and the error of the job.

Fig. 7: The tradeoff between completion time and the numerical

stability

We now demonstrate how local re-encoding for TKR codes

helps to achieve a flexible tradeoff between completion time

and the error before and after local re-encoding. This time

we multiply two matrices of sizes 1024 × 7168 and 7168 ×

1536, respectively. We launch two jobs that are encoded with

(2, 3, 1, 1) TKR code and (1, 1, 3, 3) TKR code, respectively.

Each job runs in a cluster of 9 workers and 1 master on

Microsoft Azure. We then locally re-encode such two jobs

with λp being 2, 3, and 4, respectively. Hence, we can expect

to see the completion time reduced due to the lower complexity

of the task and the higher error, illustrated in Fig. 7.

In Fig. 7, we can see that the completion time and the errors

of the two jobs change as expected. With λp increasing, the

completion time of the two jobs is saved by 19.1% and 18.3%

eventually. On the other hand, the errors are also increased from

0 to 1.6× 103 and 5.1× 104. Hence, with local re-encoding,

we don’t need to change the number of workers while flexibly

choosing between lower completion time or better numerical

precision in the result.
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VII. DISCUSSIONS

As Ã(x) and B̃(x) are smaller with a larger m, n, or p,

it is then impossible to re-encode them into larger matrices

directly. In order to support bidirectional changes of the values

of parameters, we can deploy Ã(x) and B̃(x) encoded with an

EP code or a TKR code whose m, n, and p are small enough.

The values of such parameters do not necessarily equal their

actual values in the job, as we can always run local re-encoding

before the job starts. In other words, whenever a job needs

to run, the tasks can always be locally re-encoded to update

the coding scheme and/or its parameters, especially when the

performance of some resource has significantly changed. As

shown in Fig. 4b and Fig. 5, the overhead of local re-encoding

is marginal, so the job completion time will be close to that

when coded tasks are originally encoded this way without

re-encoding.

In order to maintain the tolerance against stragglers, it is

also required that the number of tasks is sufficient even if

the parameters are changed. Hence, the tasks also need to be

deployed on a sufficient number of servers even though they

are more than the number of workers required by the initial

values of parameters, especially when their initial values are

set small for the two-directional re-encoding. In this way, when

a job is launched, a subset of such servers will be selected

as workers so that the required number of stragglers can be

tolerated. This will increase the overhead of encoding and

storage, due to the additional tasks that may not run eventually.

However, as coded tasks do not need to run on workers before

the job starts, they will only be stored on potential workers and

only selected workers will eventually run their tasks. Hence,

the additional overhead will only be incurred from encoding

and storage, not in the job.

Moreover, if coded tasks are initially stored in a distributed

storage system, they will be typically stored on different storage

servers, and we can store initially encoded tasks on such servers.

Therefore, even if computation is separated from storage, we

can still let each worker workers download one of such tasks

directly and apply local re-encoding to get the desired coding

scheme and parameters. Therefore, compared with encoding all

coded tasks from scratch before the job start, local re-encoding

significantly saves time and network bandwidth to deploy coded

tasks to workers. The additional resource needed is only the

storage space for storing coded tasks when the input matrices

are stored, as the price for the flexibility.

VIII. CONCLUSION

As resources in the distributed infrastructure are shared

by multiple jobs, their performances fluctuate with time

dynamically. Although coded matrix multiplication has been

demonstrated to tolerate stragglers, existing coding techniques

do not support a flexible change of the coding scheme or

parameters without receiving additional data. In this paper, we

propose a framework of local re-encoding, which allows chang-

ing the coding scheme and/or its parameters for distributed

matrix multiplication without incurring additional traffic. We

demonstrate that our framework can significantly save the

time and communication overhead to complete distributed

matrix multiplication, and flexibly achieve the tradeoff between

computation and communication, and that between completion

time and numerical precision.
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