
1

Rook Coding for Batch Matrix Multiplication
Pedro Soto, Xiaodi Fan, Angel Saldivia, Jun Li, Member, IEEE

Abstract—Matrix multiplication is a fundamental building
block in various distributed computing algorithms. In order to
multiply large matrices, it is common practice to distribute the
computation into multiple tasks running on different nodes. In
order to tolerate stragglers among such nodes, various coding
schemes have been proposed by adding additional coded tasks.
However, most existing coding schemes for matrix multiplica-
tion are constructed for only one matrix multiplication, while
batch matrix multiplication is common in large-scale distributed
computing workloads. In this paper, we propose Rook Coding
(RC), a novel polynomial-based coding framework for computing
the multiplication of n pairs of matrices in batch. Designed
to achieve lower encoding time in practice, we construct RC
as polynomials of much simpler forms than existing coding
schemes for batch matrix multiplication, achieving a recovery
threshold of O(nlog2 3). Compared to existing coding schemes,
RC achieves a lower encoding complexity in practice, because of
its simpler forms in the encoding polynomials. Through extensive
experiments, we show that RC can save the time of the whole
job thanks to its low overhead of encoding.

Index Terms—distributed computing, batch matrix multiplica-
tion, straggler mitigation, coded computing

I. INTRODUCTION

A. Background

R
ECENT advances in large-scale distributed computing

have demonstrated success in various applications, such

as machine learning and data analytics. With the massive sizes

of modern datasets, it has become inevitable to run large-scale

computing jobs in a distributed infrastructure, by distributing

the computation into multiple tasks running in parallel on a

large number of nodes.

However, it is well known that nodes in a distributed infras-

tructure are typically built with commodity hardware and are

subject to various faulty behaviors [2]–[4]. Therefore, when

the computation is distributed onto multiple nodes, its progress

can be significantly affected by the tasks running on slow or

failed nodes [5], which we call stragglers. The adversarial

effects of stragglers can be mitigated by launching redundant

tasks in advance. A naive application of this principle is to

replicate each task on multiple nodes. For example, if we run

each task on three nodes, the results of any two tasks affected

by stragglers can be simply disregarded while all the other

tasks can continue without being delayed. This naive method,

however, will significantly increase the consumption of re-

sources, including computing, communication, and storage,

with only a limited number of stragglers tolerable. Specifically,

P. Soto and X. Fan are with the Graduate Center of the City University
of New York, New York, NY. A. Saldivia is with the School of Computing
and Information Sciences, Florida International University, Miami, FL. J. Li
is with the Queens College and the Graduate Center of the City University
of New York, New York, NY.

This paper was presented in part at the 2020 IEEE International Symposium
on Information Theory [1].

in order to tolerate any r stragglers, we have to replicate each

task on r + 1 nodes.

AX =

[

A1X

A2X

]

A1X A1X A1X A2XA2XA2X (A1+A2)X

AX =

[

1 −1
0 1

]

·

[

(A1+A2)X
A2X

]

Fig. 1. Examples of distributed matrix multiplications with additional workers
(running replicated or coded tasks) to tolerate one single straggler, represented
with a gray dotted arrow.

On the other hand, it has been demonstrated that we can

tolerate the same number of stragglers with fewer tasks if

we run coded tasks as redundant tasks. Fig. 1 illustrates an

example of distributed matrix multiplication with replicated

and coded tasks. We calculate AX on four worker nodes

in Fig. 1a. The matrix A is split into two submatrices, A1

and A2, and then AX can be obtained from the results of

two tasks, i.e., A1X and A2X. In Fig. 1a, the two tasks are

replicated on two workers, respectively. Therefore, any single

straggler among the total four workers can be tolerated without

affecting the overall performance. In Fig. 1b, however, a third

worker executes a coded task (A1 + A2)X, which can be

used to recover A1X and A2X if A1X or A2X runs on a

straggler. Therefore, compared to replicating the two tasks in

Fig. 1a, coded matrix multiplication in Fig. 1b can save the

number of additional workers by 50% and tolerate the same

number of stragglers.

Although straggler-free coding for distributed computing,

especially coded matrix multiplication (e.g., [3], [6]–[8]), has

attracted a significant amount of research attention, most

existing coding schemes focus on the code construction for

one single matrix multiplication so far. In this paper, we

consider batch matrix multiplication, a more general scenario

where multiple matrix multiplications need to be computed

in parallel. Although we can launch multiple distributed jobs

for each multiplication in parallel, each job will then need to

have its own coded task to tolerate stragglers. It will naturally

require significantly more tasks as we don’t know which job

will have stragglers. Therefore, we aim to design a coding

scheme in this paper such that only one job needs to be

launched for batch matrix multiplication where stragglers can

be flexibly tolerated.

B. Related Work

There has been a surge of interest recently on the mitigation

of stragglers in distributed computing, which runs a large

number of parallel tasks on different nodes. It is well known

2

that stragglers are common in distributed computing with a

large number of nodes, and stragglers can add significant

long-tail latency to the overall performance, even though there

are only a small number of tasks affected by stragglers [3],

[4]. Conventionally stragglers are tolerated by replicating each

task on multiple nodes [9]–[13], such that a task affected by

a straggler can be simply disregarded. However, replication

incurs a significant resource overhead as all tasks need to be

replicated. Compared to replication, coding-based techniques

have been proposed to tolerate the same number of stragglers

with lower resource overhead (e.g., [3], [4]).

One of the critical applications of coded distributed com-

puting is distributed matrix multiplication, as matrix multi-

plication is a common operation in various machine learning

models and data analytics algorithms. In Lee et al.’s pioneering

paper [3], Maximum Distance Separable (MDS) codes are ap-

plied in matrix-vector multiplication of the form Ax where the

matrix A is large and hence will be partitioned vertically along

the rows and encoded with MDS codes. This direction was

continued by Dutta et al. [6] and Yu et al. [7] who considered

a more general problem of matrix-matrix multiplication, i.e.,

A ·B. The two input matrices A and B are partitioned along

their rows and columns, respectively, or the other way round.

The proof of the optimality for such configurations have been

given by Yu et al. [7], [8], where the authors have also devised

entangled polynomial codes that allow partitioning the input

matrices in a more general way, such that A and B can both

be arbitrarily partitioned by their rows and columns.

In this paper, we consider a more general problem of dis-

tributed coded computing for batch matrix multiplication, i.e.,

the computation of all matrix multiplications is completed in

one round. A related problem was investigated by Krishnan et

al. [14] where the computation is complete with additional

rounds such that coding can be applied across time. However,

multiple rounds of computation may incur a significant amount

of communication overhead. Therefore, in this paper, we focus

batch matrix multiplication, i.e., AiBi, i = 1, . . . , n. Workers

perform multiplication of matrices encoded from the 2n input

matrices, and the master can directly decode results received

from a certain number of workers to obtain the results of n

matrix multiplications.

Existing works for batch matrix multiplication have been

constructed based on polynomial evaluations. In other words,

any worker computes the multiplication of two polynomials

Ã(x) and B̃(x), where the values of x differ on different

workers. The coefficients of the polynomials are matrices

encoded from the input matrices. For example, Lagrange

Coded Computing (LCC) [15] constructs Ã(x) and B̃(x) as

Lagrange polynomials. As Ã(x) · B̃(x) are still a polynomial,

its coefficients can be interpolated from results received from

different workers with different values of x. Another exam-

ple is Cross Subspace Alignment (CSA) codes [16]. CSA

codes construct Ã(x) and B̃(x) such that their multiplication

facilitates a Cauchy-Vandermonde structure, where desired

components (AiBi, i = 1, . . . , n) correspond to the Cauchy

part and other interference components are aligned into the

Vandermonde part. Both LCC and CSA codes achieve an

optimal recovery threshold of 2n− 1, i.e., 2n− 1 workers are

needed to decode the results. However, as we argue below, it

does not necessarily minimize the completion time in practice.

To evaluate Ã(x) and B̃(x), LCC and CSA codes rely on

fast algorithms for polynomial interpolation and/or evaluation

with the O(n log2 n) complexity [17]–[21]. However, the

encoding based on such algorithms has to be centralized,

i.e, input matrices will be encoded into all tasks on one

single node. Instead of constructing complex polynomials for

the centralized fast algorithm, we propose rook polynomial

coding (RC), another polynomial-based coding scheme for

batch matrix multiplication in this paper. RC is constructed

as polynomials of much simpler forms, making it faster for

encoding in practice, especially distributed encoding. Trading

off the recovery threshold for a lower encoding complexity,

RC can eventually achieve a lower completion time as demon-

strated by experiments on AWS.

There is no partitioning of input matrices in the afore-

mentioned LCC and CSA codes. In other words, each

worker has the same computational load as multiplying AiBi,

∀i = 1, . . . , n. To support partitioning, Yu et al. integrated

LCC codes with entangled polynomial codes [22]. Moreover,

Chen et al. extended CSA codes into Generalized Cross

Subspace Alignment (GCSA) codes with noise alignment [23].

In this paper, we focus on the construction of RC without

matrix partitioning. We aim to integrate RC with entangled

polynomial codes to support matrix partitioning in our future

work.

C. Contributions

To tolerate stragglers altogether, there exist coding schemes

constructed based on polynomial evaluations, e.g., LCC

codes [15] and CSA codes [16]. Although they can tolerate

stragglers among multiple matrix multiplications, we find that

their costs of encoding can be overwhelmingly high. Although

fast algorithms based on multi-point polynomial evaluations

can be incorporated into the algorithm of encoding [17]–

[21], they outperform the traditional algorithms (e.g., Horner’s

method) only when n is very large [24]. In practice, we

find that this number can be larger than 1000. Moreover,

the fast algorithms require centralized computing, making it

impossible to speed up encoding by distributed computing.

In this paper, we propose Rook Coding (RC) for batch

matrix multiplication that is designed towards low overhead

during encoding in practice. Instead of constructing complex

polynomials fit for fast algorithms of multi-point polynomial

evaluations, we construct RC as polynomials with very simple

forms, which meanwhile allow for an easy distributed im-

plementation of encoding with low overhead. We gradually

update the constructions of RC by improving the recovery

threshold step-by-step, and eventually achieve an O(nlog
2
3)

recovery threshold. By running experiments on Amazon EC2,

we demonstrate that RC achieves a much lower time of

encoding in both centralized and distributed manners. Thanks

to the time saved during encoding, RC achieves lower job

completion time than other coding schemes for batch matrix

multiplication, even though it has a higher recovery threshold.

3

II. MOTIVATING EXAMPLES

We start with a toy example to demonstrate the advantages

of our coding framework for batch matrix multiplication.

Assume that we need to compute the results of two matrix

multiplications, i.e., A1B1 and A2B2, where A1 and A2

are of the same size, and B1 and B2 are of the same size,

too. If the two multiplications are computed as two jobs, we

can replicate their sole tasks on r + 1 nodes, such that any r

stragglers can be tolerated. In other words, we need to have

2(r + 1) tasks to tolerate any r stragglers and complete the

two matrix multiplications, since the replicated tasks for one

job cannot be used in the other job.

A naive way to add coded tasks for the two jobs is to

embed the two matrix multiplications into one larger job as

Â · B̂ ,

[

A1

A2

]

·
[

B1 B2

]

=

[

A1B1 A1B2

A2B1 A2B2

]

. In this way,

the result of A1B1 and A2B2 can be obtained as submatrices

of ÂB̂. However, the complexity of ÂB̂ becomes four times

as large as AiBi. In order to generate coded tasks with the

same complexity as AiBi, we can apply polynomial codes [7],

a polynomial-based coding scheme for matrix multiplication,

to the job of ÂB̂, by encoding Â as Ã(x) = A1x
0+A2x

2 and

B̂ as B̃(x) = B1x
0 +B2x

1, and then the sizes of Ã(x) and

B̃(x) equal those of Ai and Bi, respectively. A coded task can

then be generated as a polynomial of C̃(x) , Ã(x)B̃(x), i.e.,

C̃(x) = A1B1x
0+A1B2x

1+A2B1x
2+A2B2x

3. Given any

4 coded tasks C̃(x) with different values of x, the coefficients

of this polynomial can be solved with interpolation or Reed-

Solomon decoding. In other words, the recovery threshold is 4,

and we can tolerate r stragglers with a total of 4+r tasks. With

n matrix multiplications, it is easy to infer that the recovery

threshold is n2.

In this paper, we propose a coding framework that requires

significantly fewer tasks than replication and polynomial

codes, tolerate the same number of stragglers with the same

complexity in the coded tasks. Given the two matrix multipli-

cations above, Ã(x) and B̃(x) can be generated differently

as Ã(x) = A1x
0 + A2x

1, and B̃(x) = B1x
0 + B2x

1,

respectively. Hence, C̃(x) = A1B1x
0+(A1B2+A2B1)x

1+
A2B2x

2. In this way, we only need the results of any three

coded tasks (with different values of x), and the recovery

threshold becomes 3. Although when n = 2 the recovery

threshold can only be saved by 25%, we demonstrate in the

rest of this paper that the recovery threshold can eventually be

saved from O(n2) to O(nlog
2
3).

The polynomials in RC are also simpler compared to other

coding schemes for batch matrix multiplication. For example,

with LCC codes, Ã(x) and B̃(x) are encoded as −A1(x −
2)+A2(x− 1) and −B1(x− 2)+B2(x− 1), or equivalently

(−A1+A2)x+(2A1−A2) and (−B1+B2)x+(2B1−B2),
respectively. By comparing the coefficients, we can see that

RC only uses one of the input matrices as the coefficient of

each term in Ã(x) and B̃(x), allowing it to save the time of

encoding in practice.

III. CODING FRAMEWORK

Given n matrix multiplications, i.e., A1B1, A2B2, . . ., and

AnBn, we assume that A1, . . . ,An are of the same size,

and B1, . . . ,Bn also have the same sizes. In our coding

framework, the parameters of the coding scheme can be

described by four vectors with n elements, M , N , P , and

Q. In particular, M and N are permutations of {1, . . . , n}.
The values in P and Q can be arbitrary integers, which

will be used as the exponents in the polynomial. The n

matrix multiplications can be encoded into coded tasks which

multiply Ã(x) and B̃(x), where Ã(x) =
∑n

i=1 AMi
xPi

and B̃(x) =
∑n

i=1 BNi
xQi . Compared to other polynomials

such as the Lagrange interpolation polynomial, our encoding

polynomials have much simpler forms since all input matrices

appear directly as a coefficient, making it ideal for distributed

encoding where each worker will encode the input matrices to

get polynomials in its own task only.

Given Ã(x) and B̃(x), the result of a

coded task will be C̃(x) = Ã(x)B̃(x) =
∑n

i=1

∑n

j=1 AMi
BNj

xPi+Qj , which is still a polynomial of

x. The result in each task can be considered as an evaluation

of C̃(x) if x in each task is unique. We can then interpolate

C̃(x) if the number of results received from different workers

is no less than the recovery threshold. With appropriate

choices of M , N , P , and Q, we can find AiBi from the

coefficients of C̃(x). In other words, their corresponding

exponents of x should be unique.

To illustrate the code scheme, in this paper, we use an n×n
table to depict choices of M,N,P,Q, as shown in Fig. 2a.

In this table, the entry in the i-th row and the j-th column

is filled with Pi + Qj , the exponent of AMi
BNj

. We also

place AMi
and BNi

, i = 1, . . . , n, as the head of each row

and each column, respectively. We demonstrate three examples

of feasible coding schemes under our coding framework in

Fig. 2b-Fig. 2d.

� � 	�
 �

 � � 	�
 �

� � 	�
 �

 � � 	�
 �

�
Æ

� �
Æ

�
Æ

� �
õ

�
õ

� �
õ

�
õ

� �
Æ

BN1
BN2

AM1

AM2 A2

A1

B1 B2

� � 	�
 �

 � � 	�
 �

� � 	�
 �

 � � 	�
 �

� � 	�
 �

 � � 	�
 �

� � 	�
 �

 � � 	�
 �

A2

A1

A2

A1

B2 B2B1 B1

Fig. 2. The illustrations of the coding schemes achieved under the coding
framework with n = 2.

4

In Fig. 2b, a naive choice of parameters in the coding

framework is to let M = N = (1, . . . , n), P = (0, . . . , n−1),
and Q = (0, n, . . . , (n − 1)n), corresponding to the example

of polynomial codes in Sec. II. Hence, we have Ã(x) =
∑n

i=1 Aix
i−1 and B̃(x) =

∑n

i=1 Bix
(i−1)n. Therefore, in

C̃(x), there are n2 terms whose coefficients are AiBj , 1 ≤
i, j ≤ n. As shown in Fig. 2b, the exponents of the four terms

in C̃(x) ranges between 0 and 3. Hence, we need to have

the results of any 4 tasks to obtain the results of A1B1 and

A2B2, as the coefficients of x0 and x3. In other words, the

recovery threshold in Fig. 2b is 4. We can see from Fig. 2b that

the polynomial code can be seen as a special and non-optimal

scheme that is feasible in our framework.

In Fig. 2c, we present another possible way to construct

the coding scheme where N = (2, 1). Hence, we can see that

the exponents of A1B1 and A2B2 are placed in the counter

diagonal, as highlighted in the table. We also highlight the

entries of A1B1 and A2B2 in the other examples. As M

and N can be any permutations of {1, . . . , n}, the pattern

of highlighted entries can be more flexible in our coding

framework. However, there should be one and only one

highlighted entry in each row or each column.1

Furthermore, we demonstrate an optimal coding scheme for

n = 2 in Fig. 2d, which minimizes the number of exponents,

and hence the recovery threshold. To prove its optimality, we

consider the number of exponents needed in the table. The

highlighted entries must have unique exponents, and the other

two entries also need to have at least one more exponent.

Hence, there need to be at least three exponents, proving the

optimality of the coding scheme illustrated in Fig. 2d. This

scheme also corresponds to the example we demonstrated in

Sec. II. We can see that in a feasible coding scheme, the

exponents in highlighted entries in the corresponding table

must be unique, while the exponents in other entries can

coincide, helping to achieve lower recovery thresholds.

IV. CONSTRUCTING RC WITH FIXED P

A. Scopes of Parameters

In this paper, we make multiple attempts to construct RC,

with the recovery threshold improved step by step. We present

the first attempt in this section. To make it convenient for

the code construction, we first narrow down the scopes of

the parameters. Without loss of generality, we assume that

elements in P and Q are non-decreasing, i.e., P1 ≤ . . . ≤
Pn and Q1 ≤ . . . ≤ Qn. In fact, to make the exponent of

AiBi unique, the elements in P and Q should be strictly

increasing. Otherwise, if there exist two distinct integers j1
and j2 such that Qj1 = Qj2 , we have Pi + Qj1 = Pi +
Qj2 for any integer i ∈ [1, . . . , n]. Considering i such that

Mi = Nj1 (as M and N are both permutations of {1, . . . , n}),
the exponent of AMi

BNj1
equals that of AMi

BNj2
. In other

words, AMi
BNj1

cannot be obtained after decoding, which is

the result of one of the n matrix multiplications. Therefore,

we have P1 < . . . < Pn and Q1 < . . . < Qn.

1The name of rook coding is inspired by this requirement, which is similar
to placing non-attacking rooks in the chessboard. However, it is not equivalent
to the rook polynomial, because we do not need to find the number of the

placements of rooks in the construction, but to minimize the degree of C̃(x).

Without loss of generality, we can also assume that P0 =
Q0 = 0, or we can easily get an equivalent coding scheme by

subtracting P0 (and Q0) from all elements in P (and Q).

In this section, we consider a special case of P where

P = (0, . . . , n − 1).2 We construct RC with this condition

and prove the optimality of the construction in this special

case. We extend the construction of RC to the general values

of P in Sec. V.

Given a placement of highlighted entries in the table, there

can be multiple possible choices of M and N that lead to

the same placement. For example, in Fig. 3a, M = (1, 2, 3, 4)
and N = (3, 1, 2, 4), where we place corresponding AMi

and

BNj
as the title of each row and each column, respectively.

If we switch Ai1 with Aj1 and meanwhile Bi2 with Bj2 , if

i1 = i2 and j1 = j2, the highlighted entries will remain un-

changed. After such a switch, the new coded tasks will remain

equivalent as the original coded tasks, only having entries in

M and N switched. For example, the same entries will be

highlighted if M = (2, 1, 3, 4) and N = (3, 2, 1, 4). Hence, we

can assume, without loss of generality, that M = (1, 2, 3, 4),
so that the coding scheme will only depend on the value of

N .

B1B3 B4 B4B2 B2 B3B1

A4

A3

A2

A1

A4

A3

A2

A1

Fig. 3. Two placements of highlighted entries and their corresponding optimal
coding schemes (with respect to their highlighted entries).

Now we have fixed the values in P and M . In the rest of

this section, we will construct RC by finding the best values

in Q and N that optimize the recovery threshold.

B. Achieving the Optimal Degree of C̃(x) with P =
(0, . . . , n− 1)

Besides having P and M fixed, we first construct a coding

scheme with the optimal degree of C̃(x) from a given place-

ment of highlighted entries, i.e., the values in M , N , and P are

all fixed. In Alg. 1, we propose an algorithm that constructs

such a coding scheme. The optimal coding scheme can then

be found in two steps: 1) finding the optimal placement of

highlighted entries; and 2) finding the values of Q that achieve

the optimal degree in C̃(x). The second step can be solved by

Alg. 1, with an O(n) time complexity. We prove the optimality

of Alg. 1 with Theorem 1, and leave the first step in Sec. IV-C.

Theorem 1. Given highlighted entries, i.e., M = (1, . . . , n),
P = (0, . . . , n − 1), and N as an arbitrary permutation of

2It is equivalent to having Q = (0, . . . , n − 1) and then choosing the
optimal P . In this paper, we simply choose the value of P first and then
optimize the value of Q.

5

Algorithm 1 The optimal values of Q with a given placement

of highlighted entries.

Input: N (with M fixed, the placement of highlighted entries

only depends on N

Output: Q

1: Q1 = 0
2: for i← 2 to n do

3: Qi ← Qi−1 +max{Ni−1, n−Ni + 1}
4: end for

� ��7Æ
� � 7 �

�
�

�
�

�
�
7

�

��

����7Æ

��

����7Æ

� ��7Æ
� ��7Æ

7 �

A1

Ai−1

Ai

Aj−1

Aj

An

BNj
BNj−1

BNi
BNi−1

Fig. 4. Two placements of highlighted entries and their corresponding optimal
coding schemes.

{1, . . . , n}, Alg. 1 finds the optimal values in Q that minimize

the recovery threshold.

Proof. The intuition of Alg. 1 is making the overlaps of

exponents, i.e., exponents shared by multiple entries in the

n × n table as those in Fig. 3, as large as possible. Note

that the overlaps may only occur between two neighboring

columns since each column has a highlighted entry with a

unique exponent. Given P = (0, . . . , n − 1), we also know

that each integer between 0 and Pn + Qn will be used as

an exponent with Q given by Alg. 1, and thus the recovery

threshold equals the degree of the polynomial plus one.

As shown in Fig. 3, within two neighboring columns, the

overlapped exponents go up (down) from the bottom (top)

entry until reaching a highlighted entry. For example, in Fig. 3a

the two entries at the bottom in the third column share the same

exponents with the top two entries in the last column. We can

also find exponents 1, 2, and 3 shared among the first two

columns in Fig. 3b, as well as 7 and 8. In the i-th column, the

highlighted entry is in the Ni-th row since MNi
= Ni. Hence,

there are Ni − 1 entries above it and n−Ni entries below it.

To determine the value of Qi, we consider if the number of

entries above it is greater or less than the number of entries

below the highlighted entry in the (i− 1)-th column, and we

illustrate such two cases in Fig. 4.

In order to make overlaps of exponents as large as possible,

if the number of entries above the highlighted entry in the i-th

column is less than that of entries below the highlighted entry

in the (i−1)-th column, i.e., Ni−1 < n−Ni−1, there can be

at most Ni− 1 entries with the same exponents as the entries

at the bottom in the (i−1)-th column. Since the last exponent

in the (i − 1)-th column is Qi−1 + n − 1, the first exponent

in the i-th column should be Qi−1 + n − 1 − (Ni − 2) =
Qi−1 + n − Ni + 1, which also equals Qi as P1 = 0. On

the other hand, if the number of entries below the highlighted

entry in the (j − 1)-th column is less than the number of

entries above the highlighted entry in the j-th column, the

first exponent in the j-th column should be at least greater

than the exponent of the highlighted entry in the (j − 1)-th
column, which equals Qj−1 +Nj−1 − 1. In other words, Qj

should be Qj−1 +Nj−1.

Since Ni−1 ≥ n − Ni + 1 if n − Ni−1 ≤ Ni − 1,

we can further simplify the two cases above as Qi =
Qi−1 + max{Ni−1, n − Ni + 1}, and the degree of C̃(x)
is
∑n

i=2 max{Ni−1, n−Ni + 1}+ n− 1.

We can see from Alg. 1 that all integers between 0 and the

degree of C̃(x) appear at least once as the exponents in C̃(x),
otherwise there must exist i such that Qi can be reduced to

use the missing integer as the exponent. Hence, the recovery

threshold should also be
∑n

i=2 max{Ni−1, n−Ni + 1}+ n.

We can also compute the recovery threshold as Pn +Qn + 1
since values in both P and Q are both strictly increasing.

C. Optimal Placement of Highlighted Entries

As Alg. 1 minimizes the degree of C̃(x) given a placement

of highlighted entries, we now discuss how to find the optimal

placement of highlighted entries (when P = (0, . . . , n − 1)).
Applying Alg. 1 to two different placements with n = 4 in

Fig. 3a and Fig. 3b, we can see that different placements of

highlighted entries can lead to different degrees of C̃(x).

� N �

BN1
BNn

B1 Bn+2

An+2

An+1

A2

A1

Fig. 5. The illustration of the algorithm to find the optimal placement of
highlighted entries.

We now propose a placement of highlighted entries which

can be proved to achieve the optimal degree in C̃(x). The

placement can be obtained by induction. When n = 1, there

is one and only one possible placement which is the only

entry itself, as shown in Fig. 6a. When n = 2, Q has two

permutations, leading to two patterns of highlighted entries

which we can find in Fig. 2c and Fig. 2d. We can see that the

placement in Fig. 2c does not have any overlapped exponent,

and hence the placement in Fig. 2d is optimal.

6

A1

A2

A3

A4

B4B3B2 B1

A1

B1
A1

A2

A1

A2

A3

B2B1

B3B2 B1

Fig. 6. Examples of the optimal placements of highlighted entries with n =
1, 2, 3, 4.

We now construct the placement with n+ 2 from a place-

ment constructed from the n × n table. As shown in Fig. 5,

we first construct a placement for the n×n table and place it

between the second and the (n + 1)-th row and between the

first and the n-th column. We then highlight the top entry in

the (n+ 1)-th column and the bottom entry in the (n+ 2)-th
column. In Fig. 6c and Fig. 6d, we show the two placements

with n = 3 and n = 4 constructed from the placement in

Fig. 6a and Fig. 6b, respectively. With M fixed, N can also

be determined after getting the optimal placement, and then we

apply Alg. 1 to get the exponents in the table and hence obtain

the value of Q. We summarize this recursive construction in

Alg. 2. Although the complexity seems to be O(n2) with the

recursion, it can be easily reduced to O(n) by equivalently

getting N = (. . . , 2, n − 1, 1, n). Therefore, the overall time

complexity is still linear.

Algorithm 2 The optimal placement of highlighted entries

with P = (0, . . . , n− 1).

Output: N

1: if n = 1 then

2: N = (1)
3: else if n = 2 then

4: N = (1, 2)
5: else

6: construct N for the placement with n− 2, and denote

it as (N1, N2, . . . , Nn−2)
7: N = (N1 + 1, N2 + 1, . . . , Nn−2 + 1, 1, n)
8: end if

As a preparation to prove the optimality of the RC con-

structed by Alg. 1 and Alg. 2, we first analyze the properties of

our code construction in Sec. IV-D. The proof of the optimality

will be given in Sec. IV-E.

D. Analysis

In Sec. IV-B, we have demonstrated that the recovery

threshold of RC constructed with Alg. 1 and Alg. 2 is one more

than the degree of C̃(x). To analyze the degree of C̃(x), we

first count the number of unhighlighted entries with unique

exponents as u(n). In particular, we use u0(n) to denote

the value of u(n) if the placement of highlighted entries is

constructed by Alg. 2.

When n = 1 and n = 2, we can directly get u0(1) =
u0(2) = 0 from Fig. 6a and Fig. 6b.

As for other values of n (when n > 2), we can get the

value of u0(n) recursively. With the construction in Fig. 5,

we can see that the right-bottom entry is always highlighted.

In the two rightmost columns, all unhighlighted entries share

the same exponents as those in the other row. For example,

in Fig. 6d, the exponents of unhighlighted entries in the

rightmost two columns are both 7, 8, and 9. Moreover, given

an (n+2)×(n+2) table, in the n columns on the left, entries

on the top row and the bottom row are always unhighlighted.

Except the top entry in the first column and the bottom

entry in the n-th column, the top entry in the i-th column

can share the same exponent with the bottom entry in the

(i − 1)-th column, i = 2, . . . , n. Therefore, there are only

two additional unhighlighted entries with unique exponents,

i.e., whose exponents are not shared by other exponents, i.e.,

u0(n+2) = u0(n)+2. For general values of n, we thus have

u0(n) =

{

n− 1 n is odd;

n− 2 n is even.

Among a total of n2 entries, there are n highlighted entries

and u0(n) unhighlighted entries with unique exponents. Then

the number of unhighlighted entries with shared exponents

is n2 − n − u0(n). As each exponent can be shared by at

most two entries (since both P and Q are strictly increasing),

the total degree of C̃(x) is
n2

−n−u0(n)
2 + n + u0(n) − 1 =

n2+n+u0(n)
2 − 1, which equals n2

2 + n − 3
2 if n is odd or

n2

2 + n− 2 if n is even. We use r0(n) to denote the recovery

threshold of RC constructed with Alg. 1 and Alg. 2, and then

r0(n) equals n2

2 +n− 1
2 (or n2

2 +n−1) if n is odd (or even).

We can further simplify it as r0(n) =
⌊

(n+1)2

2

⌋

− 1.

E. Optimality

We now prove that the construction of RC given by Alg. 1

and Alg. 2 is optimal when P = (0, . . . , n− 1). Equivalently,

we can prove that u0(n) is optimal, i.e., u0(n) = uopt(n).
We first prove a lemma which characterizes the unhigh-

lighted entries with unique exponents.

Lemma 1. In the n × n table (n > 2) under the coding

framework of RC, the number of unhighlighted entries with

unique exponents between two highlighted entries in two

neighboring columns is no more than half of the total number

of unhighlighted entries with unique exponents in the whole

table when P = (0, . . . , n− 1).

Proof. Assume that the index of the highlighted entry in the

j-th column is Nj , 1 ≤ j ≤ n. Additionally, we set N0 = n

and Nn+1 = 1. Then the number of unhighlighted entries with

unique exponents is |(n − Nj) − (Nj+1 − 1)| = |(n + 1) −
(Nj +Nj+1)|. We then have |(n+ 1)− (Nj +Nj+1)| as the

number of unhighlighted entries with unique exponents in the

j-th column, then the total number of unhighlighted entries

with unique exponents is
∑n

j=0 |(n+1)− (Nj +Nj+1)|, and

we aim to prove that ∀j = 0, . . . , n, |(n+1)−(Nj+Nj+1)| ≤
1
2

∑n

j=0 |(n+ 1)− (Nj +Nj+1)|.

We know that
∑n

j=1 Nj = (n+1)n
2 , and then

we have
∑n

i=0(Nj + Nj+1) = (n + 1)2. Hence,

7

∑n

j=0 ((n+ 1)− (Nj +Nj+1)) = 0. Hence, we

can divide the n + 1 terms above into three

parts: J1 = {j|(n + 1) − (Nj + Nj+1) > 0},
J2 = {j|(n + 1) − (Nj + Nj+1) < 0}, and

J3 = {j|(n + 1) − (Nj + Nj+1) = 0}. If j ∈ J1 or j ∈ J2,

|(n+1)− (Nj +Nj+1)| ≤
∑

j∈J1
|(n+1)− (Nj +Nj+1)| =

∑

j∈J2
|(n+ 1)− (Nj +Nj+1)| =

1
2

∑n

j=0 |(n+ 1)− (Nj +
Nj+1)|. If j ∈ J3, then |(n + 1) − (Nj +Nj+1)| = 0 which

is also no more than 1
2

∑n

j=0 |(n+ 1)− (Nj +Nj+1)|.

Next, we consider u(n+ 2) in an (n+ 2)× (n+ 2) table,

with an arbitrary and legal placement of highlighted entries.

Assuming Nj1 = 1 and Nj2 = n + 2, we can remove the

two rows (the first and the last row) and the two columns (the

j1-th and j2-th columns) associated with the two highlighted

entries, then we can get an n×n table with a legal placement

of highlighted entries.

Lemma 2. u(n+ 2) ≥ uopt(n) + 2.

Proof. Given the j1-th column and the j2-th column, we

consider two cases by checking if the two columns are

neighbors, i.e., if |j1 − j2| = 1.

Case 1: We first assume that such two columns are not

neighbors, i.e., |j1 − j2| > 1. In this case, we can consider

these two columns individually, i.e., their exponents will not

coincide with each other. Therefore, we only need to prove a

less difficult statement: after removing the j1-th column or the

j2-th column, u(n+ 2) ≥ uopt(n+ 1) + 1. If it is proved, we

can immediately have u(n+ 2) ≥ uopt(n+ 1) + 2.

We first consider the case of removing the (j − 1)-th
column. If 1 < j1 < n + 2, before removing the two

rows and two columns, between the highlighted entries in

the (j1 − 1)-th column and the (j1 + 1)-th column, the

number of unhighlighted entries with unique exponents is

(n+2−Nj1−1)+(n+1−Nj1+1+1) = 2(n+2)− (Nj1−1+
Nj1+1). After the removal, the number of unhighlighted en-

tries with unique exponents between the same two entries is

|(n+1−Nj1−1)−(Nj1+1−2)| = |(n+3)−(Nj1−1+Nj1+1)|.

By Lemma 1, |(n + 3) − (Nj1−1 +Nj1+1)| ≤
u0(n)

2 = n−1
2 ,

otherwise the placement in the n×n table after the removal is

not optimal. If so, we can directly prove |(n+3)− (Nj1−1 +
Nj1+1)| < 2(n+ 2)− (Nj1−1 +Nj1+1).

If j1 = 1, we only need to count the number of unhigh-

lighted entries with unique exponents between the first entry

in the first column and the highlighted entry in the second

column. Before the removal, the number is (n+1)−(N2−1) =
n+ 2−N2. After the removal, the number becomes N2 − 1,

which is no more than n−1
2 . Hence, N2 − 1 < n+ 2−N2.

If j1 = n + 2, then after removing the number of unhigh-

lighted entries with unique exponents will be reduced, as all

the unhighlighted entries in the j1-th column are not be shared

by any other entries anyway.

The case of removing the j2-th column can be proved using

the same technique above. Combining these two cases, we can

prove that at least two unlighted entries with unique exponents

are removed.

Case 2: If |j1− j2| = 1, then there can be two possibilities

of their positions. If j1 > j2, after the removal, there will

be at least two unhighlighted entries with unique exponents

removed, i.e., the entry in the last second row of the j1-th

column, and the entry in the second row of the j2-th column.

If j1 < j2, all entries in these two columns will not coincide

with any other entries in the table. If the two columns are on

the left or on the right of the table, then one entry in the first

row and one entry in the last row will also be removed that

have unique exponents. For example, if the two columns are on

the left, then the top entry in the third column and the bottom

entry in the last column are also removed and originally have

unique exponents. We can also find these two entries if the

two columns are on the right. If these two columns are in

the middle, the top entry in the first column and the bottom

entry in the last column will be removed, whose exponents

are unique.

Combining all the statements above, we have u(n + 2) ≥
uopt(n) + 2.

With Lemma 2, we can prove the optimality of Alg. 2.

Theorem 2. When P = (0, . . . , n − 1), Alg. 2 finds the best

values in N that lead to the optimal placement of highlighted

entries.

Proof. By Lemma 2, we immediately have uopt(n + 2) ≥
uopt(n) + 2. We have known that u0(1) = uopt(1) and

u0(2) = uopt(2). We also know that u0(n + 2) = u0(n) + 2,

and by induction we can prove that u0(n) = uopt(n). As

the number of highlighted entries is always n, minimizing

the number of unhighlighted entries with unique exponents is

equivalent to maximizing the number of unhighlighted entries

with shared exponents, and hence minimizing the degree of

C̃(x).

Note that the optimality is achieved under the assumption of

P = (0, . . . , n− 1). In Sec. V, we generalize the construction

by waiving this requirement for P , which counter-intuitively

reduces the recovery threshold.

V. CONSTRUCTING RC WITH GENERAL P

In this section, we make a second attempt to construct

RC, where values in P can be chosen arbitrarily. Although

minimizing P to be (0, . . . , n − 1) seems to minimize the

degree of C̃(x), we find that the degree of C̃(x) can be even

lower with general values in P as it creates more chances to

share exponents.

A. A Toy Example

We show a toy example of the construction in Fig. 7a.

Compared to the construction in Fig. 6d, the degree of C̃(x) is

reduced from 10 to 8 by setting P = (0, 1, 3, 4). The reason for

this better result is that the construction in Fig. 7a allows more

overlaps among exponents. In the construction in Sec. IV, an

exponent can only overlap with another one. In Fig. 7a, we

can see that the exponent 4 appears 4 times.

The increase in overlaps in Fig. 7a is due to a recursive

construction. In this example, we group the four matrices

A1, . . . ,A4 into two groups {A1,A2} and {A3,A4}, and

8

Fig. 7. A toy example of the construction of RC with general values in P .

also B1, . . . ,B4 into {B1,B2} and {B3,B4}. We then con-

struct the code in two steps. We first place the four groups in

a 2× 2 table, as shown in Fig. 7b. Each entry in such a table

corresponds to two matrix multiplications. It is easy to see that

the entry between {A1,A2} and {B1,B2} and that between

{A3,A4} and {B3,B4} need to have unique exponents, and

the other two entries can have shared exponents. Hence, we

apply RC for such four entries with n = 2, as shown in

Fig. 7b, with only one difference that the exponents need to

be amplified for the next step.

In the second step, we construct RC again for each (outer)

entry, with n = 2. Note that in each outer entry, there

are 4 inner entries with 3 exponents. Hence, the exponents

in the first step need to be multiplied by 3. Eventually,

the exponents in each (inner) entry in Fig. 7a should be

the sum of the corresponding exponents of the two steps,

such that the exponents of AiBi, i = 1, . . . , 4 can be both

unique in each inner and outer entry. In this way, we can get

P = Q = (0, 1, 3, 4).

B. Code Construction

From Fig. 7, we can see that the construction is recur-

sive. We assume that given n matrix multiplications, n is a

composite number, i.e., n = pq where n, p, q ∈ Z
+. For

now, we assume both p and q are prime numbers. We then

group A1, . . . ,An into p groups, where each group contains

q matrices, i.e., {A1, . . . ,Aq}, . . ., {An−q+1, . . . ,An}. We

can also do the same to B1, . . . ,Bn. To avoid ambiguity, we

rewrite P , Q, N as P (n), Q(n), N(n) for RC constructed

with n matrix multiplications.

We first construct an RC for n = p, for the outer entries

between two groups of Ai and Bi. In Fig. 8 we demonstrate

the recursive construction with p = 3. We can see that the

p = 3 groups of Ais and Bis are placed along the rows

and columns of the 3 × 3 table, corresponding to the RC for

n = p = 3. The only difference is that the exponents are

multiplied by r0(q), the recovery threshold of RC for n = q,

as there will be r0(q) exponents to be placed in each outer

entry in the second step.

In the second step, we construct an RC for n = q for each

outer entry in the first step, and then we can determine the

placement of Ais and Bis in each group. Note that all outer

entries actually have the same placement as they are all RCs

for n = q, so all outer entries in the same rows (columns) have

the same placements of Ais (Bis). In particular, each inner

entry of such RCs needs to be added with the exponents of

its corresponding outer entry in the first step. In other words,

each inner entry should be added with a value that equals r0(q)
times the corresponding exponent in the first step, such that

unique entries in each outer entry do not coincide with any

unique entries in other outer entries.

➱➱

�

�

r✁✂✄ r✁✥✄

☎

☎

✆ ✆✝

{Bq+1, . . . ,B2q} {B1, . . . ,Bq} {B2q+1, . . . ,B3q}

{
A

2
q
+
1
,
.
.
.
,
A

3
q
}
{A

q
+
1
,
.
.
.
,
A

2
q
}

{A
1
,
.
.
.
,
A

q
}

1× r0(q)

2× r0(q)

3× r0(q)

4× r0(q)

4× r0(q)

5× r0(q)

5× r0(q) 6× r0(q)

0

r0(q)−1

Qq

Pq

Fig. 8. An illustration of the construction of RC with p = 3. In this example
q is also assumed to be prime.

Given the construction above, we can now formalize the

algorithms to obtain P (n), Q(n), N(n), M(n) for n = pq.

Given entry (i, j) which indicates the inner entry at the i-th

row and the j-th column, by definition its exponent should be

Pi(n) + Qj(n). For convenience, we choose i1, i2 such that

i = (i1 − 1)q + i2 where 1 ≤ i1 ≤ p and 1 ≤ i2 ≤ q, and

similarly j = (j1−1)q+j2 where 1 ≤ j1 ≤ p and 1 ≤ j2 ≤ q.

In this way, (i1, j1) indicates the corresponding outer entry in

the first step and (i2, j2) indicates corresponding inner entry in

this outer entry. Therefore, we have Pi(n)+Qj(n) = (Pi1(p)+
Qj1(p)) · r0(q) + (Pi2(q) +Qj2(q)).

Since P0(n) = Q0(n) = 0, we have Pi(n) = Pi1(p)r0(q)+
Pi2(q) and Qj(n) = Qj1(p)r0(q) +Qj2(q).

Now we consider the placement of matrices, i.e., N(n).
At the j-th column in the n × n table, it belongs to the j1-

th column of the p outer entries and j2-th column in this

outer entry. The group corresponding to this outer entry then

should be {B(Nj1
(p)−1)q+1, . . . ,B(Nj1

−1)(p)q+q}. Hence, the

matrix at the i-th column should be N(Nj1
(p)−1)q+1+Nj2

(q)−1.

In other words, Nj(n) = (Nj1(p)− 1)q +Nj2(q).
Moreover, if p or q is still a composite number, we can

recursively use the construction above until they are both

prime numbers. We summarize the general code construction

of RC in Alg. 3, where we use r1(n) to denote the recovery

threshold of RC constructed in Alg. 3, and then we can replace

r0(q) with r1(q) in the second step. We analyze the recovery

threshold r1(n) in Sec. V-C (which is used in Line 11 of

Alg. 3).

9

The complexity of Alg. 3 is O(n). If n is a prime number,

then the construction is the same as the special case in Sec. IV.

Otherwise, we need to construct RC for n = p and n = q with

O(p) and O(q) time complexities. Moreover, the complexity

of code between Line 6 and Line 12 is O(n). Therefore, the

overall complexity when n is not a prime number is still O(n).

Algorithm 3 The (second) construction of RC with general

values in P .

Input: n

Output: P (n), Q(n), N(n), r1(n)
1: if n is a prime number then

2: Obtain P (n), Q(n), N(n) by Alg. 1 and Alg. 2

3: else

4: Obtain P (p), Q(p), N(p) from RC with n = p

5: Obtain P (q), Q(q), N(q), r1(q) from RC with n = q

6: for i← 1 to n do

7: Let i = (i1 − 1)q + i2 where 1 ≤ i1 ≤ p and

1 ≤ i2 ≤ q

8: Pi(n) = Pi1(p)r1(q) + Pi2(q)
9: Qi(n) = Qi1(p)r1(q) +Qi2(q)

10: Ni(n) = (Ni1(p)− 1)q +Ni2(q)
11: r1(n) = r1(p)r1(q)
12: end for

13: end if

C. Analysis

From Fig. 8, we can see that if the exponents in the RC for

n = q is consecutive, then the exponents for RC for n = pq,

given by the construction in Alg. 3, will also be consecutive.

This is because each outer entry in the first step separates from

each other by r1(q) which is the number of exponents in each

outer entry. As the number of exponents in each outer entry

is r1(q), and the exponents in different outer entries do not

overlap, the total number of exponents is r1(p)r1(q). Since

we will also recursively construct RC for n = p or n = q if

p or q is still a composite number, we can also recursively

get the recovery threshold of r1(n). If n can be factorized

as n =
∏

i p
αi

i where pis are prime factors of n, then the

recovery threshold of the construction r1(n) is
∏

i r0(pi)
αi .

We now analyze the recovery threshold by discussing some

representative special cases. Obviously, if n is a prime number,

then r1(n) = r0(n) =
⌊

(n+1)2

2

⌋

− 1.

When n is not a prime number, the recovery threshold

becomes

r1(n) =
∏

i

r0(pi)
αi =

∏

i

O

(

p2i
2

)αi

= O

(

(
∏

i p
αi

i)
2

2
∑

i
αi

)

= O

(

n2

2
∑

i
αi

)

.

From the equation above we can see that the recovery

threshold can be minimized when
∑

i αi is maximized, i.e.,

when n is a power of 2. Specifically, if n = 2α, r1(n) =
r0(2)

α = 3log2n = O(nlog
2
3) ≈ O(n1.585).

Fig. 9 shows how r1(n) grows with n, when 2 ≤ n ≤ 128.

In order to make it easy to compare, we show logn r1(n) in

Fig. 9. The growth of the recovery threshold r1(n).

the Y-axis. We can see that r1(n) fluctuate between O(n1.585)
(when n is a power of 2) and O(n1.860), meaning that for

most values of n, their recovery threshold will be higher than

O(nlog
2
3). It is obvious that the lower bound of logn r1(n)

is 1.585, as it is always reached when n is a power of 2.

However, the upper bound keeps going up with n, and 1.860
is the reached when n = 127. Even worse, as r0(n) = O(n2),
we expect that logn r1(n) −→ 2 when n −→ ∞ if n is a

prime. Therefore, when n goes to infinity, the upper bound

of logn r1(n) will go up to 2 eventually, and the gap between

the upper and lower bound will be larger and larger. In the next

section, we will further extend the construction to achieve an

O(nlog
2
3) recovery threshold for all valid values of n.

VI. ACHIEVING AN O(nlog
2
3) RECOVERY THRESHOLD

FOR ALL n

A. Intuition and Construction

To achieve an O(nlog
2
3) recovery threshold, we make a

third attempt to construct RC, which is based on the second

attempt in Sec. V. Hence, we first present an example of the

RC given by this construction. In Fig. 10a, we present the

RC constructed by Alg. 3 with n = 8, where M = N =
(1, 2, . . . , 8), P = Q = (0, 1, 3, 4, 9, 10, 12, 13). By taking

the first seven entries from all the four parameters, we can

construct RC with n = 7, such that M = N = (1, 2, . . . , 7),
P = Q = (0, 1, 3, 4, 10, 12). As shown in Fig. 10b, the degree

of the corresponding polynomial is 25, which is even smaller

than that of RC with n = 7 constructed by Alg. 3 (shown in

Fig. 10c).

By Alg. 3, when n = 2 the values of M and N are

sequential. Since we construct RC recursively when n is a

power of 2, i.e., n = 2i where i is a positive integer, entries

in M and N will still be sequential. Therefore, if n = 2i, we

can arbitrarily take the first n0 entries (n0 ≤ n) in M , N , P ,

and Q, to construct the RC for n0 matrix multiplications.

Following this intuition, we give the code construction in

Alg. 4. Since 2i < 2n, the complexity of Line 2 is O(2n) =
O(n). Since we then need to take a subset of P (2i), Q(2i),
and N(wi), the overall complexity is also O(n).

10

A1

A2

A3

A4

A5

A6

A7

A8

A1

A2

A3

A4

A5

A6

A7

A1

A2

A3

A4

A5

A6

A7

B7B6B5B4B3B2B1

B8B7B6B5B4B3B2B1

B7B6B5B4B3B2B1

Fig. 10. Examples of RC constructed in the second and the third attempts.

Algorithm 4 The (third) construction of RC.

Input: n

Output: P (n), Q(n), N(n)
1: Find the smallest positive integer such that 2i−1 < n ≤ 2i.
2: Obtain P (2i), Q(2i), N(2i) from the RC constructed by

Alg. 3

3: for i← 1 to n do

4: Pi(n) = Pi(2
i)

5: Qi(n) = Qi(2
i)

6: Ni(n) = Ni(2
i)

7: end for

B. Analysis

Since from the construction of RC with n = 2i we can

get the construction of RC for any n < 2i, we only need to

analyze the exponents of highlighted entries in the construction

when n = 2i. Let r2(n) denote the recovery threshold for

RC constructed by Alg. 4. In particular, we do not consider if

exponents in the corresponding polynomial are consecutive for

now (which will be discussed in Sec. VI-C), i.e., the coefficient

of some term in the polynomial after decoding may be a zero

matrix.

We analyze r2(n) recursively. If n = 2i, we have r2(n) =
r1(n) = 3log2

n = 3i, since the two constructions are the same

in this case. Therefore, we have r2(1) = r1(1) = 1.

If n > 1, there exists i ∈ Z
+ such that 2i−1 < n ≤ 2i.

Based on Alg. 4, we will first construct RC with 2i matrix

multiplications from Alg. 3, and then the recovery threshold

r2(n) = Pn(2
i) +Qn(2

i) + 1.

In Alg. 3, the RC with 2i matrix multiplications

should be recursively constructed from the RC with 2i−1

matrix multiplications. As n = 2i−1 + (n − 2i−1),
Pn(2

i) = P2(2)r0(2
i−1) + Pn−2i−1(2i−1) and Qn(2

i) =
Q2(2)r0(2

i−1) + Qn−2i−1(2i−1). Therefore, r2(n) =
r0(2

i−1)(P2(2)+Q2(2))+Pn−2i−1(2i−1)+Qn−2i−1(2i−1)+
1 = 2 · r2(2

i−1) +R2(n− 2i−1) = 2 · 3i−1 + r2(n− 2i−1).

Hence, we get Theorem 3 from the analysis above.

Theorem 3. By the construction in Alg. 4, r2(n) satisfies the

following equation:

r2(n) =

{

1 n = 1;

r2(n− 2i−1) + 2 · 3i−1 2i−1 < n ≤ 2i, i ∈ Z
+.

From Theorem 3, we can also verify that when n = 2i,
R2(2

i) = r2(2
i−1) + 2 · 3i−1 = r2(2

i−2) + 2 · 3i−2 = · · · =
1+

∑i−1
j=0 2 · 3

j = 3i = r1(n). We analyze the scale of r2(n)
in Theorem 4 below.

Theorem 4. r2(n) = O(nlog
2
3).

Proof. To prove this theorem, we first prove that r2(n) strictly

increases with n. We prove it by proving that given i ∈ Z
+,

if the theorem is true for all n ≤ 2i−1, it is also true for all

n ≤ 2i. Obviously it is true when i = 1, and we only need

to consider the cases when 2i−1 < n ≤ 2i. If 2i−1 < n <

2i, we have r2(n − 2i−1) < r2(n + 1 − 2i−1). Therefore,

by Theorem 3 we also have r2(n) < r2(n + 1). If n = 2i,
r2(n+1) = r2(2

i+1) = r2(2
i+1−2i)+2·3i = r2(1)+2·3i >

3i = r2(2
i) = r2(n).

As we only need to consider the cases where n is not

a power of 2, we assume that i is the smallest integer

such that n < n′ = 2i, i ∈ Z
+, we have n′ < 2n.

Therefore, r2(n) < r2(n
′) = r1(n

′) = 3log2
n′

= (n′)log23 <

(2n)log2
3 = 3nlog

2
3, i.e., r2(n) = O(nlog

2
3).

Therefore, we eventually find a construction of RC with

a linear complexity, and it achieves an O(nlog
2
3) recovery

threshold for all valid values of n.

C. Further Improvement

In fact, we may further improve the recovery threshold

of RC constructed by Alg. 4 for many values of n, when

exponents in C̃(x) are not consecutive. For example, when

n = 5, we can construct RC with r2(5) = 19, as shown

in Fig. 11. However, since exponents 11, 14, 15, 16, and 17
are missing, we only need to have results of 14 tasks before

decoding, i.e., its actual recovery threshold is further reduced

11

FRQVWUXFWHG�IURP��D�

A1

A2

A3

A4

A5

A6

A7

A8

B1 B2 B3 B4 B5 B6 B7 B8

A1

A2

A3

A4

A5

B1 B2 B3 B4 B5

Fig. 11. An example of non-consecutive exponents in C̃(x)

from 19 to 14. Similarly, in Fig. 10b, we can also see that the

exponents 17 and 23 are missing, further reducing the recovery

threshold by 2. We use r3(n) to denote the recovery threshold

after this improvement.

Lemma 3. When n = 2i, i ∈ Z, exponents constructed by

Alg. 4 are consecutive. Therefore, r3(n) = r2(n).

Proof. If n = 1, the statement can be trivially proved.

We now prove that if the statement is true for n = 2i−1,

it is also true for n = 2i, i ∈ Z
+. From Alg. 4, we know

that the construction for n = 2i relies on the construction for

n = 2i−1, such that p = 2i−1 and q = 2. Therefore, similar

to Fig. 8, we can divide the table of exponents into 4 outer

entries, each of which contains 2i−1×2i−1 inner entries. From

the assumption we know that exponents in each outer entry are

consecutive. As the exponents of n = 2 are also consecutive,

we can know that all exponents are consecutive.

To know r3(n) in other cases, we need to count the

number of exponents instead of the largest exponents, as some

exponents may not appear in C̃(x). In Fig. 12a, we count the

number of exponents in four parts. From the construction,

we know that when n = 2i, the upper right quarter is

the same as the lower left quarter, and exponents in the

three quarters are different and consecutive. Therefore, when

n ∈ (2i−1, 2i), r3(n) comes from three parts: r3(2
i−1) from

the upper left quarter, r3(n−2i) from the lower right quarter,

and
∑n−2i−1

j=1 δi−1(j) from the upper right or the lower left

quarter. In particular, δi−1(j) denotes the number of new

exponents that do not appear in all the columns on the left

of the j-th column, in the 2i−1 × 2i−1 table, j ∈ [1, 2i−1],
i ≥ 1.

Obviously, if j = 1, all exponents are new exponents, and

thus δi(1) = 2i. In other cases, we can see its recursion in

Fig. 12b. By adding the j-th column, we can see that new

exponents may come from two parts. If j = j1 < 2i−1, the

two parts are the upper and lower left quarters. As exponents in

these two quarters have no overlap, they can provide the same

number of new exponents, i.e., δi−1(j1). If j = j2 > 2i−1,

the two parts are the upper and lower right quarters. Note that

the upper right quarter has the same exponents as the lower

left quarter, so it offers no new exponents and the number of

new exponents equals δi−1(j − 2i−1).
Summarizing the analysis above, we can get Theorem 5.

δ
i
−
1 (j

1)
δ
i
−
1 (j

1)

δ
i
−
1 (j

2
−

2
i
−
1)

0

n

n

2
i

2
i

2
i−1

2
i−1

j = j1 j = j2

(a) r3(n) (b) δi(j)

r3(2
i−1)

n−2
i−1∑

j=1

δi−1(j)

n−2
i−1∑

j=1

δi−1(j) r3(n− 2i−1)

2
i

2
i

2
i−1

2
i−1

Fig. 12. Illustrations of the recursions of r3(n) and δi(j).

Fig. 13. The improvements of recovery thresholds.

Theorem 5. When n ∈ (2i−1, 2i), i ∈ Z
+, r3(n) = 3i−1 +

r3(n− 2i−1) +
∑n−2i−1

j=1 δi−1(j), where

δi(j) =











2i j = 1;

2δi−1(j) j ∈ (1, 2i−1];

δi−1(j − 2i−1) j ∈ (2i−1, 2i].

As r3(2
i) = r2(2

i), i ∈ Z
+, the order of the recovery

threshold will not change after removing missing exponents.

However, the recovery threshold can still be saved significantly

in many cases. As shown in Fig. 13, r3(n) can be saved by

up to 60.1% lower than r2(n).

VII. EVALUATION

We implement the code construction of RC with mpi4py,

i.e., MPI for python, which is a python packaging providing

python bindings for MPI. The job of batch matrix multipli-

cation will run in a master-worker architecture. We assume

that the input matrices of the n matrix multiplications have

been placed on each worker, and each worker will encode

such input matrices into its own task. As the encoding is

polynomial evaluations of Ã(x) and B̃(x) in RC, we sim-

ply use Horner’s method to encode input matrices after the

code is constructed. For example, we can evaluate Ã(x) as

Ã(x) =
∑n

i=1 AMi
xPi = x(AM1

+ x(AM2
+ x(AM3

+

12

· · · + x(AMn−1
+ xAMn

) · · ·))), and also B̃(x) similarly.

Horner’s method also allows us to easily encode A and B in

a distributed or centralized manner, as different tasks can be

encoded separately. After getting Ã(x) and B̃(x), each worker

then computes the multiplication of Ã(x) and B̃(x), where the

value of x is uniquely chosen on each worker, and then up-

load the result to the master using mpi4py.MPI.Comm.send,

which sends an end-to-end message synchronously. The master

will continuously run mpi4py.MPI.Comm.Probe which tests

if a new message arrives. Once it returns, it means one

worker has finished its task and the result is received by the

master, and then the master will save the result by calling

mpi4py.MPI.Comm.recv. Once the number of finished tasks

reaches the recovery threshold, the master will stop receiving

new results (considering the rest of workers as stragglers), and

decode the received results to obtain the results of batch matrix

multiplication.

We run jobs of batch matrix multiplication on virtual

machines hosted in Amazon EC2. The master runs on the

virtual machine of type c4.4xlarge (Intel Xeon E5-2666 v3

(Haswell) processors with 16 vCPU, and 30 GB memory) and

all workers run on the virtual machine of type c4.2xlarge

(Intel Xeon E5-2666 v3 (Haswell) processors with 8 vCPU,

and 15 GB memory). We don’t add arbitrary delay to the task,

since it has been reported that the performance of straggling

virtual machines on EC2 be 5x slower than others [3], [4].

We run a job of n matrix multiplications where the sizes of

input matrices for each multiplication are 2000 × 30000 and

30000 × 2000. We construct RC for n = 3, 4, 5, and 6, and

the recovery thresholds of corresponding RC are 6, 9, 14, and

18, respectively. The number of workers in each job equals

the recovery threshold plus 5 to tolerate up to 5 stragglers.

We first run each job with distributed encoding where each

worker just computes its own Ã(x) and B̃(x) during encoding,

using Horner’s method for RC, LCC, and CSA codes, and

measure its performance in terms of the time of encoding and

the completion time of the whole job. Each job is repeated 20
times and we report each data point below as the average.

As a comparison, we also implement existing coding

schemes for batch matrix multiplication, including LCC

codes [8] and CSA codes [16]. From Fig. 14, we can see

that RC outperforms LCC and CSA codes significantly. Due

to its simple polynomials, RC saves the encoding time by

up to 34.6% compared to LCC codes, and by up to 38.5%
compared to CSA codes. Moreover, as the algorithms for the

code construction are O(n), most time of encoding is spent

evaluating polynomials. In fact, even if n = 50, the time of

code construction is less than 10−4 seconds. Because of the

low encoding time, even if RC can tolerate fewer stragglers

than LCC and CSA codes (due to its higher recovery threshold

which we will elaborate on in Fig. 16) and thus costs relatively

more time in decoding, it still saves the completion time of

the whole job by up to 27.3% compared to LCC codes and

30.6% compared to CSA codes.

As a comparison, we also run the centralized version of the

encoding algorithms in all the jobs above, where the master

encodes all coded tasks and distributes such tasks to workers.

Surprisingly, we find that the fast encoding algorithms for LCC

and CSA codes actually consume more time than the naive

algorithm based on matrix multiplication for small numbers of

n. To achieve lower encoding time, fast algorithms typically

require more than 1000 matrix multiplications (i.e., n > 1000)

in our implementation. Even so, the encoding time is still

significantly higher than the time of the whole job with

distributed encoding, because of the large number of matrices

to encode. Hence, we use a naive algorithm where the master

compute all Ã(x) and B̃(x) with values of x of all tasks,

by applying Horner’s method again. This naive algorithm

achieves even lower encoding time than the fast encoding

algorithms when n is small. Note that the complexities of the

naive algorithm for RC, LCC, and CSA codes are in the same

order, which is quadratic to the recovery threshold. However,

as we will see below, the encoding time of RC is still lower

thanks to its simpler forms of polynomials.

We run centralized encoding for all the jobs with the same

configurations. In Fig. 15a, we show the encoding time for

RC, LCC and CSA codes. Compared to the job completion

time in Fig. 14b, we can see that the time of centralized en-

coding is significantly higher, making it impractical for batch

matrix multiplication. Nevertheless, with the naive encoding

algorithm, RC achieves the lowest time of encoding again

thanks to its simpler polynomials.

We present the recovery thresholds of the coding schemes

that we used in the experiments above in Fig. 16. In exchange

for a lower amount of time of encoding, RC requires higher

recovery thresholds than all the other coding schemes. With

the same number of workers, a higher recovery threshold

reduces the number of stragglers tolerable in the experiments

above, and thus may consume more time to complete the job.

However, as we have seen in Fig. 14, the time to complete the

whole job with RC is not compromised by the higher recovery

threshold. Instead, its low time of encoding compensates for

any additional time of computation.

We now consider more extreme cases with n =
100, 200, 300, and 400. In such cases, we expect that the

recovery threshold of RC will become significantly higher

than LCC and CSA codes, because its recovery threshold

still grows with a higher order of magnitude than O(n), as

demonstrated in Fig. 17. However, we find that the time of

distributed encoding of RC is not compromised by the higher

recovery threshold. In Fig. 18, we reduce the sizes of Ai and

Bi as 2000× 1000 and 1000× 2000, so that we can fit input

matrices into the memory. We can see that RC still achieves

the lowest encoding time, thanks to its simple polynomials.

VIII. CONCLUSION AND OPEN PROBLEMS

Coded computing has been demonstrated to tolerate strag-

glers efficiently for distributed matrix multiplication. However,

most existing coding schemes can only create coded tasks

to tolerate stragglers within only one matrix multiplication.

In this paper, we propose rook polynomial coding (RC), a

coding framework for batch matrix multiplication, constructed

towards saving the time of encoding in practice. We demon-

strate that compared to existing schemes, RC can save the time

of encoding and achieve lower completion time of the job.

13

Fig. 14. Time of encoding and the whole job of n matrix multiplications with n = 3, 4, 5, and 6.

Fig. 15. The time of centralized encoding of RC, LCC, and CSA codes with
n = 3, 4, 5, and 6.

Fig. 16. Recovery thresholds of RC, LCC, and CSA codes with n = 3, 4, 5,
and 6.

In this paper, we show that the recovery threshold of RC

can be saved to O(nlog
2
3). However, it is unknown if it is the

optimal under the coding framework of RC (the coefficients of

the polynomial are one of the input matrices). Obviously, the

lower bound is 2n− 1 since P and Q are strictly increasing.

In other words, it is no less than LCC and CSA codes, in

exchange for simpler forms of its polynomials. However, what

the optimal recovery threshold is and how to achieve it are still

open problems, and we leave them as our future work. We will

also make RC support matrix partitioning in the future work.

ACKNOWLEDGMENTS

This paper is based upon work supported by the National

Science Foundation under Grant No. CCF-2101388. A. Sal-

divia is supported by the NSF Research Experiences for

Undergraduates (REU) supplement award.

REFERENCES

[1] P. Soto, X. Fan, and J. Li, “Straggler-free Coding for Concurrent Ma-
trix Multiplications,” in IEEE International Symposium on Information

Theory (ISIT), 2020.

Fig. 17. Recovery thresholds of RC, LCC, and CSA codes with n =
100, 200, 300, and 400.

Fig. 18. The time of distributed encoding of RC, LCC, and CSA codes with
n = 100, 200, 300, and 400.

[2] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray Failure: The Achilles’ Heel of Cloud-Scale Systems,”
in USENIX Conference on Hot Topics in Operating Systems (HotOS),
2017.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding Up Distributed Machine Learning Using Codes,” IEEE

Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529,
2018.

[4] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Distributed Learning,” in International

Conference on Machine Learning (ICML), 2017, pp. 3368–3376.

[5] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of the

ACM, vol. 56, no. 2, pp. 74–80, 2013.

[6] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the Optimal Recovery Threshold of Coded Matrix
Multiplication,” IEEE Transactions on Information Theory, vol. 66,
no. 1, pp. 278–301, 2019.

[7] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial Codes:
an Optimal Design for High-Dimensional Coded Matrix Multiplication,”
Advances in Neural Information Processing Systems (NIPS), 2017.

[8] ——, “Straggler Mitigation in Distributed Matrix Multiplication: Funda-
mental Limits and Optimal Coding,” in IEEE International Symposium

on Information Theory (ISIT), 2018, pp. 2022–2026.

[9] N. B. Shah, K. Lee, and K. Ramchandran, “When Do Redundant
Requests Reduce Latency?” IEEE Transactions on Communications,
vol. 64, no. 2, pp. 715–722, 2016.

[10] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective

14

Straggler Mitigation: Attack of the Clones,” in Advances in Neural

Information Processing Systems (NIPS), 2013, pp. 185–198.
[11] Z. Qiu and J. F. Pérez, “Evaluating Replication for Parallel Jobs: An

Efficient Approach,” IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 8, pp. 2288–2302, 2016.
[12] D. Wang, G. Joshi, and G. Wornell, “Efficient Task Replication for

Fast Response Times in Parallel Computation,” ACM SIGMETRICS

Performance Evaluation Review, vol. 42, no. 1, pp. 599–600, 2014.
[13] K. Lee, R. Pedarsani, and K. Ramchandran, “On Scheduling Redundant

Requests with Cancellation Overheads,” IEEE/ACM Transactions on

Networking, vol. 25, no. 2, pp. 1279–1290, 2017.
[14] M. N. Krishnan, E. Hosseini, and A. Khisti, “Coded Sequential Matrix

Multiplication For Straggler Mitigation,” in Advances in Neural Infor-

mation Processing Systems 33 (NeurIPS 2020, 2020.
[15] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and

S. A. Avestimehr, “Lagrange Coded Computing: Optimal Design for
Resiliency, Security, and Privacy,” in The 22nd International Conference

on Artificial Intelligence and Statistics (AISTATS). PMLR, 2019, pp.
1215–1225.

[16] Z. Jia and S. A. Jafar, “Cross Subspace Alignment Codes for Coded
Distributed Batch Computation,” arXiv:1909.13873.

[17] A. Gerasoulis, M. D. Grigoriadis, and L. Sun, “A Fast Algorithm
for Trummer’s Problem,” SIAM journal on Scientific and Statistical

Computing, vol. 8, no. 1, pp. s135–s138, 1987.
[18] A. Gerasoulis, “A Fast Algorithm for the Multiplication of Generalized

Hilbert Matrices with Vectors,” Mathematics of Computation, vol. 50,
no. 181, pp. 179–188, 1988.

[19] V. Pan, M. A. Tabanjeh, Z. Chen, E. Landowne, and A. Sadikou,
“New Transformations of Cauchy Matrices and Trummer’s Problem,”
Computers & Mathematics with Applications, vol. 35, no. 12, pp. 1–5,
1998.

[20] K. S. Kedlaya and C. Umans, “Fast Polynomial Factorization and
Modular Composition,” SIAM Journal on Computing, vol. 40, no. 6,
pp. 1767–1802, 2011.

[21] V. Y. Pan, “Matrix Structures of Vandermonde and Cauchy Types and
Polynomial and Rational Computations,” in Structured Matrices and

Polynomials. Springer, 2001, pp. 73–116.
[22] Q. Yu and A. S. Avestimehr, “Entangled Polynomial Codes for Secure,

Private, and Batch Distributed Matrix Multiplication: Breaking the
“Cubic” Barrier,” in IEEE International Symposium on Information

Theory (ISIT), 2020.
[23] Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar, “GCSA Codes with Noise

Alignment for Secure Coded Multi-Party Batch Matrix Multiplication,”
in IEEE International Symposium on Information Theory (ISIT), 2020.

[24] J. Gauthier, “Fast Multipoint Evaluation On n Arbitrary Points,” Mas-
ter’s thesis, Simon Fraser University, July 2007.

Pedro Soto is currently a Ph.D. student at the
Graduate Center of the City University of New York.
He received his B.S. degree in Mathematics at the
Florida International University in 2016. His major
research interest is the application of coding the-
ory towards distributed computing, with a particular
interest in the use of erasure codes towards fault
tolerance and straggler mitigation in distributed ma-
trix multiplication and distributed machine learning
algorithms.

Xiaodi Fan received his B.S. degree in Communi-
cation Engineering at the Hangzhou Dianzi Univer-
sity in July 2018. He is currently a Ph.D. student
at the Graduate Center of the City University of
New York. His Ph.D. research interest is designing
and deploying novel schemes of erasure coding to
tolerate stragglers and leverage stragglers in large-
scale distributed matrix multiplication and machine
learning.

Angel Saldivia is an undergraduate student in the
Department of Computer Science, School of Com-
puting & Information Sciences, Florida International
University. His current research interests are ma-
chine learning and robot vision.

Jun Li received his Ph.D. degree from the De-
partment of Electrical and Computer Engineering,
University of Toronto, in 2017, and his B.S. and
M.S. degrees from the School of Computer Science,
Fudan University, China, in 2009 and 2012. He
is currently an assistant professor at the Queens
College and the Graduate Center, City University
of New York. His research interests fall into the
intersection between coding theory and distributed
computing and systems.

