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Abstract—Matrix multiplication is a fundamental building
block in various distributed computing algorithms. In order to
multiply large matrices, it is common practice to distribute the
computation into multiple tasks running on different nodes. In
order to tolerate stragglers among such nodes, various coding
schemes have been proposed by adding additional coded tasks.
However, most existing coding schemes for matrix multiplica-
tion are constructed for only one matrix multiplication, while
batch matrix multiplication is common in large-scale distributed
computing workloads. In this paper, we propose Rook Coding
(RC), a novel polynomial-based coding framework for computing
the multiplication of n pairs of matrices in batch. Designed
to achieve lower encoding time in practice, we construct RC
as polynomials of much simpler forms than existing coding
schemes for batch matrix multiplication, achieving a recovery
threshold of O(n'°223), Compared to existing coding schemes,
RC achieves a lower encoding complexity in practice, because of
its simpler forms in the encoding polynomials. Through extensive
experiments, we show that RC can save the time of the whole
job thanks to its low overhead of encoding.

Index Terms—distributed computing, batch matrix multiplica-
tion, straggler mitigation, coded computing

I. INTRODUCTION
A. Background

ECENT advances in large-scale distributed computing

have demonstrated success in various applications, such
as machine learning and data analytics. With the massive sizes
of modern datasets, it has become inevitable to run large-scale
computing jobs in a distributed infrastructure, by distributing
the computation into multiple tasks running in parallel on a
large number of nodes.

Howeyver, it is well known that nodes in a distributed infras-
tructure are typically built with commodity hardware and are
subject to various faulty behaviors [2]-[4]. Therefore, when
the computation is distributed onto multiple nodes, its progress
can be significantly affected by the tasks running on slow or
failed nodes [5], which we call stragglers. The adversarial
effects of stragglers can be mitigated by launching redundant
tasks in advance. A naive application of this principle is to
replicate each task on multiple nodes. For example, if we run
each task on three nodes, the results of any two tasks affected
by stragglers can be simply disregarded while all the other
tasks can continue without being delayed. This naive method,
however, will significantly increase the consumption of re-
sources, including computing, communication, and storage,
with only a limited number of stragglers tolerable. Specifically,
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in order to tolerate any r stragglers, we have to replicate each
task on r + 1 nodes.
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Fig. 1. Examples of distributed matrix multiplications with additional workers
(running replicated or coded tasks) to tolerate one single straggler, represented
with a gray dotted arrow.

On the other hand, it has been demonstrated that we can
tolerate the same number of stragglers with fewer tasks if
we run coded tasks as redundant tasks. Fig. 1 illustrates an
example of distributed matrix multiplication with replicated
and coded tasks. We calculate AX on four worker nodes
in Fig. la. The matrix A is split into two submatrices, A
and A, and then AX can be obtained from the results of
two tasks, i.e., A;X and A,;X. In Fig. 1a, the two tasks are
replicated on two workers, respectively. Therefore, any single
straggler among the total four workers can be tolerated without
affecting the overall performance. In Fig. 1b, however, a third
worker executes a coded task (A; + A2)X, which can be
used to recover A; X and A,X if A;X or A>X runs on a
straggler. Therefore, compared to replicating the two tasks in
Fig. 1a, coded matrix multiplication in Fig. 1b can save the
number of additional workers by 50% and tolerate the same
number of stragglers.

Although straggler-free coding for distributed computing,
especially coded matrix multiplication (e.g., [3], [6]-[8]), has
attracted a significant amount of research attention, most
existing coding schemes focus on the code construction for
one single matrix multiplication so far. In this paper, we
consider batch matrix multiplication, a more general scenario
where multiple matrix multiplications need to be computed
in parallel. Although we can launch multiple distributed jobs
for each multiplication in parallel, each job will then need to
have its own coded task to tolerate stragglers. It will naturally
require significantly more tasks as we don’t know which job
will have stragglers. Therefore, we aim to design a coding
scheme in this paper such that only one job needs to be
launched for batch matrix multiplication where stragglers can
be flexibly tolerated.

B. Related Work

There has been a surge of interest recently on the mitigation
of stragglers in distributed computing, which runs a large
number of parallel tasks on different nodes. It is well known



that stragglers are common in distributed computing with a
large number of nodes, and stragglers can add significant
long-tail latency to the overall performance, even though there
are only a small number of tasks affected by stragglers [3],
[4]. Conventionally stragglers are tolerated by replicating each
task on multiple nodes [9]-[13], such that a task affected by
a straggler can be simply disregarded. However, replication
incurs a significant resource overhead as all tasks need to be
replicated. Compared to replication, coding-based techniques
have been proposed to tolerate the same number of stragglers
with lower resource overhead (e.g., [3], [4]).

One of the critical applications of coded distributed com-
puting is distributed matrix multiplication, as matrix multi-
plication is a common operation in various machine learning
models and data analytics algorithms. In Lee et al.’s pioneering
paper [3], Maximum Distance Separable (MDS) codes are ap-
plied in matrix-vector multiplication of the form Ax where the
matrix A is large and hence will be partitioned vertically along
the rows and encoded with MDS codes. This direction was
continued by Dutta et al. [6] and Yu et al. [7] who considered
a more general problem of matrix-matrix multiplication, i.e.,
A - B. The two input matrices A and B are partitioned along
their rows and columns, respectively, or the other way round.
The proof of the optimality for such configurations have been
given by Yu et al. [7], [8], where the authors have also devised
entangled polynomial codes that allow partitioning the input
matrices in a more general way, such that A and B can both
be arbitrarily partitioned by their rows and columns.

In this paper, we consider a more general problem of dis-
tributed coded computing for batch matrix multiplication, i.e.,
the computation of all matrix multiplications is completed in
one round. A related problem was investigated by Krishnan et
al. [14] where the computation is complete with additional
rounds such that coding can be applied across time. However,
multiple rounds of computation may incur a significant amount
of communication overhead. Therefore, in this paper, we focus
batch matrix multiplication, i.e., A;B;, 7 =1,...,n. Workers
perform multiplication of matrices encoded from the 2n input
matrices, and the master can directly decode results received
from a certain number of workers to obtain the results of n
matrix multiplications.

Existing works for batch matrix multiplication have been
constructed based on polynomial evaluations. In other words,
any worker computes the multiplication of two polynomials
A(z) and B(z), where the values of z differ on different
workers. The coefficients of the polynomials are matrices
encoded from the input matrices. For example, Lagrange
Coded Computing (LCC) [15] constructs A(z) and B(z) as
Lagrange polynomials. As A (z)-B(z) are still a polynomial,
its coefficients can be interpolated from results received from
different workers with different values of x. Another exam-
ple is Cross Subspace Alignment (CSA) codes [16]. CSA
codes construct A (z) and B(z) such that their multiplication
facilitates a Cauchy-Vandermonde structure, where desired
components (A;B;,7 = 1,...,n) correspond to the Cauchy
part and other interference components are aligned into the
Vandermonde part. Both LCC and CSA codes achieve an
optimal recovery threshold of 2n — 1, i.e., 2n — 1 workers are

needed to decode the results. However, as we argue below, it
does not necessarily minimize the completion time in practice.

To evaluate A(x) and B(z), LCC and CSA codes rely on
fast algorithms for polynomial interpolation and/or evaluation
with the O(nlog2 n) complexity [17]-[21]. However, the
encoding based on such algorithms has to be centralized,
i.e, input matrices will be encoded into all tasks on one
single node. Instead of constructing complex polynomials for
the centralized fast algorithm, we propose rook polynomial
coding (RC), another polynomial-based coding scheme for
batch matrix multiplication in this paper. RC is constructed
as polynomials of much simpler forms, making it faster for
encoding in practice, especially distributed encoding. Trading
off the recovery threshold for a lower encoding complexity,
RC can eventually achieve a lower completion time as demon-
strated by experiments on AWS.

There is no partitioning of input matrices in the afore-
mentioned LCC and CSA codes. In other words, each
worker has the same computational load as multiplying A;B;,
Vi = 1,...,n. To support partitioning, Yu et al. integrated
LCC codes with entangled polynomial codes [22]. Moreover,
Chen et al. extended CSA codes into Generalized Cross
Subspace Alignment (GCSA) codes with noise alignment [23].
In this paper, we focus on the construction of RC without
matrix partitioning. We aim to integrate RC with entangled
polynomial codes to support matrix partitioning in our future
work.

C. Contributions

To tolerate stragglers altogether, there exist coding schemes
constructed based on polynomial evaluations, e.g., LCC
codes [15] and CSA codes [16]. Although they can tolerate
stragglers among multiple matrix multiplications, we find that
their costs of encoding can be overwhelmingly high. Although
fast algorithms based on multi-point polynomial evaluations
can be incorporated into the algorithm of encoding [17]-
[21], they outperform the traditional algorithms (e.g., Horner’s
method) only when n is very large [24]. In practice, we
find that this number can be larger than 1000. Moreover,
the fast algorithms require centralized computing, making it
impossible to speed up encoding by distributed computing.

In this paper, we propose Rook Coding (RC) for batch
matrix multiplication that is designed towards low overhead
during encoding in practice. Instead of constructing complex
polynomials fit for fast algorithms of multi-point polynomial
evaluations, we construct RC as polynomials with very simple
forms, which meanwhile allow for an easy distributed im-
plementation of encoding with low overhead. We gradually
update the constructions of RC by improving the recovery
threshold step-by-step, and eventually achieve an O(n'°823)
recovery threshold. By running experiments on Amazon EC2,
we demonstrate that RC achieves a much lower time of
encoding in both centralized and distributed manners. Thanks
to the time saved during encoding, RC achieves lower job
completion time than other coding schemes for batch matrix
multiplication, even though it has a higher recovery threshold.



II. MOTIVATING EXAMPLES

We start with a toy example to demonstrate the advantages
of our coding framework for batch matrix multiplication.
Assume that we need to compute the results of two matrix
multiplications, ie., A1B; and A3;Bs, where A; and A,
are of the same size, and B; and By are of the same size,
too. If the two multiplications are computed as two jobs, we
can replicate their sole tasks on r 4+ 1 nodes, such that any r
stragglers can be tolerated. In other words, we need to have
2(r + 1) tasks to tolerate any r stragglers and complete the
two matrix multiplications, since the replicated tasks for one
job cannot be used in the other job.

A naive way to add coded tasks for the two jobs is to
embed the two matrix multiplications into one larger job as
A oA s A A:B; AB,

A.-B2 AJ -[B1 By] = [AQBl A,B,

the result of A;B; and A;B5 can be obtained as submatrices
of AB. However, the complexity of AB becomes four times
as large as A;B;. In order to generate coded tasks with the
same complexity as A;B;, we can apply polynomial codes [7],

a polynomial-based coding scheme for matrix multlphcatlon
to the job of AB, by encodmg Aas A(z) = Aqa® +As2? and
B as B(z) = B12° + Byz!, and then the sizes of A(z) and
B( ) equal those of A; and B;, respectlvely A coded task can
then be generated as a polynomlal of C( )2 A(z)B(z), ie.,

C( )= A1B12°+ A 1Bozt + AsBi22+ AyBox3. Given any
4 coded tasks C(:c) with different values of z, the coefficients
of this polynomial can be solved with interpolation or Reed-
Solomon decoding. In other words, the recovery threshold is 4,
and we can tolerate r stragglers with a total of 4+ tasks. With
n matrix multiplications, it is easy to infer that the recovery
threshold is n?.

In this paper, we propose a coding framework that requires
significantly fewer tasks than replication and polynomial
codes, tolerate the same number of stragglers with the same
complexity in the coded tasks. Given the two matrix multipli-
cations above, A(x) and B(z) can be generated differently
as A(z) = A;z° + Asz', and B(z) = Bz 4+ Byzl,
respectively. Hence, C(z) = A1B12°+ (A1 By +AoB )zl +
A,By2?. In this way, we only need the results of any three
coded tasks (with different values of z), and the recovery
threshold becomes 3. Although when n = 2 the recovery
threshold can only be saved by 25%, we demonstrate in the
rest of this paper that the recovery threshold can eventually be
saved from O(n?) to O(n'°&23).

The polynomials in RC are also simpler compared to other
coding schemes for batch matrix multiplication. For example,
with LCC codes, A(x) and B(z) are encoded as —Aj(x —
2)+ Az(z—1) and —B;(z — 2) + By (z — 1), or equivalently
(—Al +A2)$—|— (2A1 —Ag) and (_Bl +B2)J)+ (2B1 — BQ),
respectively. By comparing the coefficients, we can see that
RC only uses one of the input matrices as the coefficient of
each term in A(x) and B(z), allowing it to save the time of
encoding in practice.

. In this way,

III. CODING FRAMEWORK

Given n matrix multiplications, i.e., A;B1, AsB,, ..., and
A, B, we assume that Aq,..., A, are of the same size,

and Bj,...,B, also have the same sizes. In our coding
framework, the parameters of the coding scheme can be
described by four vectors with n elements, M, N, P, and
Q. In particular, M and N are permutations of {1,...,n}.
The values in P and @) can be arbitrary integers, which
will be used as the exponents in the polynomial. The n
matrix multiplications can be encoded into coded tasks which
multiply A(z) and B(z), where A(z) = S0 Azl
and B(z) = Y. | By, 9. Compared to other polynomials
such as the Lagrange interpolation polynomial, our encoding
polynomials have much simpler forms since all input matrices
appear directly as a coefficient, making it ideal for distributed
encoding where each worker will encode the input matrices to
get polynomials in its own task only.

Given A(z) and B(z), the result of a
coded task will be C(z) = A(z)B(z) =
D1 2 A, By, x5, which is still a polynomial of
z. The result in each task can be considered as an evaluation
of C(:v) if z in each task is unique. We can then interpolate
é(x) if the number of results received from different workers
is no less than the recovery threshold. With appropriate
choices of M, N, P, and @), we can find A;B; from the
coefficients of C(a:) In other words, their corresponding
exponents of x should be unique.

To illustrate the code scheme, in this paper, we use an n xXn
table to depict choices of M, N, P, (@, as shown in Fig. 2a.
In this table, the entry in the i-th row and the j-th column
is filled with P; + @Q;, the exponent of A,;,B N;- We also
place Ay, and By,, 2 = 1,...,n, as the head of each row
and each column, respectively. We demonstrate three examples
of feasible coding schemes under our coding framework in
Fig. 2b-Fig. 2d.

BNl BN2 B1 B2
An| P+ Q| P+ Q, A O 2
AMz P+ Q| P+ Q A,y 1 3

M =(1,2),N =(1,2)
P=(0,1),Q =(0,2)
(b) a coding scheme based
on the polynomial code

(a) a general illustration
of the coding scheme

B, B, B, B,
A1 O 2 Al 0 1
Aol 1 3 Aol 1 2
M=(1,2),N =(2,1) M=(1,2),N=(1,2)
P=(0,1),Q =(0,2) P=1(0,1),Q =(0,1)

(c) another feasible
coding scheme

(d) a feasible coding scheme
with the optimal degree

Fig. 2. The illustrations of the coding schemes achieved under the coding
framework with n = 2.



In Fig. 2b, a naive choice of parameters in the coding
framework istolet M = N = (1,...,n), P=(0,...,n—1),
and @ = (0,n,...,(n — 1)n), corresponding to the example
of polynomial codes in Sec. II. Hence, we have A(z) =
S Azt and B(z) = Y1, Bz(-1", Therefore, in
C(x), there are n2 terms whose coefficients are AB;, 1<
1,7 < n. As shown in Fig. 2b, the exponents of the four terms
in C(z) ranges between 0 and 3. Hence, we need to have
the results of any 4 tasks to obtain the results of A;B; and
A5B,, as the coefficients of z° and 3. In other words, the
recovery threshold in Fig. 2b is 4. We can see from Fig. 2b that
the polynomial code can be seen as a special and non-optimal
scheme that is feasible in our framework.

In Fig. 2c, we present another possible way to construct
the coding scheme where N = (2, 1). Hence, we can see that
the exponents of A;B; and A;Bs are placed in the counter
diagonal, as highlighted in the table. We also highlight the
entries of A;B; and A3;Bs in the other examples. As M
and N can be any permutations of {1,...,n}, the pattern
of highlighted entries can be more flexible in our coding
framework. However, there should be one and only one
highlighted entry in each row or each column.!

Furthermore, we demonstrate an optimal coding scheme for
n = 2 in Fig. 2d, which minimizes the number of exponents,
and hence the recovery threshold. To prove its optimality, we
consider the number of exponents needed in the table. The
highlighted entries must have unique exponents, and the other
two entries also need to have at least one more exponent.
Hence, there need to be at least three exponents, proving the
optimality of the coding scheme illustrated in Fig. 2d. This
scheme also corresponds to the example we demonstrated in
Sec. II. We can see that in a feasible coding scheme, the
exponents in highlighted entries in the corresponding table
must be unique, while the exponents in other entries can
coincide, helping to achieve lower recovery thresholds.

IV. CONSTRUCTING RC WITH FIXED P
A. Scopes of Parameters

In this paper, we make multiple attempts to construct RC,
with the recovery threshold improved step by step. We present
the first attempt in this section. To make it convenient for
the code construction, we first narrow down the scopes of
the parameters. Without loss of generality, we assume that
elements in P and () are non-decreasing, ie., P, < ... <
P, and @Q; < ... < @,. In fact, to make the exponent of
A;B; unique, the elements in P and @ should be strictly
increasing. Otherwise, if there exist two distinct integers j;
and jo such that Q;, = @,, we have P; + Q;, = P; +
Qj, for any integer ¢ € [1,...,n]. Considering ¢ such that
M; = Nj, (as M and N are both permutations of {1,...,n}),
the exponent of A/, B n;, equals that of A, B N;, - In other
words, A, B N, cannot be obtained after decoding, which is
the result of one of the n matrix multiplications. Therefore,
we have P < ... < P, and Q1 < ... < @Qy.

'The name of rook coding is inspired by this requirement, which is similar
to placing non-attacking rooks in the chessboard. However, it is not equivalent
to the rook polynomial, because we do not need to find the number of the
placements of rooks in the construction, but to minimize the degree of C(z).

Without loss of generality, we can also assume that Py =
Qo = 0, or we can easily get an equivalent coding scheme by
subtracting Py (and Qp) from all elements in P (and Q).

In this section, we consider a special case of P where
P = (0,...,n — 1).2 We construct RC with this condition
and prove the optimality of the construction in this special
case. We extend the construction of RC to the general values
of P in Sec. V.

Given a placement of highlighted entries in the table, there
can be multiple possible choices of M and N that lead to
the same placement. For example, in Fig. 3a, M = (1,2, 3,4)
and N = (3,1,2,4), where we place corresponding A s, and
By, as the title of each row and each column, respectively.
If we switch A;, with A; and meanwhile B;, with Bj,, if
i1 = i9 and j; = jo, the highlighted entries will remain un-
changed. After such a switch, the new coded tasks will remain
equivalent as the original coded tasks, only having entries in
M and N switched. For example, the same entries will be
highlighted if M = (2,1,3,4) and N = (3,2,1,4). Hence, we
can assume, without loss of generality, that M = (1,2, 3,4),
so that the coding scheme will only depend on the value of
N.

B; | By | Bo | By B; | By [ By [ B

Al O 4 7 9 Al O 1 5 7

Ay 1 5 8 10 Ayl 1 2 6 8

A4 2 6 9 11 Ay 2 3 7 9

Ayl 3 7 10 12 Ay 3 4 8 10

(a) Placement 1 (b) Placement 2

Fig. 3. Two placements of highlighted entries and their corresponding optimal
coding schemes (with respect to their highlighted entries).

Now we have fixed the values in P and M. In the rest of
this section, we will construct RC by finding the best values
in @ and N that optimize the recovery threshold.

B. Achieving the Optimal Degree of C(m) with P =
(0,...,n—1)

Besides having P and M fixed, we first construct a coding
scheme with the optimal degree of C(:z:) from a given place-
ment of highlighted entries, i.e., the values in M, N, and P are
all fixed. In Alg. 1, we propose an algorithm that constructs
such a coding scheme. The optimal coding scheme can then
be found in two steps: 1) finding the optimal placement of
highlighted entries; and 2) finding the values of () that achieve
the optimal degree in C(IE) The second step can be solved by
Alg. 1, with an O(n) time complexity. We prove the optimality
of Alg. 1 with Theorem 1, and leave the first step in Sec. IV-C.

Theorem 1. Given highlighted entries, i.e., M = (1,...
P =(0,....,n—

1),
1), and N as an arbitrary permutation of
’It is equivalent to having @ = (0,...,n — 1) and then choosing the

optimal P. In this paper, we simply choose the value of P first and then
optimize the value of Q.



Algorithm 1 The optimal values of () with a given placement
of highlighted entries.
Input: N (with M fixed, the placement of highlighted entries
only depends on N
Output: @
1: Ql =0
2: for i +— 2 to n do
3: Qz — Qi,1 +maX{Ni,1,n—Ni—|—1}
4: end for

- By,_,| By, e By, | By,
Ay Q;{ Q; (2,1 Q;

A | |
+
=z

|
N
Arl V
AJ QJ’
Q;
A, [

M=Q +n—-1V¥=Q; , +N; ;-1

Fig. 4. Two placements of highlighted entries and their corresponding optimal
coding schemes.

{1,...,n}, Alg. 1 finds the optimal values in Q) that minimize
the recovery threshold.

Proof. The intuition of Alg. 1 is making the overlaps of
exponents, i.e., exponents shared by multiple entries in the
n X n table as those in Fig. 3, as large as possible. Note
that the overlaps may only occur between two neighboring
columns since each column has a highlighted entry with a
unique exponent. Given P = (0,...,n — 1), we also know
that each integer between 0 and P, + @, will be used as
an exponent with @) given by Alg. 1, and thus the recovery
threshold equals the degree of the polynomial plus one.

As shown in Fig. 3, within two neighboring columns, the
overlapped exponents go up (down) from the bottom (top)
entry until reaching a highlighted entry. For example, in Fig. 3a
the two entries at the bottom in the third column share the same
exponents with the top two entries in the last column. We can
also find exponents 1, 2, and 3 shared among the first two
columns in Fig. 3b, as well as 7 and 8. In the i-th column, the
highlighted entry is in the N;-th row since My, = N;. Hence,
there are NV; — 1 entries above it and n — N, entries below it.
To determine the value of ();, we consider if the number of
entries above it is greater or less than the number of entries
below the highlighted entry in the (i — 1)-th column, and we
illustrate such two cases in Fig. 4.

In order to make overlaps of exponents as large as possible,

if the number of entries above the highlighted entry in the i-th
column is less than that of entries below the highlighted entry
in the (¢ —1)-th column, i.e., N; —1 < n— N;_1, there can be
at most /V; — 1 entries with the same exponents as the entries
at the bottom in the (¢ — 1)-th column. Since the last exponent
in the (¢ — 1)-th column is Q;—1 + n — 1, the first exponent
in the i-th column should be Q;—1 +n — 1 — (N; —2) =
Qi—1 +n — N; + 1, which also equals @; as P, = 0. On
the other hand, if the number of entries below the highlighted
entry in the (j — 1)-th column is less than the number of
entries above the highlighted entry in the j-th column, the
first exponent in the j-th column should be at least greater
than the exponent of the highlighted entry in the (j — 1)-th
column, which equals Q;_1 + N;_; — 1. In other words, Q;
should be Qj—l + Nj—l-

Since Nj,_l Z TL—NL—FI if?’L—N,’_l S N,’—l,
we can further simplify the two cases above as Q; =
Qi—1 + max{N,;_1,n — N; + 1}, and the degree of C(x)
is Y smax{N;,_1,n—N; +1} +n— 1 O

We can see from Alg. 1 that all integers between 0 and the
degree of C(x) appear at least once as the exponents in C(z),
otherwise there must exist ¢ such that (); can be reduced to
use the missing integer as the exponent. Hence, the recovery
threshold should also be Y . , max{N;_1,n — N; + 1} + n.
We can also compute the recovery threshold as P, + @, + 1
since values in both P and () are both strictly increasing.

C. Optimal Placement of Highlighted Entries

As Alg. 1 minimizes the degree of C(:p) given a placement
of highlighted entries, we now discuss how to find the optimal
placement of highlighted entries (when P = (0,...,n — 1)).
Applying Alg. 1 to two different placements with n = 4 in
Fig. 3a and Fig. 3b, we can see that different placements of
highlighted entries can lead to different degrees of C(x)

B, By, |B1[Bni2
A,
A,
] nxXn
' placement
An+1
An,+2

Fig. 5. The illustration of the algorithm to find the optimal placement of
highlighted entries.

We now propose a placement of highlighted entries which
can be proved to achieve the optimal degree in C(z). The
placement can be obtained by induction. When n = 1, there
is one and only one possible placement which is the only
entry itself, as shown in Fig. 6a. When n = 2, ) has two
permutations, leading to two patterns of highlighted entries
which we can find in Fig. 2c and Fig. 2d. We can see that the
placement in Fig. 2¢ does not have any overlapped exponent,
and hence the placement in Fig. 2d is optimal.
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B, AJo1|aft1]afs]as]z2]a]s]0

A A1 f2]agl2]5)elafs]s]or0
@n=1 (n=2 )n=3 dn=4

Fig. 6. Examples of the optimal placements of highlighted entries with n =
1,2,3,4.

We now construct the placement with n 4 2 from a place-
ment constructed from the n x n table. As shown in Fig. 5,
we first construct a placement for the n x n table and place it
between the second and the (n + 1)-th row and between the
first and the n-th column. We then highlight the top entry in
the (n + 1)-th column and the bottom entry in the (n + 2)-th
column. In Fig. 6¢ and Fig. 6d, we show the two placements
with n = 3 and n = 4 constructed from the placement in
Fig. 6a and Fig. 6b, respectively. With M fixed, N can also
be determined after getting the optimal placement, and then we
apply Alg. 1 to get the exponents in the table and hence obtain
the value of (). We summarize this recursive construction in
Alg. 2. Although the complexity seems to be O(n?) with the
recursion, it can be easily reduced to O(n) by equivalently
getting N = (...,2,n — 1,1,n). Therefore, the overall time
complexity is still linear.

Algorithm 2 The optimal placement of highlighted entries
with P = (0,...,n—1).

QOutput: N

1: if n =1 then

2 N=(1)

3: else if n = 2 then
4 N =(1,2)
5
6

. else

: construct NV for the placement with n — 2, and denote
it as (]\717 NQ, ey Nn,Q)

N=(N+1,No+1,...,N,_2+1,1,n)

8: end if

~

As a preparation to prove the optimality of the RC con-
structed by Alg. 1 and Alg. 2, we first analyze the properties of
our code construction in Sec. IV-D. The proof of the optimality
will be given in Sec. IV-E.

D. Analysis

In Sec. IV-B, we have demonstrated that the recovery
threshold of RC constructed with Alg. 1 and Alg. 2 is one more
than the degree of C(z). To analyze the degree of C(x), we
first count the number of unhighlighted entries with unique
exponents as u(n). In particular, we use wup(n) to denote
the value of u(n) if the placement of highlighted entries is
constructed by Alg. 2.

When n = 1 and n = 2, we can directly get ug(1l) =
uo(2) = 0 from Fig. 6a and Fig. 6b.

6

As for other values of n (when n > 2), we can get the
value of ug(n) recursively. With the construction in Fig. 5,
we can see that the right-bottom entry is always highlighted.
In the two rightmost columns, all unhighlighted entries share
the same exponents as those in the other row. For example,
in Fig. 6d, the exponents of unhighlighted entries in the
rightmost two columns are both 7, 8, and 9. Moreover, given
an (n+2) x (n+2) table, in the n columns on the left, entries
on the top row and the bottom row are always unhighlighted.
Except the top entry in the first column and the bottom
entry in the n-th column, the top entry in the i-th column
can share the same exponent with the bottom entry in the
(i — 1)-th column, ¢ = 2,...,n. Therefore, there are only
two additional unhighlighted entries with unique exponents,
i.e., whose exponents are not shared by other exponents, i.e.,
uo(n +2) = ug(n) + 2. For general values of n, we thus have

(n) n—1 nisodd;
uop(n) =
0 n—2 niseven.

Among a total of n? entries, there are n highlighted entries
and wug(n) unhighlighted entries with unique exponents. Then
the number of unhighlighted entries with shared exponents
is n? —n — ug(n). As each exponent can be shared by at
most two entries (since both P and @ are strictly increasing),
the total degree of C(z) is % +n+up(n)—1=
n?+ntuo(n) o

2 2

% +n —2if n is even. We use 79(n) to denote the recovery
threshold of RC constructed with Alg. 1 and Alg. 2, and then
ro(n) equals 5 +n — % (or - +n—1) if n is odd (or even).
We can further simplify it as 79(n) = {WJ -1

— 1, which equals % if n is odd or

E. Optimality

We now prove that the construction of RC given by Alg. 1
and Alg. 2 is optimal when P = (0, ..., n —1). Equivalently,
we can prove that ug(n) is optimal, i.e., ug(n) = topi(n).

We first prove a lemma which characterizes the unhigh-
lighted entries with unique exponents.

Lemma 1. In the n X n table (n > 2) under the coding
framework of RC, the number of unhighlighted entries with
unique exponents between two highlighted entries in two
neighboring columns is no more than half of the total number
of unhighlighted entries with unique exponents in the whole
table when P = (0,...,n —1).

Proof. Assume that the index of the highlighted entry in the
j-th column is NV;, 1 < j < n. Additionally, we set No = n
and N, ;1 = 1. Then the number of unhighlighted entries with
unique exponents is |(n — N;) — (Nj41 — 1) = [(n + 1) —
(N; + Njt1)|. We then have |(n+ 1) — (V; + N,41)| as the
number of unhighlighted entries with unique exponents in the
j-th column, then the total number of unhighlighted entries
with unique exponents is 7 [(n+1) — (N; + Nj41)], and
we aim to prove that Vj = 0,...,n, [(n+1)—(N;+N,41)| <
3 25— l(n+1) = (Nj + Njt1)l.

We know that Z?:1 N, = W and then
we have Y  (N; + Njz1) = (n + 1)% Hence,




i—o((n+1)=(Nj+Nj11)) = 0. Hence, we
can divide the n 4+ 1 terms above into three
parts: J1 = {jln + 1) — (N; + Nj+1) > 0},
Jo = - 0}, and
Js = {jlln+1) — (NJ +Nj+1) =0} IfjeJiorj e Jy
[(n+1) = (N; + Njs1)| < 3 ey, [(n+1) = (Nj+ Njya)| =
e l(n+1) = (Nj+ Nj1)l = 5 300 [(n+1) = (N; +
Nj+1)|. If j € Js, then |(n + 1) — (N] + Nj+1)| = 0 which
is also no more than -7 [(n +1) — (Nj + Nj1)|. O

(N; + Njy1) <

Next, we consider u(n + 2) in an (n + 2) X (n + 2) table,
with an arbitrary and legal placement of highlighted entries.
Assuming N;, = 1 and N;, = n + 2, we can remove the
two rows (the first and the last row) and the two columns (the
j1-th and jo-th columns) associated with the two highlighted
entries, then we can get an n X n table with a legal placement
of highlighted entries.

Lemma 2. u(n + 2) > ugpy(n) + 2.

Proof. Given the ji-th column and the j2-th column, we
consider two cases by checking if the two columns are
neighbors, i.e., if |j; — jo| = 1.

Case 1: We first assume that such two columns are not
neighbors, i.e., |j; — jo| > 1. In this case, we can consider
these two columns individually, i.e., their exponents will not
coincide with each other. Therefore, we only need to prove a
less difficult statement: after removing the j;-th column or the
Jo-th column, u(n + 2) > wuep(n + 1) + 1. If it is proved, we
can immediately have u(n + 2) > uop(n + 1) + 2.

We first consider the case of removing the (j — 1)-th
column. If 1 < j; < n + 2, before removing the two
rows and two columns, between the highlighted entries in
the (j; — 1)-th column and the (j; + 1)-th column, the
number of unhighlighted entries with unique exponents is
(n—|—2—Nj1,1)+(n—i—l—leH—i—l) = 2(n—|—2) — (Nj1,1+
Nj,+1). After the removal, the number of unhighlighted en-
tries with unique exponents between the same two entries is
(1= Ny, 1) (NG, 41— 2)] = |(n+3) = (N1 + N1 -
By Lemma 1, |(n +3) — (Nj,—1 + Nj,+1)| < uoén) = anl,
otherwise the placement in the n x n table after the removal is
not optimal. If so, we can directly prove |(n+3) — (N, -1 +
Nji41)l <2(n+2) = (Nj, -1 + Njy41).-

If j1 = 1, we only need to count the number of unhigh-
lighted entries with unique exponents between the first entry
in the first column and the highlighted entry in the second
column. Before the removal, the number is (n+1)—(No—1) =
n + 2 — N5. After the removal, the number becomes Ny — 1,
which is no more than 5. Hence, No —1 <n +2 — Na.

If j1 = n + 2, then after removing the number of unhigh-
lighted entries with unique exponents will be reduced, as all
the unhighlighted entries in the j;-th column are not be shared
by any other entries anyway.

The case of removing the j»-th column can be proved using
the same technique above. Combining these two cases, we can
prove that at least two unlighted entries with unique exponents
are removed.

Case 2: If |j; — j2| = 1, then there can be two possibilities
of their positions. If j; > jo, after the removal, there will

be at least two unhighlighted entries with unique exponents
removed, i.e., the entry in the last second row of the j;-th
column, and the entry in the second row of the jo-th column.

If j1 < jo, all entries in these two columns will not coincide
with any other entries in the table. If the two columns are on
the left or on the right of the table, then one entry in the first
row and one entry in the last row will also be removed that
have unique exponents. For example, if the two columns are on
the left, then the top entry in the third column and the bottom
entry in the last column are also removed and originally have
unique exponents. We can also find these two entries if the
two columns are on the right. If these two columns are in
the middle, the top entry in the first column and the bottom
entry in the last column will be removed, whose exponents
are unique.

Combining all the statements above, we have u(n + 2) >
Uopt (1) + 2. O

With Lemma 2, we can prove the optimality of Alg. 2.

Theorem 2. When P = (0,...,n — 1), Alg. 2 finds the best
values in N that lead to the optimal placement of highlighted
entries.

Proof. By Lemma 2, we immediately have uou(n + 2) >
Uopt(n) + 2. We have known that ug(l) = wuep(l) an

u0(2) = uopt(2). We also know that ug(n + 2) = ug(n) + 2,
and by induction we can prove that ug(n) = uep(n). As
the number of highlighted entries is always n, minimizing
the number of unhighlighted entries with unique exponents is
equivalent to maximizing the number of unhighlighted entries
with shared exponents, and hence minimizing the degree of
C(x). O

Note that the optimality is achieved under the assumption of
P =(0,...,n—1).In Sec. V, we generalize the construction
by waiving this requirement for P, which counter-intuitively
reduces the recovery threshold.

V. CONSTRUCTING RC WITH GENERAL P

In this section, we make a second attempt to construct
RC, where values in P can be chosen arbitrarily. Although
minimizing P to be (0,...,n — 1) seems to minimize the
degree of C(z), we find that the degree of C(z) can be even
lower with general values in P as it creates more chances to
share exponents.

A. A Toy Example

We show a toy example of the construction in Fig. 7a.
Compared to the construction in Fig. 6d, the degree of C(z) is
reduced from 10 to 8 by setting P = (0, 1, 3, 4). The reason for
this better result is that the construction in Fig. 7a allows more
overlaps among exponents. In the construction in Sec. IV, an
exponent can only overlap with another one. In Fig. 7a, we
can see that the exponent 4 appears 4 times.

The increase in overlaps in Fig. 7a is due to a recursive
construction. In this example, we group the four matrices
Aj,...,A, into two groups {A;i, A} and {A3, Ay}, and
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(@) code construction for n=4 (b) recursive construction

Fig. 7. A toy example of the construction of RC with general values in P.

also By, ...,By into {B1,Bs} and {B3,B,}. We then con-
struct the code in two steps. We first place the four groups in
a 2 x 2 table, as shown in Fig. 7b. Each entry in such a table
corresponds to two matrix multiplications. It is easy to see that
the entry between {A;, Ao} and {B;, By} and that between
{A3,A,} and {B3,B,} need to have unique exponents, and
the other two entries can have shared exponents. Hence, we
apply RC for such four entries with n = 2, as shown in
Fig. 7b, with only one difference that the exponents need to
be amplified for the next step.

In the second step, we construct RC again for each (outer)
entry, with n = 2. Note that in each outer entry, there
are 4 inner entries with 3 exponents. Hence, the exponents
in the first step need to be multiplied by 3. Eventually,
the exponents in each (inner) entry in Fig. 7a should be
the sum of the corresponding exponents of the two steps,
such that the exponents of A;B;, i = 1,...,4 can be both
unique in each inner and outer entry. In this way, we can get
P=0Q=1(0,1,3,4).

B. Code Construction

From Fig. 7, we can see that the construction is recur-
sive. We assume that given n matrix multiplications, n is a
composite number, i.e., n = pg where n,p,q € ZT. For
now, we assume both p and ¢ are prime numbers. We then
group Aq,..., A, into p groups, where each group contains
q matrices, i.e., {Aq,..., Az}, ... {Ap_gy1,...,An}. We
can also do the same to By,...,B,. To avoid ambiguity, we
rewrite P, Q, N as P(n), Q(n), N(n) for RC constructed
with n matrix multiplications.

We first construct an RC for n = p, for the outer entries
between two groups of A; and B;. In Fig. 8 we demonstrate
the recursive construction with p = 3. We can see that the
p = 3 groups of A;s and B;s are placed along the rows
and columns of the 3 x 3 table, corresponding to the RC for
n = p = 3. The only difference is that the exponents are
multiplied by ro(q), the recovery threshold of RC for n = g,
as there will be ro(q) exponents to be placed in each outer
entry in the second step.

In the second step, we construct an RC for n = ¢ for each
outer entry in the first step, and then we can determine the
placement of A;s and B;s in each group. Note that all outer

entries actually have the same placement as they are all RCs
for n = ¢, so all outer entries in the same rows (columns) have
the same placements of A;s (B;s). In particular, each inner
entry of such RCs needs to be added with the exponents of
its corresponding outer entry in the first step. In other words,
each inner entry should be added with a value that equals r((g)
times the corresponding exponent in the first step, such that
unique entries in each outer entry do not coincide with any
unique entries in other outer entries.

{Byi1..-..Bag)| (BiooBy} |(Bagir... By,

<

: 3 X 19(q) 4 x 1o(q)
<
<

.| 1xro(g) 4 xro(q) 5x10(q)
z
=
<¢’j

S 2xrolg) 5 x 10(q) 6 % 10(q)
=
<

Fig. 8. An illustration of the construction of RC with p = 3. In this example
q is also assumed to be prime.

Given the construction above, we can now formalize the
algorithms to obtain P(n), Q(n), N(n), M(n) for n = pq.
Given entry (7,7) which indicates the inner entry at the i-th
row and the j-th column, by definition its exponent should be
P;(n) + Q;(n). For convenience, we choose 41,42 such that
i= (i1 —1)g+ iz where 1 < i3 <pand 1 <iy < g, and
similarly j = (j; —1)g+jo where 1 < j; < pand 1 < js <gq.
In this way, (41, 71) indicates the corresponding outer entry in
the first step and (42, j2) indicates corresponding inner entry in
this outer entry. Therefore, we have P;(n)+Q;(n) = (P, (p)+
Q5. () - ro(q) + (P () + Q52 (a))-

Since Py(n) = Qo(n) = 0, we have P;(n) = Pi, (p)ro(q)+
P;,(g) and Q;(n) = Qj, (p)ro(q) + Qj, ()

Now we consider the placement of matrices, i.e., N(n).
At the j-th column in the n X n table, it belongs to the j;-
th column of the p outer entries and jo-th column in this
outer entry. The group corresponding to this outer entry then
should be {B(le (P)—1)g+1s - - - ,B(le_l)(p)q+q}. Hence, the
matrix at the i-th column should be N(Nj1 ()~ 1)q+1+Nj, (g)—1-
In other words, N;(n) = (Nj, (p) — 1)q + Nj,(q).

Moreover, if p or ¢ is still a composite number, we can
recursively use the construction above until they are both
prime numbers. We summarize the general code construction
of RC in Alg. 3, where we use r1(n) to denote the recovery
threshold of RC constructed in Alg. 3, and then we can replace
ro(gq) with r1(q) in the second step. We analyze the recovery
threshold r1(n) in Sec. V-C (which is used in Line 11 of
Alg. 3).



The complexity of Alg. 3 is O(n). If n is a prime number,
then the construction is the same as the special case in Sec. I'V.
Otherwise, we need to construct RC for n = p and n = ¢ with
O(p) and O(q) time complexities. Moreover, the complexity
of code between Line 6 and Line 12 is O(n). Therefore, the
overall complexity when n is not a prime number is still O(n).

Algorithm 3 The (second) construction of RC with general
values in P.
Input: n
Output: P(n),Q(n), N(n),r1(n)
1: if n is a prime number then
2: Obtain P(n),Q(n), N(n) by Alg. 1 and Alg. 2
else
Obtain P(p),Q(p), N(p) from RC with n = p
Obtain P(q),Q(q), N(q),r1(q) from RC with n = ¢
for i < 1 ton do
Let i = (i1 — 1)qg + i3 where 1 < 43 < p and
1<ips<gq

A A

8: Pi(n) = P;, (p)ri1(q) + Pi,(q)

9: Qi(n) = Qi, (p)r1(q) + Qi,(q)
10: Ni(n) = (Ni, (p) — 1)g + Ni,(q)
11: ri(n) =r1(p)ri(q)

12: end for

13: end if

C. Analysis

From Fig. 8, we can see that if the exponents in the RC for
n = q is consecutive, then the exponents for RC for n = pgq,
given by the construction in Alg. 3, will also be consecutive.
This is because each outer entry in the first step separates from
each other by 71 (¢) which is the number of exponents in each
outer entry. As the number of exponents in each outer entry
is r1(q), and the exponents in different outer entries do not
overlap, the total number of exponents is r1(p)r1(g). Since
we will also recursively construct RC for n = p or n = ¢ if
p or q is still a composite number, we can also recursively
get the recovery threshold of ri(n). If n can be factorized
as n = [[,p;" where p;s are prime factors of n, then the
recovery threshold of the construction 71 (n) is [, 70(pi)**.

We now analyze the recovery threshold by discussing some
representative special cases. Obviously, if n is a prime number,
then r1(n) = ro(n) = {@ —1.

When n is not a prime number, the recovery threshold
becomes

From the equation above we can see that the recovery
threshold can be minimized when ZZ «; 1s maximized, i.e.,
when n is a power of 2. Specifically, if n = 2%, r1(n) =
T0(2>a — Sloggn — O(n10g23) ~ O(n1'585).

Fig. 9 shows how r;(n) grows with n, when 2 < n < 128.
In order to make it easy to compare, we show log,, r1(n) in

— —
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<t

248 16 32 64 128

Fig. 9. The growth of the recovery threshold 1 (n).

the Y-axis. We can see that 71 (n) fluctuate between O(n!-5%9)

(when n is a power of 2) and O(n!8%°), meaning that for
most values of n, their recovery threshold will be higher than
O(n'°#23). Tt is obvious that the lower bound of log,, r1(n)
is 1.585, as it is always reached when n is a power of 2.
However, the upper bound keeps going up with n, and 1.860
is the reached when n = 127. Even worse, as 79(n) = O(n?),
we expect that log, r1(n) — 2 when n — oo if n is a
prime. Therefore, when n goes to infinity, the upper bound
of log,, 1 (n) will go up to 2 eventually, and the gap between
the upper and lower bound will be larger and larger. In the next
section, we will further extend the construction to achieve an
O(n'°%23) recovery threshold for all valid values of n.

VI. ACHIEVING AN O(n!°223) RECOVERY THRESHOLD
FOR ALL n

A. Intuition and Construction

To achieve an O(n!®23) recovery threshold, we make a
third attempt to construct RC, which is based on the second
attempt in Sec. V. Hence, we first present an example of the
RC given by this construction. In Fig. 10a, we present the
RC constructed by Alg. 3 with n = 8, where M = N =
(1,2,...,8), P =@Q = (0,1,3,4,9,10,12,13). By taking
the first seven entries from all the four parameters, we can
construct RC with n = 7, such that M = N = (1,2,...,7),
P=@Q=1(0,1,3,4,10,12). As shown in Fig. 10b, the degree
of the corresponding polynomial is 25, which is even smaller
than that of RC with n = 7 constructed by Alg. 3 (shown in
Fig. 10c).

By Alg. 3, when n = 2 the values of M and N are
sequential. Since we construct RC recursively when n is a
power of 2, ie., n = 2% where i is a positive integer, entries
in M and N will still be sequential. Therefore, if n = 2¢ we
can arbitrarily take the first ng entries (ng < n) in M, N, P,
and @, to construct the RC for ny matrix multiplications.

Following this intuition, we give the code construction in
Alg. 4. Since 2! < 2n, the complexity of Line 2 is O(2n) =
O(n). Since we then need to take a subset of P(2¢), Q(2%),
and N (w?), the overall complexity is also O(n).
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(a) RC with n = 8 constructed by Alg. 3

Fig. 10. Examples of RC constructed in the second and the third attempts.

Algorithm 4 The (third) construction of RC.
Input: n
Output: P(n),Q(n), N(n)

1: Find the smallest positive integer such that 20 =1 < n < 21,
2: Obtain P(2%),Q(2%), N(2%) from the RC constructed by
Alg. 3
3: for i <~ 1 ton do
5: Qi(n) = Qi(2")
6: Nz(n) = Ni(21)
7: end for
B. Analysis

Since from the construction of RC with n = 2 we can
get the construction of RC for any n < 2¢, we only need to
analyze the exponents of highlighted entries in the construction
when n = 2¢. Let ro(n) denote the recovery threshold for
RC constructed by Alg. 4. In particular, we do not consider if
exponents in the corresponding polynomial are consecutive for
now (which will be discussed in Sec. VI-C), i.e., the coefficient
of some term in the polynomial after decoding may be a zero
matrix.

We analyze 75(n) recursively. If n = 2¢, we have 73(n) =
r1(n) = 31°82" = 3 since the two constructions are the same
in this case. Therefore, we have ry(1) = r1(1) = 1.

If n > 1, there exists ¢ € Z1 such that 27! < n < 2.
Based on Alg. 4, we will first construct RC with 2% matrix
multiplications from Alg. 3, and then the recovery threshold
ra(n) = Pn(2Y) + Qn(2°) + 1.

In Alg. 3, the RC with 2! matrix multiplications
should be recursively constructed from the RC with 21
matrix multiplications. As n 2i=1 4+ (pn — 271,
Po(2) = Py@)ro(21) + Py_yis (271) and Q(2) =
Q2(2)ro(27Y) + Qp_gi-1(2171). Therefore, r2(n) =
Po(2 1) (Pa(2) + Qa(2)) + Pyoi 1 (271) Qo (271 +
1=2-79(27Y) + Ry(n — 2071) = 2. 3071 g (n — 2071).

Hence, we get Theorem 3 from the analysis above.

(b) RC with n = 7 constructed from (a)

(c) RC with n = 7 constructed by Alg. 3

Theorem 3. By the construction in Alg. 4, ro(n) satisfies the
following equation:

n =1,

T9(MN . .
2(n) 2l «n <2 iezt.

1
B {rg(n —2i=1) 42371

From Theorem 3, we can also verify that when n = 2t
Ry(27) = rp(271) + 237 = rp(272) +2.372 = ... =
1+ Z;;E 2.3/ = 3 = ri(n). We analyze the scale of r3(n)
in Theorem 4 below.

Theorem 4. 75(n) = O(nl°823),

Proof. To prove this theorem, we first prove that r5(n) strictly
increases with n. We prove it by proving that given i € Z*,
if the theorem is true for all n < 2t~ it is also true for all
n < 20, Obviously it is true when ¢ = 1, and we only need
to consider the cases when 2071 < n < 20 If 207! < n <
2, we have ro(n — 2°71) < ro(n + 1 — 2°71). Therefore,
by Theorem 3 we also have ra(n) < ra(n+1). If n = 27,
ra(n+1) = ro(2041) = ro(204+1-2%)+2-3" = ry(1)+2-3" >
3t =1ry(2%) = ro(n).

As we only need to consider the cases where n is not
a power of 2, we assume that 7 is the smallest integer
such that n < n’ = 2), i € ZT, we have n/ < 2n.
Therefore, 75(n) < ro(n) = ri(n/) = 310827 = (n/)lo923 <
(2n)lo823 = 3plo823 je., ro(n) = O(n'o823). O

Therefore, we eventually find a construction of RC with
a linear complexity, and it achieves an O(n!°®23) recovery
threshold for all valid values of n.

C. Further Improvement

In fact, we may further improve the recovery threshold
of RC constructed by Alg. 4 for many values of n, when
exponents in C(w) are not consecutive. For example, when
n = 5, we can construct RC with r5(5) = 19, as shown
in Fig. 11. However, since exponents 11,14,15,16, and 17
are missing, we only need to have results of 14 tasks before
decoding, i.e., its actual recovery threshold is further reduced
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Fig. 11. An example of non-consecutive exponents in é(x)

from 19 to 14. Similarly, in Fig. 10b, we can also see that the
exponents 17 and 23 are missing, further reducing the recovery
threshold by 2. We use 73(n) to denote the recovery threshold
after this improvement.

Lemma 3. When n = 2°,i € Z, exponents constructed by
Alg. 4 are consecutive. Therefore, r3(n) = ra2(n).

Proof. If n = 1, the statement can be trivially proved.

We now prove that if the statement is true for n = 2¢71,
it is also true for n = 2%, i € Z*. From Alg. 4, we know
that the construction for n = 2° relies on the construction for
n = 2071, such that p = 2°~1 and ¢ = 2. Therefore, similar
to Fig. 8, we can divide the table of exponents into 4 outer
entries, each of which contains 2¢~! x 2=1 inner entries. From
the assumption we know that exponents in each outer entry are
consecutive. As the exponents of n = 2 are also consecutive,
we can know that all exponents are consecutive. [

To know r3(n) in other cases, we need to count the
number of exponents instead of the largest exponents, as some
exponents may not appear in é(x) In Fig. 12a, we count the
number of exponents in four parts. From the construction,
we know that when n = 2°, the upper right quarter is
the same as the lower left quarter, and exponents in the
three quarters are different and consecutive. Therefore, when
n € (271,29, r3(n) comes from three parts: 73(2¢~1) from
the upper left quarter, r3(n —2°) from the lower right quarter,
and Z;:f o d;—1(j) from the upper right or the lower left
quarter. In particular, J;,_1(j) denotes the number of new
exponents that do not appear in all the columns on the left
of the j-th column, in the 271 x 2¢=1 table, j € [1,2¢71],
1> 1.

Obviously, if j = 1, all exponents are new exponents, and
thus ;(1) = 2. In other cases, we can see its recursion in
Fig. 12b. By adding the j-th column, we can see that new
exponents may come from two parts. If j = j; < 2¢71, the
two parts are the upper and lower left quarters. As exponents in
these two quarters have no overlap, they can provide the same
number of new exponents, i.e., &;_1(j1). If j = jo > 2071,
the two parts are the upper and lower right quarters. Note that
the upper right quarter has the same exponents as the lower

left quarter, so it offers no new exponents and the number of
new exponents equals &;_1(j — 27 1).
Summarizing the analysis above, we can get Theorem 5.

21 n 2 J=j1 2l j=j2 9
) e ) |
r3(271) > 6ia() = o
=1 =

9i—1 i1 &2
n—21"1 g L
§ic1(4) |rs(n—2771) L [

j=1 g |

- 8
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(a) r3(n) (b) :(5)

Fig. 12. Illustrations of the recursions of r3(n) and d;(j).
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Fig. 13. The improvements of recovery thresholds.

Theorem 5. When n € (271,2%),i € ZT, r3(n) = 3! +

r3(n — 2071 + Z;L;lz_ 8i_1(4), where

2 i=1
6:i(J) = § 20i-1(4) je (1,271
6i—1(j =271 je (@21
As 13(2Y) = ry(2%), i € Z*, the order of the recovery

threshold will not change after removing missing exponents.
However, the recovery threshold can still be saved significantly
in many cases. As shown in Fig. 13, r3(n) can be saved by
up to 60.1% lower than 72(n).

VII. EVALUATION

We implement the code construction of RC with mpi4py,
i.e., MPI for python, which is a python packaging providing
python bindings for MPI. The job of batch matrix multipli-
cation will run in a master-worker architecture. We assume
that the input matrices of the n matrix multiplications have
been placed on each worker, and each worker will encode
such input matrices into its own task. As the encoding is
polynomial evaluations of A(z) and B(z) in RC, we sim-
ply use Horner’s method to encode input matrices after the
code is constructed. For example, we can evaluate A(a:) as

A@) = Y0 Ayl = z(An, + 2(An, + (A, +



-+ x(Ay,_, + xAx)---))), and also B(z) similarly.
Horner’s method also allows us to easily encode A and B in
a distributed or centralized manner, as different tasks can be
encoded separately. After getting A () and B(z), each worker
then computes the multiplication of A (z) and B(x), where the
value of x is uniquely chosen on each worker, and then up-
load the result to the master using mpi4py.MPI.Comm.send,
which sends an end-to-end message synchronously. The master
will continuously run mpi4py.MPl.Comm.Probe which tests
if a new message arrives. Once it returns, it means one
worker has finished its task and the result is received by the
master, and then the master will save the result by calling
mpi4py.MPl.Comm.recv. Once the number of finished tasks
reaches the recovery threshold, the master will stop receiving
new results (considering the rest of workers as stragglers), and
decode the received results to obtain the results of batch matrix
multiplication.

We run jobs of batch matrix multiplication on virtual
machines hosted in Amazon EC2. The master runs on the
virtual machine of type c4.4xlarge (Intel Xeon E5-2666 v3
(Haswell) processors with 16 vCPU, and 30 GB memory) and
all workers run on the virtual machine of type c4.2xlarge
(Intel Xeon E5-2666 v3 (Haswell) processors with 8 vCPU,
and 15 GB memory). We don’t add arbitrary delay to the task,
since it has been reported that the performance of straggling
virtual machines on EC2 be 5x slower than others [3], [4].
We run a job of n matrix multiplications where the sizes of
input matrices for each multiplication are 2000 x 30000 and
30000 x 2000. We construct RC for n = 3, 4, 5, and 6, and
the recovery thresholds of corresponding RC are 6, 9, 14, and
18, respectively. The number of workers in each job equals
the recovery threshold plus 5 to tolerate up to 5 stragglers.
We first run each job with distributed encoding where each
worker just computes its own A () and B(z) during encoding,
using Horner’s method for RC, LCC, and CSA codes, and
measure its performance in terms of the time of encoding and
the completion time of the whole job. Each job is repeated 20
times and we report each data point below as the average.

As a comparison, we also implement existing coding
schemes for batch matrix multiplication, including LCC
codes [8] and CSA codes [16]. From Fig. 14, we can see
that RC outperforms LCC and CSA codes significantly. Due
to its simple polynomials, RC saves the encoding time by
up to 34.6% compared to LCC codes, and by up to 38.5%
compared to CSA codes. Moreover, as the algorithms for the
code construction are O(n), most time of encoding is spent
evaluating polynomials. In fact, even if n = 50, the time of
code construction is less than 10~ seconds. Because of the
low encoding time, even if RC can tolerate fewer stragglers
than LCC and CSA codes (due to its higher recovery threshold
which we will elaborate on in Fig. 16) and thus costs relatively
more time in decoding, it still saves the completion time of
the whole job by up to 27.3% compared to LCC codes and
30.6% compared to CSA codes.

As a comparison, we also run the centralized version of the
encoding algorithms in all the jobs above, where the master
encodes all coded tasks and distributes such tasks to workers.
Surprisingly, we find that the fast encoding algorithms for LCC

and CSA codes actually consume more time than the naive
algorithm based on matrix multiplication for small numbers of
n. To achieve lower encoding time, fast algorithms typically
require more than 1000 matrix multiplications (i.e., n > 1000)
in our implementation. Even so, the encoding time is still
significantly higher than the time of the whole job with
distributed encoding, because of the large number of matrices
to encode. Hence, we use a naive algorithm where the master
compute all A(x) and B(z) with values of z of all tasks,
by applying Horner’s method again. This naive algorithm
achieves even lower encoding time than the fast encoding
algorithms when n is small. Note that the complexities of the
naive algorithm for RC, LCC, and CSA codes are in the same
order, which is quadratic to the recovery threshold. However,
as we will see below, the encoding time of RC is still lower
thanks to its simpler forms of polynomials.

We run centralized encoding for all the jobs with the same
configurations. In Fig. 15a, we show the encoding time for
RC, LCC and CSA codes. Compared to the job completion
time in Fig. 14b, we can see that the time of centralized en-
coding is significantly higher, making it impractical for batch
matrix multiplication. Nevertheless, with the naive encoding
algorithm, RC achieves the lowest time of encoding again
thanks to its simpler polynomials.

We present the recovery thresholds of the coding schemes
that we used in the experiments above in Fig. 16. In exchange
for a lower amount of time of encoding, RC requires higher
recovery thresholds than all the other coding schemes. With
the same number of workers, a higher recovery threshold
reduces the number of stragglers tolerable in the experiments
above, and thus may consume more time to complete the job.
However, as we have seen in Fig. 14, the time to complete the
whole job with RC is not compromised by the higher recovery
threshold. Instead, its low time of encoding compensates for
any additional time of computation.

We now consider more extreme cases with n =
100, 200, 300, and 400. In such cases, we expect that the
recovery threshold of RC will become significantly higher
than LCC and CSA codes, because its recovery threshold
still grows with a higher order of magnitude than O(n), as
demonstrated in Fig. 17. However, we find that the time of
distributed encoding of RC is not compromised by the higher
recovery threshold. In Fig. 18, we reduce the sizes of A; and
B, as 2000 x 1000 and 1000 x 2000, so that we can fit input
matrices into the memory. We can see that RC still achieves
the lowest encoding time, thanks to its simple polynomials.

VIII. CONCLUSION AND OPEN PROBLEMS

Coded computing has been demonstrated to tolerate strag-
glers efficiently for distributed matrix multiplication. However,
most existing coding schemes can only create coded tasks
to tolerate stragglers within only one matrix multiplication.
In this paper, we propose rook polynomial coding (RC), a
coding framework for batch matrix multiplication, constructed
towards saving the time of encoding in practice. We demon-
strate that compared to existing schemes, RC can save the time
of encoding and achieve lower completion time of the job.
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Fig. 15. The time of centralized encoding of RC, LCC, and CSA codes with
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Fig. 16. Recovery thresholds of RC, LCC, and CSA codes with n = 3,4, 5,
and 6.

In this paper, we show that the recovery threshold of RC
can be saved to O(n'°823). However, it is unknown if it is the
optimal under the coding framework of RC (the coefficients of
the polynomial are one of the input matrices). Obviously, the
lower bound is 2n — 1 since P and () are strictly increasing.
In other words, it is no less than LCC and CSA codes, in
exchange for simpler forms of its polynomials. However, what
the optimal recovery threshold is and how to achieve it are still
open problems, and we leave them as our future work. We will
also make RC support matrix partitioning in the future work.
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