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AbstractÐMachine Learning (ML) is being widely investigated
to automate safety-critical tasks in optical-network management.
However, in some cases, decisions taken by ML models are hard
to interpret, motivate and trust, and this lack of explainability
complicates ML adoption in network management. The rising
field of Explainable Artificial Intelligence (XAI) tries to uncover
the reasoning behind the decision-making of complex ML mod-
els, offering end-users a stronger sense of trust towards ML-
automated decisions. In this paper we showcase an application
of XAI, focusing on fault localization, and analyze the reasoning
of the ML model, trained on real Optical Signal-to-Noise Ratio
measurements, in two scenarios. In the first scenario we use
measurements from a single monitor at the receiver, while in
the second we also use measurements from multiple monitors
along the path. With XAI, we show that additional monitors
allow network operators to better understand model’s behavior,
making ML model more trustable and, hence, more practically
adoptable.

Index TermsÐOptical networks, network management, fault
localization, ML, XAI, SHAP

I. INTRODUCTION

Automated fault management is a key objective for op-

erators willing to improve network reliability and reduce

operational expenses. Hence, Machine Learning (ML), in

recent years, has been intensively investigated to automate

fault-management tasks, as failure detection, identification

and localization in optical networks [1]±[4], by observing

behavioral patterns of Quality of Transmission metrics, as the

Signal-to-Noise Ratio (SNR).

However, accuracy of complex ML models cannot be proven

theoretically, but only evaluated experimentally on a selected

dataset, and the reasoning behind the decisions of these models

cannot be overseen by human experts. Thus, it is very hard

to control whether decision-making of the ML model is

flawed and/or influenced by the specific dataset used, and the

decisions are perceived as coming from ªblack boxesº with

scarce explainability. As network operators are unwilling to

trust decisions carried out by ªblack boxesº [5], [6], novel

approaches are being investigated to make ML-based decisions

explainable and be sure that correct decisions are taken based

on correct logic.

Explainable AI (XAI) refers to a set of techniques that allow

to uncover the reasoning of a ML model to a human expert

in an easy-to-understand format, e.g., by visualizing learned

data dependencies, hence making ML models more trustable

and more likely to be adopted practically.

In this paper, we apply XAI to investigate the reasoning

of ML models in the failure localization problem. Multiple

ML models solving several fault-management problems in

optical networks exist, but, to the best of our knowledge,

the underlying reasoning of those models has not been in-

vestigated using XAI. In particular, we use SHAP [7] (a well

known XAI framework) to find correlations between the input

data and model decisions and compare explanations in two

scenarios with different amount of telemetry: 1) Optical SNR

(OSNR) measurements from a single monitor at the receiver

and 2) OSNR measurements from multiple monitors along

the lightpath. We show that additional telemetry along the

lightpath can improve model explainability, increasing trust

in its predictions.

II. PROBLEM STATEMENT AND DATA

We model the failure-localization problem as a supervised

multi-class classification problem. We use real telemetry data

obtained on a testbed of the National Institute of Information

and Communications Technology (NICT) in Sendai, Japan

(see Fig. 1). ROADMs, identified as Node A, B, C and D

are equipped with an optical amplifier (OA) at their input

and output ports. Links between ROADMs are emulated by

attenuators with loss equivalent to 80 km long optical fiber. We

consider a single lightpath traversing all 3 links and carrying

an OOK modulated 10G signal. A fault (11 dB additional

attenuation) can occur at any one of the three links, and our

objective is to determine the faulty link.

OSNR is measured every second by monitors at the input

ports of three traversed nodes (B, C and D). To make our ML-

based classifier independent from the specific OSNR values,

that may vary according to system settings (e.g., OA gain,

span length, central frequency, etc.), we normalize OSNR

sequences from every monitor to zero mean and unit standard

deviation. Classification is performed for OSNR windows

of W seconds. For each window we consider the following

Fig. 1. NICT’s Sendai testbed setup
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5 features: average (av), standard deviation (std), minimum

(min), maximum (max) and peak-to-peak (p2p) OSNR values.

We consider two scenarios: 1) single monitor (SM), where

we use OSNR telemetry only from the receiver node D,

and, hence, ML model makes a prediction based on 5 input

features, and 2) multiple monitors (MM), where we use OSNR

telemetry from all three traversed nodes B, C, D, with a total

of 15 features (5 features from each monitor) as input to the

ML model. Second scenario represents the highly automated

approach to network management characterized by having

many sources of telemetry across the network, as in Ref. [4].

In both scenarios, we train XGBoost (XGB) classifier based

on a gradient boosting model, optimizing hyperparameters

for different window sizes and fixing a window size of 100

samples (seconds), as it guarantees localization accuracy close

to 1 in both SM and MM scenarios. For each fault we consider

10000 windows from each monitor during training and testing,

and to obtain global explanations. We apply SHAP to explain

model predictions towards each of the three classes (three

faulty links) to understand how the features from different

monitors drive the decisions of the localization model.

III. EXPLAINING MODEL BEHAVIOR FOR AUTOMATED

FAULT LOCALIZATION

XAI techniques can provide explanations to justify why

and how the model arrived to a certain decision. These

explanations can be either local, i.e., they explain a decision

for a specific data instance, or global, i.e., they explain model’s

decisions towards a particular class. In our work, we are

interested in explaining model’s decisions towards each class

(i.e., the different fault locations), in other words, global

explanations. To this end, we apply the SHAP framework,

that is based on Shapley value, a concept from game theory

that quantifies contributions of different players to the total

payoff [7]. In the context of explainability, Shapley values

are computed by perturbing input features and by monitoring

how they influence model predictions, while iterating through

all permutations of the input feature vector. A Shapley value

is computed for each feature towards each of the classes for

each explained data sample. While XGB models can only

rank input features by their importance, SHAP provides an

understanding of how specific values of input features drive the

ML model towards particular decisions, by correlating feature

importance (Shapley value) with feature original value and

model’s predictions.

In the following, we discuss model explanations relative to

the MM and the SM scenarios.

A. Multiple Monitors

Figure 2(a), (b) and (c) show the summary plots produced by

SHAP in the MM scenario to explain the decision of localizing

a fault on link L = 1, L = 2 and L = 3, respectively.

The summary plot combines feature importance with feature

values to explain model’s behavior. Horizontal axis represents

the Shapley value scale. Each point of the summary plot is

a Shapley value for a given feature in a given data sample.

The vertical axis represents features ranked according to their

importance. Features that play highest role in localizing a

particular faulty link L have many points with high absolute

Shapley values and are placed at the top of the list. Summary

plots in Fig. 2 visualize correlations between values of a

feature and the impact on the prediction towards each class.

Red (or blue) dots mean that high (or low) values of some

feature F contribute towards predicting that fault is at link L

(positive Shapley values) or not at link L (negative Shapley

values). In the figure, prefixes B, C and D define the location

of the monitor (see Fig. 1).

Looking at Fig. 2(a), we can observe that B p2p OSNR and

B std OSNR are the two most significant features to locate

fault at link 1, as there are many data points with high absolute

Shapley values for those features. As intuition would suggest,

the most impacting features are related to OSNR measured by

the monitor located at the end of the faulty link. In particular,

explanations towards predicting that fault location is at link 1

are based on strictly polarized values of the features: low for

B p2p OSNR and high for B std OSNR, making it easy for a

domain expert to verify.

Similar observation can be drawn looking at Fig. 2(c); in

this case the most important features used to localize fault

at link 3 are D av OSNR, D min OSNR, C av OSNR and

D max OSNR. Three of these features are again related to

OSNR measured by the monitor at the end of the faulty link. In

particular, we see that the model correlated medium values of

D av OSNR, high values of D min OSNR and medium values

of D max OSNR with a failure at link 3. On the contrary, C av

OSNR is based on OSNR measured before the fault, and is

used by the ML model to build a proof by contradiction, as

high value of this feature contributes towards locating a fault

at link 3, while low value of this feature contributes towards

locating a fault at other 2 links (check Fig. 2(a) and (b)).

More insightful (and less intuitive) observations arise by

looking at the summary plot in Fig. 2(b). Here, the most im-

portant features to localize fault at link 2 are B p2p OSNR and

D av OSNR. This is an important insight in the reasoning of

the model: to classify failure at link 2, the model relies mostly

on measurements from monitors deployed at the previous and

next link from the fault. In fact, the values of these two features

distinguish this fault location from the other two: a high value

of B p2p OSNR contributes towards locating a fault at link 2,

while low value at Fig. 2(a) contributes towards locating a fault

at link 1; similarly a high value of D av OSNR contributes

towards locating a fault at link 2, while medium value at Fig.

2(c) contributes towards locating a fault at link 3. Finally, we

note that only the third most important feature is related to

the next monitor after the fault. If C min OSNR is high, it

contributes to failure at link 2, while if low or medium, it

suggests otherwise.

Summarizing, the ML algorithm reasons in two different

ways to localize the faulty link. For two fault locations it

makes a decision using clearly polarized (strictly high or low)

statistics of OSNR measured at the same link, after the fault.

Such reasoning should be easily confirmed or questioned by
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Fig. 2. SHAP summary plots for Multiple Monitors scenario and fault at (a) link 1, (b) link 2, (c) link 3

Fig. 3. SHAP summary plot for Single Monitor scenario and fault at (a) link 1, (b) link 2, (c) link 3

a domain expert. And sometimes ML algorithm uses proof

by contradiction, looking for most distinctive differences in

OSNR behaviour with respect to other cases. Reasoning of

this second type is also easy to verify.

B. Single Monitor

Figures 3(a), (b) and (c) show the summary plot produced

by SHAP in the SM scenario for the fault on link L = 1,

L = 2 and L = 3, respectively. In this case, we have only

one monitor and, hence, only 5 features. The summary plots

show that all features have similar absolute Shapley values,

and hence approximately equivalent importance.

Faults at links 2 and 3 (Fig. 3(b) and Fig. 3(c)) are

distinguished by the value of D min OSNR; it is, respectively,

low and high. However, for the fault at link 1, no single feature

at Fig. 3(a) is strictly positive or negative based on its value. In

fact, we see blue and red dots distributed similarly for positive

and negative Shapley values, meaning that classifier relies on

more complex interactions among different features. Even in

a small network with 3 fiber spans it is hard to verify if the

reasoning used to localize fault at link 1 is reasonable and

general, or overtuned to the training dataset.

IV. CONCLUSION

We have shown that a ML model, trained to solve fault

localization using multi-monitor OSNR telemetry, reasons

using features that have strictly low or high value depending on

the fault location, and its decisions can be clearly explained.

On the other hand, ML model that considers telemetry at a

single monitor at the receiver also successfully distinguishes

faults at different links, but by learning complex interactions

of OSNR statistics, making its reasoning hard to explain even

in our simple network setup. Deploying monitors in every

node, as considered in our multi-monitor results, is probably

too costly for a large network, but this study suggests that

deploying at least some additional monitors not only improves

fault-localization accuracy, but it also significantly improves

explainability of the ML model reasoning, increasing the sense

of trust towards the model and fostering adoption of these ML

tools for fault management. In future work we will investigate

if this conclusion remains true for practical deployments, by

analyzing ML reasoning in larger mesh networks.
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