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Abstract—Edge computing provides computing capability 
at close-user proximity to reduce service latency for end users. 
To improve the efficiency of edge computing infrastructures, 
geographically-distributed edge datacenters can co-work with 
each other and with cloud datacenters, forming a new paradigm 
referred to as cooperative edge-cloud computing. In this context, 
applications typically run on a virtual machine (VM) that can 
be replicated at multiple sites, and thus user traffic can be served 
at all the sites where corresponding VMs reside. 

For the performance of many applications, latency is a 
critical parameter. In this work, taking applications’ latencies 
as the primary constraint, we model the problem of “VM 
placement and workload assignment” as a mixed integer linear 
program and develop heuristic algorithms accordingly. The 
goal is to minimize the consumption of information technology 
(IT) infrastructures for placing VMs in cooperative edge-cloud 
computing, while meeting the heterogeneous latency demands 
of different applications. Some preliminary results indicate that 
edge datacenter’s resource efficiency can be optimized by 
proper cross-site VM placement and workload re-direction. 

Index Terms—edge and cloud computing, latency, 

virtual machine, workload, backhaul networks. 

I. INTRODUCTION 
LOUD computing is a popular paradigm for application 
provisioning, and the datacenter (DC) represents the 

primary information technology (IT) infrastructures to provide 
hardware resources (computing, network, and storage). DCs in 
cloud computing are usually centralized, i.e., located at few 
sites, which could be far away from most end-user equipment. 
As a result, user equipment may experience longer latency, due 
to both the longer distance to be traveled to reach cloud DC and 
extra transmission latency in case of high network load. 
Recently, new emerging applications (e.g., self-driving cars) 
with ultra-low latency demands have emerged, and cloud 
computing may not be able to directly serve these applications 
due to excessive latency. In this case, edge computing has been 
introduced to serve users at close proximity [1, 2].  

Edge computing infrastructures are usually deployed within 
the footprint of access-aggregation networks, in the form of 
small DCs, called edge DCs [3]. The edge DCs can take parts 
of the jobs of user-equipment (task offloading) [4] to relieve 
their battery and computation-power limitations. Edge DCs can 
also take parts of the cloud’s jobs to serve requests from user 
equipment (edge-based service) and thus avoid long-distance 
transmission to the cloud. In the latter case, due to the limited 
hardware capacity, an edge DC might not be able to serve a 
massive number of application requests from a local area, 
especially at internet peak/rush hours. Hence, also considering 
that different applications have heterogeneous latency demands, 
some traffic can still be efficiently served in a farther 
edge/cloud DC as long as their latency demands are satisfied 
[5]. That is, besides serving local traffic, edge/cloud DCs can 
also serve traffic from other sites [6]. Such a paradigm is 
referred to as cooperative edge-cloud computing. In this 
paradigm, edge and cloud DCs are inter-connected by backhaul 
networks, which comprise aggregation networks and cross-
region backbone networks. From the infrastructure point of 
view, the backhaul networks between edge and cloud DCs are 
mostly powered by optical networks for aggregation and 
transport [7]. As the essential part to provide network 
connectivity for edge-cloud cooperation, the backhaul networks 
have significant influence on the quality of experience (QoE) in 
the context of edge computing. 

In DCs, virtual machine (VM) is now a mature technique for 
service provisioning. A VM uses only a subset of a server’s 

hardware and can still support the processing and data storage 
required by an application. Proper placement of VMs in 
cooperative edge-cloud computing is crucial for satisfactory 
QoE. To manage VMs in edge-cloud DCs, IT operators and 
service providers must address a “VM placement and workload 
assignment” problem, i.e., they must decide in which sites to 
place VMs and the number of VMs for each application at each 
edge/cloud DC (VM placement), and reserve VM processing 
capacity for given application requests (workload assignment).  

Both VM placement and workload assignment have strong 
impacts on service latency: i) VM placement sets the network 
distance between users and VMs, hence impacting latency; ii) 
workload assignment affects the processing time of a request 
since we can reduce queuing and processing time by assigning 
more processing capacity from VMs to an application request 
to avoid congestion. Intuitively, placing more VMs can 
decrease service latency by alleviating congestion. However, 
each edge DC has finite capacity, limiting the number of VMs.  
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Targeting the general edge-based service paradigm instead of 
a specific use-case in edge-cloud computing, we further 
formulate a mixed integer linear program (MILP) and propose 
heuristic algorithms for placing VMs and assigning workloads 
in a backhaul-networked cooperative edge-cloud computing 
system. The goal is to improve the IT infrastructure efficiency 
by minimize hardware consumption, while meeting latency 
demands of different applications. The preliminary numerical 
results indicate some of the relevant factors that will affect the 
hardware consumption of DCs.  

II. RELATED WORKS 
In the context of edge-cloud computing, many works studied 
task offloading issues. In [8], considering the fact that wireless 
channels shared among mobile devices and edge servers also 
constrain task offloading decisions, a programming problem 
was formulated to minimize the average application response 
time by scheduling offloading tasks and allocating bandwidth 
jointly. From another perspective, in [9] the authors observed 
that mobile devices’ CPU frequency has significant impact on 

task offloading and proposed an approach to minimize tasks' 
execution latency and energy consumption by optimizing the 
task and CPU frequency allocation decisions. In [10], taking 
both mobile devices’ CPU frequency and wireless channels into 

account, an algorithm that can select the CPU frequency, the 
tasks to be offloaded, and the network path, was designed to 
reduce the total energy cost and execution delay. As discussed, 
task offloading and edge-based service are two different 
paradigms in edge computing, and corresponding research 
topics are different too. To save space, the following sub-
sections will mainly focus on the existing works about edge-
based service, which is more relevant to this work. 

A. VM Placement and Workload Management in Cloud  
VM placement is a well-studied research topic in IT resource 

management field. VM placement strategies (e.g., VM mapping 
and VM migration) have been intensively studied to find an 
optimal physical machine to host a VM and/or to migrate an 
existing VM [11]. A popular topic in VM placement is 
minimization of energy and resource utilization [12-14]. Ref. 
[12] reviewed most existing works on energy-efficient VM 
management strategies in cloud computing, and survey [15] 
covered recent topics on load balancing in cloud computing. In 
particular, for the multi-site cloud scenario, global server load 
balancing (GSLB) is a popular solution for orchestrating traffic 
over multiple datacenters [16]. The multi-site cloud architecture 
of GSLB is similar with the cooperative edge-cloud in this work, 
but the edge-cloud scenario has brought new challenges (i.e., 
edge DCs’ capacity limitation and its non-linear impact on 
service latency), making the traffic management issue in edge-
cloud different with that for GLSB. 

B. VM placement and workload management in Edge 
VM placement and workload management are well studied 

in cloud computing. However, edge computing introduces new 
characteristics [17], and the challenges for VM placement and 
workload management in edge computing are not the same as 

that in cloud computing. First, the capacity of cloud DCs is 
rarely discussed, as it is usually assumed as sufficient. In edge 
computing, the number of distributed edge DCs can be large, 
but their capacity is limited, to reduce cost [18]. So, new 
challenges arise related to the limited capacity of edge DC to 
provide better QoE. Also, applications in cloud-computing 
were never as latency-sensitive as those in edge computing. 
Even though, the network transporting traffic to the cloud might 
be optimized in terms of latency [19], it has been shown that 
latency requirements cannot be satisfied using traditional cloud 
architectures. When dealing with ultra-low latency applications 
(e.g., those in the area of Tactile Internet), edge-cloud service 
providers are hence used to shorten the service latency by 
reducing the geographical distance and deploying edge 
datacenters [20, 21]. That is, edge DC’s location and distance 
have significant impact on latency, and they must be dealt with 
carefully. In addition, compared with cloud computing, edge 
computing is context-aware, and thus edge computing needs to 
take care of the context-related factors such as mobility. 
Focusing on user mobility in mobile networks, Ref. [22] studied 
the problem of VM scheduling to migrate VMs as user’s 
locations change. Beyond VM scheduling, Ref. [23] proposed 
a mobility-aware service placement framework to migrate VMs 
in real-time without priori-knowledge of user mobility, while 
balancing the migration cost and QoE degradation. Targeting 
the tradeoff between latency of edge and high energy efficiency 
of cloud, Ref. [24] studied workload management in edge 
computing, and formulated a model to balance latency and 
power consumption. Besides placing VMs on given edge/cloud 
DCs, Ref. [25] also studied the cloudlet placement issue for the 
fiber-wireless-backed edge computing, and presented an integer 
linear program model to optimize the deployment cost, while 
meeting stringent response time of mobile users. 

C. Our contributions 
To cope with the incoming deployment of ultra-low latency 

services, infrastructure providers who are operating edge DCs 
must adopt effective resource-allocation strategies to better 
utilize edge DC’s limited capacity while meeting the required 

service latency. In edge context, the existing VM/applications 
placement works have been summarized in survey [26]. In the 
following, we selectively overview the relevant contributions in 
the area of resource allocation and workload management. 

Based on the limitations of edge computing resources, 
authors in [27] investigated the problem of jointly performing 
load distribution and placement of edge-based services. For this 
problem, an integer nonlinear programming model and two 
algorithms to minimize the violation of QoE constraints were 
proposed. Ref. [28] further incorporated the possibility of 
cooperation among multiple edge DCs, and proposed a 
decentralized algorithm to collaboratively place services over 
edge DCs with the aim to minimize the traffic load caused by 
forwarding traffic across multiple edge DCs. Ref. [29] studied 
a similar service placement issue in edge, but its objective is to 
maximize the utilization of edge nodes. In [30], authors 
considered that resource usage changes over time (e.g., daily 
fluctuation), and proposed an integer nonlinear programming 
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model and two algorithms to deploy and release edge services 
dynamically while minimizing the cost for service provisioning 
and meeting QoE constraints. Further incorporating VMs as the 
middleware between hardware and applications, authors in [31] 
studied the problem of VM placement for multiple applications, 
and proposed heuristic VM placement algorithms to minimize 
the average response time. In [32], deep reinforcement learning 
was employed for efficient and adaptive allocation of 
computing and network resources, with the goal of reducing 
average service time and evenly assign resource usage. 

Also considering multiple application’s heterogeneous 
latency requirements, instead of taking latency minimization as 
the primary objective, our work in [33] studied the hardware 
consumption minimization issue with application’s latency 

requirements and infrastructure capacity as constraints, and 
formulated the VM placement and workload assignment 
problem as a MILP model to minimize the consumed hardware 
resources in edge/cloud DCs for placing application VMs. From 
another perspective, the infrastructure efficiency is improved if 
we can reduce consumed hardware resources (in short, 
hardware consumption) for placing VMs that are used to serve 
given workloads. Since the MILP model usually has scalability 
issues, in this work we extend the work in [33], and we also 
provide heuristic approaches for placing VMs and for assigning 
workload to support multiple applications. 

Among above related works, this work is more similar with 
two works. First, the hardware consumption minimization issue 
in this work sounds like the resource cost minimization issue in 
[30], but they are actually different. The resource cost in [30] 
was studied in the context of dynamic service provisioning, and 
thus it refers to the cumulative cost of dynamically allocated 
network/ computing resources for serving given traffic; while 
our hardware consumption refers to the hardware resources for 
placing VMs that are used to serve estimated traffic, in a 
resource planning context. More specifically, with VM as the 
middleware between hardware and application service, the 
consumed hardware in our work is not proactively allocated/ 
released. Second, the VM-based and multi-applications context 
in this work is very similar with that in [31], but their objectives 
are completely different, i.e., this work focuses on hardware 
consumption minimization, while Ref. [31] focuses on average 
latency minimization. 

In summary, the new contributions in this work, compared 
with related works and previous conference version, includes: 
1) the heuristics for placing VMs and assigning workloads for 
multiple applications; 2) the comparison of the models 
with/without small flows (see III.C) and 3) the preliminary 
running-time/complexity comparison for the approaches.  

III. VM PLACEMENT AND WORKLOAD ASSIGNMENT 
This section discusses the latency components of edge-based 
services and introduces the problem of VM placement and 
workload assignment. We will use term DC to represent both 
an edge DC and a cloud DC, and a remote DC refers to either a 
remote edge DC or a cloud DC. Also, we will abbreviate term 
“application” as “app” in the following. 
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Fig. 1. Relationship among flows, VMs, and hardware resources in DCs. 

A. Overview of Cooperative Edge-Cloud System 
Basically, edge DCs could be deployed at any network node 

within access/aggregation networks. One popular use-case is 
that edge DCs are co-located with aggregation points (APs) 
(e.g., wireless baseband processing unit) in access networks, 
and each edge DC covers a group of end users. Although edge 
DCs are primarily used for serving local users, they are also 
reachable by remote users through the network. We assume that 
requests from each user equipment (UE) must go through 
corresponding local AP for aggregation, the UE-AP 
connections can be removed from our modeling and the edge 
DC that is co-located with AP can be modelled as the source of 
each request. In such a model, we call the requests for app 𝑎, 
originating from edge DC 𝑣, as a flow     (note that a flow is a 
set of requests that are aggregated from many local UEs 
attached to the same AP) We statistically model the arrival of 
individual requests (our model considers Poisson arrivals), and 
use 𝑟   to represent the arrival-rate (workload) of flow f   in 
terms of the number of arriving requests per second. 

Let A denote a set of apps. Each app 𝑎 ∈ 𝐴 is supported by a 
unique type of VM (i.e., application-specific VM). Fig. 1 shows 
the serving relationship among flows, VMs, and hardware 
resources in a DC. For DC v, let    denote its overall hardware 
resource capacity. Inside a DC, each VM requires a certain 
amount of hardware resources (composed of CPU, memory, 
and storage) for self-running and service provisioning. For each 
app a, we define     as the amount of hardware resources 
required to run a corresponding VM, and    as the amount of 

processing capacity a VM has for app a. The    is measured by 
the number of requests a VM can process per second, and we 
also call    as VM capacity of a VM for a. Without losing 
generality,    and    are assumed to be fixed. In addition, each 
app a is characterized by a maximum tolerated latency 𝑇 . 
B. Latency Analysis 

Service latency refers to the time from sending an app request 
to receiving a response; and it is composed of transmission, 
propagation, queuing, and processing times.  

In edge-cloud computing, user’s requests might be served by 
a local or remote DC. Fig. 2 shows the latency components 
arising in (a) local and (b) remote processing scenarios. From 
UE to AP/edge-DC, each request experiences a certain 
transmission latency at UE and a certain propagation latency on 
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UE-AP network connection. Fig. 2(a) shows the local 
processing scenario, where requests are served directly by local 
edge DC, i.e., queuing and processing latencies occur at local 
edge DC. If local edge DC is unable to serve a request, the 
request will be re-directed to a remote edge/cloud DC via 
backhaul networks, as shown in Fig. 2 (b). In this case, the data 
transmission over backhaul networks between source and 
destination DCs will cause additional network latency, while 
queuing and processing latencies occur at the remote DC.  

Since UE and UE-AP connection are not affected by VM 
placement and workload assignment, UE-AP side latency 
cannot be optimized in this work. Thus, this work focuses on 
the two latency components that can be optimized by proper 
VM placement and workload assignment: inter-DC backhaul 
network latency, and queuing and processing latency at DCs1. 

Propagation latency between DCs, can be assumed with very 
diverse values, depending on the specific network connectivity 
between related DCs. Let 𝑉  denote a set of DCs. Since the 
backhaul infrastructure among edge and cloud DCs are quite 
diverse for a general modeling, we simplify the network 
propagation latency 𝑡𝑠,𝑑 between DC pair (𝑠, 𝑑) by assuming it 
is proportional to the distance between 𝑠 and 𝑑. 

Queuing and processing latencies in the destination DC, are 
determined jointly by the offered workload and allocated VM 
capacity. In a practical system, the VM side latency model is 
quite complex, and it could be impacted by many factors [34]. 
For this study, we choose the classical M/M/1 queue model as 
an example to estimate the processing and queuing latency at a 
VM (this model could be replaced with more complex/accurate 
models such as M/M/S, and the proposed framework will still 
be applicable). Hence, given a flow, whose workload is 𝑟, and 
assuming the VM capacity assigned to 𝑟  is  , the average 
queuing and processing latency is as Eqn. (1). 

Of course, many other factors in backhaul networks (such as 
optical-electrical conversion at intermediate nodes) might also 
have influence on the overall service latency. But the latency at 
intermediate nodes can be omitted safely if we consider the 
optical backhaul, where most parts of the inter-DC connectivity 
are buffer-less optical channels. With regard for the fact that 
latency is the primary constraint for the QoE in edge computing, 
the specific network topology, which may affect the cross-DC 
routing for dynamic service provisioning, is simplified as a set 
of inter-DC latencies, with the assumption that backhaul 
network’s bandwidth capacity is sufficient for the inter-DC 
cooperation in edge-cloud computing.  

C. VM Placement and Workload Assignment 
To deploy services for apps, edge-cloud DC operators have 

to place VMs and assign VM capacities to given traffic flows, 
while meeting apps’ heterogeneous latency requirements. 

As for VM placement, we must consider that each DC has 
finite hardware capacity, and this limits the number of VMs a 
DC can host.   , the amount of hardware resources in DC 𝑣, 
together with   , the hardware required by a single VM for app 

a, set the number of VMs for each app.  
As for workload assignment, we must consider that 

according to Eqn. (1), the more VM capacity allocated to a flow, 
the less time is needed for processing and queuing. Hence, the 
VM capacity to be allocated to a flow depends on how much 
time is available for queuing and processing.  
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Internet

 Queuing&
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 (b) Remote Processing Example

Inter-DC
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Fig. 2. Latency components for local and remote DC procesing. 

To provide finer granularity for managing request flows 
(especially useful in case of congestion), we also consider that 
one flow can be split into two types of sub-flows (i.e., dividing 
requests in a flow into different groups for separate processing), 
and each sub-flow can be served separately in different VMs. 
Each sub-flow can be a big flow or a small flow (defined later). 
For a given flow, its majority part, which requires the full 
capacity of multiple individual VMs, is referred to as a big flow. 
Let 𝑏𝑠,𝑑  denote the workload of the big flow  𝑠  that is assigned 
to DC 𝑑. Assuming 𝑏𝑠,𝑑  is assigned to 𝑚𝑠,𝑑

 VMs at DC 𝑑 and is 
dispatched to VMs evenly, the average queuing and processing 
latency for 𝑏𝑠,𝑑  is calculated as Eqn. (2). For the same given 
flow, the left part (if any), which requires only parts of the 
capacity of one individual VM, is referred to as a small flow 
(this is an optional definition for extra optimization, not 
essential to our model). Let 𝑠𝑠,𝑑  denote the workload of a small 
flow  𝑠  that is assigned to DC d. Assuming the VM capacity 
assigned to 𝑠𝑠,𝑑  is  𝑠,𝑑 , the average queuing and processing 
latency for 𝑠𝑠,𝑑  can be calculated as in Eqn. (3). Note that one 
can use other methods to dispatch workloads. Note also that a 
VM is sharable only to small flows, but not to big flows. 

1/ ( )t u r                                        (1) 

, , ,1/ ( / )a a a
s d a s d s dp u b m                              (2) 

, , ,1/ ( )a a a
s d s d s dp u s                                  (3)  

, , ,2a a
s d s d s dt p t                                   (4) 

, , , ,/ ( 1/ ( -2 ))a a a
s d s d d s d s dm b u t t                        (5) 

In summary, the queuing and processing latency for each 
sub-flow (small or big flow) can be calculated as in Eqn. (2) or 
(3). The overall service latency for each sub-flow must also 
consider the inter-DC latency 𝑡𝑠,𝑑 , representing the network 
latency between source DC s and destination DC d, and thus the 
overall service latency would be Eqn. (4). Note that 𝑡𝑠,𝑑 = 0 
when s = 𝑑, which means a flow is assigned to VM(s) at the 
source DC for local processing. According to Eqns. (3) and (4), 
the minimum number of required VMs for a big flow 𝑏𝑠,𝑑  at DC 
𝑑 is calculated as Eqn. (5). 

1 Compared with the app layer service time, the queuing and processing time 
at intermediate routers/switches are assumed to be much less, so this work will 
mainly focus on queuing and processing latency at destination VMs. 
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IV. MIXED INTEGER LINEAR PROGRAM (MILP) MODEL 
FOR HARDWARE CONSUMPTION MINIMIZATION 

This section formulates the problem of VM placement and 
workload assignment, with the objective to minimize hardware 
consumption. Hardware consumption means the cost of leasing 
space to place VMs for service providers, and it also means 
resource efficiency for infrastructure operators. The model 
turns out to be a mixed integer linear program (MILP). 
A. Problem Description 

Given a set of DCs, hardware capacity of each DC, network 
latency between each DC pair, a set of apps, hardware resources 
required to deploy a VM for each app, capacity of a VM and 
maximum tolerated latency for each app, and estimated 
workloads of each flow, we determine the number of VMs for 
each app at each DC, the workload, destination, and VM 
capacity for each sub-flow, subject to the constraints below. 
Note that all the variables in this model are non-negative. 
B. Input Parameters 
𝑉: Set of DCs 
𝐴: Set of apps 
  : Hardware resource capacity in DC 𝑣, where 𝑣 ∈ 𝑉 
𝑡𝑠,𝑑: Propagation latency from DC 𝑠 to DC d, where 𝑠, 𝑑 ∈ 𝑉 
𝑇 : Tolerated latency threshold for app 𝑎, where 𝑎 ∈ 𝐴 
  : Amount of hardware resources required by a VM for app 𝑎 
  : VM capacity of one VM for app 𝑎 
𝑟 
 : Workload of a flow that originates from DC v for app a 

C. Variables 
𝑛 
 : Integer, number of VMs for app 𝑎 placed at DC 𝑣 

𝑏𝑠,𝑑
 : Float, workload of big flow, for app 𝑎, from DC 𝑠 to 𝑑 

𝑚𝑠,𝑑
 : Integer, number of VMs allocated for 𝑏𝑠,𝑑

  
𝑠𝑠,𝑑
 : Float, workload of small flow, for app 𝑎, from DC 𝑠 to 𝑑 
𝑔𝑠,𝑑
 : Binary, a flag indicating whether 𝑠𝑠,𝑑

  is zero or not 
 𝑠,𝑑
 : Float, allocated VM capacity to 𝑠𝑠,𝑑

  

D. Objective: Minimize Hardware Consumption 

Min a
v a

v V a A

n C
 

                               (6) 

E. Constraints 
a
v a v

a A

n C H


                      v V     (7) 

, ,
a a a
s d s d s

d V

b s r


            s V , a A       (8) 

, ,
a a a
s d a s d a d

s V

u u m u n


           d V , a A       (9) 

, ,
,

1( )
( 2 )

a a
s d a s d

a s d

b u m
T t

 


  ( , )s d V , a A     (10)
 

 , , , ,/ ( 2 )a a a
s d s d s d a s ds u g T t       ( , )s d V , a A     (11) 

, , 0a a
a s d s du m b     ( , )s d V , a A     (12) 

, , 0a a
s d s du s     ( , )s d V , a A     (13) 

, ,( 2 ) 0a
a s d s dT t m     ( , )s d V , a A     (14) 

, ,( 2 ) 0a
a s d s dT t g     ( , )s d V , a A     (15) 

, ,0 0a a
s d s dg s      ( , )s d V , a A     (16) 

Objective (6) calculates total required hardware resources of 
all VMs for all apps in all DCs, and this model tries to minimize 
it. Constraint (7) guarantees that the hardware resources 
occupied by the VMs at each DC cannot exceed the host DC’s 
hardware capacity. Eqn. (8) enforces that each flow is totally 
assigned, in forms of either small sub-flows or big sub-flows. 
Eqn. (9) enforces that for all small flows and big flows, the 
allocated VM capacity cannot exceed the overall capacity of 
VMs at target DC. Constraints (10) and (11) are transformed 
from Eqn. (4), guaranteeing that service latency of both big 
flows and small flows are within the corresponding app’s 

latency requirement. Constraints (12) and (13) guarantee that 
the queuing systems of all flows are stable by assuring that the 
assigned workload for each flow cannot exceed the allocated 
VM capacity. Constraints (14) and (15) are two auxiliary 
constraints for (10) and (11), as (10) and (11) do not apply when 
(𝑇 − 2𝑡𝑠,𝑑)  (i.e., time left for queuing and processing) is 
negative. They guarantee that both big and small flows are not 
routed to a DC whose latency to the flow’s source DC exceeds 
their latency thresholds. Note that since we are studying the 
workload assignment problem for flows (comprise of multiple 
requests) instead of individual requests, the latency threshold 
here refers to the maximum of the average latency of requests 
in a flow. Constraint (16) enforces the relation between 𝑠𝑠,𝑑  and 

its binary flag 𝑔𝑠,𝑑
 . Note that this model can result as infeasible 

if no DC is able to provide sufficient hardware resources to 
meet the latency threshold of a pending flow. 

V. HEURISTIC ALGORITHM FOR VM PLACEMENT AND 
WORKLOAD ASSIGNMENT 

As MILP has scalability issues for large-scale problems, we 
also develop a heuristic algorithm to get acceptable and 
efficient solutions for VM placement and workload assignment. 

The goal of the proposed heuristic is to decide the number of 
VMs for each app at each DC, and assign each flow to placed 
VMs. In general, VM placement and workload assignment are 
two interdependent problems. On one hand, VM placement is 
driven by given workloads; on the other hand, workload 
assignment depends on the capacities of the placed VMs. 
Therefore, we cannot simply place VMs first, and then assign 
workload to the VMs. Instead, this work tries to solve this 
problem by placing VMs and assigning workloads iteratively. 

Since overall DC hardware resources are shared by multiple 
workload flows, the sorting order of these flows has a strong 
impact on total hardware consumption. To reduce the impact of 
sorting order, we consider further optimization after all flows 
are assigned. Thus, the heuristic algorithm has three phases: 1) 
initial placement and assignment (IPA), 2) VM and request 
flow exchange (VRE), and 3) dead-flow re-accommodation 

(DR), described in Algorithms I, II, and III, respectively. 
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In IPA, input parameters are the same as in MILP, as stated 
in Section IV.B. First, IPA sorts all given flows according to 
their latency thresholds. Since flows with lower latency 
threshold have less chance to be served by remote DCs, IPA 
places VMs for them with higher priority to reduce their 
probability of being blocked. Second, among the flows that are 
associated to the same app and have the same priority, IPA 
handles them in decreasing order of the workload of each flow. 

For each pending flow with the highest priority, IPA 
continues trying to place VMs at the nearest-available DC 
(measured by propagation latency) and assigns the workload of 
the pending flow to it, until an available DC is found. The 
criteria for checking availability of a DC is whether the target 
DC can provide sufficient hardware resources to place enough 
VMs for serving given workload within corresponding latency 
threshold. The accurate number of required VMs for supporting 
a given flow can be calculated using Eqns. (2), (3), and (4).  

However, the DC being checked may be unable to provide 
sufficient hardware resources to accommodate all the 
workloads of a given flow, but it might be able to provide a part 
of the required resources. In such case, IPA will separate a 
given workload into sub-flows. According to     and the 

amount of available hardware resources in target DC, we know 
the number of VMs that the target DC can support. Then, 
according to Eqns. (2), (3), and (4), we can know the workload 
that can be hosted by the newly-placed VMs. Remaining part of 
the pending flow will be taken as a new sub-flow for further 
assignment. Note that some original flows or sub-flows may not 
be accommodated by any DCs; this means that such flows will 
be blocked. IPA marks such flows as dead flows, and our DR 
algorithm will try to take care of them. 

The IPA’s complexity (based on merge-sort) is O(|A| ∙
log(|A|)) + O(|A| ∙ (|F| ∙ log(|F|) + |F|) ∙ (|V| ∙ log(|V|) +
|V|)), where |A| is the number of apps, |F| is the number of 
flows of each app, and |V| is the number of DCs. The maximum 
number of un-assigned flows of a given app is |V|, meaning 
each DC has originating requests for the given app. By dropping 
the low-complexity part and replacing |F|  with |V| , the 
complexity can further be consolidated as O(|A| ∙ log(|A|)) +
O(|A| ∙ (|V| ∙ log(|V|)) ∙ (|V| ∙ log(|V|))) . Therefore, IPA’s 
worst case complexity is O(|A| ∙ (log(|A|) + |V| ∙ log (|V|))). 

As already mentioned, sorting order has a strong impact on 
the solution quality. Fig. 3 shows an example with three edge 
DCs and two pending flows. If Flow-A is handled first, IPA will 
assign it to its nearest DC, which is the local DC Edge-1, and 
allocate two units of hardware (HW) to support its related 
VM(s). Now, Edge-1 is fully occupied, and the nearest DC for 
Flow-B becomes Edge-3. Flow-B, from Edge-2, has to 
experience 20ms network latency when traveling to Edge-3. It 
needs more hardware resources at Edge-3 to process faster to 
counteract the higher network latency, e.g., assume it needs 4 
units of hardware resources at Edge-3, and total hardware 
consumption for Flow-A and Flow-B is 6 units. 

Fig. 4 considers that Flow-A and Flow-B are handled in 
reverse order, which leads to a solution with lower cost. Flow-
B is assigned first to Edge-1, which is 10 ms away from Edge-
2, and it needs 2 units of hardware resources. Lacking local 

resources, Flow-A is assigned to its nearest DC Edge-3, which 
will introduce 5 ms network latency, and it needs 3 units 
hardware resource at Edge-3. Now, the total hardware 
consumption is 5 units, which is lower than that in Fig. 3. 
Algorithm I: initial placement and assignment (IPA) 
Input: see Section IV.B 
1: Sort all apps in increasing order of their latency threshold 
2: for each a A  
3:  Sort flows of app a, in decreasing order of their workload 
4:     for each flow  𝑠 , which originates from edge s V  
5:      Sort all DCs in increasing order of their net latency to s 
6:         for each DC v V  
7:           if net latency 𝑡𝑠,  is less than latency threshold, then 
8:     place VMs at v and assign all or parts  𝑠

  to VMs 
9:       else, break 
10:  end for 
11:     if  𝑠

  cannot be assigned to any DC, then 
12:   mark  𝑠

  as a dead flow 
13:  end if 
14: end for 
15: end for 

Edge-1

Edge-3
Edge-2

1: Flow-A, 
handled first, 

 2 units HW @ Edge-1

Occupied

t1,3=5
t1,2=10

t2,3=20

2: Flow-B, 
handled second, 

4 units HW @ Edge-3

Flow-A
Flow-B Available

Total HW Consumption: 
2+4=6 units

 
Fig. 3. Example of a non-efficient VM placement and workload assignment. 

Edge-1

Edge-3
Edge-2

2: Flow-A, 
handled second, 

3 units HW @ Edge-3

Occupied

t1,3=5
t1,2=10

t2,3=20

1: Flow-B, 
handled first, 

2 units HW @ Edge-1

Flow-A
Flow-B Available

Total HW Consumption: 
3+2=5 units

 
Fig. 4. Example of optimized VM placement and workload assignment. 

Motivated by this observation, we design the phase-2 
algorithm, called VM and request flow exchange (VRE), to 
improve the solution provided by IPA. VRE takes the output of 
IPA as its input, which is formed by a set of assigned flows and 
a set of dead flows. Similar to illustrations in Figures. 3 and 4, 
the exchange happens between two flows, and the main task of 
VRE is to find good candidates for exchange. An important 
criterion for such pairs is that total hardware consumption of 
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two target flows should decrease after exchanging.  
Note that VRE only focuses on the exchange of big flows, as 

small flows’ impacts on hardware consumption is relatively 
lower. Let 𝐹𝑛 denote a set of big flows currently assigned to DC 
n. For each flow 𝑏𝑚,𝑛

  ∈ 𝐹𝑛 , corresponding to app 𝑎1 , 
originating from DC m, and assigned to DC n, we first check if 
there are DCs that are closer to source m than current 
destination n, and denote them as a set Q. If Q is not empty, it 
means that DCs in 𝑄 were fully occupied by other flows. Thus, 
for each DC 𝑞 ∈ 𝑄, we consider all flows which are currently 
assigned to q as potential pair flows for 𝑏𝑚,𝑛

  , and check whether 
they meet the criteria for exchanging. Let 𝑏𝑝,𝑞  denote a flow, for 
app 𝑎2, originating from DC p, and assigned to DC q. Now, we 
have two flows  𝑏𝑚   and 𝑏𝑝  , originated from DCs m and p 
respectively, and we also have two candidate destination DCs n 
and q. Before exchange, hardware consumptions at DCs n and 
q for the two flows are presented as HW(𝑏𝑚,𝑛

  ) and HW(𝑏𝑝,𝑞
  ); 

after exchange, hardware consumptions at DCs q and n for the 
two flows are presented as HW(𝑏𝑚,𝑞

  ) and HW(𝑏𝑝,𝑛
  ). Note that 

HW(𝑏𝑠,𝑑
 )  is calculated as HW(𝑏𝑠,𝑑

 ) =  𝑎𝑚𝑠,𝑑
𝑎 . If HW(𝑏𝑚,𝑞

  ) +

HW(𝑏𝑝,𝑛
  ) is less than HW(𝑏𝑚,𝑛

  ) + HW(𝑏𝑝,𝑞
  ), it means that flows 

𝑏𝑚,𝑛
   and 𝑏𝑝,𝑞   are eligible for exchange; otherwise, VRE 

continues to check other potential flows. If Q is empty, VRE 
continues to look for other pairs for other big flows in 𝐹𝑛. 

The steps for exchanging two eligible flows are illustrated in 
Procedure I. Note that two candidate flows in a pair might be 
unable to be exchanged entirely, depending on how much 
hardware resources the two destination DCs can provide for 
each flow. We have already mentioned that DC q is a closer DC 
for flow 𝑏𝑚  , but it is occupied by flow 𝑏𝑝   before assigning 
𝑏𝑚
  . It means DC q (e.g., Edge-1 in Fig. 3) was a better choice 

than DC n for both flows. Here VRE tries to make space for 𝑏𝑚  
on DC q by migrating 𝑏𝑝   to DC n. If HW(𝑏𝑝,𝑞

  ), i.e., amount of 
released hardware resources from 𝑏𝑝   at DC q is larger than 
 𝑊(𝑏𝑚,𝑞

  ), i.e., amount of required hardware resources by 𝑏𝑚   
at DC q, part of b𝑝  will be migrated to original destination DC 
n of 𝑏𝑚  , and entire 𝑏𝑚   will be migrated to DC q. Note that 
remaining part of 𝑏𝑝   will be kept at DC q as a new sub-flow, 
as DC q is still a better choice for this partial flow. If HW(𝑏𝑝,𝑞

  ) 
is less than HW(𝑏𝑚,𝑞

  ), entire 𝑏𝑝   will be migrated to DC n to 
release all its occupied resources for 𝑏𝑚  , only part of 𝑏𝑚   can 
be migrated to DC q. If HW(𝑏𝑚,𝑞

  ) equals to HW(𝑏𝑝,𝑞
  ), b𝑚   and 

𝑏𝑝
   can be exchanged entirely. Note that according to the 

definition of HW(𝑏𝑠,𝑑
 ), hardware consumption of a flow at a DC 

is linearly-correlated with the flow’s workload, and thus partial 

exchange can still save part of hardware resources, while 
keeping the latency constraint maintained. Also note that VRE 
is a best-effort approach with no guarantee for optimal output. 
However, it can be executed iteratively to improve the solution. 

The complexity of VRE is calculated as O(|F1| ∙ |V| ∙ |F2|), 
where |F1| is the number of assigned flows, |V| is the number 
of DCs, and |F2| is the number of flows assigned to each DC. 
In the worst case, each flow is divided into separate sub-flows 
towards each DC. Accordingly, |F1| will be |A| ∙ |V|  and |F2| 
will be |A| ∙ |V|, where |A| is the number of apps. Thus, the 

overall complexity of VRE would be O(|A| ∙ |V|4 ). On the 
other hand, in practical settings, a flow will most likely be 
assigned to only a few (say X at max) nearby DCs and each DC 
can only take the flows from a few nearby DCs (say Y at max) 
due to the latency constraint. In that case, the complexity of |F1| 
and |F2|  can be evaluated as |A| ∙ (|V| ∙ X)  and |A| ∙ (Y) , 
respectively, in which X and Y correspond to O(1) complexity. 
Therefore, the complexity can be reduced to O( |A| ∙ |V| ). 
However, note that such relaxation will be invalid when APPs 
latency threshold is too loose, and remote DCs cannot be 
excluded from the set of candidate DCs. 
Algorithm II: VM and request flow exchange (VRE) 
Input: assigned big flows {𝑏𝑚,𝑛

  } 
1: for each flow 𝑏𝑚,𝑛

   
2:  calculate HW(𝑏𝑚,𝑛

  ) it needs at destination DC n 
3:  for each DC node 𝑞 ∈ Q, which are closer to n than m  
4:   estimate HW(𝑏𝑚,𝑞

  ) it needs at DC q 
5:      if HW(𝑏𝑚,𝑞

  ) < HW(𝑏𝑚,𝑛
  ), then 

6:    find all flows {𝑏𝑝,𝑞  }, which were assigned to q  
7:         for each 𝑏𝑝,𝑞  , which originates from DC 𝑝 to 𝑞  
8:            if q is reachable for 𝑏𝑝,𝑞  , then 
9:               calculate HW(𝑏𝑝,𝑞

  ) it required at DC 𝑞 
10:              estimate HW(𝑏𝑝,𝑛

  ) if migrate it to DC 𝑛 
11:              if HW(𝑏𝑚,𝑞

  ) + HW(𝑏𝑝,𝑛
  ) < HW(𝑏𝑚,𝑛

  ) + HW(𝑏𝑝,𝑞
  ),  

12:      exchange  𝑏𝑚,𝑛
   with 𝑏𝑝,𝑞  (see Procedure I) 

13:     end if 
14:    end if 
15:   end for 
16:  end if 
17: end for 
18:end for 
 
Procedure I: Flow Exchange Procedure 
Input: exchange-eligible flows 𝑏𝑚,𝑛

   and 𝑏𝑝,𝑞  , hardware 
consumption HW(𝑏𝑚,𝑛

  ), HW(𝑏𝑚,𝑞
  ), HW(𝑏𝑝,𝑞

  ) and HW(𝑏𝑝,𝑛
  ) 

1: if HW(𝑏𝑚,𝑛
  ) ≥  HW(𝑏𝑝,𝑛

  ) 𝑎𝑛𝑑 HW (𝑏𝑝,𝑞
𝑎2
) ≥ HW(𝑏𝑚,𝑞

𝑎1 ), then 
2:    release 𝑏𝑚,𝑛

   from DC n and release 𝑏𝑝,𝑞   from DC q 
3:    assign origin flow 𝑏𝑝,𝑞   to DC n as 𝑏𝑝,𝑛   
4:    assign origin flow 𝑏𝑚,𝑛

   to DC q as 𝑏𝑚,𝑞
   

5: else if HW(𝑏𝑚,𝑛
  ) <  HW(𝑏𝑝,𝑛

  ), then 
6:     release 𝑏𝑚,𝑛

   from DC n 
7:     assign as much 𝑏𝑝,𝑞   as DC n can host to n as 𝑏𝑝,𝑛   
8:     assign origin flow 𝑏𝑚,𝑛

   to DC q as 𝑏𝑚,𝑞
   

9: else if HW(𝑏𝑝,𝑞
  ) < HW(𝑏𝑚,𝑞

  ), then 
10:    release 𝑏𝑝,𝑞   from DC q 
11:    assign as much 𝑏𝑚,𝑛

  as DC q can host to q as 𝑏𝑚,𝑞
   

12:    assign origin flow 𝑏𝑝,𝑞   to DC n as 𝑏𝑝,𝑛   
13:else, then error 
14:end 

VRE is designed to exchange flows which are already 
successfully assigned by IPA. But dead flows blocked by IPA 
are still blocked after running VRE. To find more chances for 
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accommodating such blocked flows, we design another 
algorithm called dead-flow re-accommodation (DR).  

Taking blocked flows from IPA as input, DR accommodates 
blocked flows by migrating some assigned flows and making 
space for blocked flows. For each blocked flow  𝑠  , originated 

from DC s, for app 𝑎1, DR first sorts all DCs in increasing order 

of their network latency to DC s so that it can try to find space 

for  𝑠
    from the nearest DC. For each candidate DC v, DR 

handles each flow 𝑏𝑢, 
   , which is currently assigned to v, and 

checks whether there is a chance to migrate 𝑏𝑢, 
   to other DCs, 

which have free hardware resources. When such a flow is found, 

DR will calculate the hardware capacity HW(𝑏 ,𝑣
𝑎2
)  that can be 

released on DC v by migrating such a flow. Let HW(𝑏𝑠,𝑣
𝑎1) denote 

the required resources for hosting  𝑠   at DC v. According to the 

magnitude relation between HW(𝑏 ,𝑣
𝑎2
)  and HW(𝑏𝑠, 

  ) , whole or 
part of 𝑏𝑢,    will be migrated from DC v to other available DCs 

to make space for the whole or part of 𝑏𝑠, 
   at DC v. There is no 

guarantee that DR can accommodate every dead flow 

successfully, and some dead flows may still be blocked because 

DR is a best-effort approach and it is not designed to find a 

feasible solution by enumerating all the possible solutions. 
The complexity of DR is similar with VRE, but the 

maximum number of input flows is |A| ∙ |V|, meaning there are 

dead flows for each app at each DC. The scale of a flow is |A| ∙
 (|V| + X), and thus the complexity of DR is O(|A| ∙ |V| ). 

Algorithm III: dead-flow re-accommodation (DR) 
Input: set of blocked flows { 𝑠

  }, which is from DC s. 
1: for each flow  𝑠

   
2:  sort all DCs in increasing order of their net latency to s 
3:  for each DC node v V  
4:          if 𝑡𝑠,  is less than latency threshold, then 
5:    find all flows {𝑏𝑢, 

  }, which were assigned to v  
6:         for each b𝑢, 

  , which is from DC u for app b 
7:            find all DCs, which have free hardware resources 
                    and reachable for app b from DC u, as a set {w} 
8:     for each DC w 
9:               calculate HW(𝑏𝑢,𝑤

  ), HW(𝑏 ,𝑣
𝑎2
), HW(𝑏𝑠, 

  ) 
10:     migrate 𝑏𝑢, 

𝑏  to w, and assign  𝑠
  to v 

11:    end for 
12:   end for 
13:  end if 
14: end for 
15:end for 

VI. ILLUSTRATIVE NUMERICAL EXAMPLES 
In this section, we perform a preliminary investigation of the 
performance of our VM placement and workload assignment 
methods. To get realistic data as input parameters, we choose 
seven cities from south-west United States as edge sites, which 
host edge DCs, and one city from northern-west USA as the 
cloud DC site. The amount of hardware resources of an edge 
DC is set proportionally to the city’s population, and the 
hardware resources of a cloud DC is set to a very large value 
that is not expected to be exhausted. Details of edge sites and 

cloud node capacities are listed in Table I. Network latencies 
for each node pair are obtained from website [35], and they are 
used as inter-DC network latency. 

TABLE I.  DC PARAMETERS. 
City HW resources (unit) DC Type 

San Francisco 225 Edge 
Los Angeles 1000 Edge 
Phoenix 375 Edge 
Sacramento 125 Edge 
San Jose 250 Edge 
Las Vegas 150 Edge 
San Diego 350 Edge 
Portland 10000 Cloud 

TABLE II.  APPLICATIONS PARAMETERS [36]. 
APP (a) 𝑻𝒂 (ms) 𝒖𝒂 

Self-Driving 1 1500 
Augmented Reality 2 800 
Healthcare 5 500 
Accelerated Video 10 400 
Virtual Reality 20 300 
Web Game 30 200 
HD Broadcast 50 100 
We consider seven sample apps, with latency requirements 

[36] listed in Table II. In real world, VM hardware capacities 
can be heterogeneous. In our simulation study, without loss of 
generality, we assume each VM is equipped with one unit of 
hardware resource and corresponding VM service capability 
(i.e.,   , number of requests one VM can serve per second) that 
one unit of hardware resource can provide. 

The population of each city varies roughly in the range 
[500,000, 4,000,000]. According to statistics of some sample 
applications (e.g., Steam), the ratio of peak concurrent users 
over the registered users is around 1%. Therefore, we roughly 
generate the overall workload of each city (city workload) 
proportionally to the 1% of their population, i.e., within a range 
of [5000, 40000]. We divided each city workload into seven 
parts (one for each app). In details, for each city, we randomly 
generate a weight within [1, 5] for each app to denote the share 
of workload for corresponding apps. With the weight for each 
app, we can divide the overall workload for each app by 
selecting the corresponding share for each app.  

We define three parameters: workload ratio (WR), hardware 
capacity ratio (HR) and scale down factor (SDF), to apply 
sensitivity to the base settings. WR, HR, and SDF are actually 
the key factors for VM placement and workload assignment in 
the resource-constraint context, and we can test our approaches 
in many cases (especially the congestion cases) by varying the 
relationship between workload/hardware-capacity/latency.  
Multiplied by WR or HR, the base settings for workload or DC 
capacity can be zoomed in/out linearly, and we study their 
impacts on hardware consumption (calculated by the function 
in Eqn. 5) in Figures. 5-7. Dividing the inter-DC latencies by 
SDF, we can shrink the geographical scale of the cooperative 
edge nodes, and test our approaches’ sensitivity to geographical 
scales (see Fig. 8). Note that WR, HR and SDF affect the VM 
placement and workload assignment decisions jointly. There 
are many combinations of WR, HR and SDF, and results show 
that WR=3, HR=1 and SDF=1 are good choices as base settings, 
because fixing two of them in the sensitivity test can limit the 

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on November 22,2022 at 09:25:57 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3107596, IEEE
Transactions on Cloud Computing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

other one in a practice range, which makes the simulation 
represents a real-world system behavior. 

More specifically, results for the MILP model are obtained 
from IBM ILOG CPLEX Optimization Studio 12.6, while other 
results are from our lab-grown Java-based simulator. Note that 
in our resource planning problem, the input workload is the 
number of requests per second, instead of a set of requests that 
follow an arrival rate, and thus there is no randomness in the 
input and the output from the heuristics is deterministic. 
Therefore, there is no need to run multiple instances with the 
same settings to get the average value and confidence interval. 

 
Fig. 5. Hardware consumption and inter-DC traffic for different HRs. 
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Fig. 6. Hardware consumption of different approaches vs. WR. 

Fig. 5 shows the hardware consumption (on left y-axis) and 
inter-DC traffic (on right y-axis) for varying HR on the x-axis 
(fixing WR =3 and SDF=1). As expected, hardware 
consumption and inter-DC traffic increase when HR decreases. 
This is mainly due to the two following reasons. First, less 
hardware capacity in DCs means that congestion is achieved 
more quickly, and hence some requests have to go to remote 
DCs. Second, such inter-DC re-direction introduces higher 
network latency, and leaves less time for processing at 
destination VMs. In other words, network congestion also 

induces more hardware consumption as more hardware 
computing resources are required to process the workload faster, 
so that the end-to-end latency can be satisfied.  

Among the seven sample apps, Fig. 5 also shows that inter-
DC traffic of the least latency-sensitive app (video broadcast) is 
much higher than other apps. In fact, when local DCs cannot 
handle all the requests, the apps with looser latency 
requirements will be more likely to be assigned to remote DCs 
to make room for latency-sensitive apps at local DC. 

Figs. 6 and 7 show the performance of the proposed model 
and heuristic in terms of hardware consumption for increasing 
WR and HR. Note that the point at which lines are terminated 
marks the last WR/HR for which all workloads can be 
accommodated successfully. Latency-violation or blocking 
arise for the next value of WR/HR. We also plot the hardware 
consumption of a baseline - Local Processing (Local Proc.), in 
which cross-DC workload assignment is disabled, to investigate 
the benefits of cross-DC cooperation in edge-cloud. Also note 
that blocking happens to baseline at lower WR and higher HR, 
but we plot the theoretical (assuming each DC has sufficient 
hardware capacity, as in cloud) hardware consumption value in 
dotted line, to show how congestion impacts the hardware 
consumption in cooperative edge-cloud. 

Fig. 6 compares the hardware consumption of the proposed 
algorithms (with different K, the number of iterations of VRE) 
vs. the results obtained with the MILP, under different WR 
(fixing HR=1 and SDF=1). Comparing the various IPA+VRE 
strategies, we observe that hardware consumption under 
different K (i.e., iterations of VRE) is different, especially when 
workload ratio is high. The higher is K, the lower hardware 
consumption can be achieved. When K is 3, output of 
IPA+VRE is very close to output of MILP. We also observe 
that blocking happens at the same load ratio, which is WR=7, 
for different K. Higher K cannot reduce blocking because VRE 
is not capable of re-accommodating blocked flows, hence the 
amount of blocked requests is independent of K. If we add DR 
to “IPA+VRE: K=3”, the algorithm can re-accommodate some 
of the flows blocked in IPA. We run DR twice, and it can be 
noted that blocking now occurs at a larger WR (i.e., WR = 8), 
as DR has accommodated blocked flows at WR=7 and 7.5. We 
also observe that the hardware consumption of IPA+VRE+DR 
is very close to the MILP output. Comparing the output of 
heuristics and baseline in Fig.6, we see that blocking happens 
to Local Proc. at WR=4.5, which is much lower. This indicates 
that the proposed approaches can accommodate more workload 
without latency-violation by employing cross-DC cooperation. 
Further, when compare the output of heuristics with theoretical 
hardware consumption of Local Proc., we also observe that the 
hardware consumption of the heuristics increases non-linearly 
after Local Proc. being blocked (at WR=4 in Fig. 6 and HR=0.7 
in Fig. 7, not shown), meaning cross-DC cooperation consumes 
extra hardware in case of congestion.  

Fig. 7 compares the hardware consumption of the proposed 
algorithms with MILP for different HR (fixing WR=3 and 
SDF=1). When HR decreases, i.e., hardware capacity becomes 
a limitation, hardware consumptions of IPA+VRE with 
different K become different. Similar to Fig. 6, a higher K can 
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reduce hardware consumption. When HR goes down to 0.45, 
blocking happens to IPA+VRE, but, by running DR, blocking 
can be postponed to HR=0.4. Also, the hardware consumption 
of “IPA+VRE:K=3+DR” is quite close to the output of MILP 
under lower HR. Figs. 6 and 7 show that the solutions found by 
our algorithms are very close to the MILP solution, and they are 
acceptable. Comparing the output of heuristics and baseline, we 
can get the similar conclusion (with Fig. 6) that the cross-DC 
cooperation can accommodate more workloads with the cost of 
extra hardware consumption in case of congestion. 
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Fig. 7. Hardware consumption of different approaches vs. HR. 
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Fig. 8. Hardware consumption of different approaches vs. SDF. 

Fig. 8 compares the hardware consumption of the proposed 
algorithms with MILP under different SDF (fixing WR=7 and 
HR=1). With the base settings (SDF=1), we see that IPA, 
IPA+VRE and IPA+VRE+DR can accommodate the given 
workload with a slightly higher hardware consumption than that 
of the MILP. When shrinking the geographical scale from 5 to 
1000 times, there are two important observations. First, the 
overall hardware consumption for the same workload decreases 
when SDF increases. This is because the inter-DC latency is 

shortened in the shrunken topology, and thus destination DC 
can serve the cross-DC traffic a bit slower, with less hardware. 
Second, for SDF that is larger than 1, the hardware consumption 
from proposed heuristics is very close to that from the MILP 
model, indicating that the proposed heuristics are applicable to 
edge-cloud systems in different geographical scales. Note that 
we do not need to test the SDF<1 cases, because the base setting 
is obtained from the real world, and enlarging the base setting 
with SDF<1 will result in an impractical geographical scale that 
does not match with the low-latency edge computing context.  
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Fig. 9. Hardware consumption with/without small flow in MILP. 

TABLE III.  RUNNING TIME (ms) FOR PROPOSED APPROACHES WITH 
DIFFERENT WR SETTINGS. 

WR MILP 
(0.1) 

MILP 
(0.01) 

MILP 
(0.001) 

Heuristic

（8） 
Heuristic

（64） 
4 622 954 * 5 57 

4.5 1972 1318 * 5 52 
5 1406 1012 * 5 55 

5.5 10716 86007 * 6 55 
6 60520 36913 * 6 56 

6.5 45886 5275 * 6 57 
7 31495 2740 * 5 54 

7.5 22502 30007 * 6 52 
8 25206 19103 * 7 55 

In Section III, the concept of small flow was introduced as an 
optional choice for workload assignment process. Accordingly, 
we investigate the solution quality with and without small flow 
in our MILP model. Figure 9 compares the hardware 
consumption of the models with/without small flow, under 
relatively higher workloads. It can be noted that the model with 
small flow allows us to save some hardware resources. We did 
not plot the hardware consumption under lower WR as 
difference in hardware consumption become very small in this 
case. We conclude that small flow is helpful in improving the 
overall solution particularly at high workloads (indeed, in those 
situations when our proposed approach is more useful), but the 
improvement is limited to about 0.5%. 

To verify the complexity of proposed heuristics and MILP 
model, we also compared their average running times (in ms). 
The running time in this table is the average value of five 
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executions with random workload distributions for different 
apps. The first column in Table III marks the given WR, while 
1) columns 2-4 show the running time of MILP model with 
different tolerated optimality-gap (the value in brackets after 
MILP in first row) for 8 nodes system; and 2) columns 5-6 show 
the running time of heuristics for the 8 and 64 nodes systems. 
Note that the MILP solver may did not reach a feasible solution 
within 10 min for some settings, and we removed such samples 
from calculating the average running time. Note also that the * 
symbol in table III means the MILP solver did not reach a 
solution that satisfies the tolerated optimality-gap for any of the 
five settings, within 10 minutes. Comparing columns 2-4 and 5, 
we see the heuristics (even for larger problem) are much faster 
than MILP. The running time in table III was collected from an 
AWS c5.2xlarge EC2, with 8 vCPU, 16G Memory, and Ubuntu 
18.04 operating system. 

Discussion. In summary, in edge-cloud computing, where 
edge DCs can cooperate with each other and with cloud, the 
proposed MILP model and heuristic algorithms can optimize 
edge DCs’ hardware resource efficiency from an overall 
perspective by leveraging cross-site cooperation. When some 
edge DCs are congested and cannot host all local flows, some 
flows will be routed to remote DCs, and corresponding VMs 
will be placed there. Cross-site VM placement and workload 
assignment can avoid blocking flows at congested DCs, but will 
cause some side effects. First, remote VM placement and flow 
assignment will introduce extra network traffic between source 
and destination DCs. Second, inter-DC data transmission incurs 
longer network latency. Since overall service latency threshold 
of each request is pre-set by each app, the more time spent on 
the network, the less time is left for queuing and processing at 
destination DC, and more hardware is needed to process faster. 
That is why the hardware consumption increases non-linearly 
when there are more workloads or less hardware capacities.  

VII. CONCLUSION 
This work studied the problem of virtual machine (VM) 
placement and workload assignment in cooperative edge-cloud 
computing over backhaul networks. To improve the 
information technology (IT) infrastructure efficiency, a mixed 
integer linear programming (MILP) model and a three-phase 
heuristic were proposed to efficiently place service VMs and 
assign workloads. The proposed model and algorithm were 
designed to reduce the overall hardware consumption for 
placing VMs, while meeting application’s heterogeneous 
latency requirements. In the preliminary scenarios evaluated, 
the heuristics were able to reach acceptable and efficient 
solutions for the large-scale problems. These numerical results 
indicated that higher workloads and less hardware resources 
introduce more inter-datacenter traffic and cause extra 
hardware consumption; and datacenter hardware efficiency can 
be optimized to accommodate more workloads by leveraging 
the network-backed remote VM placement and cross-site 
cooperation. Moreover, this work also evaluated the concept of 
small-flow’s impact on the quality of solutions, and results 
showed that small flow can help to save a certain amount of 

hardware consumption particularly in the congestion case. This 
work aims to provide offline solutions for initial/ incremental 
applications/VMs deployment, according to the estimated 
workloads from each edge site. In practice, the workload of 
each flow is not completely fixed; instead, it changes 
dynamically. The online solutions for hardware-efficient VM 
and workload management in cooperative edge-cloud over 
backhaul networks is another open problem. 
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