This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3107596, IEEE

Transactions on Cloud Computing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Infrastructure-efficient Virtual-Machine Placement and
Workload Assignment in Cooperative Edge-Cloud
Computing over Backhaul Networks

Wei Wang!, Massimo Tornatore® 3, Yongli Zhao!, Haoran Chen!, Yajie Li?,
Abhishek Gupta?, Jie Zhang!, and Biswanath Mukherjee?

Abstract—Edge computing provides computing capability
at close-user proximity to reduce service latency for end users.
To improve the efficiency of edge computing infrastructures,
geographically-distributed edge datacenters can co-work with
each other and with cloud datacenters, forming a new paradigm
referred to as cooperative edge-cloud computing. In this context,
applications typically run on a virtual machine (VM) that can
be replicated at multiple sites, and thus user traffic can be served
at all the sites where corresponding VMs reside.

For the performance of many applications, latency is a
critical parameter. In this work, taking applications’ latencies
as the primary constraint, we model the problem of “VM
placement and workload assignment” as a mixed integer linear
program and develop heuristic algorithms accordingly. The
goal is to minimize the consumption of information technology
(IT) infrastructures for placing VMs in cooperative edge-cloud
computing, while meeting the heterogeneous latency demands
of different applications. Some preliminary results indicate that
edge datacenter’s resource efficiency can be optimized by
proper cross-site VM placement and workload re-direction.

Index Terms—edge and cloud computing, latency,
virtual machine, workload, backhaul networks.

I. INTRODUCTION

CLOUD computing is a popular paradigm for application

provisioning, and the datacenter (DC) represents the
primary information technology (IT) infrastructures to provide
hardware resources (computing, network, and storage). DCs in
cloud computing are usually centralized, i.e., located at few
sites, which could be far away from most end-user equipment.
As a result, user equipment may experience longer latency, due
to both the longer distance to be traveled to reach cloud DC and
extra transmission latency in case of high network load.
Recently, new emerging applications (e.g., self-driving cars)
with ultra-low latency demands have emerged, and cloud
computing may not be able to directly serve these applications
due to excessive latency. In this case, edge computing has been
introduced to serve users at close proximity [1, 2].
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Edge computing infrastructures are usually deployed within
the footprint of access-aggregation networks, in the form of
small DCs, called edge DCs [3]. The edge DCs can take parts
of the jobs of user-equipment (task offloading) [4] to relieve
their battery and computation-power limitations. Edge DCs can
also take parts of the cloud’s jobs to serve requests from user
equipment (edge-based service) and thus avoid long-distance
transmission to the cloud. In the latter case, due to the limited
hardware capacity, an edge DC might not be able to serve a
massive number of application requests from a local area,
especially at internet peak/rush hours. Hence, also considering
that different applications have heterogeneous latency demands,
some traffic can still be efficiently served in a farther
edge/cloud DC as long as their latency demands are satisfied
[5]. That is, besides serving local traffic, edge/cloud DCs can
also serve traffic from other sites [6]. Such a paradigm is
referred to as cooperative edge-cloud computing. In this
paradigm, edge and cloud DCs are inter-connected by backhaul
networks, which comprise aggregation networks and cross-
region backbone networks. From the infrastructure point of
view, the backhaul networks between edge and cloud DCs are
mostly powered by optical networks for aggregation and
transport [7]. As the essential part to provide network
connectivity for edge-cloud cooperation, the backhaul networks
have significant influence on the quality of experience (QoE) in
the context of edge computing.

In DCs, virtual machine (VM) is now a mature technique for
service provisioning. A VM uses only a subset of a server’s
hardware and can still support the processing and data storage
required by an application. Proper placement of VMs in
cooperative edge-cloud computing is crucial for satisfactory
QoE. To manage VMs in edge-cloud DCs, IT operators and
service providers must address a “VM placement and workload
assignment” problem, i.e., they must decide in which sites to
place VMs and the number of VMs for each application at each
edge/cloud DC (VM placement), and reserve VM processing
capacity for given application requests (workload assignment).

Both VM placement and workload assignment have strong
impacts on service latency: i) VM placement sets the network
distance between users and VMs, hence impacting latency; ii)
workload assignment affects the processing time of a request
since we can reduce queuing and processing time by assigning
more processing capacity from VMs to an application request
to avoid congestion. Intuitively, placing more VMs can
decrease service latency by alleviating congestion. However,
each edge DC has finite capacity, limiting the number of VMs.
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Targeting the general edge-based service paradigm instead of
a specific use-case in edge-cloud computing, we further
formulate a mixed integer linear program (MILP) and propose
heuristic algorithms for placing VMs and assigning workloads
in a backhaul-networked cooperative edge-cloud computing
system. The goal is to improve the IT infrastructure efficiency
by minimize hardware consumption, while meeting latency
demands of different applications. The preliminary numerical
results indicate some of the relevant factors that will affect the
hardware consumption of DCs.

II. RELATED WORKS

In the context of edge-cloud computing, many works studied
task offloading issues. In [8], considering the fact that wireless
channels shared among mobile devices and edge servers also
constrain task offloading decisions, a programming problem
was formulated to minimize the average application response
time by scheduling offloading tasks and allocating bandwidth
jointly. From another perspective, in [9] the authors observed
that mobile devices’ CPU frequency has significant impact on
task offloading and proposed an approach to minimize tasks'
execution latency and energy consumption by optimizing the
task and CPU frequency allocation decisions. In [10], taking
both mobile devices’ CPU frequency and wireless channels into
account, an algorithm that can select the CPU frequency, the
tasks to be offloaded, and the network path, was designed to
reduce the total energy cost and execution delay. As discussed,
task offloading and edge-based service are two different
paradigms in edge computing, and corresponding research
topics are different too. To save space, the following sub-
sections will mainly focus on the existing works about edge-
based service, which is more relevant to this work.

A. VM Placement and Workload Management in Cloud

VM placement is a well-studied research topic in IT resource
management field. VM placement strategies (e.g., VM mapping
and VM migration) have been intensively studied to find an
optimal physical machine to host a VM and/or to migrate an
existing VM [11]. A popular topic in VM placement is
minimization of energy and resource utilization [12-14]. Ref.
[12] reviewed most existing works on energy-efficient VM
management strategies in cloud computing, and survey [15]
covered recent topics on load balancing in cloud computing. In
particular, for the multi-site cloud scenario, global server load
balancing (GSLB) is a popular solution for orchestrating traffic
over multiple datacenters [16]. The multi-site cloud architecture
of GSLB is similar with the cooperative edge-cloud in this work,
but the edge-cloud scenario has brought new challenges (i.e.,
edge DCs’ capacity limitation and its non-linear impact on
service latency), making the traffic management issue in edge-
cloud different with that for GLSB.

B. VM placement and workload management in Edge

VM placement and workload management are well studied
in cloud computing. However, edge computing introduces new
characteristics [17], and the challenges for VM placement and
workload management in edge computing are not the same as
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that in cloud computing. First, the capacity of cloud DCs is
rarely discussed, as it is usually assumed as sufficient. In edge
computing, the number of distributed edge DCs can be large,
but their capacity is limited, to reduce cost [18]. So, new
challenges arise related to the limited capacity of edge DC to
provide better QoE. Also, applications in cloud-computing
were never as latency-sensitive as those in edge computing.
Even though, the network transporting traffic to the cloud might
be optimized in terms of latency [19], it has been shown that
latency requirements cannot be satisfied using traditional cloud
architectures. When dealing with ultra-low latency applications
(e.g., those in the area of Tactile Internet), edge-cloud service
providers are hence used to shorten the service latency by
reducing the geographical distance and deploying edge
datacenters [20, 21]. That is, edge DC’s location and distance
have significant impact on latency, and they must be dealt with
carefully. In addition, compared with cloud computing, edge
computing is context-aware, and thus edge computing needs to
take care of the context-related factors such as mobility.
Focusing on user mobility in mobile networks, Ref. [22] studied
the problem of VM scheduling to migrate VMs as user’s
locations change. Beyond VM scheduling, Ref. [23] proposed
a mobility-aware service placement framework to migrate VMs
in real-time without priori-knowledge of user mobility, while
balancing the migration cost and QoE degradation. Targeting
the tradeoff between latency of edge and high energy efficiency
of cloud, Ref. [24] studied workload management in edge
computing, and formulated a model to balance latency and
power consumption. Besides placing VMs on given edge/cloud
DCs, Ref. [25] also studied the cloudlet placement issue for the
fiber-wireless-backed edge computing, and presented an integer
linear program model to optimize the deployment cost, while
meeting stringent response time of mobile users.

C. Our contributions

To cope with the incoming deployment of ultra-low latency
services, infrastructure providers who are operating edge DCs
must adopt effective resource-allocation strategies to better
utilize edge DC’s limited capacity while meeting the required
service latency. In edge context, the existing VM/applications
placement works have been summarized in survey [26]. In the
following, we selectively overview the relevant contributions in
the area of resource allocation and workload management.

Based on the limitations of edge computing resources,
authors in [27] investigated the problem of jointly performing
load distribution and placement of edge-based services. For this
problem, an integer nonlinear programming model and two
algorithms to minimize the violation of QoE constraints were
proposed. Ref. [28] further incorporated the possibility of
cooperation among multiple edge DCs, and proposed a
decentralized algorithm to collaboratively place services over
edge DCs with the aim to minimize the traffic load caused by
forwarding traffic across multiple edge DCs. Ref. [29] studied
a similar service placement issue in edge, but its objective is to
maximize the utilization of edge nodes. In [30], authors
considered that resource usage changes over time (e.g., daily
fluctuation), and proposed an integer nonlinear programming
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model and two algorithms to deploy and release edge services
dynamically while minimizing the cost for service provisioning
and meeting QoE constraints. Further incorporating VMs as the
middleware between hardware and applications, authors in [31]
studied the problem of VM placement for multiple applications,
and proposed heuristic VM placement algorithms to minimize
the average response time. In [32], deep reinforcement learning
was employed for efficient and adaptive allocation of
computing and network resources, with the goal of reducing
average service time and evenly assign resource usage.

Also considering multiple application’s heterogeneous
latency requirements, instead of taking latency minimization as
the primary objective, our work in [33] studied the hardware
consumption minimization issue with application’s latency
requirements and infrastructure capacity as constraints, and
formulated the VM placement and workload assignment
problem as a MILP model to minimize the consumed hardware
resources in edge/cloud DCs for placing application VMs. From
another perspective, the infrastructure efficiency is improved if
we can reduce consumed hardware resources (in short,
hardware consumption) for placing VMs that are used to serve
given workloads. Since the MILP model usually has scalability
issues, in this work we extend the work in [33], and we also
provide heuristic approaches for placing VMs and for assigning
workload to support multiple applications.

Among above related works, this work is more similar with
two works. First, the hardware consumption minimization issue
in this work sounds like the resource cost minimization issue in
[30], but they are actually different. The resource cost in [30]
was studied in the context of dynamic service provisioning, and
thus it refers to the cumulative cost of dynamically allocated
network/ computing resources for serving given traffic; while
our hardware consumption refers to the hardware resources for
placing VMs that are used to serve estimated traffic, in a
resource planning context. More specifically, with VM as the
middleware between hardware and application service, the
consumed hardware in our work is not proactively allocated/
released. Second, the VM-based and multi-applications context
in this work is very similar with that in [31], but their objectives
are completely different, i.e., this work focuses on hardware
consumption minimization, while Ref. [31] focuses on average
latency minimization.

In summary, the new contributions in this work, compared
with related works and previous conference version, includes:
1) the heuristics for placing VMs and assigning workloads for
multiple applications; 2) the comparison of the models
with/without small flows (see III.C) and 3) the preliminary
running-time/complexity comparison for the approaches.

III. VM PLACEMENT AND WORKLOAD ASSIGNMENT

This section discusses the latency components of edge-based
services and introduces the problem of VM placement and
workload assignment. We will use term DC to represent both
an edge DC and a cloud DC, and a remote DC refers to either a
remote edge DC or a cloud DC. Also, we will abbreviate term
“application” as “app” in the following.
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Fig. 1. Relationship among flows, VMs, and hardware resources in DCs.

A. Overview of Cooperative Edge-Cloud System

Basically, edge DCs could be deployed at any network node
within access/aggregation networks. One popular use-case is
that edge DCs are co-located with aggregation points (APs)
(e.g., wireless baseband processing unit) in access networks,
and each edge DC covers a group of end users. Although edge
DCs are primarily used for serving local users, they are also
reachable by remote users through the network. We assume that
requests from each user equipment (UE) must go through
corresponding local AP for aggregation, the UE-AP
connections can be removed from our modeling and the edge
DC that is co-located with AP can be modelled as the source of
each request. In such a model, we call the requests for app a,
originating from edge DC v, as a flow f,;? (note that a flow is a
set of requests that are aggregated from many local UEs
attached to the same AP) We statistically model the arrival of
individual requests (our model considers Poisson arrivals), and
use 1 to represent the arrival-rate (workload) of flow fZ in
terms of the number of arriving requests per second.

Let A denote a set of apps. Each app a € A is supported by a
unique type of VM (i.e., application-specific VM). Fig. 1 shows
the serving relationship among flows, VMs, and hardware
resources in a DC. For DC v, let H,, denote its overall hardware
resource capacity. Inside a DC, each VM requires a certain
amount of hardware resources (composed of CPU, memory,
and storage) for self-running and service provisioning. For each
app a, we define C, as the amount of hardware resources
required to run a corresponding VM, and u, as the amount of
processing capacity a VM has for app a. The u, is measured by
the number of requests a VM can process per second, and we
also call u, as VM capacity of a VM for a. Without losing
generality, C, and u, are assumed to be fixed. In addition, each
app a is characterized by a maximum tolerated latency T,.

B. Latency Analysis

Service latency refers to the time from sending an app request
to receiving a response; and it is composed of transmission,
propagation, queuing, and processing times.

In edge-cloud computing, user’s requests might be served by
a local or remote DC. Fig. 2 shows the latency components
arising in (a) local and (b) remote processing scenarios. From
UE to AP/edge-DC, each request experiences a certain
transmission latency at UE and a certain propagation latency on
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UE-AP network connection. Fig. 2(a) shows the local
processing scenario, where requests are served directly by local
edge DC, i.e., queuing and processing latencies occur at local
edge DC. If local edge DC is unable to serve a request, the
request will be re-directed to a remote edge/cloud DC via
backhaul networks, as shown in Fig. 2 (b). In this case, the data
transmission over backhaul networks between source and
destination DCs will cause additional network latency, while
queuing and processing latencies occur at the remote DC.

Since UE and UE-AP connection are not affected by VM
placement and workload assignment, UE-AP side latency
cannot be optimized in this work. Thus, this work focuses on
the two latency components that can be optimized by proper
VM placement and workload assignment: inter-DC backhaul
network latency, and queuing and processing latency at DCs'.

Propagation latency between DCs, can be assumed with very
diverse values, depending on the specific network connectivity
between related DCs. Let V denote a set of DCs. Since the
backhaul infrastructure among edge and cloud DCs are quite
diverse for a general modeling, we simplify the network
propagation latency t, , between DC pair (s, d) by assuming it
is proportional to the distance between s and d.

Queuing and processing latencies in the destination DC, are
determined jointly by the offered workload and allocated VM
capacity. In a practical system, the VM side latency model is
quite complex, and it could be impacted by many factors [34].
For this study, we choose the classical M/M/1 queue model as
an example to estimate the processing and queuing latency at a
VM (this model could be replaced with more complex/accurate
models such as M/M/S, and the proposed framework will still
be applicable). Hence, given a flow, whose workload is r, and
assuming the VM capacity assigned to r is u, the average
queuing and processing latency is as Eqn. (1).

Of course, many other factors in backhaul networks (such as
optical-electrical conversion at intermediate nodes) might also
have influence on the overall service latency. But the latency at
intermediate nodes can be omitted safely if we consider the
optical backhaul, where most parts of the inter-DC connectivity
are buffer-less optical channels. With regard for the fact that
latency is the primary constraint for the QoE in edge computing,
the specific network topology, which may affect the cross-DC
routing for dynamic service provisioning, is simplified as a set
of inter-DC latencies, with the assumption that backhaul
network’s bandwidth capacity is sufficient for the inter-DC
cooperation in edge-cloud computing.

C. VM Placement and Workload Assignment

To deploy services for apps, edge-cloud DC operators have
to place VMs and assign VM capacities to given traffic flows,
while meeting apps’ heterogeneous latency requirements.

As for VM placement, we must consider that each DC has
finite hardware capacity, and this limits the number of VMs a
DC can host. H,, the amount of hardware resources in DC v,
together with C,, the hardware required by a single VM for app
! Compared with the app layer service time, the queuing and processing time

at intermediate routers/switches are assumed to be much less, so this work will
mainly focus on queuing and processing latency at destination VMs.
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a, set the number of VMs for each app.

As for workload assignment, we must consider that
according to Eqn. (1), the more VM capacity allocated to a flow,
the less time is needed for processing and queuing. Hence, the
VM capacity to be allocated to a flow depends on how much
time is available for queuing and processing.
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Fig. 2. Latency components for local and remote DC procesing.

To provide finer granularity for managing request flows
(especially useful in case of congestion), we also consider that
one flow can be split into two types of sub-flows (i.e., dividing
requests in a flow into different groups for separate processing),
and each sub-flow can be served separately in different VMs.
Each sub-flow can be a big flow or a small flow (defined later).
For a given flow, its majority part, which requires the full
capacity of multiple individual VMs, is referred to as a big flow.
Let bg'; denote the workload of the big flow f* that is assigned
to DC d. Assuming b, is assigned to m¢ ;VMs at DC d and is
dispatched to VMs evenly, the average queuing and processing
latency for by, is calculated as Eqn. (2). For the same given
flow, the left part (if any), which requires only parts of the
capacity of one individual VM, is referred to as a small flow
(this is an optional definition for extra optimization, not
essential to our model). Let s¢'; denote the workload of a small
flow f2 that is assigned to DC d. Assuming the VM capacity
assigned to s¢, is ug,, the average queuing and processing
latency for sg'; can be calculated as in Eqn. (3). Note that one
can use other methods to dispatch workloads. Note also that a
VM is sharable only to small flows, but not to big flows.

t=1/(u-r) (1)
p,=1/(u,—b},/m,) ()
Poa =1/ (U, —s54) @3)
teg=Deg+2t 4 4)

m;, =b, /(u, —1/(t] -2t ;) (5)

In summary, the queuing and processing latency for each
sub-flow (small or big flow) can be calculated as in Eqn. (2) or
(3). The overall service latency for each sub-flow must also
consider the inter-DC latency ¢, 4, representing the network
latency between source DC s and destination DC d, and thus the
overall service latency would be Eqn. (4). Note that t;; = 0
when s = d, which means a flow is assigned to VM(s) at the
source DC for local processing. According to Eqns. (3) and (4),
the minimum number of required VMs for a big flow b¢; at DC
d is calculated as Eqn. (5).
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IV. MIXED INTEGER LINEAR PROGRAM (MILP) MODEL
FOR HARDWARE CONSUMPTION MINIMIZATION

This section formulates the problem of VM placement and
workload assignment, with the objective to minimize hardware
consumption. Hardware consumption means the cost of leasing
space to place VMs for service providers, and it also means
resource efficiency for infrastructure operators. The model
turns out to be a mixed integer linear program (MILP).
A. Problem Description

Given a set of DCs, hardware capacity of each DC, network
latency between each DC pair, a set of apps, hardware resources
required to deploy a VM for each app, capacity of a VM and
maximum tolerated latency for each app, and estimated
workloads of each flow, we determine the number of VMs for
each app at each DC, the workload, destination, and VM
capacity for each sub-flow, subject to the constraints below.
Note that all the variables in this model are non-negative.
B. Input Parameters
V: Set of DCs
A: Set of apps
H,: Hardware resource capacity in DC v, where v € V
ts q: Propagation latency from DC s to DC d, where s,d € V
T,: Tolerated latency threshold for app a, where a € A
C,: Amount of hardware resources required by a VM for app a
Ug: VM capacity of one VM for app a
12: Workload of a flow that originates from DC v for app a

C. Variables

ng: Integer, number of VMs for app a placed at DC v

bg 4: Float, workload of big flow, for app a, from DC s to d
mg 4: Integer, number of VMs allocated for by,

s¢q: Float, workload of small flow, for app a, from DC s to d
Jsq: Binary, a flag indicating whether s¢, is zero or not

ug 4: Float, allocated VM capacity to s¢,

D. Objective: Minimize Hardware Consumption

Min Z Z n’C, (6)

veV aeA
E. Constraints
> n/C,<H, veV ()
acA
> bl +sl, =1t seV,aeA (@)
deVv ' ’
duly+uml, =un; deV,aeA (9
seV
b <(u ——)Yym*, (s,d)eV,aeA @10)
s,d ( a (1-;1_2t5d)) s,d
SeqSul,—gey (T, =2t,,) (s,d)eV,aeA (11)
umi, —bl, >0 (s,d)eV,acA (12)
ul,—s; 20 (s,d)eV,aeA (13)

(T,-2t,,)m ;20 (s,d)eV,acA (14
(T,-2t,,)g.,20 (s,d)eV,aeA (15
gis=0<s/,=0 (s,d)eV,aeA (16)

Objective (6) calculates total required hardware resources of
all VMs for all apps in all DCs, and this model tries to minimize
it. Constraint (7) guarantees that the hardware resources
occupied by the VMs at each DC cannot exceed the host DC’s
hardware capacity. Eqn. (8) enforces that each flow is totally
assigned, in forms of either small sub-flows or big sub-flows.
Eqn. (9) enforces that for all small flows and big flows, the
allocated VM capacity cannot exceed the overall capacity of
VMs at target DC. Constraints (10) and (11) are transformed
from Eqn. (4), guaranteeing that service latency of both big
flows and small flows are within the corresponding app’s
latency requirement. Constraints (12) and (13) guarantee that
the queuing systems of all flows are stable by assuring that the
assigned workload for each flow cannot exceed the allocated
VM capacity. Constraints (14) and (15) are two auxiliary
constraints for (10) and (11), as (10) and (11) do not apply when
(T, — 2ts4) (ie., time left for queuing and processing) is
negative. They guarantee that both big and small flows are not
routed to a DC whose latency to the flow’s source DC exceeds
their latency thresholds. Note that since we are studying the
workload assignment problem for flows (comprise of multiple
requests) instead of individual requests, the latency threshold
here refers to the maximum of the average latency of requests
in a flow. Constraint (16) enforces the relation between s¢; and
its binary flag g¢ ;. Note that this model can result as infeasible
if no DC is able to provide sufficient hardware resources to
meet the latency threshold of a pending flow.

V. HEURISTIC ALGORITHM FOR VM PLACEMENT AND
WORKLOAD ASSIGNMENT

As MILP has scalability issues for large-scale problems, we
also develop a heuristic algorithm to get acceptable and
efficient solutions for VM placement and workload assignment.
The goal of the proposed heuristic is to decide the number of
VMs for each app at each DC, and assign each flow to placed
VMs. In general, VM placement and workload assignment are
two interdependent problems. On one hand, VM placement is
driven by given workloads; on the other hand, workload
assignment depends on the capacities of the placed VMs.
Therefore, we cannot simply place VMs first, and then assign
workload to the VMs. Instead, this work tries to solve this
problem by placing VMs and assigning workloads iteratively.
Since overall DC hardware resources are shared by multiple
workload flows, the sorting order of these flows has a strong
impact on total hardware consumption. To reduce the impact of
sorting order, we consider further optimization after all flows
are assigned. Thus, the heuristic algorithm has three phases: 1)
initial placement and assignment (IPA), 2) VM and request
flow exchange (VRE), and 3) dead-flow re-accommodation
(DR), described in Algorithms I, I, and III, respectively.
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In IPA, input parameters are the same as in MILP, as stated
in Section IV.B. First, IPA sorts all given flows according to
their latency thresholds. Since flows with lower latency
threshold have less chance to be served by remote DCs, IPA
places VMs for them with higher priority to reduce their
probability of being blocked. Second, among the flows that are
associated to the same app and have the same priority, IPA
handles them in decreasing order of the workload of each flow.

For each pending flow with the highest priority, IPA
continues trying to place VMs at the nearest-available DC
(measured by propagation latency) and assigns the workload of
the pending flow to it, until an available DC is found. The
criteria for checking availability of a DC is whether the target
DC can provide sufficient hardware resources to place enough
VMs for serving given workload within corresponding latency
threshold. The accurate number of required VMs for supporting
a given flow can be calculated using Eqns. (2), (3), and (4).

However, the DC being checked may be unable to provide
sufficient hardware resources to accommodate all the
workloads of a given flow, but it might be able to provide a part
of the required resources. In such case, IPA will separate a
given workload into sub-flows. According to C, and the
amount of available hardware resources in target DC, we know
the number of VMs that the target DC can support. Then,
according to Egns. (2), (3), and (4), we can know the workload
that can be hosted by the newly-placed VMs. Remaining part of
the pending flow will be taken as a new sub-flow for further
assignment. Note that some original flows or sub-flows may not
be accommodated by any DCs; this means that such flows will
be blocked. IPA marks such flows as dead flows, and our DR
algorithm will try to take care of them.

The IPA’s complexity (based on merge-sort) is O(|A] -
log(IAD) + O(|A| - (IF| - log(IF]) + [F]) - (IV] - log(IV]) +
[V])), where |A| is the number of apps, |F| is the number of
flows of each app, and |V| is the number of DCs. The maximum
number of un-assigned flows of a given app is |V|, meaning
each DC has originating requests for the given app. By dropping
the low-complexity part and replacing |F| with |V|, the
complexity can further be consolidated as O(|A]| - log(]A])) +
O(JA] - (JVI - log(IVD) - (IV] - log(IV]))) . Therefore, IPA’s

worst case complexity is O(|A| - (log(|A]) + |V|? - logZ(|V]))).

As already mentioned, sorting order has a strong impact on
the solution quality. Fig. 3 shows an example with three edge
DCs and two pending flows. If Flow-A is handled first, IPA will
assign it to its nearest DC, which is the local DC Edge-1, and
allocate two units of hardware (HW) to support its related
VM(s). Now, Edge-1 is fully occupied, and the nearest DC for
Flow-B becomes Edge-3. Flow-B, from Edge-2, has to
experience 20ms network latency when traveling to Edge-3. It
needs more hardware resources at Edge-3 to process faster to
counteract the higher network latency, e.g., assume it needs 4
units of hardware resources at Edge-3, and total hardware
consumption for Flow-A and Flow-B is 6 units.

Fig. 4 considers that Flow-A and Flow-B are handled in
reverse order, which leads to a solution with lower cost. Flow-
B is assigned first to Edge-1, which is 10 ms away from Edge-
2, and it needs 2 units of hardware resources. Lacking local

resources, Flow-A is assigned to its nearest DC Edge-3, which
will introduce 5 ms network latency, and it needs 3 units
hardware resource at Edge-3. Now, the total hardware
consumption is 5 units, which is lower than that in Fig. 3.

Algorithm I: initial placement and assignment (IPA)

Input: see Section IV.B

1: Sort all apps in increasing order of their latency threshold
2:foreach ac A

Sort flows of app a, in decreasing order of their workload

&

4: for each flow f,*, which originates from edge S €V

5 Sort all DCs in increasing order of their net latency to s
6: for each DC veV

7 if net latency ¢, is less than latency threshold, then
8 place VMs at v and assign all or parts f;* to VMs

9: else, break

10: end for

11: if f,2 cannot be assigned to any DC, then
12: mark f;* as a dead flow

13: end if

14: end for

15: end for

— > Flow-A

Flow-B

;valiaéie I CCU plel

otal HW Consumption:
2+4=6 units

1: Flow-A,
handled first,
2 units HW @ Edge-1

P /t1,2=10
,// t2:=20 - -

Edge-l l,,/’// 2: )
I I handled ,

units HW @ Edge-3

Fig. 3. Example of a non-efficient VM placement and workload assignment.

2: Flow-A,
handled second,
units HW @ Edge-3

—> Flow-A

Flow-B

1: y e
handled y Y
units HW @ Edge-11:.=10

tz.3=gg//”/”
Total HW Consumption:
3+2=5 units

Fig. 4. Example of optimized VM placement and workload assignment.

Motivated by this observation, we design the phase-2
algorithm, called VM and request flow exchange (VRE), to
improve the solution provided by IPA. VRE takes the output of
IPA as its input, which is formed by a set of assigned flows and
a set of dead flows. Similar to illustrations in Figures. 3 and 4,
the exchange happens between two flows, and the main task of
VRE is to find good candidates for exchange. An important
criterion for such pairs is that total hardware consumption of
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two target flows should decrease after exchanging.

Note that VRE only focuses on the exchange of big flows, as
small flows’ impacts on hardware consumption is relatively
lower. Let F, denote a set of big flows currently assigned to DC
n. For each flow bgl, € F,, corresponding to app al,
originating from DC m, and assigned to DC n, we first check if
there are DCs that are closer to source m than current
destination n, and denote them as a set Q. If Q is not empty, it
means that DCs in Q were fully occupied by other flows. Thus,
for each DC q € @, we consider all flows which are currently
assigned to q as potential pair flows for bf%,, and check whether
they meet the criteria for exchanging. Let bgfl denote a flow, for
app a2, originating from DC p, and assigned to DC q. Now, we
have two flows bj! and bj?, originated from DCs m and p
respectively, and we also have two candidate destination DCs n
and q. Before exchange, hardware consumptions at DCs n and
q for the two flows are presented as HW(baY,) and HW(b§2);
after exchange, hardware consumptions at DCs q and n for the
two flows are presented as HW(b3!,) and HW(bg%). Note that
HW(bS,) is calculated as HW(b%,) = c,mg,. If HW(bEL,) +
HW(b%) is less than HW(bf},) + HW(b3%), it means that flows
bit, and bjZ are eligible for exchange; otherwise, VRE
continues to check other potential flows. If Q is empty, VRE
continues to look for other pairs for other big flows in F,.

The steps for exchanging two eligible flows are illustrated in
Procedure 1. Note that two candidate flows in a pair might be
unable to be exchanged entirely, depending on how much
hardware resources the two destination DCs can provide for
each flow. We have already mentioned that DC q is a closer DC
for flow b, but it is occupied by flow bj? before assigning
b2l 1t means DC q (e.g., Edge-1 in Fig. 3) was a better choice
than DC n for both flows. Here VRE tries to make space for b,
on DC g by migrating b{,‘z to DC n. If HW(b§%), i.e., amount of
released hardware resources from bgz at DC q is larger than
HW (bgL,), i.e., amount of required hardware resources by ba!
at DC q, part of bgzwill be migrated to original destination DC
n of b4, and entire b%! will be migrated to DC q. Note that
remaining part of bgz will be kept at DC g as a new sub-flow,
as DC q is still a better choice for this partial flow. If HW(b3%
is less than HW(b&L,), entire by* will be migrated to DC n to
release all its occupied resources for b4, only part of b%! can
be migrated to DC q. If HW(b&l,) equals to HW(bg2), b%! and
bgz can be exchanged entirely. Note that according to the
definition of HW(b¢,), hardware consumption of a flow ata DC
is linearly-correlated with the flow’s workload, and thus partial
exchange can still save part of hardware resources, while
keeping the latency constraint maintained. Also note that VRE
is a best-effort approach with no guarantee for optimal output.
However, it can be executed iteratively to improve the solution.

The complexity of VRE is calculated as O(|F1] - |V]| - |F2]),
where |F1] is the number of assigned flows, |V| is the number
of DCs, and |F2] is the number of flows assigned to each DC.
In the worst case, each flow is divided into separate sub-flows
towards each DC. Accordingly, |F1| will be |A| - |V|? and |F2|
will be [A] - |V|, where |A| is the number of apps. Thus, the

overall complexity of VRE would be O(|A|? - [V|*). On the
other hand, in practical settings, a flow will most likely be
assigned to only a few (say X at max) nearby DCs and each DC
can only take the flows from a few nearby DCs (say Y at max)
due to the latency constraint. In that case, the complexity of |F1|
and |F2| can be evaluated as |A|-(|]V|-X) and [A|-(Y),
respectively, in which X and Y correspond to O(1) complexity.
Therefore, the complexity can be reduced to O(|A|? - [V|?).
However, note that such relaxation will be invalid when APPs
latency threshold is too loose, and remote DCs cannot be
excluded from the set of candidate DCs.

Algorithm II: VM and request flow exchange (VRE)

Input: assigned big flows {bf},

1: for each flow b},

2:  calculate HW(bZL,) it needs at destination DC n

3: for each DC node q € Q, which are closer to n than m
4 estimate HW(ba,) it needs at DC q

5 if HW(bal,) < HW(b4L,), then

6: find all flows {bgfl}, which were assigned to q

7 for each b%%, which originates from DC p to g

8
9

p.q’
if q is reachable for b;%, then
: calculate HW(b32) it required at DC q
10: estimate HW(bg%) if migrate it to DC n
11: if HW(bh) + HW(bg2) < HW(bEL) + HW(b2),
12: exchange b, with b2 (see Procedure I)
13: end if
14: end if
15: end for
16: end if
17: end for
18:end for

Procedure I: Flow Exchange Procedure

Input: exchange-eligible flows by, and bj% , hardware
consumption HW(bg3,), HW(b!,), HW(bj%) and HW(b§2)
1: if HW(bl,) = HW(bg%) and HW (bjy ) = HW(bj,,), then
2: release by, from DC n and release bjZ from DC q

3: assign origin flow bfZ to DC n as bgy

4: assign origin flow b}, to DC q as by},

5: else if HW(b%L,) < HW(bg2), then

6: release b, from DC n

7:  assign as much bj% as DC n can host to n as by

8: assign origin flow b}, to DC q as by},

9: else if HW(b32%) < HW(bY,), then

10: release by% from DC q

11:  assign as much by',as DC q can host to q as by,

12:  assign origin flow b2 to DC n as b5

13:else, then error

14:end

VRE is designed to exchange flows which are already
successfully assigned by IPA. But dead flows blocked by IPA
are still blocked after running VRE. To find more chances for
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accommodating such blocked flows, we design another
algorithm called dead-flow re-accommodation (DR).

Taking blocked flows from IPA as input, DR accommodates
blocked flows by migrating some assigned flows and making
space for blocked flows. For each blocked flow f,*!, originated
from DC's, for app al, DR first sorts all DCs in increasing order
of their network latency to DC s so that it can try to find space
for £ from the nearest DC. For each candidate DC v, DR
handles each flow bZ%, which is currently assigned to v, and
checks whether there is a chance to migrate b3 to other DCs,
which have free hardware resources. When such a flow is found,
DR will calculate the hardware capacity HW(bZ2) that can be
released on DC v by migrating such a flow. Let HW(»2) denote
the required resources for hosting f,** at DC v. According to the
magnitude relation between HW(bﬁ_zv) and HW(bZ3), whole or
part of b3 will be migrated from DC v to other available DCs
to make space for the whole or part of b&j, at DC v. There is no
guarantee that DR can accommodate every dead flow
successfully, and some dead flows may still be blocked because
DR is a best-effort approach and it is not designed to find a
feasible solution by enumerating all the possible solutions.

The complexity of DR is similar with VRE, but the
maximum number of input flows is |A| - |V|, meaning there are
dead flows for each app at each DC. The scale of a flow is |A]

(JV] + X), and thus the complexity of DR is O(|A|? - |V]?).

Algorithm III: dead-flow re-accommodation (DR)
Input: set of blocked flows {f,*1}, which is from DC s.

1: for each flow £
2: sort all DCs in increasing order of their net latency to s

3: foreachDCnodeveV

4. if t,, is less than latency threshold, then

5: find all flows {bZ2}, which were assigned to v

6: for each bi2,, which is from DC u for app b

7: find all DCs, which have free hardware resources
and reachable for app b from DC u, as a set {w}

8: for each DC w

9: calculate HW(b32,), HW(b3>), HW(hZL

10: migrate b2, to w, and assign f; to v

11: end for

12: end for

13: end if

14: end for

15:end for

VI. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we perform a preliminary investigation of the
performance of our VM placement and workload assignment
methods. To get realistic data as input parameters, we choose
seven cities from south-west United States as edge sites, which
host edge DCs, and one city from northern-west USA as the
cloud DC site. The amount of hardware resources of an edge
DC is set proportionally to the city’s population, and the
hardware resources of a cloud DC is set to a very large value
that is not expected to be exhausted. Details of edge sites and

Authorized licensed use limited to: Univ of Calif Davis. Downloade

cloud node capacities are listed in Table I. Network latencies
for each node pair are obtained from website [35], and they are
used as inter-DC network latency.

TABLE L DC PARAMETERS.
City HW resources (unit) DC Type
San Francisco 225 Edge
Los Angeles 1000 Edge
Phoenix 375 Edge
Sacramento 125 Edge
San Jose 250 Edge
Las Vegas 150 Edge
San Diego 350 Edge
Portland 10000 Cloud
TABLE II. APPLICATIONS PARAMETERS [36].

APP (a) T, (ms) Uu,
Self-Driving 1 1500
Augmented Reality 2 800
Healthcare 5 500
Accelerated Video 10 400
Virtual Reality 20 300
Web Game 30 200
HD Broadcast 50 100

We consider seven sample apps, with latency requirements
[36] listed in Table II. In real world, VM hardware capacities
can be heterogeneous. In our simulation study, without loss of
generality, we assume each VM is equipped with one unit of
hardware resource and corresponding VM service capability
(i.e., u,, number of requests one VM can serve per second) that
one unit of hardware resource can provide.

The population of each city varies roughly in the range
[500,000, 4,000,000]. According to statistics of some sample
applications (e.g., Steam), the ratio of peak concurrent users
over the registered users is around 1%. Therefore, we roughly
generate the overall workload of each city (city workload)
proportionally to the 1% of their population, i.e., within a range
of [5000, 40000]. We divided each city workload into seven
parts (one for each app). In details, for each city, we randomly
generate a weight within [1, 5] for each app to denote the share
of workload for corresponding apps. With the weight for each
app, we can divide the overall workload for each app by
selecting the corresponding share for each app.

We define three parameters: workload ratio (WR), hardware
capacity ratio (HR) and scale down factor (SDF), to apply
sensitivity to the base settings. WR, HR, and SDF are actually
the key factors for VM placement and workload assignment in
the resource-constraint context, and we can test our approaches
in many cases (especially the congestion cases) by varying the
relationship between workload/hardware-capacity/latency.
Multiplied by WR or HR, the base settings for workload or DC
capacity can be zoomed in/out linearly, and we study their
impacts on hardware consumption (calculated by the function
in Eqn. 5) in Figures. 5-7. Dividing the inter-DC latencies by
SDF, we can shrink the geographical scale of the cooperative
edge nodes, and test our approaches’ sensitivity to geographical
scales (see Fig. 8). Note that WR, HR and SDF affect the VM
placement and workload assignment decisions jointly. There
are many combinations of WR, HR and SDF, and results show
that WR=3, HR=1 and SDF=1 are good choices as base settings,
because fixing two of them in the sensitivity test can limit the
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other one in a practice range, which makes the simulation
represents a real-world system behavior.

More specifically, results for the MILP model are obtained
from IBM ILOG CPLEX Optimization Studio 12.6, while other
results are from our lab-grown Java-based simulator. Note that
in our resource planning problem, the input workload is the
number of requests per second, instead of a set of requests that
follow an arrival rate, and thus there is no randomness in the
input and the output from the heuristics is deterministic.
Therefore, there is no need to run multiple instances with the
same settings to get the average value and confidence interval.
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Fig. 5. Hardware consumption and inter-DC traffic for different HRs.
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Fig. 6. Hardware consumption of different approaches vs. WR.

Fig. 5 shows the hardware consumption (on left y-axis) and
inter-DC traffic (on right y-axis) for varying HR on the x-axis
(fixing WR =3 and SDF=1). As expected, hardware
consumption and inter-DC traffic increase when HR decreases.
This is mainly due to the two following reasons. First, less
hardware capacity in DCs means that congestion is achieved
more quickly, and hence some requests have to go to remote
DCs. Second, such inter-DC re-direction introduces higher
network latency, and leaves less time for processing at
destination VMs. In other words, network congestion also
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induces more hardware consumption as more hardware
computing resources are required to process the workload faster,
so that the end-to-end latency can be satisfied.

Among the seven sample apps, Fig. 5 also shows that inter-
DC traffic of the least latency-sensitive app (video broadcast) is
much higher than other apps. In fact, when local DCs cannot
handle all the requests, the apps with looser latency
requirements will be more likely to be assigned to remote DCs
to make room for latency-sensitive apps at local DC.

Figs. 6 and 7 show the performance of the proposed model
and heuristic in terms of hardware consumption for increasing
WR and HR. Note that the point at which lines are terminated
marks the last WR/HR for which all workloads can be
accommodated successfully. Latency-violation or blocking
arise for the next value of WR/HR. We also plot the hardware
consumption of a baseline - Local Processing (Local Proc.), in
which cross-DC workload assignment is disabled, to investigate
the benefits of cross-DC cooperation in edge-cloud. Also note
that blocking happens to baseline at lower WR and higher HR,
but we plot the theoretical (assuming each DC has sufficient
hardware capacity, as in cloud) hardware consumption value in
dotted line, to show how congestion impacts the hardware
consumption in cooperative edge-cloud.

Fig. 6 compares the hardware consumption of the proposed
algorithms (with different K, the number of iterations of VRE)
vs. the results obtained with the MILP, under different WR
(fixing HR=1 and SDF=1). Comparing the various IPA+VRE
strategies, we observe that hardware consumption under
different K (i.e., iterations of VRE) is different, especially when
workload ratio is high. The higher is K, the lower hardware
consumption can be achieved. When K is 3, output of
IPA+VRE is very close to output of MILP. We also observe
that blocking happens at the same load ratio, which is WR=7,
for different K. Higher K cannot reduce blocking because VRE
is not capable of re-accommodating blocked flows, hence the
amount of blocked requests is independent of K. If we add DR
to “IPA+VRE: K=3”, the algorithm can re-accommodate some
of the flows blocked in IPA. We run DR twice, and it can be
noted that blocking now occurs at a larger WR (i.e., WR = 8),
as DR has accommodated blocked flows at WR=7 and 7.5. We
also observe that the hardware consumption of IPA+VRE+DR
is very close to the MILP output. Comparing the output of
heuristics and baseline in Fig.6, we see that blocking happens
to Local Proc. at WR=4.5, which is much lower. This indicates
that the proposed approaches can accommodate more workload
without latency-violation by employing cross-DC cooperation.
Further, when compare the output of heuristics with theoretical
hardware consumption of Local Proc., we also observe that the
hardware consumption of the heuristics increases non-linearly
after Local Proc. being blocked (at WR=4 in Fig. 6 and HR=0.7
in Fig. 7, not shown), meaning cross-DC cooperation consumes
extra hardware in case of congestion.

Fig. 7 compares the hardware consumption of the proposed
algorithms with MILP for different HR (fixing WR=3 and
SDF=1). When HR decreases, i.e., hardware capacity becomes
a limitation, hardware consumptions of IPA+VRE with
different K become different. Similar to Fig. 6, a higher K can
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reduce hardware consumption. When HR goes down to 0.45,
blocking happens to IPA+VRE, but, by running DR, blocking
can be postponed to HR=0.4. Also, the hardware consumption
of “IPA+VRE:K=3+DR” is quite close to the output of MILP
under lower HR. Figs. 6 and 7 show that the solutions found by
our algorithms are very close to the MILP solution, and they are
acceptable. Comparing the output of heuristics and baseline, we
can get the similar conclusion (with Fig. 6) that the cross-DC
cooperation can accommodate more workloads with the cost of
extra hardware consumption in case of congestion.
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Fig. 7. Hardware consumption of different approaches vs. HR.
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Fig. 8. Hardware consumption of different approaches vs. SDF.

Fig. 8 compares the hardware consumption of the proposed
algorithms with MILP under different SDF (fixing WR=7 and
HR=1). With the base settings (SDF=1), we see that IPA,
IPA+VRE and IPA+VRE+DR can accommodate the given
workload with a slightly higher hardware consumption than that
of the MILP. When shrinking the geographical scale from 5 to
1000 times, there are two important observations. First, the
overall hardware consumption for the same workload decreases
when SDF increases. This is because the inter-DC latency is
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shortened in the shrunken topology, and thus destination DC
can serve the cross-DC traffic a bit slower, with less hardware.
Second, for SDF that is larger than 1, the hardware consumption
from proposed heuristics is very close to that from the MILP
model, indicating that the proposed heuristics are applicable to
edge-cloud systems in different geographical scales. Note that
we do not need to test the SDF<1 cases, because the base setting
is obtained from the real world, and enlarging the base setting
with SDF<1 will result in an impractical geographical scale that
does not match with the low-latency edge computing context.
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Fig. 9. Hardware consumption with/without small flow in MILP.

TABLE IIL. RUNNING TIME (IIIS) FOR PROPOSED APPROACHES WITH
DIFFERENT WR SETTINGS.
MILP MILP MILP Heuristic Heuristic

WR (0.1) (0.01) (0.001) (8) (64)

4 622 954 * 5 57
4.5 1972 1318 * 5 52

5 1406 1012 * 5 55
5.5 10716 86007 * 6 55

6 60520 36913 * 6 56
6.5 45886 5275 * 6 57

7 31495 2740 * 5 54
7.5 22502 30007 * 6 52

8 25206 19103 * 7 55

In Section III, the concept of small flow was introduced as an
optional choice for workload assignment process. Accordingly,
we investigate the solution quality with and without small flow
in our MILP model. Figure 9 compares the hardware
consumption of the models with/without small flow, under
relatively higher workloads. It can be noted that the model with
small flow allows us to save some hardware resources. We did
not plot the hardware consumption under lower WR as
difference in hardware consumption become very small in this
case. We conclude that small flow is helpful in improving the
overall solution particularly at high workloads (indeed, in those
situations when our proposed approach is more useful), but the
improvement is limited to about 0.5%.

To verify the complexity of proposed heuristics and MILP
model, we also compared their average running times (in ms).
The running time in this table is the average value of five
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executions with random workload distributions for different
apps. The first column in Table III marks the given WR, while
1) columns 2-4 show the running time of MILP model with
different tolerated optimality-gap (the value in brackets after
MILP in first row) for 8 nodes system; and 2) columns 5-6 show
the running time of heuristics for the 8 and 64 nodes systems.
Note that the MILP solver may did not reach a feasible solution
within 10 min for some settings, and we removed such samples
from calculating the average running time. Note also that the *
symbol in table III means the MILP solver did not reach a
solution that satisfies the tolerated optimality-gap for any of the
five settings, within 10 minutes. Comparing columns 2-4 and 5,
we see the heuristics (even for larger problem) are much faster
than MILP. The running time in table III was collected from an
AWS c5.2xlarge EC2, with 8 vCPU, 16G Memory, and Ubuntu
18.04 operating system.

Discussion. In summary, in edge-cloud computing, where
edge DCs can cooperate with each other and with cloud, the
proposed MILP model and heuristic algorithms can optimize
edge DCs’ hardware resource efficiency from an overall
perspective by leveraging cross-site cooperation. When some
edge DCs are congested and cannot host all local flows, some
flows will be routed to remote DCs, and corresponding VMs
will be placed there. Cross-site VM placement and workload
assignment can avoid blocking flows at congested DCs, but will
cause some side effects. First, remote VM placement and flow
assignment will introduce extra network traffic between source
and destination DCs. Second, inter-DC data transmission incurs
longer network latency. Since overall service latency threshold
of each request is pre-set by each app, the more time spent on
the network, the less time is left for queuing and processing at
destination DC, and more hardware is needed to process faster.
That is why the hardware consumption increases non-linearly
when there are more workloads or less hardware capacities.

VII. CONCLUSION

This work studied the problem of virtual machine (VM)
placement and workload assignment in cooperative edge-cloud
computing over backhaul networks. To improve the
information technology (IT) infrastructure efficiency, a mixed
integer linear programming (MILP) model and a three-phase
heuristic were proposed to efficiently place service VMs and
assign workloads. The proposed model and algorithm were
designed to reduce the overall hardware consumption for
placing VMs, while meeting application’s heterogeneous
latency requirements. In the preliminary scenarios evaluated,
the heuristics were able to reach acceptable and efficient
solutions for the large-scale problems. These numerical results
indicated that higher workloads and less hardware resources
introduce more inter-datacenter traffic and cause extra
hardware consumption; and datacenter hardware efficiency can
be optimized to accommodate more workloads by leveraging
the network-backed remote VM placement and cross-site
cooperation. Moreover, this work also evaluated the concept of
small-flow’s impact on the quality of solutions, and results
showed that small flow can help to save a certain amount of
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hardware consumption particularly in the congestion case. This
work aims to provide offline solutions for initial/ incremental
applications/VMs deployment, according to the estimated
workloads from each edge site. In practice, the workload of
each flow is not completely fixed; instead, it changes
dynamically. The online solutions for hardware-efficient VM
and workload management in cooperative edge-cloud over
backhaul networks is another open problem.
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