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Abstract—In graph analytics, a truss is a cohesive subgraph
based on the number of triangles supporting each edge. It
is widely used for community detection applications such as
social networks and security analysis, and the performance of
truss analytics highly depends on its triangle counting method.
This paper proposes a novel triangle counting kernel named
Minimum Search (MS). Minimum Search can select two smaller
adjacency lists out of three and uses fine-grained parallelism to
improve the performance of triangle counting. Then, two basic
algorithms, MS-based triangle counting, and MS-based support
updating are developed. Based on the novel triangle counting
kernel and the two basic algorithms above, three fundamental
parallel truss analytics algorithms are designed and implemented
to enable different kinds of graph truss analysis. These truss
algorithms include an optimized K-Truss algorithm, a Max-Truss
algorithm, and a Truss Decomposition algorithm. Moreover, all
proposed algorithms have been implemented in the parallel
language Chapel and integrated into an open-source framework,
Arkouda. Through Arkouda, data scientists can efficiently con-
duct graph analysis through an easy-to-use Python interface and
handle large-scale graph data in powerful back-end computing
resources. Experimental results show that the proposed methods
can significantly improve the performance of truss analysis on
real-world graphs compared with the existing and widely adopted
list intersection-based method. The implemented code is publicly
available from GitHub (https://github.com/Bears-R-Us/arkouda-
njit).

Index Terms—K-Truss, Triangle Counting, Graph Analytics,
Parallel Algorithm

I. INTRODUCTION

K-Trusses [10] have been widely used to discover close
relationships in a graph and are more rigorous than k-cores
(where all the vertices have a degree at least k in a subgraph)
but less stringent than k-cliques (where all the vertices are
connected pairwise in a subgraph). The k-clique decision
problem is NP-complete, but K-Trusses can be computed in
polynomial time, making them more practical in large graph
analysis. However, the increasing size of real-world graphs has
become a great challenge for K-Truss identification.

Furthermore, Max-Truss analysis [11], which aims to iden-
tify the largest K-Truss of a graph, is more compute-intensive
than general K-Truss analysis. The more comprehensive Truss-
Decomposition [28] will generate all trusses with different K
values and it is the costliest truss-based algorithm. Triangle
counting and support (here, support is the number of triangles
using a given edge) updating are the major costs for truss anal-
ysis. Currently, list intersection-based triangle counting is the
most popular and widely used method for truss analytics. How-
ever, the list intersection-based triangle counting method [11]
cannot take advantage of the properties of real-world graphs

to improve its performance. In this paper, we propose a novel
Minimum Search based triangle counting and support updating
method to use in the three typical truss analytics algorithms
that can achieve much better performance, especially for real-
world graphs. Moreover, all the truss analytics algorithms have
been integrated into an open-source framework Arkouda [22],
[23] to support exploratory data analysis (EDA) [5], [15], [20]
at scale.

EDA has become a critical method for data scientists to
discover the value of data quickly. Unfortunately, most EDA
tools, which often run on laptops or common personal com-
puters, cannot handle large data efficiently, let alone produce
highly productive analysis results. Developing efficient Truss
analytics algorithms, software tools, and environments that can
take advantage of the latest hardware resources through high-
level and user-friendly interfaces is essential. Such algorithms,
tools, and environments can enable EDA users and data
scientists to conduct their analysis more productively.

Arkouda is an EDA framework under early development
that combines Python’s productivity at the front end with the
high-performance computing capability of Chapel [9] at the
back end. This framework is perfect for achieving productive
large graph analysis on powerful computing resources with an
easy-to-use and popular Python interface. In this work, we
develop and integrate the proposed parallel Truss analytics
algorithms into Arkouda so that data scientists can take
advantage of Python and use their laptops to conduct real-
world graph analysis on large compute platforms (including
clusters) productively.

The major contributions of this paper are as follows.

1) A novel Minimum Search-based triangle counting kernel
is developed. The time complexity analysis exposes why
it is more efficient compared with the widely used List
Intersection method.

2) All our Truss analytics algorithms based on the
Minimum Search kernel have been implemented and
integrated into an open-source framework Arkouda.
Through Arkouda, data scientists can conduct interactive
Truss analytics at scale using Python with a high-
performance guarantee with powerful back-end support.

3) Extensive experimental results show that the proposed
performance optimization methods can achieve signifi-
cant speedup compared with the widely used List Inter-
section method, especially on real-world graphs.



Fig. 1: Basic idea of the novel minimum search method.

II. NOVEL TRIANGLE COUNTING KERNEL

A. Minimum Search for Triangle Counting

Given edges e = ⟨u, v⟩ ∈ E, let the adjacency lists of u and
v be Adju and Adjv; then, the number of triangles including
e should be |Adju ∩Adjv|. This is the formula of the widely
used List Intersection method [11] in K-Truss analysis.

If Adju and Adjv are sorted, then the execution time of
the efficient Intersect Path method [17] to implement List
Intersection can be |Adju| + |Adjv|. Although Intersect Path
can be executed in parallel, the data distribution in the two
adjacency lists can significantly affect the parallelism obtained.

Intersect Path uses only two adjacency lists of the two
vertices in the given edge to find triangles based on the
intersection of the adjacency lists. We propose a novel triangle
counting kernel called Minimum Search (MS). MS can find
each triangle containing the given edge with much fewer
operations because it considers all three adjacency lists and
only executes a search in the smaller adjacency list. The basic
idea of MS is shown in Fig. 1.

Given edge e = ⟨u, v⟩, we assume that |Adj(u)| ≤
|Adj(v)|. ∀w ∈ Adj(u), we will use |Adj(u)| parallel threads
to check if u, v, w can form a triangle. Furthermore, if
|Adj(w)| < |Adj(v)|, then we will check if v ∈ Adj(w).
Otherwise, we will check if w ∈ Adj(v). This means that
we only select the smaller adjacency list for the triangle
checking. However, the existing List Intersection methods
use only two adjacency lists, Adj(u) and Adj(v) for trian-
gle checking even if Adj(v) is very large compared with
Adj(w). So, the potential time savings from a much smaller
adjacency list Adj(w) are completely ignored. The highly-
skewed degree distributions in real-world graphs mean that
most of the Adj(w) will be very small. So, our MS method can
save significant time because it only searches in the smaller
adjacency list.

B. Time Complexity Analysis

By analyzing its time complexity, we can show that the pro-
posed Minimum Search method can achieve a faster execution
time than the existing List Intersection method.

Let h (l) be u or v which has more (less) adjacent vertices.
Let Adjh (Adjl) be Adju or Adjv that has more (less)
elements. ∀w ∈ Adjl, let Adjw be the adjacency list of w. The
proposed Minimum Search method directly checks if there is
a third edge ⟨w, h⟩ that can close the wedge ⟨l, h⟩ and ⟨l, w⟩

to form a triangle. We assume that all vertices’ adjacency
lists are sorted in the preprocessing stage. Then, the execution
time or the number of search operations of the Minimum
Search method will be log2(min(|Adjw|, |Adjh|)). For the
existing List Intersection method, if the same parallel method
is employed, its execution time should be log2(|Adjh|) because
it only checks w in Adj(v). The larger the difference between
|Adjw| and |Adjh|, the greater the number of operations that
can be saved. For the proposed Minimum Search method, the
total time to search all the triangles containing given edge
⟨u, v⟩ in parallel can be calculated as in Eq.1.

max
w∈Adjl

log2(min(|Adjw|, |Adjh|)) (1)

For example, if |Adjl| = 4, ∀w ∈ adjl, |Adjw| ≤ 8
and |Adjh| = 1024, the existing List Intersection method
(employing the same fine-grained parallel method as ours)
will need four parallel threads and each thread will execute
⌈log21024⌉ = 10 operations to search the triangles containing
given edge ⟨u, v⟩. Our novel method will take ⌈log28⌉ = 3
search operations with the same number of four threads. It
is less than the standard List Intersection’s parallel execution
time.

If fine-grained parallelism is not supported, the total time of
our sequential Minimum Search to find all triangles containing
given edge ⟨u, v⟩ can be calculated as in Eq.2.∑

w∈Adjl

log2(min(|Adjw|, |Adjh|)) (2)

Compared with the efficient Intersect Path method [16], its
sequential execution time is

(|Adjl|+ |Adjh|) (3)

Based on Eq.2 and Eq.3, even under the worst case,
∀w ∈ Adjl, if |Adj(w)| ≥ |Adj(h)| and |Adj(h)|

|Adj(l)| >

(log2|Adj(h)| − 1), we still have T(Sequential Minimum
Search) < T(Sequential Intersect Path). Fortunately, this con-
dition can be met with a high possibility for real-world graphs
whose degrees follow power-law distributions.

For example, let |Adj(u)| = 8 and |Adj(v)| = 128. Then,
Intersect Path method will need (8 + 128 = 136) operations.
But our Minimum Search will need at most 8×log2(128) = 56
operations even if |Adj(w)| > 128 for ∀w ∈ Adjl. The exper-
imental results (see section V-B) also show that T(Sequential
Minimum Search) < T(Sequential Intersect Path) for real-
world graphs. This is a “surprising” result and confirms that
our Minimum Search-based kernel can take advantage of real-
world graphs’ properties to improve performance.

Briefly, the proposed MS kernel has the following advan-
tages: (1) Exploit fine-grained parallelism; (2) Avoid search
in the largest adjacency list; (3) Leverage skewed degrees of
real-world graphs.

C. MS based Triangle Counting

In this section, we will use the novel Minimum Search kernel
to build the triangle counting algorithm that can be seen in Alg.



1. The algorithm is given in the Chapel-based pseudocode.
All the algorithms presented in this work can support multiple
locales1. In the Chapel parallel language, the locale type refers
to a unit of the machine resources on which a program is
running.

In Alg. 1, we use an atomic array AtoSup to store the sup-
port of each edge in a given graph G to avoid write race. Array
EDel is used to mark the state of each edge e. EDel[e]=-1
means that edge e has not been deleted. EDel[e]=k means that
edge e has been deleted and its trussness is k. EDel[e]=1-k
means that edge e has just been removed and we are updating
the support of other edges that can form a triangle with e in
the next step.

In lines 2 to 19 we show how to enable parallel execution
across different locales. On each locale, we calculate the
support of each edge e that has not been deleted and is local
to the current locale. From lines 6 to 10, we search vertex
v in the smaller adjacency list Adj(w), where w ∈ Adj(u).
Otherwise, from lines 11 to 15, we search vertex w in the
smaller adjacency list Adj(v). After getting all the number of
triangles Count that contain edge e, we assign it to AtoSup[e]
in line 17.

To summarize, our edge-based method can achieve load
balance by assigning edges evenly to different locales. For any
vertex w that may form a triangle with vertices u and v, we
only use the smaller adjacency lists and avoid searching in the
largest adjacency list. In this way, our MS-based method can
significantly improve the performance of triangle counting.

Algorithm 1: Minimum Search based Triangle Count-
ing

1 TriangleCounting(G,EDel, AtoSup)
2 coforall loc in Locales do
3 forall (undeleted edge e = ⟨u, v⟩ ∈ E) && (e is

local) do
/* We assume that |Adj(u)| < |Adj(v)| */

4 var Count:int=0;
5 forall w ∈ Adj(u) with (+ reduce Count ) do
6 if (|Adj(w)| < |Adj(v)|) then
7 if (v ∈ Adj(w)) then
8 Count++;
9 end

10 end
11 else
12 if (w ∈ Adj(v)) then
13 Count++;
14 end
15 end
16 end
17 AtoSup[e].write(Count);
18 end
19 end

D. MS based Support Updating

If some edges are removed from a graph, updating the
number of triangles of affected edges instead of recalculating

1https://chapel-lang.org/docs/language/spec/locales.html

the number of triangles from scratch can often save signifi-
cant time. So, the support updating algorithm is critical for
improving the performance of truss analytics.

Say that ∀e1, e2, and e3 ∈ E can form a triangle. If, for
example, e1 is deleted, then the number of triangles of e2
and e3 will be affected and they are the “affected edges” of
e1. We need to reduce the supports of e2 and e3 after e1
is removed. However, our support updating algorithm should
avoid updating the same undeleted edge e3 twice If both e1 and
e2 are removed. At the same time, one unremoved edge may be
affected by multiple removed edges in different triangles. So,
we use an atomic subtraction operation to reduce the support
of the unremoved edge to avoid a write race. The support
updating algorithm based on our novel MS kernel is given in
Alg. 2.

Support updating will start from the edges that have just
been removed. We employ a high-level Chapel data structure
DistributedBag2 to keep the edges that have just been removed.
The structures of Alg. 1 and Alg. 2 have some similarity.
However, there are two differences. (1) Instead of searching
from undeleted edges, we will search from just deleted edges.
(2) When a triangle that contains the given edge is found,
the support of the corresponding edge will be reduced instead
of increasing the number of triangles. To avoid reducing the
support twice by two different removed edges in the same
triangle, we only allow the deleted edge with a smaller edge
ID to execute the update. In addition, we employ atomic
operations to update the support at lines 8, 9, 13, and 16 to
avoid write race because several deleted edges may update the
support of the same edge simultaneously.

Assume all edges that have just been removed are put into
a DistributedBag named JustDelEBag. On each locale, we
will search from the edges in JustDelEBag, which are on the
current locale. Each locale will execute in parallel the search
from different edges (line 3). We use e1 to stand for the edge
in the just-removed bag. e2 and e3 stand for the other two
edges (they can be the just removed edges in JustDelEBag)
that may form a triangle with e1. Once e2 and e3 are found,
their supports will be reduced by one if both are undeleted
edges (lines from 7 to 10). Otherwise, if one of them is a
deleted edge, we will reduce its support only by the edge
whose ID is smaller than another deleted edge to avoid double
updates on the same edge’s support (lines from 12 to 14 and
lines from 15 to 17).

Based on the MS based triangle counting and MS based sup-
port updating algorithms, we can build our K-Truss algorithm,
Max-Truss algorithm and Truss Decomposition algorithm ef-
ficiently.

III. TRUSS ANALYTICS ALGORITHM DESIGN

A. Problem Description

1) Notation: A graph, G = (V,E), is comprised of a vertex
set V and an edge set E. We use △(e,G) to express the set
of all triangles including edge e = ⟨u, v⟩ in the graph G. The

2https://chapel-lang.org/docs/modules/packages/DistributedBag.html



Algorithm 2: Minimum Search based Support Updat-
ing

1 SupportUpdate(G,EDel, JustDelEBag,AtoSup)
2 coforall loc in Locales do
3 forall (e1 = ⟨u, v⟩ ∈ JustDelEBag) && (e is local)

do
/* We assume that |Adj(u)| < |Adj(v)| */

4 forall (e2 = ⟨u,w⟩, w ∈ Adj(u)− {v}) &&
(EDel[e2] < 0) do

5 Search e3 = ⟨v, w⟩ or e3 = ⟨w, v⟩;
6 if (e3 exists) then
7 if (e2 and e3 are undelted) then
8 AtoSup[e2].sub(1);
9 AtoSup[e3].sub(1);

10 end
11 else
12 if (e2 is undeleted) &&(e1 < e3) then
13 AtoSup[e2].sub(1);
14 end
15 if (e3 is undeleted) &&(e1 < e2) then
16 AtoSup[e3].sub(1);
17 end
18 end
19 end
20 end
21 end
22 end

support of e, which means the number of triangles including
edge e = ⟨u, v⟩ in G, is expressed as sup(e,G) = |△(e,G)|.
In truss analysis, we ignore the direction of the edges in a
graph G or, simply, G is an undirected graph.

Definition 1. K-Truss: Given a graph G, its K-Truss is defined
as the maximal non-empty subgraph SubG = ⟨SubV, SubE⟩
such that ∀e ∈ SubE ⊆ E, we will have sup(e, SubG) ≥ K-2,
where K is an integer and K ≥ 2. A large K may cause that
no any subgraph can meet the requirement.

Definition 2. Max-Truss: Given a graph G, its Max-Truss
is defined as the K-Truss that has the maximum value of K
among all the K-Trusses of G.

Definition 3. Truss Decomposition: Given a graph G =
(V,E), the Truss Decomposition of a graph G is assigning
each edge with its Truss Value. ∀e ∈ E, the Truss Value or
Trussness of e is defined as the maximum K value of all K-
Trusses that includes e. It can be expressed as truss(e,G)
and we have truss(e,G) ≤ sup(e,G).

2) MaxK Analysis: Based on the above definition, the
minimum value of K is 2. We use MaxK to denote the
maximum K value for a graph G and the corresponding
subgraph MaxKG = ⟨MaxV,MaxE⟩.

Theorem 1 (MaxK Inequality). Given MaxK of a graph G,
we have ∀v ∈ MaxV,MaxK ≤ degree(v)-1 and MaxK ≤
|MaxV |.

Proof. Based on the definition of Max-Truss, ∀e = ⟨v1, v2⟩ ∈
MaxE, we will have sup(e,MaxKG) ≥ MaxK-2. This

definition requires that MaxK ≤ degree(v1)-1 and MaxK ≤
degree(v2)-1. Otherwise, it will be impossible to form
MaxK-2 triangles with e. ∀v ∈ MaxV, it must be the vertex
of one e ∈ MaxE. So, we have MaxK ≤ degree(v)-1.
This definition also requires that the total number of vertices
in MaxV should meet |MaxV | ≥ MaxK. If we assume
that |MaxV | < MaxK, then ∀e ∈ MaxE, we cannot find
MaxK-2 different vertices to form triangles with e. This is a
contradiction with the fact sup(e,MaxKG) ≥ MaxK-2.

Based on Theorem 1, we can estimate an upper bound ku
of MaxK for a given graph using the following method.
First, we sort the vertices in decreasing order based on their
degrees. Second, we add the vertices into a set V Set one by
one. Let Dmin = min{degree(v)|v ∈ V Set} and we let
ku = max{x|x = |V Set| ∧ x ≤ Dmin − 1} for all possible
V Set, we will have MaxK ≤ ku. In this way, we may use
ku to set the upper bound of MaxK.

3) Double Index Data Structure: This paper focuses on
sparse graphs that can model a wide range of real-world
applications such as social networks, bioinformatics, and cy-
bersecurity. The CSR (Compressed Sparse Row) data structure
is widely used to express sparse graphs. However, it is a
vertex-centric data structure and cannot directly support edge
ID-based search. At the same time, real-world graphs are often
highly skewed in vertices’ degrees [2], [26]. The vertex-based
graph partition will often cause an unbalanced workload. So,
a compact and efficient Double-Index (DI) sparse graph data
structure (edge index and vertex index) [14] is employed in
this research to support our K-Truss analysis. The DI data
structure enables quick edge-based and vertex-based search by
taking advantage of its edge index and vertex index arrays. At
the same time, the edge index arrays can be used to partition
a graph’s edges evenly to achieve load balance for edge-based
graph algorithms. All these features provide the foundation to
build quick triangle search-based truss analytics methods and
tools.

B. Naı̈ve K-Truss Parallel Algorithm

In this section, we will first introduce the naı̈ve method to
show the basic idea of K-Truss analysis.

Algorithm 3: Naı̈ve K-Truss Parallel Algorithm
1 NaiveKTruss(G, k)
2 AtoSup← 0 and EDel← -1
3 while (there is any edge can be deleted) do
4 TriangleCounting(G,EDel, AtoSup)
5 coforall loc in Locales do
6 forall (e = ⟨u, v⟩ ∈ E) && (e is local) do
7 if (EDel[e]==-1) &&

(AtoSup[e].read() < k-2) then
8 EDel[e]=k-1
9 end

10 end
11 end
12 end
13 return EDel



The DI sparse graph data structure can support addressing in
both vertex and edge [14] quickly. We employ DI to develop a
naı̈ve but distributed parallel framework for K-Truss algorithm
that can be easily implemented in Chapel first.

Peeling [10] is a simple but very efficient K-Truss subgraph
generation method. It removes the edges whose number of
triangles is less than K-2 step by step, like peeling an onion.
We propose a naı̈ve version of this method in Alg. 3.

Our naı̈ve algorithm can run on distributed memory systems
to take advantage of multiple computing resources to handle
large graphs. At the same time, in each shared-memory
multicore/SMP node, the triangle counting and the checking
for different edges on the current locale can also be executed
in parallel. In line 4, we call the MS based triangle counting
to count the number of triangles of each undeleted edge in
parallel. From lines 5 to 11, we check each undeleted edge
and mark the edges whose supports are less than (k− 2) with
(k−1), which means that it has been deleted because it cannot
meet the (k − 2) requirement.

The naı̈ve K-Truss algorithm shows how we can exploit
parallelism and employ our novel triangle search kernel for
K-Truss analysis.

C. Optimized K-Truss Parallel Algorithm

The naı̈ve K-Truss algorithm is simple and easy to imple-
ment. Under most scenarios, it cannot achieve high perfor-
mance even though it has a natural parallel framework. The
reason for its low performance is that it will recalculate the
number of triangles in each iteration. The more iterations it
has, the more unnecessary triangle counting operations will be
executed.

The primary optimization method of the optimized K-
Truss algorithm is parallel searching the affected edges to
avoid repeat triangle counting [3], [7], [12], [16], [21]. After
the supports of all affected edges have been updated, the
unremoved edges whose supports are less than (k − 2) will
also be removed. All the newly removed edges will be used
to parallel search new affected edges until no affected edges
can be removed. This optimization can avoid repeat triangle
counting from scratch. So, it can significantly reduce the total
number of operations. Here, we combine the MS based triangle
searching and MS based support updating together to build the
optimized K-Truss algorithm, which is given in Alg. 4.

In Alg. 4, we first call the MS-based triangle counting to
calculate the number of triangles of all the edges (line 4),
just as we do in the naı̈ve method. The significant difference
is the second part. We will continuously remove the affected
edges whose supports are less than (k−2) until no such edges
can be found (lines 13 to 29). In lines 5 to 12, we check the
supports of all the edges in parallel and put the edges whose
supports are less than (k − 2) in the JustDelEBag. At the
same time, the corresponding edges are marked as (1 − k)
which means “just removed”. In line 14, we call the MS based
support updating algorithm to change the support of affected
edges based on the just removed edges in JustDelEBag. In
lines 16 to 20, we mark the just removed edges as removed

Algorithm 4: Optimized K-Truss Parallel Algorithm
1 OptKTruss(G, k)
2 var JustDelEBag= new DistBag(int,Locales);
3 AtoSup← 0 and EDel← -1
4 TriangleCounting(G,EDel, AtoSup)
5 coforall loc in Locales do
6 forall (e ∈ E) && (e is local) do
7 if (EDel[e]==-1) && (AtoSup[e].read() < k-2)

then
8 EDel[e]=1-k
9 JustDelEBag.add(e);

10 end
11 end
12 end
13 while (JustDelEBag.getSize() > 0 ) do
14 SupportUpdate(G,EDel, JustDelEBag,AtoSup)
15 coforall loc in Locales do
16 forall (e ∈ JustDelEBag) && (e is local) do
17 if (EDel[e]==1-k) then
18 EDel[e]=k-1
19 end
20 end
21 JustDelEBag.clear();
22 forall (e ∈ E) && (e is local) do
23 if (EDel[e]==-1) &&

(AtoSup[e].read() < k-2) then
24 EDel[e]=1-k
25 JustDelEBag.add(e);
26 end
27 end
28 end
29 end
30 return EDel

edges by changing their values from (1−k) to (k−1). In line
21, we clear all the edges in JustDelEBag. Then, we search
for new edges that can be removed after the support updating
(lines 22 to 27). They are marked as value (1− k) and added
into JustDelEBag for the next iteration to update support of
new affected edges.

In summary, our optimized K-Truss algorithm can take
advantage of the proposed MS based triangle counting and
support updating methods to quickly find the triangles and
avoid recounting the number of triangles from scratch.

D. Max-Truss Parallel Algorithm

We develop a binary search-like Max-Truss algorithm to
identify the maximum truss and its K value quickly. We
develop our Max-Truss algorithm based on the proposed
optimized parallel K-Truss algorithm. To optimize the perfor-
mance, we will reuse the support array AtoSup and the edge
state array EDel to avoid repeat triangle counting operations
in the optimized parallel K-Truss algorithm.

According to the discussion in section III-A, we can first
calculate the upper bound ku of the maximum K-Truss value.
So, we only need to check the maximum k value in range
[3..ku] that will not delete all the edges in a graph. That k will
be the maximum K-Truss value of the given graph. In Alg. 5
we give the description of our Max-Truss parallel algorithm.



In line 2 we initialize the range of maximum K-Truss search
value kl and ku. Based on the feature of K-Truss search, we
have the inequality kl ≤ MaxK ≤ ku. First, we call the
optimized K-Truss method in line 5 with kl and then check if
kl can remove all the edges in G in line 6. If it can, we
know that (kl = 2) is the maximum k value. Otherwise,
we call the MaxSearch procedure at line 10 to return the
maximum k value with given range [(kl+2)..ku] using the
existing edge array EDel and support array AtoSup. In the
MaxSearch function, all searches will be based on edge array
EDel and support array AtoSup instead of recalculating them
from scratch.

In lines 12 to 31, we define the MaxSearch function. To
avoid recalculating the support array AtoSup and to allow
sharing of the edge array EDel, we modify the OptKTruss al-
gorithm in Alg. 4 by removing the triangle counting operations
in line 4 and rename the new algorithm as MaxOptKTruss.
We add edge array EDel and support array AtoSup as the
parameters of MaxOptKTruss to avoid recomputing them.

There are two differences with the binary search method.
First, we need to store the existing edge array EDel and
support array AtoSup in line 22 before a new kmid checking
in line 23. The reason is that if the new kmid will remove all
the edges, we need to recover them in line 28 to recursively
search in a new range whose upper bound cannot be larger
than the kmid value (lines from 28 to 30). Second, kmid is
not the exact middle value of kl and ku but close to kl. This
is because large kmid can cause additional overhead if it will
remove all the edges. Our experimental results also confirm
that this optimization can really improve performance.

Based on our optimized K-Truss parallel algorithm, the
Truss Decomposition procedure is straightforward. We just
need to increase the value of k based on the minimum support
of all undeleted edges in the remaining subgraph. If the
minimum support is s, then the new k = (s+2) until all edges
have been removed. So, we ignore the detailed description on
Truss Decomposition algorithm here.

IV. INTEGRATION WITH ARKOUDA

Arkouda3 is an open-source framework that allows data sci-
entists to conduct productive data analytics from their laptops
by transferring the burden of high-performance computing to
a back-end server. Arkouda contains three major components:
an interactive Python front-end, a ZeroMQ middleware, and
a Chapel back-end. We need to extend the front-end and the
back-end to integrate our algorithms into Arkouda.

After implementing the kernels into Chapel with our novel
data structures and algorithms, we need to follow Arkouda’s
integration rules to make the new functionality work well to
create an end-to-end response from Chapel to Python.

A. Easy Python Interface at Front-End

All communication between the Python front-end and
Chapel back-end has been implemented in the Arkouda frame-

3https://github.com/Bears-R-Us/arkouda

Algorithm 5: Max-Truss Parallel Algorithm
1 MaxTruss(G)
2 Let kl = 2 and set ku based on the method in sec.III-A
3 EDel = −1
4 Declare AtoSup as an atomic int array
5 OptKTruss(G, kl + 1)
6 if (All edges have been deleted) then
7 return (kl,EDel)
8 end
9 else

10 return MaxSearch(G, kl+2, ku, EDel, AtoSup)
11 end
12 proc MaxSearch(G, kl, ku, EDel, AtoSup)
13 MaxOptKTruss(G, kl, EDel, AtoSup)
14 if (All edges have been deleted) then
15 return (kl-1, EDel)
16 end
17 else
18 if kl ≥ ku then
19 return (kl, EDel)
20 end
21 kmid = (kl+1)+(ku − kl)/3
22 (BakEDel,BakAtoSup)← (EDel,AtoSup)
23 MaxOptKTruss(G, kmid, EDel, AtoSup)
24 if (there are undeleted edges) then
25 return

MaxSearch(G, kmid+1, ku, EDel, AtoSup)
26 end
27 else
28 (EDel,AtoSup)← (BakEDel,BakAtoSup)
29 return

MaxSearch(G, kl+1, kmid-1, EDel, AtoSup)
30 end
31 end

work. Based on the Arkouda framework, we define one Python
function KTruss(graph, k) for all truss analytics methods.

For the truss function call, if the value of parameter k
is larger than 0, it means that we will execute the K-Truss
analysis and return the maximum subgraph that every edge’s
support is not less than (k− 2). We use the same function for
Max-Truss or Truss Decomposition analysis. If (k==-1), we
will call the Max-Truss algorithm at the back-end. If (k==-2),
we will call the Truss Decomposition algorithm.

B. Optimized Chapel Implementation at Back-End

The major integration work is at the Chapel back end.
The Arkouda framework will transfer a front-end Python
function call to the back-end Chapel implementation. The
Chapel execution results will also be transferred back to the
Python function as return results. So, at the back end, we only
need to implement the different truss analytics algorithms as
different Chapel functions.

The back-end accepts the command’s name given by the
Python front-end, a payload message, and a symbol table name
where our data will be housed from the Chapel back-end. The
payload is parsed to extract the name of the Chapel graph
class that houses our graph data, and then using the name, we
extract the data from the symbol table and then work with
it to run our different algorithms. We develop the kTruss-



MinSearch() Chapel function to implement our optimized
parallel minimum search based K-Truss algorithm Alg. 4.
The MaxTrussMinSearch() function is developed to implement
our Max-Truss algorithm Alg. 5. The TrussDecoMinSearch()
function is developed to implement our Truss Decomposition
algorithm. The back-end will call different functions based on
the value of parameter k.

C. Tools for Performance Comparison and Optimization

We develop the following algorithms to compare the per-
formance of the proposed Minimum Search kernel-based truss
analytics algorithms with existing methods. Intersect Path is
an efficient implementation of List Intersection method. We
implement the Naı̈ve Intersect Path algorithm (Naı̈veIP) as the
baseline. At the same time, we also develop the following algo-
rithms for comparison. The optimized Intersect Path algorithm
(IP) shows the effect of removing repeat triangle counting
from scratch. The optimized Minimum Search algorithm (MS-
2) only uses two adjacency lists to show the performance loss
when we cannot take advantage of three adjacency lists. Direct
Graph-based triangle counting is an important optimization
method to update the supports of three edges in one triangle
search to avoid searching the same triangle three times. We
develop such a comparison method and name it Dir. All the
five different algorithms are implemented in the K-Truss, Max-
Truss and Truss Decomposition analyses.

V. EXPERIMENTS

A. Dataset Description

Our datasets are chosen from publicly available synthetic
and real-world datasets. The SuitSparse Matrix Collection4

and the MIT GraphChallenge graph datasets5 are used in
selecting our test graphs. A combination of real-world and
synthetic graphs are selected to highlight the performance of
our optimized Minimum Search kernel-based methods. These
graphs can be found in Table I. The real-world graphs can be
either weighted or unweighted. Real-world graphs have degree
distributions that follow a power-law distribution, while sparse
synthetic graphs tend to follow a normal distribution. The
two kinds of synthetic graphs used are Delaunay and random
geometric graphs (Rgg) from the DIMACS10 [4]. Delaunay
graphs are composed of Delaunay triangulations of random
points in the plane, whereas Rgg graphs are just random points
in the unit square. Both have multiple triangles, making them
interesting graphs to benchmark truss problems.

B. Performance Results

Experiments were done on two platforms. Platform 1 (P1)
is a CentOS Linux release 7.9.2009 (Core) high-performance
server with 2 x Intel Xeon E5-2650 v3 @ 2.30GHz CPUs
with ten cores per CPU. The server has an amount of 512GB
of RAM. Platform 2 (P2) is a GridOS 18.04 Linux cluster.
Our experiments are on two computing nodes composed of

4https://sparse.tamu.edu/
5https://graphchallenge.mit.edu/data-sets

TABLE I: Dataset Descriptions
Graph Name Graph ID Number Edges Number Vertices Max K

R
ea

l-
W

or
ld

G
ra

ph

ca-GrQc 1 14484 5242 44
ca-HepTh 2 25973 9877 32
as-caida20071105 3 53381 26475 16
facebook combined 4 88234 4039 97
ca-CondMat 5 93439 23133 26
ca-HepPh 6 118489 12008 239
email-Enron 7 183831 36692 22
ca-AstroPh 8 198050 18772 57
loc-brightkite edges 9 214078 58228 43
soc-Epinions1 10 405740 75879 33
amazon0601 11 2443408 403394 11
com-Youtube 12 2987624 1134890 19

Sy
nt

he
tic

G
ra

ph

delaunay n20 13 3145686 1048576 4
delaunay n21 14 6291408 2097152 4
delaunay n22 15 12582869 4194304 4
delaunay n23 16 25165784 8388608 4
rgg n 2 21 17 14487995 2097152 19
rgg n 2 22 18 30359198 4194304 20
rgg n 2 23 19 63501393 8388608 21
rgg n 2 24 20 132557200 16777216 21

Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz (total 96
cores) and 128GB of memory.

We first provide the experimental results on Platform 1. The
speedups of our optimized Truss analytics algorithms based on
Minimum Search compared with the List Intersection are given
in Fig. 2. For all the real-world graphs, the average speedups of
our Minimum Search based algorithms are 4.49 (K-Truss), 3.54
(Max-Truss) and 3.60 (Truss Decomposition). The maximum
speedups are 17.88, 14.31 and 14.88 achieved on the highly
skewed graph “com-Youtube” with a maximum degree as high
as 28754 but an average degree as low as 5. However, for
synthetic graphs, their performance is very close to each other
because their degree distributions are not as skewed as those of
real-world graphs. The results show the significant advantage
of our Minimum Search based algorithms compared with the
widely used List Intersection based algorithms on real-world
graphs.

Then, we show the effect of different optimization methods
compared with the Naı̈ve IP implementation in Fig. 3, Fig. 4
and Fig. 5. In all the graphs, “IP” is the optimized Intersect
Path algorithm’s results. “IP” employs the affected edge search
method instead of recalculating triangles from scratch. “MS-
2” shows the difference if we limit our optimized method
that can only use given two adjacency lists instead of three.
“MS” is our optimized Minimum Search based algorithm. The
directed graph method is also very popular for optimizing the
performance of undirected graphs. “Dir” is the directed graph
method supported by the undirected DI data structure.

The experimental results of the K-Truss algorithms in Fig. 3
show that: (1) All undirected graph-based optimized methods
(IP, MS-2, and MS) can achieve much better performance than
that of the Naı̈ve IP method on both real-world graphs and
synthetic graphs. The results show that repeat triangle counting
is very expensive in K-Truss analysis. However, the directed
graph-based Dir method can achieve very limited speedup,
or even worse than the Naı̈ve IP method. The reason is that
the Dir method only allows one edge to update the supports
of the three edges that can form a triangle under the edge-
based parallel triangle search scenario. This means that 2
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the parallel threads cannot update their supports directly. This
low resource utilization will reduce the performance of the
directed graph-based method. Under the vertex-based parallel
triangle search framework, the directed graph-based triangle
counting method can often achieve good performance by
avoiding multiple triangle searches. However, it is not suitable
for the edge-based parallel triangle search framework.

(2) Our optimized MS algorithm can achieve the best
performance for real-world graphs. It is much better than
the IP algorithm. The highest speedup is 89.07 (achieved
on the real-world graph “com-youtube”), and the average
speedup is 22.88 for all the testing graphs. In Alg. 2 the fine-
grained parallel search in line 4 cannot be fully supported
in the current nested forall structure in Chapel. So, the high
speedup for real-world graphs should be attributed to our
optimization method that may exploit the skewed degrees
in real-world graphs instead of fine-grained parallelism. The
performance comparison between MS and MS-2 directly shows
how much we can gain by exploiting the skewed degrees in
three adjacency lists in K-Truss analysis. For all the real-world
graphs, MS is better than MS-2. At the same time, MS-2 is
better than IP even though both use only two given adjacency
lists. The reason is that MS-2 uses binary search in another
large adjacency list, but IP will visit every element in the large
adjacency list. For the synthetic graphs, the three methods,
IP, MS, and MS-2 are close to each other because the degree
distributions of synthetic graphs are not as skewed as those of
real-world graphs. The higher difference in degrees of different
vertices a graph has or the higher percentage of unbalanced
degrees a graph has, the more performance improvement can
be achieved by our MS method compared with the optimized
IP, MS-2 and Dir methods.

Fig. 4 shows the speedup results of different Max-Truss
analysis algorithms compared with Naı̈ve IP as the baseline.
We can see a similar trend just as in Fig. 3. Our MS method
can achieve the best performance for all the real-world graphs.
The highest speedup is 83.56 on graph “com-youtube”, and
the average speedup is 22.16. For the synthetic graphs, the
performance of IP, MS-2 and MS are very close to each other.
The result shows that our optimized Max-Truss algorithm can
use very small search steps to identify the Max − Truss
subgraph.

Fig. 5 gives the speedup results of different Truss Decom-
position algorithms compared with the Naı̈ve IP algorithm as
the baseline. Truss Decomposition analysis is the most time-
consuming method because it needs to find all subgraphs with
different truss values. However, it can give much more detailed
information that cannot be provided by K-Truss and Max-Truss
algorithms. Our MS method can achieve the best performance
for all the real-world graphs. The maximum speedup is 568.96
on graph “soc-Epinions1” whose maximum degree is 3044 and
the average degree is 10. The average speedup is 129.35 for all
the graphs. Most of the speedups achieved by our MS method
in Truss Decomposition are much better than the speedups
in the corresponding K-Truss and Max-Truss analysis. The
results show that the more search cases are needed, the more

optimization opportunities can be captured by our MS method
to improve the performance.

The experimental results of K-Truss, Max-Truss and Truss
Decompostion analysis show that our different MS kernel-
based optimized methods can take advantage of the properties
of real-world graphs to improve the performance of our truss
analytics algorithms significantly.

We do the same experiments on Platform 2 with real-
world graphs, and the trend is very similar to that on Plat-
form 1. For K-Truss analysis, our MS method can achieve
the highest 162.51 speedups on graph “com-youtube”. The
average speedup is 26.30. For MAX-Truss analysis, the highest
speedup is 56.15 on the same graph. The average speedup is
12.93. For Truss Decomposition analysis, our MS method can
achieve 503.54 speedups on graph “soc-Epinions1”. The aver-
age speedup is 158.31 (we do not include the detailed results of
every graph because of the limit in space). On platform 2, our
MS method can achieve a similar performance improvement.
However, the absolute execution time on platform 2 is much
shorter than on platform 1 for the same graph.

In one recent research paper, Conte et al. [11] developed a
highly optimized List Intersection based truss decomposition
algorithm using C++. They use SSE-acceleration when the
two adjacency lists have a similar size. If the sizes of the two
adjacency lists are very different, they will use a binary search-
like method to avoid searching on the complete adjacency
list. They try to avoid atomic operations to improve parallel
performance in the triangle counting part. Their code6 is
also publically available, and they use OpenMP for parallel
execution. We compare our MS based truss decomposition
method with their List Intersection-based truss decomposition
method on the same real-world graphs. The results are given
in Fig. 6. We can see that for all the real-world graphs, the
performance of our MS based Truss Decomposition method is
much better than their List Intersection-based Truss Decom-
position method. The highest speedup is 385.8 on “ca-GrQc”
graph and the average speedup for all the real-world graphs is
128.

VI. RELATED WORK

GraphChallenge7 is a vital community effort of academia
and industry to develop new solutions for analyzing graphs and
sparse data. K-Truss is one of the graph challenge algorithms.
The seminal paper about truss decomposition is that by Cohen
[10], who introduced the concept of K-Truss, motivating it as
an effective community indicator.

Intersect path [17] is an efficient and typical algorithm to
implement List Intersection in triangle counting. However, the
major problem is that it only works on two adjacency lists
and cannot leverage the third vertex’s adjacency list to improve
performance. Directed graph or directing edges-based methods
[7], [19] are further performance optimizations, but they need
to relabel the vertices based on their degrees to improve

6https://github.com/google-research/google-
research/tree/master/truss decomposition

7https://graphchallenge.mit.edu/challenges



Fig. 2: Speedup of Minimum Search VS List Intersection. Fig. 3: Speedup of different K-Truss algorithms.

Fig. 4: Speedup of different Max-Truss algorithms. Fig. 5: Speedup of different Truss Decomposition algorithms.

Fig. 6: Execution time of our MS algorithm and Intersection
algorithm. The second y-axis is the speedup of our MS

algorithm compared with the Intersection algorithm.

the counting performance. Such vertex-centric parallel meth-
ods are not suitable for an edge-centric parallel framework.
Recently, Aberger et.al [1] exploits the SIMD instructions
to improve the performance of set intersections. Han et. al
[18] developed a binary presentation method together with
the SIMD instructions to improve the performance of set
intersection further. The above methods formulate triangle
counting as a sequential problem and use SIMD to parallelize
some operations. The proposed methods can improve the
parallelism but do not reduce the total operations. However,
our novel method formulates triangle counting as a parallel
problem and reduces the total number of operations.

Besides the CPU platforms, many works for truss analysis

are on GPUs or both CPUs and GPUs. Blanco et al. [8]
presents a linear-algebraic formulation of the K-Truss graph
algorithm and demonstrates the efficiency of their fine-grained
parallel approach on both CPU and GPU. Almasri et al. [3]
uses multiple GPUs to improve the binary search Max K-
Truss performance. Date et al. [12], [21] takes advantage
of the heterogeneous platform (CPU+GPU) to improve the
performance. Most of the current works are on static graphs.
Green et al. [16] uses a new dynamic graph formulation to
achieve scalable performance on GPUs for both K-Truss and
Max K-Truss analysis.

Diab et al. [13] explores the design space of different
optimizations on GPUs including edge-centric [3], [12], [21],
[27] and vertex-centric parallelization [6], directing edges
by degree [7], [19], tiling [19], [29], parallelizing intersec-
tions [7], [19], removing deleted edges intermediately [7],
[8], [12], and recomputing support values to achieve better
performance for specific input graphs [3], [7], [12], [16],
[21]. Integrating different optimization technologies together
for different practical scenarios is a challenging work. Shi
et.al [25] optimizes their truss decomposition algorithm by
compacting intermediate results, dynamically adjusting the
computation and parallelizing on both CPU and GPU together.
Our novel Minimum Search method can work together with
different kinds of high-level truss analysis methods.

VII. CONCLUSION

Interactive and productive Truss analytics is critical to
exploit the value of large networks at scale. We have developed



a novel triangle counting kernel Minimum Search that can
significantly reduce the total number of search operations
by exploiting the power-law distribution property in real-
world graphs. Instead of just working on two given adjacency
lists like the widely adopted List Intersection method, the
proposed Minimum Search method can completely avoid the
largest adjacency list and select the smaller adjacency list to
check if three vertices can form a triangle. Based on our
novel kernel, highly optimized Truss analytics algorithms are
developed. Experimental results show that the performance of
our novel Minimum Search method is much better than that
of the extensively used List Intersection method on different
kinds of real-world graphs. Furthermore, all our truss analytics
algorithms have been integrated into an open-source explore
data analysis framework Arkouda to enable high-performance
graph analytics through the easy-to-use Python interface. All
the code is publicly available on GitHub [24].
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