Truss Analytics Algorithms and Integration in Arkouda

ZHIHUI DU, JOSEPH PATCHETT, OLIVER ALVARADO RODRIGUEZ, and DAVID A.
BADER, New Jersey Institute of Technology, USA

The K-Truss of a graph is a cohesive subgraph that has been widely used for community detection in applications
such as social networks and security analysis. In this paper, we first propose one optimized triangle search
kernel with a few operations that can be used in both triangle counting and triangle search to replace the
existing list intersection method. Based on the optimized kernel, three truss analytics algorithms, an optimized
K-Truss parallel algorithm, a maximal K-Truss parallel algorithm, and a Truss decomposition parallel algorithm,
are developed to enable different kinds of graph analysis efficiently. Moreover, all proposed parallel algorithms
have been implemented in the highly-productive parallel language Chapel and integrated into the open-
source framework Arkouda. Experimental results compared with the existing list intersection-based method
show that for both synthetic and real-world graphs, the proposed method can significantly improve the
performance of truss analysis on large graphs. The implemented method is publicly available from GitHub
(https://github.com/Bears-R-Us/arkouda-njit).

Additional Key Words and Phrases: K-Truss, Triangle Counting, Graph Analytics

ACM Reference Format:
Zhihui Du, Joseph Patchett, Oliver Alvarado Rodriguez, and David A. Bader. 2022. Truss Analytics Algorithms
and Integration in Arkouda. In . ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

K-Trusses [7] have been widely used to discover close relationships in a graph and are more rigorous
than k-cores (where all the nodes have a degree at least k in a subgraph) but less stringent than
k-cliques (where all the nodes are connected pairwise in a subgraph). The clique decision problem is
NP-complete, but K-Trusses can be computed in polynomial time, so K-Trusses can be used in large
graph analysis. Despite this, the increasing size of real-world graphs has become a great challenge
for K-Truss analysis.

At the same time, exploratory data analysis (EDA) [2, 14, 19] has become a critical method to
discover the value of data quickly. Unfortunately, most EDA tools, which often run on laptops
or common personal computers, cannot handle large data efficiently, let alone produce highly
productive analysis results. Developing efficient K-Truss algorithms to enable most EDA users to
conduct their analysis on large graphs productively is the primary goal of this research.

Arkouda [22, 24] is an EDA framework under early development that brings together the pro-
ductivity of Python at the front-end with the high-performance computing capability of Chapel [6]
at the back-end. In this work, we integrate the proposed K-Truss parallel algorithms into Arkouda
so that data scientists can take advantage of Python using their laptops to conduct interactive
real-world graph analysis on very large compute platforms (including clusters) productively.

The major contributions of this paper are as follows.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

CHIUW’2022, June 10, 2022, Virtual

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

HTTPS://ORCID.ORG/1234-5678-9012
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

(1) A fast triangle search kernel that can take advantage of the properties of real-world graphs
is proposed. Multiple parallel and performance optimization methods have been employed in
our K-Truss algorithms.

(2) The proposed K-Truss algorithms have been implemented into the open-source framework
Arkouda to support high-level Python users to analyze large graphs using their laptops with
high productivity.

(3) Experimental results on synthetic and real-world graphs show that the proposed perfor-
mance optimization methods achieve significant speedup compared with the widely used list
intersection method.

2 ALGORITHM DESIGN
2.1 Notation, Analysis, and Data Structure

2.1.1 Notation. The graph, G = (V, E), comprises the vertex set V and the edge set E. We use A (e, G)
to express the set of all triangles including edge e = (u,v) in the graph G. The support of e, which
means the number of triangles including edge e = (u,v) in G, is expressed as sup(e, G) = |A(e, G)|.

Given an integer K > 2, the K-Truss of G is defined as the maximal subgraph SubG = (SubV, SubE)
of G such that Ve € SubE C E, we will have sup(e, SubG) > K — 2. The Max K-Truss is the K-Truss
that has the maximum value of K among all the non-empty K-Trusses of G. For all e € E, the truss
value or trussness of e is defined as the K of the maximal K-Truss that includes e. It is expressed as
truss(e, G). Based on the definition, we have truss(e, G) < sup(e, G). The truss decomposition of a
graph G is assigning each edge with its truss value.

2.1.2 Bound Analysis. Based on the definition, the minimum value of K is 2. We use MaxK to denote
the maximum K value for a graph G and the corresponding subgraph MaxKG = (MaxV, MaxE).
Then, Ye € MaxE, we will have sup(e, MaxKG) > MaxK — 2. This means that the total number of
vertices in MaxV should meet |[MaxV| > MaxK (if |MaxV| < MaxK, Ve € MaxE, we cannot have
another MaxK — 2 different vertices to form triangles with e). We define the degree of an edge
ld(e) = min(degree(u),degree(v)).If an edge e = (u,v) € MaxE, we must have ld(e) > MaxK — 1.
So for a maximal K-Truss of a given graph, the total number of edges in the subgraph cannot be less
than MaxK and the degree of each vertex should not be less than MaxK — 1. So we can sort the
vertices in decreasing order based on their degrees and add them into a set VSet step by step. Let
Dmin = min{degree(v)|v € VSet} and k,;, = max{x|x = min{Dmin + 1,|VSet|}} for all possible
VSet, we will have MaxK < k. In this way, we may use k,, to set the upper bound of MaxK.

2.1.3 Double Index Data Structure. This paper focuses on sparse graphs that can model a wide
range of real-world applications such as social networks, bioinformatics, and cybersecurity. A
compact and efficient Double-Index (DI) sparse graph data structure (edge index arrays and vertex
index arrays) that was developed in our previous work [13] is employed in this research to support
our K-Truss analysis. The DI data structure can support both edge-based search and vertex-based
search quickly. At the same time, the edge index arrays can be used to partition a graph’s edges
equally to achieve load balance for edge search based graph algorithms. All these features can
support a quick triangle search.

2.2 Novel Triangle Searching Kernels

Given edges e = (u,v) € E, if the adjacency lists of u and v are Adj, and Ad j,, then the number of
triangles including e should be |Adj, N Adj,| . This is the formula of the widely used list intersection
method [9] in K-Truss analysis. If Adj, and Adj, are sorted, then the execution time of sequential
list intersection to find all triangles including edge e = (u,v) can be |Adj,| + |Adj,| [16]. If we

Truss Analytics Algorithms and Integration in Arkouda CHIUW’2022, June 10, 2022, Virtual

use a small number of parallel threads as possible to find all triangles, it will take log,|Adj,| (we
assume |Adj,| < |Adj,| and |Adj,| threads will run a binary search in Adj, in parallel). However,
this method does not take advantage of the property of vertex w € Adj, N Adj, to improve the
parallel performance. So, we propose a novel minimum search method to significantly improve the
performance of parallel triangle counting and searching for real-world graphs.

Let h (I) be u or v which has more (less) adjacent vertices. Adj, (Adj;) be Adj, or Adj, that has
more (less) elements. Yw € Adjj, let Adj,, be the adjacency list of w. The proposed minimum search
method directly checks if there is a third edge (w, h) that can close the wedge (I, h) and (I, w) to form
a triangle. Furthermore, the check method will be based on the degrees of both vertex w and h. If
Adj,, and Adjy, are sorted, the parallel minimum search method will need log, (min(|Adj.,|, |Adjn|))
instead of log,(|Adjy|) time. So, log, (|Adjn|) — logs(min(|Adj,,|, |Adjy|)) operations are saved for
checking the third edge (w, h). The larger difference in |Adj,,| and |Adjy|, the more operations
can be saved. The total time to get all the triangles including given edge (u, v) in parallel can be
calculated as in Eq.1.

max log;(min(|Adj|, |Adjnl)) @)
weAdj;

List intersection does not care about the degree of the third vertex that may form a triangle with
the given two vertices. However, the proposed minimum search is a fine-grained method. It will
consider the degrees of the third vertex to reduce the search operations as much as possible. For
any vertex w € Adjy, if |Adj,,| = |Adjy|, the number of operations to decide if u, v, w can form a
triangle will be logz|Adjp| that is the same as in the list intersection. If |Adj,| < |Adjy|, then our
method will have fewer operations.

The standard list intersection method can only work on two given lists. However, our method
can take advantage of the adjacency list of the third vertex to further exploit the optimization space
to reduce the total number of operations. If |Adjj| = 4, Yw € adji, |Adj.,| < 8 and |Adj,| = 1024,
it will need 4 parallel threads and each thread will execute [log,1024] = 10 operations to search
the triangles containing given edge (u, v) . The proposed novel method will also need 4 parallel
threads, and each thread will take [log,8] = 3 search operations. It is less than half of the standard
list intersection’s parallel execution time. For real-world graphs, their edges are highly skewed,
and only a tiny amount of vertices have huge adjacency lists. So, our method can avoid the large
adjacency list searches and work on smaller adjacency lists to improve the parallel performance.

2.3 Naive K-Truss Parallel Algorithm

In this section, we will first introduce the naive method to show the basic idea of K-Truss analysis.

Algorithm 1: Naive K-Truss Parallel Algorithm

1 NaiveKTruss(G, k)
/% G=(E, V) is the input graph with edge set E and vertex set V. k is the given K-Truss value. */
2 EdgeDel[] = —1// initialize all edges as not deleted
3 while there is any edge can be deleted do
4 sup|] = 0// initialize the triangle counting array
5 forall (undeleted edge e = (u,v) € E) && (e is local) do
6
7
8

calculate sup (e, G) using list intersection or minimum search method
suple] = sup(e,G)

end

9 forall (e = (u,v) € E) &% (e is local) do

if (EdgeDel[e] == —1) && (sup[e] < k — 2) then
| EdgeDelle] =k -1

end

13 end
14 end
15 return EdgeDel

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

Based on the DI sparse graph data structure, which can locate both vertex and edge in constant
time [13], we first develop a naive but distributed parallel framework for K-Truss algorithm that
can be easily implemented in Chapel.

Peeling [7] is a simple but very efficient K-Truss subgraph generation method. It removes the
edges whose number of triangles is less than K — 2 step by step, like peeling an onion. We propose
a naive version of this method in Alg.1.

Our naive algorithm can run on distributed memory clusters to take advantage of multiple com-
puting resources to handle huge graphs. At the same time, in each shared-memory multicore/SMP
node, the triangle counting and the checking for different edges on the current locale can also be
executed in parallel. The Chapel forall parallel construct can implement implicit synchronization
among all the parallel threads so we do not need explicit synchronization operation between the
first forall construct from lines 5 to 8 and the second forall construct from lines 9 to 13.

The naive K-Truss algorithm shows how we can exploit parallelism and employ our novel triangle
search kernel in K-Truss analysis using Chapel.

2.4 Optimized K-Truss Parallel Algorithm

The naive K-Truss algorithm is simple and easy to implement. Under most scenarios, it cannot
achieve high performance even though it has an excellent parallel framework. The reason for low
performance is that it will recalculate the number of triangles in each iteration. The more iterations
it has, the more unnecessary triangle counting operations will be executed.

If an edge is deleted, all other edges that can form a triangle with such an edge will be affected.
The affected edges can be found from the deleted edges. The basic idea of the optimized method is
that we just update the number of triangles of affected edges instead of recalculating the number
of triangles of all edges.

Algorithm 2: Optimized K-Truss Parallel Algorithm

1 OptKTruss(G, k)
/* G=(E, V) is the input graph with edges set E and vertices set V. k is the given K-Truss value. */
EdgeDel[] = —1// initialize all edges as undeleted
sup|] = 0// initialize the support array of each edge
SetDel = ¢;SetAff = ¢
forall (edge e € E) && (e is local) do
| suple] = sup(e, G) using minimum search method

end

forall (e € E) && (e is local) do

if (EdgeDel[e] == —1) && (sup[e] < k — 2) then
EdgeDell[e] =1-k

Add e into SetDel

® N R W N

-
S e

12 end
13 end

14 while (SetDel is not empty) do
15 forall (e; € SetDel) && (e; is local) do
using minimum search method to find ey and e3 that can form a triangle with eg

reduce the support of ey and e3 if they are undeleted edges
add the affected edges into SetAf f if their supports are less than k — 2

19 end

20 forall (e € SetDel) &% (e is local) do

if (EdgeDel[e] == 1 — k) then
| EdgeDelle] =k -1

end

24 end

25 SetDel.clear()

26 SetDel <=> SetAf f // switch the values of the two sets.
27 end

28 return EdgeDel

The major optimization method of algorithm Alg. 2 is parallel searching affected edges to avoid
repeat triangle counting[1, 4, 10, 15, 21]. If edge e; was deleted and ey, e, and e3 can form a triangle,

Truss Analytics Algorithms and Integration in Arkouda CHIUW’2022, June 10, 2022, Virtual

then e, and e; are the affected edges of e;. We will reduce the number of triangles of unremoved edges
that will be affected by the removed edges. Two removed edges may affect the same unremoved
edge in the same triangle. So, our algorithm should avoid updating the same undeleted edge in
the same triangle twice. At the same time, one unremoved edge may be affected by two removed
edges in two different triangles. So, we use an atomic subtraction operation provided by Chapel to
reduce the support of the unremoved edge to avoid the write race. Chapel’s atomic array is very
convenient to support such operations.

After all affected edges have been updated, the unremoved edges whose support values are less
than k — 2 will also be removed. All the newly removed edges will be used to parallel search new
affected edges until no affected edges can be found. This optimization can avoid repeat triangle
counting from scratch, so it can significantly reduce the total number of operations.

Alg. 2 includes two main procedures. The first procedure is the minimum search kernel based
triangle counting part, just like the naive method. The second part is the affected edges search
based support updating method. Two additional data structures are introduced in the optimized
algorithms. SetDel is the set of edges that were just removed. SetAf f is the set of edges that may be
deleted because we delete the edges in SetDel will affect and reduce their support values. Chapel’s
Set module can support set operations well.

The proposed minimum search kernel can be adopted in the optimized algorithm to search and
update the affected edges in a much smaller set, and no unnecessary operations will be executed.
At the same time, each deleted edge will be assigned a thread to search the affected edges, and all
the threads are executed in parallel.

2.5 Max K-Truss Parallel Algorithm

Based on the proposed optimized parallel K-Truss algorithm, we can design the algorithm to find
the maximum truss value of the given graph. We develop a DownwardSearch method to locate the
maximum truss value quickly.

Based on the discussion in section 2.1, we can first get the upper bound k,;, of the maximum
K-Truss value. So we only need to check the maximum k value in range [3..k,] that will not delete
all the edges in a graph. Then k will be the maximum K-Truss value of the given graph. In Alg.3 we
give the description of our Max K-Truss parallel algorithm.

In line 2 we initialize the range of maximum K-Truss search value kj,,, and k,,. Based on
the feature of K-Truss search, we have the inequality kjp,, — 1 < MaxK < k,,. We call the
DownwardSearch procedure at line 3 to return the maximum k value and the edge array EdgeDel
that describes the remaining subgraph of a given graph.

In lines from 4 to 30, we implement the DownwardSearch search function. After checking the
lower and upper bounds, we update the search bounds in lines from 15 to 28. If we find that the
kmia value is too large, we will continuously reduce the value of k,;, and kp,;q until we find a kg
value that will not delete all the edges. This is the downward search procedure. The particular
downward search procedure is different from the general binary search method.

Based on our optimized K-Truss parallel algorithm, the Truss Decomposition procedure is straight-
forward. We just need to increase the value of k step-by-step until all edges have been removed. So
we ignore the detailed description here.

3 INTEGRATION WITH ARKOUDA

Arkouda is an open-source framework that allows data scientists to take the next step in data
analytics from their own laptops by transferring the burden of high-performance computing to
a back-end server. Arkouda contains three major components: an interactive Python front-end,

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

Algorithm 3: Max K-Truss Parallel Algorithm

1 MaxKTruss(G)
/* G=(E,V) is the input graph with edges set E and vertices set V. */

2 Letkjp,y = 3 and set kyp based on the proposed analysis method
3 return DownWardSearch(G, kioy, kup)
4 function DownWardSearch(G, kg, kup)
5 EdgeDel = kTruss(G, kjo+y)
6 if (All edges have been deleted) then
7 return (kjo, — 1, EdgeDel)
8 end
9 else
10 EdgeDel = kTruss(G, kup)
11 if (there are undeleted edges in EdgeDel) then
12 | return (kyp, EdgeDel)
13 end
14 else
15 kmid = (Kiow +kup) /2
16 EdgeDel = kTruss(G, kpy,iq)
17 while (All edges have been deleted in EdgeDel) do
18 kup = kmia —1
19 kmid = (Kiow +kup) /2
20 EdgeDel = kTruss(G, k;piq)
21 end
22 if (kmid == kup — 1) then
23 | return (k,;q, EdgeDel)
24 end
25 else
26 kiow = kmia +1
27 return DownwardSearch(G, kig vy, kup)
28 end
29 end
30 end

a ZeroMQ middleware, and a Chapel back-end. The front-end python mimics the workflow of a
Jupyter notebook and abstracts away the computations done on the back-end.

After implementing the kernel Chapel data structure and algorithm, we need to follow Arkouda’s
integration rule to make the new functionality work well to create an end-to-end response from
Chapel to Python.

We developed our calling method in Python as KTruss(graph, k) where to be called, the user
needs to pass a graph to the function as well as some integer k. This k can be either —1 (for Max
K-Truss) , =2 (for Truss Decomposition), or > 3. This method is added into Arkouda’s front-end file
graph.py.

The developed Chapel functions are located in the TrussMsg.chpl file. This procedure accepts
the command’s name, a payload message, and a symbol table name where our data will be housed
from the Chapel back-end. The payload is parsed to extract the name of the Chapel graph class
that houses our graph data, and then using the name, we extract the data from the symbol table
and then work with it to run our algorithm. These are the integration steps for Arkouda.

4 EXPERIMENTS
4.1 Experimental Setup

Our datasets were chosen from a selection of publicly available synthetic and real-world datasets.
Real-world graphs have degree distributions that follow a power-law distribution, while sparse
synthetic graphs follow a normal distribution. The real-world graphs are downloaded from SNAP !.
The synthetic graphs were Delaunay from the DIMACS10.

IStanford Large Network Dataset Collection, https://snap.stanford.edu/data/

Truss Analytics Algorithms and Integration in Arkouda CHIUW’2022, June 10, 2022, Virtual

Experiments were performed on a 32-node high-performance server connected through Infini-
band FDR 56 Gbit/s loaded with 2 x Intel Xeon E5-2650 v3 @ 2.30GHz CPUs with ten cores per
CPU. It also has 512GB of DDR4 RAM per node. The utilized Chapel and Arkouda version used
during testing were 1.25.0 and 2022.3.15 respectively.

4.2 Performance Results

This part will provide three kinds of truss analysis algorithms’ results based on our minimum search
based triangle search kernel. We implemented three different versions to provide the comparison
results for the k-truss algorithm (we let k=4 in the experiments). Table 1 shows the experimental
results. Column "LI Naive K-Truss" is the execution time of the list intersection method based on
the naive k-truss algorithm framework. "MS Naive K-Truss" is the execution time of the minimum
search method based on the naive k-truss algorithm framework. "MS Opt K-Truss" results from a
minimum search method based on the optimized k-truss algorithm framework. It will search and
update the affected edges without recalculating the number of triangles from scratch. Based on
the results of the three experiments, we can see the advantage of the minimum search method
compared with the list intersection method. At the same time, we can further show the optimized
search based method compared with the naive method. "MS Max K-Truss" is the execution time
of the minimum search based max k-truss method. "MS Truss Decomposition" is the execution
time of the minimum search based truss decomposition method. We let the "LI Naive K-Truss" as
the baseline, "Speedup 1" is the performance improvement of our "MS Naive K-Truss" algorithm
compared with the baseline. "Speedup 2" is the performance improvement of our "MS Opt K-Truss"
algorithm compared with the baseline.

The experimental results in Table 1 show that the proposed minimum search based triangle
search method is better than the widely used list intersection method. The results from "Speedup
1" show that most graphs can achieve more than two times speedup. "Speedup 2" shows that most
graphs can achieve more than ten times speedup. Some can achieve more than one hundred times
speedup. Furthermore, based on our minimum search based kernel, the optimized affected edges
search method can also significantly improve the performance. All our k-truss algorithms are based
on the novel minimum search kernel, and the experimental results show that this kernel can help
to improve the performance compared with the widely used list intersection method.

Table 1. Execution time (seconds) of different k-truss algorithms and speedup compared with list
intersection method.

Graph LI Naive K-Truss | MS Naive K-Truss | MS Opt K-Truss | MS Max K Truss | MS Truss Decomposition | Speedup 1 | Speedup 2
amazon0601 1008.58 509.29 60.61 93.22 66.22 2.0 16.6
as-caida20071105 16.70 2.98 1.00 1.73 0.88 5.6 16.7
ca-AstroPh 113.28 56.11 9.64 11.16 5.17 2.0 11.7
ca-CondMat 23.52 11.58 2.11 2.58 2.21 2.0 11.2
ca-GrQc 2.49 1.24 0.29 0.35 0.36 2.0 8.6
ca-HepPh 29.33 14.69 3.07 3.22 3.45 2.0 9.6
ca-HepTh 3.88 1.93 0.50 0.61 0.61 2.0 7.7
com-Youtube 4885.27 302.37 55.72 71.89 61.94 16.2 87.7
delaunay_n10 2.04 1.05 0.08 0.09 0.08 1.9 25.5
delaunay_n11 5.50 2.81 0.16 0.18 0.16 2.0 34.2
delaunay_n12 14.00 7.15 0.32 0.36 0.31 2.0 44.3
delaunay_n13 36.69 18.74 0.62 0.70 0.61 2.0 58.9
delaunay_n14 98.61 50.46 1.23 1.46 1.22 2.0 79.9
delaunay_n15 266.96 136.52 2.49 2.93 2.45 2.0 107.3
delaunay_n16 735.75 378.16 4.91 5.83 4.87 1.9 149.8

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

5 RELATED WORK

GraphChallenge ? is a vital effort combined by academics and industry to develop new solutions for
analyzing graphs and sparse data. K-Truss is one of the graph challenging algorithms. The seminal
paper about truss decomposition is that by Cohen[7], who introduced the concept of K-Truss,
motivating it as an effective community indicator.

In this paper, we borrow many fine-grained optimization methods on GPUs to develop our
algorithm, such as parallel triangles search for given edge. Green et al.[15] uses a new dynamic
graph formulation to achieve scalable performance on GPUs for both K-Truss and Max K-Truss
analysis. Almasri et al.[1] can use multiple GPUs to improve the binary search Max K-Truss
performance on large graphs. Blanco et al. [5] presents a linear-algebraic formulation of the K-Truss
graph algorithm and demonstrates the efficiency of their fine-grained parallel approach on both
CPU and GPU. Diab et al.[12] explores the design space of different optimizations on GPUs including
edge-centric[1, 10, 21, 26] and vertex-centric parallelization[3], directing edges by degree[4, 17],
tiling[17, 27], parallelizing intersections[4, 17], removing deleted edges intermediately[4, 5, 10], and
recomputing support values to achieve better performance for specific input graphs[1, 4, 10, 15, 21].
Date et al. [10, 21] takes advantage of the heterogeneous platform (CPU+GPU) to improve the
performance.

Besides on GPUs, there are a lot researches [20] [25][26] [18][11][8][23] [9] that try to optimize
the performance of K-Truss from different aspects. We develop a fast triangle search kernel to
optimize the performance by significantly reducing the total number of triangle search operations.
At the same time, our parallel method is implemented using high-level parallel language Chapel
and integrated into Arkouda to enable productive K-Truss analysis.

6 CONCLUSION

Productive K-Truss analysis is critical to exploit the value of large networks. K-Truss is a widely
employed community detection method for different applications. This paper develops a very fast
triangle search kernel to replace the existing list intersection method. Based on our fast triangle
search kernel, we develop highly optimized K-Truss analysis algorithms for different truss analyses.
Furthermore, our algorithms have been implemented in a productive high-level parallel language
Chapel. Our implementation method can employ parallel platforms to achieve high performance and
code development efficiency. Our code has been integrated with an open-source EDA framework
Arkouda. So the increasing number of developers familiar with Python in the EDA community can
easily use Python on their laptops to conduct large graph analysis productively. This work can
support more users to solve their real-world problems with high productivity without knowing the
low-level implementations.

ACKNOWLEDGMENTS

We appreciate the help from the Arkouda co-creators Michael Merrill and William Reus, as well as
Brad Chamberlain, Elliot Joseph Ronaghan, Engin Kayraklioglu, David Longnecker and the Chapel
community when we integrated the algorithms into Arkouda. This research was funded in part by
NSF grant number CCF-2109988.

REFERENCES

[1] Mohammad Almasri, Omer Anjum, Carl Pearson, Zaid Qureshi, Vikram S Mailthody, Rakesh Nagi, Jinjun Xiong, and
Wen-mei Hwu. 2019. Update on k-truss decomposition on GPU. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1-7.

[2] John T Behrens. 1997. Principles and procedures of exploratory data analysis. Psychological Methods 2, 2 (1997), 131.

Zhttps://graphchallenge.mit.edu/challenges

Truss Analytics Algorithms and Integration in Arkouda CHIUW’2022, June 10, 2022, Virtual

(3]

(7]
(8]
(9]

[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

Mauro Bisson and Massimiliano Fatica. 2017. Static graph challenge on GPU. In 2017 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 1-8.

Mauro Bisson and Massimiliano Fatica. 2018. Update on static graph challenge on GPU. In 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 1-8.

Mark Blanco, Tze Meng Low, and Kyungjoo Kim. 2019. Exploration of fine-grained parallelism for load balancing
eager k-truss on GPU and CPU. In 2019 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1-7.
Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007. Parallel programmability and the chapel language.
The International Journal of High Performance Computing Applications 21, 3 (2007), 291-312.

Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis. National security agency technical
report 16, 3.1 (2008).

Alessio Conte, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari. 2018. Discovering k-trusses in
large-scale networks. In 2018 IEEE High Performance extreme Computing Conference (HPEC). IEEE, 1-6.

Alessio Conte, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari. 2020. Truly Scalable K-Truss and
Max-Truss Algorithms for Community Detection in Graphs. IEEE Access 8 (2020), 139096-139109.

Ketan Date, Keven Feng, Rakesh Nagi, Jinjun Xiong, Nam Sung Kim, and Wen-Mei Hwu. 2017. Collaborative (CPU+GPU)
algorithms for triangle counting and truss decomposition on the minsky architecture: Static graph challenge: Subgraph
isomorphism. In 2017 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1-7.

Timothy A Davis. 2018. Graph algorithms via SuiteSparse: GraphBLAS: triangle counting and k-truss. In 2018 IEEE
High Performance extreme Computing Conference (HPEC). IEEE, 1-6.

Safaa Diab, Mhd Ghaith Olabi, and Izzat El Hajj. 2020. KTrussExplorer: Exploring the design space of k-truss
decomposition optimizations on GPUs. In 2020 IEEE High Performance Extreme Computing Conference (HPEC). IEEE,
1-8.

Zhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, and David A Bader. 2021. Interactive Graph Stream Analytics
in Arkouda. Algorithms 14, 8 (2021), 221.

Irving J Good. 1983. The philosophy of exploratory data analysis. Philosophy of science 50, 2 (1983), 283-295.

Oded Green, James Fox, Euna Kim, Federico Busato, Nicola Bombieri, Kartik Lakhotia, Shijie Zhou, Shreyas Singapura,
Hanging Zeng, Rajgopal Kannan, et al. 2017. Quickly finding a truss in a haystack. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 1-7.

Oded Green, Pavan Yalamanchili, and Lluis-Miquel Munguia. 2014. Fast triangle counting on the GPU. In Proceedings
of the 4th Workshop on Irregular Applications: Architectures and Algorithms. 1-8.

Yang Hu, Pradeep Kumar, Guy Swope, and H Howie Huang. 2017. Trix: Triangle counting at extreme scale. In 2017
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1-7.

Sitao Huang, Mohamed El-Hadedy, Cong Hao, Qin Li, Vikram S Mailthody, Ketan Date, Jinjun Xiong, Deming Chen,
Rakesh Nagi, and Wen-mei Hwu. 2018. Triangle counting and truss decomposition using fpga. In 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE, 1-7.

Andrew T Jebb, Scott Parrigon, and Sang Eun Woo. 2017. Exploratory data analysis as a foundation of inductive
research. Human Resource Management Review 27, 2 (2017), 265-276.

Humayun Kabir and Kamesh Madduri. 2017. Parallel k-truss decomposition on multicore systems. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1-7.

Vikram S Mailthody, Ketan Date, Zaid Qureshi, Carl Pearson, Rakesh Nagi, Jinjun Xiong, and Wen-mei Hwu. 2018.
Collaborative (CPU+ GPU) algorithms for triangle counting and truss decomposition. In 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 1-7.

Michael Merrill, William Reus, and Timothy Neumann. 2019. Arkouda: interactive data exploration backed by Chapel.
In Proceedings of the ACM SIGPLAN 6th on Chapel Implementers and Users Workshop. 28-28.

Roger Pearce and Geoffrey Sanders. 2018. K-truss decomposition for scale-free graphs at scale in distributed memory.
In 2018 IEEE High Performance extreme Computing Conference (HPEC). IEEE, 1-6.

William Reus. 2020. CHIUW 2020 Keynote: Arkouda: Chapel-Powered, Interactive Supercomputing for Data Science.
In Chapel Implementers and Users Workshop, 2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 650-650.

Shaden Smith, Xing Liu, Nesreen K Ahmed, Ancy Sarah Tom, Fabrizio Petrini, and George Karypis. 2017. Truss
decomposition on shared-memory parallel systems. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 1-6.

Chad Voegele, Yi-Shan Lu, Sreepathi Pai, and Keshav Pingali. 2017. Parallel triangle counting and k-truss identification
using graph-centric methods. In 2017 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1-7.
Abdurrahman Yasar, Sivasankaran Rajamanickam, Jonathan Berry, Michael Wolf, Jeffrey S Young, and Umit V
CatalyUrek. 2019. Linear algebra-based triangle counting via fine-grained tasking on heterogeneous environ-
ments:(Update on static graph challenge). In 2019 IEEE High Performance Extreme Computing Conference (HPEC).

CHIUW’2022, June 10, 2022, Virtual Du and Patchett, et al.

IEEE, 1-4.

10

	Abstract
	1 Introduction
	2 Algorithm Design
	2.1 Notation, Analysis, and Data Structure
	2.2 Novel Triangle Searching Kernels
	2.3 Naive K-Truss Parallel Algorithm
	2.4 Optimized K-Truss Parallel Algorithm
	2.5 Max K-Truss Parallel Algorithm

	3 Integration with Arkouda
	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

