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Abstract—Due to the emergence of massive real-world graphs,
whose sizes may extend to terabytes, new tools must be developed
to enable data scientists to handle such graphs efficiently. These
graphs may include social networks, computer networks, and
genomes. In this paper, we propose a novel graph package,
Arachne, to make large-scale graph analytics more effortless
and efficient based on the open-source Arkouda framework.
Arkouda has been developed to allow users to perform massively
parallel computations on distributed data with an interface
similar to NumPy. In this package, we developed a fundamental
sparse graph data structure and then built several useful graph
algorithms around our data structure to form a basic algorithmic
library. Benchmarks and tools were also developed to evaluate
and demonstrate the use of our graph algorithms. The graph
algorithms we have implemented thus far include breadth-first
search (BFS), connected components (CC), k-Truss (KT), Jaccard
coefficients (JC), triangle counting (TC), and triangle centrality
(TCE). Their corresponding experimental results based on real-
world and synthetic graphs are presented. Arachne is organized
as an Arkouda extension package and is publicly available on
GitHub (https://github.com/Bears-R-Us/arkouda-njit).

Index Terms—graph analytics, large-scale data, parallel algo-
rithm, open-source framework

I. INTRODUCTION

Graphs are widely used to represent real-world problems
in numerous domains, such as in the social sciences and in
biological and information systems. However, the increasing
scale of graphs prevents them from being analyzed by popular
exploratory data analysis tools, such as Python. Arkouda
[20], [21] is an open-source software framework created to
be a replacement for NumPy at scale in Python. Arkouda
is powered by Chapel [4] at the back-end with a front-
end facing Python interface. Chapel is an open source high-
level programming language designed for productive parallel
computing at scale. It enables the usage of distributed data
structures to easily spread data across many computing nodes
and their memories. It further provides a global namespace to
access all variables without knowing their physical memory
locations. Finally, Chapel code is typically easier to understand
with structures made specifically to facilitate data and task
parallelism.

The major objective of this research is to enable data scien-
tists to productively handle large-scale graphs that can only be
held by powerful back-end servers. In other words, we want
data scientists to be able to inspect large data as if they were

handling it locally on their personal computing devices. There
are many existing graph packages with similar objectives,
such as the Knowledge Discovery Toolbox (KDT) [19] and
GraphBLAS [16]. KDT also has a Python interface, but its
back-end compute engine is Combinatorial BLAS. Compared
with Combinatorial BLAS, Chapel can support productive and
flexible graph algorithm development. GraphBLAS provides a
linear algebra language for graph operations. However, data
scientists may find graph analytics more productive in Python
than through a linear algebraic interface.

This work aims to support large-scale graph analysis with
high efficiency by developing the Arachne package. More
knowledge and insights can be exploited from graph data
easily and efficiently. Without Arachne, data scientists can-
not handle real-world graphs productively because of scale,
performance, and code complexity.

The major contributions of this research are as follows:

1) A fundamental sparse graph data structure at the core of
Arachne is built in Chapel and integrated with Arkouda,
accessible through a Python front end.

2) Arachne contains typical graph analytical algorithms to
support productive graph analytics in Python, backed
by Chapel. These graph algorithms are organized in a
cohesive framework with all Chapel and Python code
available on GitHub.

3) Experimental results on real-world and synthetic graphs
that demonstrate the methods in Arachne.

II. GRAPH INFRASTRUCTURE DESIGN AND
DEVELOPMENT

In this section, we introduce the Double Index (DI) graph
data structure that is the backbone of Arachne. DI helps
users conduct large-scale graph analytics productively and
efficiently.

A. Graph Data Structure Design

Our graph infrastructure in Arachne focuses on large-scale,
and oftentimes sparse, real-world graphs. The compressed
sparse row (CSR) format is often and widely used to express
sparse graphs. However, CSR is a vertex-centric data structure
that cannot efficiently support edge-centric graph algorithms.
Therefore, we designed and developed a novel Double Index



data structure [10] that can efficiently support both vertex-
centric and edge-centric graph algorithms, and serves as the
core data structure in Arachne.

The graph data structure was developed into both the Python
front end and Chapel back end. We defined a graph class at
the Python front end to hold the graph metadata. The metadata
includes: (1) the graph name ID, which is used to access the
raw data at the back end; (2) the number of vertices and edges;
(3) and flags to signify if the graph is directed and/or weighted.
We also defined a graph query function graph_query to access
the raw data of a given graph. We can query the edge arrays
(source/destination of any edge), the vertex arrays (starting
position in the edge arrays and the number of neighbors of
any vertex), and the weight arrays (the weight of any edge).

We designed the corresponding graph class in Chapel at the
back end to build the complete graph in memory. We defined
an enumerated Chapel data type Component to keep names
of different graph parts and build a map between the names
and the corresponding data. The Component data type is very
flexible in expressing different parts of a graph. The specific
data organization can be changed in any way, but all graphs
can share the same abstract class description. We only needed
to develop three kinds of functions for each component: (1)
Checking if the such component exists. (2) Setting to store the
raw data in the component memory. (3) Querying to return
the raw data stored in the component memory. We utilized
the existing symbol table mechanism and developed a specific
graph symbol table entry class GraphSymEntry to maintain
graph objects. A one-to-one mapping between a graph name
ID and a graph object is built in the symbol table, and the
Python front end can query a graph component using a graph
name ID based on the symbol table.

Besides the default Chapel data array distribution, we devel-
oped another efficient edge-vertex-locale mapping mechanism
by providing a DomArray data structure, which can customize
the array size based on a user-specified Chapel domain, to
improve data access locality. The basic idea is shown in Fig. 1.
The degree distributions of real-world graphs are often highly
skewed. Therefore, edge-centric graph partitions may evenly
distribute the edges onto different locales/computing resources.
This method will help to achieve near-perfect load balance.

Furthermore, for all the edges assigned to a specific locale!
(a locale is a computing resource in Chapel), we may map the
corresponding vertices onto the same locale. This will cause an
irregular vertex array distribution. However, it can improve the
memory access locality when we employ some edge-centric
graph algorithms. We assign the workload based on the edge
distribution to improve load balancing and memory access
locality for all implemented graph algorithms in the package.

B. The Arachne Graph Toolkit

We have developed basic graph operations to form a
toolkit to support different applications of graph analytics.
The graph_file_read_mtx() Python function is used to read
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Fig. 1: Edge-centric sparse graph Edge-Vertex-Locale mapping
mechanism to improve memory access locality.

an “mtx” format graph file into the back end. A graph
must be built into memory before our toolkit can process
it. graph_file_read() is a similar Python function with high
flexibility. It can skip some head metadata parts to read the real
graph data. At the Chapel back-end, we use distributed arrays
to store the graph data when the Arkouda server is started with
more than one compute node. When this happens, parallel 10
will be employed, and each local array will only keep the
data owned by itself. For streaming graphs, we provide the
stream_file_read() to read a stream as a file and build the
corresponding graph sketch in the back end.

Many graph algorithms do not allow duplicated edges or
self-loops and the vertices usually must be labeled starting
from 0. We developed the graph_file_preprocessing() function
to clean the original graph. Besides removing the duplicated
edges and self-loops, we also have the following operations.
(1) If the Remap flag is set, we will map all the IV vertices in
the graph from 0 to N — 1. (2) If the DegreeSort flag is set,
we will relabel the vertex based on their degrees. (3) If the
RCM flag is set, we will preprocess the graph using the reverse
Cuthill-McKee algorithm. (4) If the AlignedArray flag is set,
we will further map the vertex arrays employing the Edge-
Vertex-Locale mechanism instead of the default distribution.

For benchmarking we also developed the rmat_gen() func-
tion to generate R-MAT graphs [3] based on user-given param-
eters. When we conduct graph analysis on R-MAT graphs, we
may use the provided function to generate the required graphs,
which all our integrated graph algorithms can then process.

III. IMPLEMENTATIONS OF TYPICAL GRAPH ALGORITHMS

This section introduces useful graph algorithms we have de-
veloped and implemented in Arachne. The development of the
algorithms take into account their implementation in Chapel.
Therefore, the explanations of their parallelism are framed
using Chapel’s lexical and code structures. Furthermore, each
algorithm has a corresponding benchmark file in the Arachne
framework that shows how they can be utilized from the



Python front end. More information on the benchmarks is
found in Section III-G.

A. Breadth First Search

Since breadth first search (BFS) is a very popular method
in graph analysis, we developed our BFS implementation [9]
in Chapel and integrated it into Arachne at the early stages of
development.

The major feature of our BFS implementation in Chapel is
taking advantage of the high-level data structure Distributed-
Bag® to manage the current frontier and the next frontier. Ver-
tices on different locales can be added into the DistributedBag
in a parallel-safe manner. This makes parallel programming
more efficient because we do not need to implement detailed
array insertions or appends at a low level.

The RCM preprocessing method provided by our prepro-
cessing function is used to improve the performance of BFS.
When using a distributed computing environment, each locale
will only work on the vertices whose edges are on that specific
locale. Through this workload balance we can take advantage
of the locality to extend the next frontier in parallel. The
irregular memory access pattern of BFS makes its performance
in a distributed computing environment often worse than that
of a shared-memory BFS counterpart. We believe this is due
to many remote fine-grained writes occurring during frontier
expansion [14]. This can be mitigated by implementing aggre-
gation when performing remote writes. However, this is out
of the scope of this work and will be revisited in later updates
to Arachne.

B. Connected Components

Building a connected components algorithm is rather easy
based on our implemented BFS method. However, the BFS
based method cannot achieve high performance for a large
graph with a large diameter. Therefore, we implemented the
FastSV algorithm [22] in Chapel to improve the performance
of the connected components method. FastSV involves iter-
ating over all the edges in a graph multiple times until con-
vergence. This edge-centric computational model is attractive
for our edge-based distribution data structure. Each locale can
process its edges independently to achieve good parallelism.

Furthermore, we simplified the three hooking methods in
the FastSV algorithm to reduce the total number of synchro-
nizations. At the same time, we designed a simple counter
data structure to check the convergence quickly instead of
employing two arrays to compute their difference.

C. K-Truss Analytics

The elemental kernel in K-Truss algorithms is finding all the
triangles in a graph. We developed a novel Parallel Minimum
Search triangle search kernel for Arachne that can significantly
reduce the total triangle search time for any algorithms that
rely extensively on triangle searching. Compared with the
widely used list intersection method, our Parallel Minimum
Search method can save many operations, and its performance
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is better than that of both the List Intersection [7] method, and
the directed graph-based method [I]. Based on this triangle
search kernel, we have implemented K-Truss, Max-Truss and
Truss Decomposition algorithms [8] for different kinds of
truss analysis. Furthermore, we employed a binary search-like
method in Max-Truss to reduce the total number of searches.
We utilize the results of K truss to accelerate the analysis of
K+1 truss in Truss Decomposition.

D. Jaccard Coefficient

The Jaccard Coefficient [17] is a graph analytic method
to expose the similarity between two vertices of a graph
in terms of the overlap of their neighboring vertices. For a
given vertex w, let Adj(w) be the adjacency list of w. Then,
Yu,v € Adj(w), we can increase the number of vertices in
common between u and v by 1. This “backwards” method
is implemented in Arachne based on our edge-centric graph
partitioning with high memory access locality. Currently, the
memory is not optimized for a highly sparse graph because we
will use N x N (IV is the total number of vertices) memory
to hold all of the coefficients. We are working on significantly
reducing the total memory and improving the locality by using
a hash-based method to discard most of the zero coefficients.

E. Triangle Counting

Arachne contains our implementations of the exact triangle
counting algorithm for static graphs and approximate triangle
counting algorithm for streaming graphs [10]. We built a
regression model for real-world graphs whose degrees follow
power-law distributions and synthetic graphs whose degrees
follow a normal distribution. Employing different regression
models for different degree distributions can improve the
accuracy of our approximate algorithm. In the Arachne toolkit,
based on their practical performance, we employ two triangle
counting methods from all the methods implemented in the
triangle centrality analysis. We chose to highlight the Parallel
Minimum Search-based and Path Merge-based triangle count-
ing algorithms because they are the top two fastest methods
for most of our test graphs.

F. Triangle Centrality

Triangle centrality [2] is a method to find the most important
vertices based on the concentration of triangles surrounding
each vertex. Based on our triangle counting algorithm, when
we find a new triangle, we not only update the number of
triangles of each vertex but also mark the three edges as true.
This lets us know that the vertices connected by a true edge
are connected to some triangle.

In Arachne, we reformed the triangle centrality formula
so that we only need to calculate two items: (1) the sum
of the number of triangles of the given vertex’s adjacency
list and itself, and (2) the sum of the number of triangles of
the given vertex’s neighbors that are connected by a triangle.
Through this, we can calculate the triangle centrality more
efficiently. Of course, all the triangle counting performance
optimization methods are also used in the triangle centrality
algorithm implementation.



G. Benchmarks

We have corresponding benchmarks implemented in Python
for all Arachne graph algorithms to evaluate their performance
and correctness. These graph benchmarks return the elapsed
time of the algorithm and check the correctness for different
inputs. For example, to evaluate the K-Truss algorithms, we
developed truss-setk.py, truss-max.py, and truss-deco.py to
evaluate one input graph or a batch of many graphs for
K-Truss, Max-Truss, and Truss Decomposition, respectively.
After we call the graph_file_read() to build the graph in mem-
ory, we call the graph_ktruss(Graphk) function to execute
different truss analyses. If the parameter value & > 0, then K-
Truss analysis algorithm will be called. If k==-1, then the Max-
Truss analysis algorithm is used. If k==-2, then we will call
the Truss Decomposition analysis algorithm at the back-end
to get the truss values of all edges. The proposed benchmarks
can also be utilized by a new user as a tutorial on how their
Python scripts or Jupyter notebooks should look like if they
are using Arachne and/or Arkouda for graph analysis.

IV. EXPERIMENTAL RESULTS

In this section, we provide the performance results of
Arachne’s algorithms on real-world and synthetic graphs.

A. Data Sets

The graphs used for experiments can be found in Table
I. Columns give the graph name, the number of edges, the
number of vertices, the number of connected components
in the graph, and the maximum value of K from Max-
Truss analysis. A mix of real-world and synthetic graphs was
utilized for the experiments. The real-world graphs represent
typical networks that typical data scientists may handle. These
real-world graphs consist of authorship, email, and social
networks. The largest real-world graph we used for testing
with “complete” (ignoring the unoptimized Jaccard coefficient)
results is friendster with about two billion edges and sixty-five
million vertices.

Real-world graphs often not only have a different number
of edges but different graph properties, such as diameters
and power-law exponents. We measured how those factors
can affect the performance of different graph algorithms. If
graphs have a similar pattern, we can see how the size of the
graphs can affect the algorithm’s performance. The Delaunay
synthetic graphs will double their number of edges with the
same topological structure. Therefore, Delaunay graphs are an
ideal synthetic benchmark to evaluate the algorithm scalability
when the number of edges increases.

B. Experimental Results

Experiments were conducted on a high-performance server
with 2 x Intel Xeon E5-2650 v3 @ 2.30GHz CPUs with 10
cores per CPU and a RAM capacity of 512GB.

Results in Table II are an average of over ten trials per data
set per algorithm. Except for the graph name, each column
is the execution time of different operations or algorithms.
We list the graph algorithms BFS, Connected Components

(Conn-Comps), Jaccard Coefficient (Jaccard), K-Truss, Max-
Truss, and Truss Decomposition (Truss-Dec). For Triangle
Counting, we give the results of two methods, one is the
minimum search-based method [8], and another is the merge-
path-based method [11]. We use the two methods to measure
the Triangle Counting (Tricnt-Min for minimum search-based
method and Tricnt-Merge for merge-path-based method) and
the corresponding Triangle Centrality (Trictr-Min for mini-
mum search method and Trictr-Merge for merge-path-based
method) algorithms.

TABLE I: Basic information for the graphs used for experi-
mentation.

Graphs Edges Vertices | CCs Triangles | Max K
ca-GrQc 14484 5242 | 354 48260 44
ca-HepTh 25973 9877 | 427 28339 32
as-caida20071105 53381 26475 1 36365 16
facebook_combined 88234 4039 1 1612010 97
ca-CondMat 93439 23133 | 567 173361 26
ca-HepPh 118489 12008 | 276 3358499 239
email-Enron 183831 36692 | 1065 727044 22
ca-AstroPh 198050 18772 | 289 1351441 57
loc-brightkite_edges 214078 58228 | 547 494728 43
soc-Epinions1 405740 75879 2 1624481 33
amazon0601 2443408 403394 7 3986507 11
com-Youtube 2987624 | 1134890 1 3056386 19
friendster 1806067135 | 65608366 1 | 4173724142 129
delaunayn10 3056 1024 1 2047 4
delaunaynl1l 6127 2048 1 4104 4
delaunayn12 12264 4096 1 8215 4
delaunayn13 24547 8192 1 16442 4
delaunayn14 49122 16384 1 32921 4
delaunaynl15 98274 32768 1 65872 4
delaunaynl6 196575 65536 1 131842 4
delaunayn17 393176 131072 1 263620 4
delaunaynl18 786396 262144 1 527234 4
delaunayn19 1572823 524288 1 1054626 4
delaunayn20 3145686 | 1048576 1 2109090 4
delaunayn21 6291408 | 2097152 1 4218386 4
delaunayn22 12582869 | 4194304 1 8436672 4
delaunayn23 25165784 | 8388608 1 16873359 4
delaunayn24 50331601 | 16777216 1 33746670 4

1) Graph Construction Time: First, we can see in Table II
that the time of building the graphs in Arachne is generally
much larger than the execution time of different algorithms.
However, once a graph is built in memory, the graph data
can be shared by all the graph algorithms implemented into
Arachne. Therefore, the cost of the graph construction can
be amortized by all the following analyses and querying
operations on the graph.

2) Execution time of Different Algorithms: For each graph,
in general, the execution time of Connected Components is the
shortest. However, the execution time of Jaccard Coefficients
is often the longest. This is expected because our highly
optimized Connected Components can work on all the edges
in parallel to quickly propagate the root vertex IDs of all the
components. The workload is balanced, and no idle threads
exist in this procedure. It will need at most log(%) iterations
on all the edges to converge, where M is the total number of
edges and P is the total number of parallel processors or cores.

However, calculating the Jaccard Coefficients will need NE—N
memory (if we keep all the coefficients) and about (%)2 X %

calculations to get all the Jaccard Coefficients, where N is the



TABLE II: Execution time (seconds) of different graph algorithms on real-world and synthetic graphs (‘-> means that the graph

cannot be held by current memory).

Graphs Graph Construction BFS | Conn-Comps | Tricnt-Min | Tricnt-Merge | Jaccard | Trictr-Min | Trictr-Merge K-Truss | Max-Truss | Truss-Dec
ca-GrQc 0.2641 0.0825 0.0066 0.0059 0.0059 | 0.0149 0.0066 0.0065 0.0032 0.0173 0.0143
ca-HepTh 04114 0.1128 0.0081 0.0052 0.0048 0.0443 0.0063 0.0058 0.0038 0.0209 0.0156
as-caida20071105 0.7743 0.1437 0.0122 0.0349 1.1407 | 0.6731 0.0381 1.1439 0.0186 0.0797 0.0397
facebook_combined 1.1833 0.0248 0.0094 0.2632 0.2954 | 0.0493 0.2645 0.2968 0.1539 0.5461 0.4720
ca-CondMat 1.2727 0.2101 0.0149 0.0279 0.0333 | 0.2309 0.0304 0.0358 0.0172 0.1311 0.0722
ca-HepPh 1.5751 0.1037 0.0148 0.4462 0.4898 | 0.1382 0.4489 0.4924 0.2748 0.4040 0.5768
email-Enron 24186 0.4124 0.0183 0.2207 0.4696 0.9165 0.2264 0.4746 0.1456 0.8673 0.3427
ca-AstroPh 2.5489 0.1431 0.0206 0.2122 0.2983 | 0.2599 0.2159 0.3021 0.1378 0.6402 0.4182
loc-brightkite_edges 2.6647 0.4336 0.0275 0.2213 0.3315 1.3466 0.2301 0.3400 0.1687 0.4883 0.3600
soc-Epinions1 5.0575 0.4074 0.0365 0.8237 1.8627 | 3.4277 0.8353 1.8745 0.5923 2.9999 1.1582
amazon0601 28.7435 2.1594 0.2645 0.6977 2.5684 - 0.7587 2.6287 0.6284 6.2614 1.8164
com-Youtube 36.0688 6.0387 04118 5.5000 16.0007 — 5.6162 16.1142 4.8273 12.8802 7.0787
friendster 12023.7931 | 362.7490 168.2291 | 19499.3154 34238.1467 — | 19529.4456 34268.2398 | 21155.3487 98481.9 31356.5
del yn10 0.0973 0.0111 0.0049 0.0006 0.0003 | 0.0011 0.0009 0.0006 0.0018 0.0080 0.0037
delaunaynll 0.1476 0.0157 0.0054 0.0008 0.0005 0.0025 0.0012 0.0008 0.0028 0.0126 0.0058
del ynl2 0.2365 0.0267 0.0068 0.0018 0.0010 | 0.0082 0.0023 0.0014 0.0046 0.0178 0.0096
del ynl3 0.4092 0.0493 0.0085 0.0035 0.0017 | 0.0281 0.0045 0.0026 0.0081 0.0317 0.0165
del ynl4 0.7222 0.0931 0.0132 0.0080 0.0033 | 0.0963 0.0098 0.0049 0.0153 0.0651 0.0312
del ynl5 1.3312 0.1791 0.0210 0.0148 0.0069 | 0.3496 0.0181 0.0098 0.0306 0.1296 0.0625
del ynl6 2.5501 0.3546 0.0355 0.0302 0.0119 1.2826 0.0367 0.0180 0.0640 0.3067 0.1306
del ynl7 4.9490 0.7023 0.0717 0.0525 0.0235 | 5.0781 0.0642 0.0346 0.1518 0.6710 0.3046
del ynl8 9.5101 1.3968 0.1244 0.0997 0.0544 - 0.1233 0.0760 0.4452 1.4655 0.7552
del yn19 18.6501 2.7768 0.2744 0.2140 0.1168 — 0.2681 0.1631 1.0228 3.3737 1.9792
del yn20 37.1980 5.5629 0.6024 0.4709 0.2289 - 0.5809 0.3286 2.8205 8.0215 5.4189
del yn21 73.5252 | 11.1037 1.2717 0.7893 0.4484 — 0.9756 0.6288 7.5073 22.0953 14.1159
delaunayn22 147.7980 22.1427 2.8730 1.6619 0.8573 - 2.0468 1.2239 36.4061 60.4223 37.8495
del yn23 295.7184 | 44.3626 6.7721 3.0825 1.6348 — 3.7533 2.2393 101.1284 166.3325 104.1138
del yn24 598.9867 | 88.3603 13.9053 6.7230 3.0720 - 8.1737 4.4086 306.1790 456.9431 | 315.1510
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Fig. 2: Execution time vs number of edges for real-world and synthetic graphs.

number of vertices. Triangle counting is the dominant part of
triangle centrality calculations, so most of triangle centrality’s
time goes towards triangle counting. The performance of BFS
is highly related to the graph’s diameter. A larger diameter
often means poor performance because limited parallelism can
be exploited. For Truss Analysis, K-Truss analysis is part of
Truss Decomposition. This means the execution time of K-
Truss will be smaller than that of Truss Decomposition. We use
estimated upper bound and binary search to find the maximum
K value. Since the estimated upper bound is often larger than
the exact maximum K, there will be some additional operations
for Max-Truss analysis. However, for a very large maximum

K value, the execution time of Truss Decomposition will be
larger than that of Max-Truss. The experimental results show
that when the estimated maximum K value is not very large,
we may choose Truss Decomposition to get the maximum K
value with better performance.

For the same algorithm on different real-world graphs, a
larger number of edges is not necessarily indicative of a
longer execution time. For example, facebook_combined has
more edges than as-caida20071105. Howeyver, it has a shorter
execution time for most graph algorithms (except the truss
analysis algorithms). This is due to facebook_combined having
much fewer vertices, and the access for different edges may



have higher locality. Arachne can take advantage of such
properties to improve performance. This example shows that
not only the scale but also the topology of a given graph can
greatly affect the performance of the same algorithm.

3) Algorithm Scalability: We use the Delaunay graphs to
show the scalability of our algorithms on the same topological
structure but for differently scaled graphs. We can see that
when the number of edges (workload) is doubled, the execu-
tion times of our algorithms in Arachne are approximately also
doubled for most of the cases. The execution time increases
almost linearly when the workload increases. This means that
no idle computing resources can be used to further improve
the performance, or our algorithms have already fully taken
advantage of the parallel resources. However, when the given
graph becomes very large, the execution time will increase
faster because memory becomes the major performance bot-
tleneck instead of computing resources.

In Fig. 2, we give the relationship between execution
time and the number of edges for both real-world graphs
and synthetic graphs. We can clearly see that the execution
time will increase linearly with the number of edges for the
same topological structure in the Delaunay synthetic graphs.
However, for real-world graphs, the relationship is often very
irregular because the topology and number of edges can both
affect the performance of a graph.

4) Most Edges Processed Per Second For Each Algorithm:
To finalize the discussion of our results, we will now list
the highest value of edges processed per second for each
of our algorithms. The best edges/second performance is as
follows. (1) Graph Construction: 150,208 edges per second
were processed for the friendster graph. (2) BFS: 4,978,834
edges per second were processed for the friendster graph. (3)
Conn-Comps: 11,107,035 edges per second were processed
for the soc-Epinions1 graph. (4) Tricnt-Min: 8,164,161 edges
per second were processed for the delaunayn23 graph. (5)
Tricnt-Merge: 16,759,420 edges per second were processed
for the delaunaynl7 graph. (6) Jaccard: 2,829,629 edges
per second were processed for the delaunaynlO graph. (7)
Trictr-Min: 6,704,921 edges per second were processed for
the delaunayn23 graph. (8) Trictr-Merge: 11,416,582 edges
per second were processed for the delaunayn24 graph. (9)
K-Truss: 6,889,389 edges per second were processed for
the ca-HepTh graph. (10) Max-Truss: 1,242,132 edges per
second were processed for the ca-HepTh graph. (11) Truss-
Dec: 1,663,869 edges per second were processed for the ca-
HepTh graph.

V. RELATED WORK

One of the earliest works that mimic a productive front
end with a highly parallel and compute-intensive back end is
Matlab*P (2.0) [5], [6]. It aimed to provide a user-friendly
interface for massive computations in the back end in an
embarrassingly parallel manner. Another approach that aims to
provide similar graph functionality is the Knowledge Discov-
ery Toolbox (KDT), which uses a combinatorial BLAS back
end with MPI that communicates with a Python front-end [19].

Our Arachne toolbox provides a few more options than theirs,
such as the ability to perform truss analytics and compute the
Jaccard coefficient of graphs.

GraphBLAS [16] is an application programming interface
(API) to express graph algorithms in the language of linear
algebra. It can be supported by different packages such as
SuitSparse [18]. Compared to our toolbox, we do not require
a data scientist to be aware of underlying linear algebra or
mathematical methods; all they need to know is how they can
use graph algorithms for their data analyses.

There are also graph packages in Chapel, such as the Chapel
Graph Library (CGL) [15] and the Chapel Hypergraph Library
(CHGL) [13]. In these packages, graphs are represented as
hypergraphs, allowing constant time conversion between them.
They use both the regular graph and hypergraph represen-
tations to drive their graph analytical algorithms. Our work
in Arachne differs by focusing on graph analytics and not
requiring some conversions to hypergraphs to fully carry out
graph algorithmic steps.

Of course, there are also graph toolboxes that are coded
solely in Python, such as NetworkX [12]. However, such
packages cannot handle very large graphs and the performance
is limited.

VI. CONCLUSION

A highly productive graph package and environment are
essential for data scientists to efficiently exploit the value
from big graph data. Thus, we present the Arachne toolkit for
interactive graph analytics at scale. On one hand, we hope data
scientists can use simple tools such as general programming
in Python. On the other hand, we hope this package can
provide very high performance for processing large graphs.
We take advantage of the open-source framework Arkouda to
build Arachne and integrate it into the Arkouda ecosystem to
achieve the above two essential and often conflicting objectives
of simplicity and large-scale analysis.

For future work with Arachne, we are going to integrate
more graph algorithms and improve their performance through
Chapel-based code and general algorithmic optimizations. Fur-
ther, this paper highlights the performance of our algorithms
in a shared-memory computational environment. However, to
truly handle massive file sizes, we need to further explore
the optimization methods of these algorithms in a distributed
(memory) computing environment.
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