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12 Abstract

13 It is well known in the literature that human behavior can change as a re-
14 action to disease observed in others, and that such behavioral changes can be
15 an important factor in the spread of an epidemic. It has been noted that hu-
16 man behavioral traits in disease avoidance are under selection in the presence
17 of infectious diseases. Here we explore a complimentary trend: the pathogen
18 itself might experience a force of selection to become less “visible”, or less
19 “symptomatic”, in the presence of such human behavioral trends. Using a
20 stochastic SIR agent-based model, we investigated the co-evolution of two
21 viral strains with cross-immunity, where the resident strain is symptomatic
22 while the mutant strain is asymptomatic. We assumed that individuals exer-
23 cised self-regulated social distancing (SD) behavior if one of their neighbors
2 was infected with a symptomatic strain. We observed that the proportion
25 of asymptomatic carriers increased over time with a stronger effect corre-
26 sponding to higher levels of self-regulated SD. Adding mandated SD made
27 the effect more significant, while the existence of a time-delay between the
28 onset of infection and the change of behavior reduced the advantage of the
29 asymptomatic strain. These results were consistent under random geometric
30 networks, scale-free networks, and a synthetic network that represented the
31 social behavior of the residents of New Orleans.

32 Keywords: Mandated social distancing; Self-regulated social distancing; Net-

;3 work; Viral evolution; Symptomatic variant; Asymptomatic variant
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1 Introduction

Epidemic spread of infectious diseases is a topic that has received much attention
among computational modelers, see e.g. [1-5]. One important aspect of this process
is the rise and spread of mutant variants of the pathogen [6-11]. For example, in
a spatially expanding epidemic, it was shown that less virulent strains will domi-
nate the periphery while more virulent strains will prevail at the core [12]. Tt has
also been observed that in epidemic models where infection events happen on an
interaction network, evolutionary dynamics of the pathogen change depending on
the structure of the network [13-16]. It has been shown, for example, that hetero-
geneities in contact structure (i.e. network degree) may accelerate the spread of
a single disease, and at the same time slow down the rise of a rare advantageous
mutation under susceptible-infected-susceptible (SIS) infection dynamics [17]. In
the context of spatial networks with host migration, it was reported that the spatial
network structure may have important effects on the transient evolutionary dynam-
ics during an epidemic [18]; in particular, the front and the rear of the expanding
epidemic are expected to be phenotypically different. Pinotti et. al. [19] studied the
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influence of the social network structure on competition dynamics of strains (with
identical parameters) that are spread via a stochastic SIS model on the network. It
was found that network structure can affect the ecology of pathogens: in a more
heterogeneous network, a reduction in the number of strains and an increase in the
dominance of one strain were observed, while strong community structure in the
social network increased the strain diversity.

Another relevant characteristic of epidemic dynamics that has been investigated
is the effect of human behavior on disease spread, see e.g. [20-23]. Different aspects
of human behavior have been considered, including relational exchange (e.g. re-
placement of sick individuals by healthy ones in the workplace) [24], people’s hygiene
[25], voluntary vaccination and vaccination compliance [26], “risky” versus “careful”
individual behavior [27-31], and the related concept of social distancing. Social dis-
tancing is a change of behavior that can roughly be classified into (1) self-regulated
(or spontaneous) where individuals may choose to limit their contacts based on in-
formation that they receive or on their personal beliefs [31-36]; and (2) mandated
(public), where the decrease in social contacts is regulated centrally and affects either
the entire population or certain subpopulations [37, 38]. The COVID19 pandemic
has triggered much research into the role of social distancing in viral spread, espe-
cially because before the advance of vaccination, non-pharmaceutical intervention
(NPI) measures were the only way of intervention available [39]. NPI policies have
taken a variety of forms such as extreme lock-downs, school closure, road and transit
systems restrictions, and mandatory isolation/ quarantine [40], see e.g. [41-51] on
the effects of mandated social distancing on SARS-CoV-2 spread. In a recent paper
[52] the authors considered the combination of both mandated and self-regulated
types of social distancing, and studied their effect on the outbreak threshold of an
(asymptomatic) infectious disease.

In this paper we explore the role of mandated and self-regulated social distanc-
ing on viral evolution. The focus of this study is the co-evolution of two types
of a pathogen, the resident, more symptomatic, pathogen, and an emerging, less
symptomatic (or asymptomatic), variant. The two may or may not differ in their
infectivity properties, but because they present differently, they will trigger different
behavior of the individuals, which may result in different levels of self-regulated so-
cial distancing. As a result, the less symptomatic variant may experience a selective
advantage. We will use the usual framework of the susceptible-infectious-removed
(SIR) model on networks, and investigate how the network structure (including
random networks of different types and a synthetic network representing social in-
teractions of real individuals) modifies the co-dynamics of the two viral strains.

2 Methods

The model includes the infection dynamics transmission and intervention strategies.
It is assumed that the disease spreads within a Susceptible-Infected-Removed (SIR)
framework. Dynamics take place on a network, and three different network types
are studied.
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2.1 Network structure

We assume that the epidemic spreads on a network of size N, where each node
represents a person, and the edges represent interactions. Here we study two types
of random, unweighted networks: the random geometric network, and the scale-free
network (with N = 10,000 nodes). Each of these networks represents a different
type of abstraction that retains certain features of human interactions. In addition
to these two types of random networks, we also studied disease spread on a real-
world synthetic network of a much larger size (N = 150,000), where the edges are
weighted by the time the two individuals spend together. This synthetic network
was constructed based on interaction data of people in New Orleans [53, 54].

Random Spatial-Geometric Network. This network is constructed by placing
N points in a unit square and connecting only the points that are within a prescribed
Euclidean distance, r, from each other. Such networks are characterized by a strong
local structure and clustering properties, and have been studied extensively in the
literature [55, 56]. Such networks could represent local social contacts of individuals
in the absence of any long-range connections.

Scale-free Network. This network is characterized by a power law degree distri-
bution. As a result, while most individuals only have a limited number of contacts,
there are “super-spreaders” of very high degrees [57, 58]. Examples of applications
of such networks are the number of sexual partners in a college environment [59] or
the network of a city with buildings (nodes) and flows of people as connecting edges
[60].

We use Networkx open software platform [61] to generate Spatial-Geometric
random networks in dimension 2 and and distance threshold » = 0.02. We also use
the Barabasi—Albert preferential attachment model in Networkx to generate scale-
free networks with degree distribution P(k) ~ k2. The random networks have the
same size and average degree, but they differ in terms of their degree distributions
and other properties, since they have different structures.

Each of these networks has advantages and disadvantages when used to model
epidemic spread in populations. Random spatial-geometric networks successfully
model clustering properties of human interactions but do not include long-range
connections or superspreaders. Superspreaders are a natural part of scale-free net-
works, but the latter network type has no clustering or neighborhood structure. For
these reasons we perform all the analyses for different network types, to investigate
whether observed phenomena depend on any particular network properties. Finally,
we implement the most realistic network in the study, the New Orleans synthetic
network, which is described below.

Real World Network. Our real world network is based on the synthetic data
generated by Simfrastructure [53, 54] for V = 150,000 synthetic people residing in
New Orleans. Simfrastructure is a high-performance, service-oriented, agent-based
modeling and simulation system for representing and analyzing interdependent in-
frastructures. In the New Orleans network, each edge 75 between two nodes i and
J is weighted by w;;, which represents the strength of connectivity between ¢ and j,
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and reflects the type of connection as well as the amount of time the two individuals
spend with each other.

2.2 SIR model on a network for two virus strains

In our stochastic Susceptible-Infectious- Removed (SIR) model superimposed on the
network, an individual 7 at time ¢ is either susceptible to being infected, infected,
or removed from the infection because of recovery or death. During a time-interval
At, an infected individual can infect any of their susceptible neighbors (that is,
susceptible individuals connected with them by an edge). We denote by [ the
infection rate per edge, such that during time At¢, the probability that a susceptible
individual j will be infected by an infected neighbor i is given by fw;;At. (Note
that for the random spatial and scale-free networks, we will use w;; = 1). For
each infected individual, a recovery event occurs during the time-interval At with
a probability vAt, or a death event occurs with a probability dAt, and we refer to
the rate of death or recovery as the rate of removal, p = v + 4.

We assume the existence of two distinct variants (strains) of the virus, which we
denote by V; and V5. Our model incorporates permanent cross-immunity for either
viruses, that is, if an individual is infected by virus k, then they are immune to
virus &’ for k' # k during their infection and after recovery (here k, k' € {1,2}). We
further assume that an individual infected with virus £ can only induce infection
with virus k, that is, we do not consider spontaneous mutations from one type of
virus to the other.

Unless noted otherwise, the two virus strains are assumed to have identical pa-
rameters, that is, the same values of /3,0, and . The only difference between the
two strains is that one (V}) causes a symptomatic disease, while the other (143) is
asymptomatic. This gives rise to differences in people’s behavior, as described in
the next subsection. Later on, we consider scenarios in which symptomatic infection
is coupled to a higher viral infectivity.

For initialization, we start the epidemic by randomly infecting one individual
with V3. We then advance the simulation until the epidemic grows to 0.1% V;-
infected individuals. At this time we introduce the next randomly generated newly
infected case as a V5 infection; this represents a single mutation event of the resident
strain. At this point, we reset the time to zero and use this state as the initial
condition to study the virus co-dynamics in the absence of any further mutant
generation.

Simulation speed depends on the size of time-step At, so it is desirable to pick
the largest value for At such that the simulations exhibit reasonable convergence
accuracy, see also [62]. We have implemented the program for the null scenario (no
social distancing) with At values representing 1 day, 1 hour, and 1 minute, and while
results differed significantly between At = 1 day and At = 1 hour, the the result for
At =1 hour and At = 1 minute were almost identical. Therefore, we chose At =1
hour for our simulations in this study.

2.3 Social distancing strategies

We model two types of social distancing (SD) strategies: (1) mandated SD imple-
mented by the government, and (2) self-regulated SD.



202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

Mandated SD is implemented as follows: when the prevalence of virus (i.e. the
fraction of infected individuals among the population) reaches a fixed threshold 1,
all individuals start practicing temporary social distancing. To this end, the fraction
o of all the edges in the network are removed for 73, consecutive days; connections
to be removed are chosen randomly.

Self-regulated SD is also implemented only if the number of infections has reached
the threshold prevalence v. If an individual has at least one neighbor that is symp-
tomatically infected with V; (after a delay 7, following infection), they remove frac-
tion og of their connections. The connections to be removed are chosen randomly,
and remain cut for as long as there is a symptomatically infected neighbor.

It is possible that fraction og or o), of connections is a non-integer number, K.
In this case, if [K] stands for K’s integer part, [K]+ 1 connections are removed with
probability K — [K], and [K] connections are removed otherwise.

2.4 Parameter values

The definitions of all the variables and parameters of the proposed model are given
in the table 1. The parameter values have been chosen to be realistic for respiratory
infections and are specified in the figure legends. Under these parameters, the basic
reproduction number comes out to be between 2 and 3 for the examples considered.

Notation Description Unit

N Number of nodes in the network People
Network Spatial network -
Parameters Scale-free random network -

Real world network -

Wij The connectivity level between two neighbors i and j 1

C Average number of contact per time for random networks Contact /time

Bk Prob. of Vj transmission per contact per time 1/contact
Infection p Per time removal (death or recovery) probability from virus & 1/time
Parameters 7 Time-period between getting infection and showing the symp- Time

toms for V) infected cases

P Prevalence threshold: Infection prevalence to start SD 1
Intervention o)y Mandated SD: fraction of removed contacts 1
Parameters og Self-regulated SD against V;: fraction of removed contacts 1

™ Duration of mandated SD Time

Table 1: Parameter and state variable definitions and notations.

To estimate the reproduction number Ry, starting with randomly selected indi-
vidual as initial infected case, we count the number of neighbors who get infected
from them during their infection period. We repeat this process for a large number of
independent simulations, seeding different initial infected individuals. Intervention
parameters will change based on different scenarios explored here, and are specified
in figure legends.
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3 Results: positive selection of the asymptomatic
strain on different networks

Here we explore the consequences of behavioral changes (self-regulated social dis-
tancing) on the spread of an asymptomatic viral strain. First this is done by us-
ing two types of abstract random networks, the scale-free and the random spatial
network. Both types of random networks have some features resembling different
aspects of human social networks. Then we show how similar scenarios play out on
a more realistic network that emulates the behavior of a real-life population of New
Orleans.

3.1 Self-regulated social distancing selects for an asymp-
tomatic strain

In our model, individuals in the population exercise self-regulated SD if members of
their circle become symptomatically infected (that is, become infected with V7). To
explore the consequence of this behavior on the evolutionary dynamics of asymp-
tomatic virus variants (V5), we ran simulations where such a mutant was introduced
as a minority in the initial stages of the epidemic, see figure 1. We explored the
dynamics on two different networks: scale-free (left panels) and spatial (right pan-
els); the trajectories presented are averages over 5000 independent simulations. We
present four different degrees of self-regulated SD: o5 = 0 (a control case where V;
is indistinguishable from V; in the model, and no selection is expected), o5 = 0.2
(low-degree self-regulated SD), o5 = 0.4 (moderate self-regulated SD), and g = 0.7
(high-degree self-regulated SD). As time goes by and the epidemic spreads, we plot
the prevalence of each virus (panels (16d) and (16f)), and also follow the relative
share of V5, that is Vl‘fv2 (panels (13d) and (13e)).

In the absence of self-regulated SD (black lines in panels (16d) and (16f)), the
epidemic on the two networks looks different despite similar Ry parameters: infection
burns through the scale-free network faster and reaches a higher infection peak, while
in the case of the spatial network it lasts longer at relatively low levels.

Under zero self-regulated SD (black lines in panels (13d) and (13e)), as expected,
the proportion of V, remains approximately constant throughout the course of the
epidemic, although we do observe an initial increase in the abundance of V5 in
the spatial network. This initial increase is due to a somewhat “advantageous”
initial location of the V5 infection. In the spatial network, it gets placed on the
“outskirts” of the growing infected neighborhood, which results in a larger mean
number of uninfected neighbors that Vs-infected individuals have compared to V;-
infected individuals. This initial increase of the proportion of V5 is therefore due to
the initial placement and does not represent an ongoing selection.

A different pattern is observed in the presence of self-regulated SD: the propor-
tion of V5 infected individuals increases well beyond the initial boost. This effect is
stronger for a larger extent of self-regulated SD (compare green (og = 0.7) to red
(05 = 0.4) to blue (05 = 0.2) lines in the bottom panels of figure 1). The exact
extent to which the fraction of V5 increases in the course of the epidemic depends,
besides og, on the network size and type. Larger networks will result in a larger
increase in V5 fraction, simply because they experience a larger and longer epidemic,
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Figure 1: The role of self-regulated SD in the spread of viruses. Time series
are shown for four scenarios of no (og = 0, black), low (os = 0.2, blue), moderate
(05 = 0.4, red), and high (0 = 0.7, green) self-regulated SD, in the absence of
mandated SD. Scale-free (left) and spatial (right) networks of 10,000 individuals
and average degree 10 are used. Panels (a, b) plot are the prevalence of V; (solid)
and V, (dashed); panels (c,d) show the proportion of V5 (Va/(Vi 4+ V3)). The rest
of the parameters are v + 0 = 0.1 per day, v» = 0.0012, 5 = [ = 0.028 per
day per contact for scale-free and f; = [y = 0.037 per day per contact for spatial
network (corresponding to Ry = 2.5). Means and standard errors are shown for
5000 stochastic realizations.



270

271

272

273

274

275

276

277

278

279

280

281

282

201

292

293

294

295

and V5 will have a longer time to gain on V] before the epidemic runs out of targets
(not shown); a similar result can be demonstrated by using an ODE model of an
SIR infection with two viral strains, see Appendix A.

We note a significant difference in the amount of gain experienced by the asymp-
tomatic strain under scale-free (panel (c)) and spatial (panel (d)) networks. Self-
regulated SD results in much more effective protection on a spatial network, because
if an individual has an infected neighbor, they are likely to have more than one in-
fected neighbor, and self-regulated SD induced by one of the neighbors will work
against future infections in the vicinity. This results in a much larger force of se-
lection experienced by the asymptomatic strain on a spatial network, compared to
the case of scale-free network, which does not have a community structure. More
details are presented in Appendix B.

3.2 Advantage mediated by self-regulated SD can off-set a
fitness cost of the asymptomatic strain

Figure 2 explores a scenario where the asymptomatic mutant, V5, has a fitness
cost compared to the resident virus, V;, which is manifested through a reduction
in the probability of transmission parameter. We can see that although having a
small disadvantage in [ reduces the fraction of V5, we still observe a rise in the
prevalence of V5 caused by self-regulated SD against symptomatic cases. In other
words, the behavior-based selection mechanism can work even in the presence of a
degree of disadvantage in the transmissibility of the mutant compared to the resident
type. We observe that even in the presence of a significant disadvantage of virus
V5, self-regulated SD can provide enough pressure to lead to positive selection of
the asymptomatic virus. Again, we note a difference in the force of selection for the
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Figure 2: Selection for V, in the presence of a fitness cost. Time series of
proportion of V5 under moderate self-regulated SD, og = 0.4 (and with o), = 0),
are shown for 0% fitness cost (52 = [, black), 5% fitness cost (82 = 0.9504;, blue),
10% fitness cost (S = 0.981, red), and 15% fitness cost (52 = 0.850, green), for (a)
scale-free and (b) spatial networks. All the other parameters are as in Figure 1.
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asymptomatic strain under scale-free and spatial networks. In the case of a scale-free
network, (figure 2(a)) a 15% disadvantage of V, almost completely eliminates any
advantage gained through self-regulated SD. In the case of a spatial network (figure
2(b)), an asymptomatic strain with a 15% fitness costs still rises to almost 90% in
the population.

3.3 Mandated social distancing makes selection stronger

Next, we explored the consequence of mandated SD implementation on the selection
for the asymptomatic strain. Mandated SD affects transmission of both viral strains
equally, and it is not immediately clear whether the presence of mandated SD can
modify the dynamics and change the advantage experienced by V5 through self-
regulated SD. Figure 3 assumes the presence of self-regulated SD at an intermediate
level, and shows that increasing the level of mandated SD increases the positive
selection pressure experienced by the asymptomatic strain. As a function of time,
the fraction of V; grows at the same rate for all levels of mandated SD (that is,
the initial slope of the fraction is defined by the level of self-regulated SD and
independent of the mandated SD). The dynamics are however different at later
times, where the peak of the V5 fraction is higher (and is reached later) for higher
levels of mandated SD. The reason for this event is that increasing mandated SD
results in a reduction in the reproduction number, Ry, which generally leads to a
longer, lower-level epidemic, so the fitter virus (V3) has a longer time to expand
relative to its symptomatic counterpart.

Once the epidemic is on the decline, the fraction of V, decreases (see Appendix
B; the same trend is observed for the spatial network on a longer time-scale, not
shown). Figure 3 shows that the fraction of the asymptomatic strain among all

Scale-free Network b Spatial Network

0.5 1

0 100 200 300 400
Time (days)

0 2‘0 4‘0 6‘0 8‘0 100

Time (days)
Figure 3: The effect of mandated SD on the proportion of V5. The proportion
of the asymptomatic strain, V5, is shown as a function time, for three different levels
of mandated SD: (a) Scale-free network, o, = 0 (black), oy = 0.2 (blue), and
oy = 0.4, with og = 0.4; (b) spatial network, oy = 0 (black), oy = 0.2 (blue),
and oy = 0.3 (red), with g = 0.2. All the other parameters are as in Figure 1.
The levels for mandated and self-regulated SD are selected in such a way that R,
remains above one so an outbreak for V; is observed.
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infected individuals increases with the level of mandated SD. A similar result is
demonstrated in an ODE SIR model for two viral strains, see Appendix A, figure
8(a). In the ODE model, we could not directly include a network structure or
details of mandated or self-regulated SD. Instead, to gain indirect insights into the
system of interest, we investigated the co-dynamic of two strains in a population with
complete mixing, where strain V5 was characterized by a larger fitness compared to
strain V. This was achieved explicitly by increasing V5’s infectivity, and represents
fitness differences due to self-regulated SD. Keeping the relative fitness of the strains
fixed, we reduced the overall fitness of both strains (this mimics degrees of mandated
SD, which reduces the infectivity of both strains equally). It was shown that the
lower the overall viral fitness, the larger the proportion of V5 among the infected
population that is achieved.

3.4 The effect of time-lag on V5-selection

04 Scale-free Network b . Spatial Network
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Figure 4: The effect of delay of self-regulated SD on selection of V5. The
proportion of V5 is shown as time series for (a) scale-free and (b) spatial networks,
in the presence of time delay. The different colors correspond to the time-delay of
0,1, ..., 5 days. Here g = 0.4, o)y = 0.0, and the rest of the parameters are as in
figure 1.

All the simulations shown so far assumed that self-regulated SD behavior was
triggered in an individual as soon as a Vj-infected individual became infectious;
i.e. there is no pre-symptomatic infection period and the infection status is known
instantly. In reality, however, there could be a delay between a neighbor’s infection
and a change in the individual’s behavior, caused by a delayed onset of symptoms,
delayed testing, or a lag in information spread. Figure 4 explores the scenario where
a number of days passes between an infection event and the time when self-regulated
SD starts.

We can see that a delay reduces positive selection experienced by the asymp-
tomatic strain. Under scale-free networks, for the parameters in figure 4, in the
presence of a 5-day lag, an increase in the fraction of V5 is almost completely elim-
inated. Again, because the positive selection for V5 is much stronger under spatial
networks, we still observe a significant rise in the fraction of V5, in panel (b) even in
the presence of a 5-day delay in protection.
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3.5 Co-dynamics of strains on New Orleans social network

So far we have investigated the co-dynamics of viral strains on two random networks,
scale-free and spatial. Both of them reflect different features of human interaction
networks, but possess many very different mathematical properties. All the major
results were consistent for both networks. As the next step, we will use a real-world
network to demonstrate that the same trends continue to hold there.

104 T

e

10°
>
1<
o 10?2
3
o
v
w
10t
1} b 4
T
| —— Network before School Closure L
100{ —*— Network after School Closure .
10! 102
Degree

Figure 5: Degree distribution of the New Orleans synthetic network. Red:
the basic network; black: the network under school closure (see Appendix D). The
network includes 150,000 nodes and has average degree 15.82 (with average degree
12.67 under school closure).

The synthetic network that we employ here was constructed to statistically match
the demographics of New Orleans residents, based on the 2009 census data. Of ap-
proximately 400, 000 residents living in 190, 000 households, the synthetic network’s
sample contains 150,000 individuals. These individuals comprise the set of net-
work’s nodes, and the edges represent contacts of synthetic individuals through
some activity types, such as “home”, “work”, “school”; “shopping”, etc. The net-
work statistically reflects the social connections of the city’s population. Each edge
of the network is labeled with one of the activity types and contains information on
the amount of time spent on these contacts per day, resulting in a weighted network
[53, 54]. We assumed that the amount of time of contact to cause an infection event
is 15 minutes (or 0.01 of day, which is based on COVID19 infection [63]); therefore,
we removed all edges with the weight less than 0.01. The resulting network has av-
erage degree 15.82 and average clustering coefficient 0.32. The degree distribution
of this synthetic network is shown in figure 5. To further parameterize the model,
we chose the same removal probability as in the random networks studied above,
and adjusted the probability of transmission to obtain Ry = 2.5.

Figure 6 presents the time series of prevalence of the two viruses and the propor-
tion of V5 under different levels of self-regulated SDs, in the absence of mandated
SD. As established with the two types of random networks, the presence of self-
regulated SD confers selective advantage to the asymptomatic virus strain, V5. We
observe that self-regulated SD at level og = 0.4 reduces the peak of the symptomatic
strain, V7, to less than a half, and at level 0g = 0.7 it reduces the peak of V; by
about a factor of 10, while the impact on the peak of V5 is a lot more modest. The
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proportion of V5 in the right panel of figure 6 increases to a peak, and this effect
is stronger for higher levels of self-regulated SD. These results are consistent with
those obtained for the random networks.
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Figure 6: New Orleans Network of size 150,000 individuals: the role of
self-regulated SD in the spread of viruses. Time series are shown for four
scenarios of no (og = 0, black), low (05 = 0.2, blue), moderate (0s = 0.4, red), and
high (o5 = 0.7, green) self-regulated SD, in the absence of mandated SD. Panel (a)
plot is the prevalence of V; (solid) and V5 (dashed); panel (b) shows the proportion
of Vo (Vo/(Vi +V3)). B1 = B = 0.2 and all the other parameters are as in figure
1 (corresponding to Ry = 2.5). Means and standard errors are shown for 1000
stochastic realizations.

Figure 7 explores the effect of mandated SD in the presence of an intermediate-
level self-regulated SD, og = 0.4. Again, the results are consistent with those
observed for random networks. Increasing the level of mandated SD can make the
selection for V5 significantly stronger.

4 Discussion

It has been reported in the literature that human behavior can change as a reaction
to disease observed in others, see e.g. [64—69]. It has further been emphasized that
such behavioral changes can be an important factor in epidemic spread, e.g. in the
context of sexually transmitted diseases [70, 71], or more generally [20-23]. It has
been noted that human behavioral traits in disease avoidance are under selection in
the presence of infectious diseases [28]. Here we explore a complimentary trend: the
pathogen itself might experience a force of selection to become less “visible”, or less
“symptomatic”, in the presence of such human behavioral trends.

We used a discrete-time stochastic network model to investigate the spread of
two co-circulating virus strains, one of which (V}) is symptomatic and the other
(V3) asymptomatic. The resident strain (V]) is assumed to give rise to a mutant
strain (V5) sometime during the epidemic. Three types of networks are studied:
scale-free and spatial random networks, and a real-world synthetic network statisti-
cally describing social activity of individuals in New Orleans. We implemented two
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Figure 7: New Orleans Network of size 150,000 individuals: the role of
mandated SD in the spread of viruses. Time series are shown for four scenarios
of no (op = 0, black), low (o), = 0.2, blue), moderate (op = 0.4, red), and high
(op = 0.6, green) mandated SD, in the presence of moderate self-regulated SD
(05 = 0.4). Panel (a) plot is the prevalence of V; (solid) and V5 (dashed); panel (b)
show the proportion of V3 (Vo/(V1+V32)). 1 = B2 = 0.2 and all the other parameters
are as in figure 1 (corresponding to Ry = 2.5). Means and standard errors are shown
for 1000 stochastic realizations.

types of social distancing, self-regulated SD and mandated SD. Under mandated so-
cial distancing, individuals cut a given fraction of their contacts randomly, while in
self-regulated social distancing, individuals opt to protect themselves based on their
contacts’ infection status. More precisely, individuals cut some of their connections
randomly if they find a symptomatically infected individual among their contacts.

We observed that in the presence of self-regulated protection against symp-
tomatic cases (self-regulated SD), the proportion of asymptomatic carriers increased
over time with a stronger effect corresponding to higher levels of self-regulated SD.
Adding mandated SD made the effect more significant: the proportion of V5 in-
creased for a longer duration of time and reached a higher maximum in the presence
of mandated SD. Interestingly, the intensity of these trends was higher for spatial
(more homogeneous and clustered) networks compared with the scale-free network,
which was a result of more local infection spread and community structure. When
the simulations were repeated for the real-world social network based on the New
Orleans data, the selection effect was more similar to that observed for the scale-free
than for the spatial network.

The selection effects observed could be weakened, e.g., by the existence of an
inherent fitness disadvantage of V5 (as a result for example of a lower infectivity of
this strain), or by a time-delay that exists between the onset of infection V; and the
change of behavior triggered under self-regulated SD. Nonetheless we have shown
that even in the presence of these factors the selective advantage of the asymp-
tomatic strain resulting from human behavior can still be significant and lead to a
noticeable shift in the prevalence of this virus type.
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While our model suggests that cautious human behavior can select for a virus
variant that is less symptomatic, this selection pressure can in principle also lead to
more complex outcomes. A similar advantage would be gained if the onset of symp-
toms was delayed and if the host could transmit the virus during this prolonged pre-
symptomatic phase. Such a virus variant would also evade the behavioral reduction
of network connections, yet this variant does not have to be less symptomatic or be
less pathogenic. This might be at work to some extent with the SARS-CoV-2 delta
variant, which is characterized by a longer window between testing positive and de-
veloping symptoms compared to previous variants [72]. Although the delta variant
appears to produce higher viral loads than previous variants [73], which alone can
lead to a significant transmission advantage, the longer duration of an infectious
pre-symptomatic phase of delta can lead to a strong amplification of this advantage
if people adjust their behavior in response to symptomatic social contacts. This
might be an important contributor to the rapid rise of this variant across the globe.

The model presented here is a simplification of reality. Modeling human behavior
is challenging, and here we ignored many complexities by for example assuming that
individuals remove connections probabilistically when learning of a symptomatically
infected individual among their circle. This approach does not distinguish between
agents’ acquaintances and random contacts such as encounters in a supermarket. It
also ignores demographic and socioeconomic factors that may be linked to adopting
new behaviors to avoid getting infected. In addition, a static network of contacts
has been assumed while in reality individuals may not have the same contacts every
time unit. While further modeling efforts might address some of these shortcomings,
the present model is a demonstration of principle, and not an attempt to quantita-
tively predict the dynamics.

Despite these uncertainties, our analysis shows robustly that human behavior
in response to an infection outbreak can modulate the evolutionary trajectory of
the virus. In particular, a cautious reaction of people to personal contacts that
display symptomatic disease can promote the emergence of virus strains that induce
less symptomatic disease. While we have not modeled one particular infection, the
modeling approach is geared to describing generic respiratory infections that are
transmitted through casual social contact, and therefore has implications for the
current SARS-CoV-2 pandemic.
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ODE modeling

SIR models based on ordinary differential equations are an important tool in epi-
demiological infection studies [74], and they have been widely used for various emerg-
ing infections such as COVID19 [75]. Here we denote by x the fraction of susceptible
individuals, and distinguish between two strains of infection, V; and V5. The frac-
tion of individuals infected with V; is denoted by y; and the fraction of individuals
infected with V5 is denoted by 1y,. We assume that an individual cannot be super-
infected with a different virus, and that recovered individuals cannot be infected
anymore. This gives rise to the following system:

Tt = —x(fryr + Baye), (1)
v = 61y — Vs (2)
Y2 = xLoYs — VY2, (3)
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77

with initial conditions

z(0) =xo, 11(0) =v10, ¥2(0) = yao.

Here (8, and 35 are the rate of infection for the two strains, and  the rate of removal.
Let us denote by z the proportion of the individals infected with V5:

_ Y2
YL+ Y2

This quantity satisfies the following equation:

z=2(1-2)(B = Bz, (4)

In particular, if the two strains are neutral to each other (5; = (2) then the fraction
z is expected to stay constant. It will increase if 8, > [; and decrease if £ < ;.
Let us consider the problem where V5, is an advantageous mutant (8 > (1), which
is initially in a minority, that is, ys9 << y19. We note that in this case, z will
be an increasing function of time. Its initial growth is exponential with the rate
approximately given by S — 1 (assuming that = ~ zo ~ 1). As z decreases, the
growth slows down. Two extreme scenarios can be distinguished, see figure 8:

(1) z approaches 1 well before x decreases significantly; in this case the dynamics
of z is well described by the logistic growth model.

(2) The epidemic ends well before z approaches 1, in which case near the epidemic
end, the growth of z becomes linear with the rate approximately given by
(B2 — P1)T s, Where 1 — z, is the final epidemic size.

We observe that larger overall values of Ry correspond to a more modest expansion
of the advantageous virus V5 (assuming that the % advantage is fixed; it is for
example 10% in figure 8).

In this context, it is useful to calculate the value

Too = lim x(t).
t—o0

If By = B4, the we have the following final size relation:

Too = 67%(17%0),
which is an implicit formula for x.,. In the case of two different pathogens, if we
denote Ry = maw{%, %}, we have [76]

2(0) _ Ro

Too  2(0)

A

Ba
(2(0) = 7o) + =

y1(0) + 792(0)-

The ODE model can be used to calculate the proportion of V5 by the end of the
epidemic. Figure 9 shows an example where we fixed the values 8; and s, such
that V5 has a 10% advantage in terms of infectivity, and also assumed that y»(0) =
0.1y1(0). Parameters v and y;(0) were varied over a wide range, which corresponds
to varying R, (associated with the resident virus) and the total population size
relative to the initial number of infected individuals. Panel (a) illustrates the way
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Figure 8: The fraction of an advantageous virus, Va. (a) The quantity z(¢) obtained by
solving equations (1-3) is plotted as a function of time for several values of Ry, obtained by changing
the death rate, a. (b) The corresponding susceptible populations as functions of time. The rest of
the parameters are 3 = 0.1, 82 = 0.11,y7(0) = 0.001, y2(0) = 0.1y; (0).
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Figure 9: Fraction of V; at the end of the epidemic. (a) Calculation of t.,,4, which represents
the end of the epidemic, is illustrated. The blue line is the fraction of susceptible individuals, z(t),
obtained as a solution of equations (1-3); tenqg = 2t1, where t1 corresponds to z(t1) = %(x(O) +Zoo)-
In other words, at time ¢; the population of susceptible individuals reaches halfway to its final
value, Zo,. (b) Quantity y2/(y1 + y2) obtained by solving equations (1-3), is plotted at time tcpq,
as a function of the initial proportion of individuals infected with V;, and Ry. The rest of the

parameters are 51 = 0.1, 82 = 0.11,32(0) = 0.1y, (0).
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we numerically calculate the end of epidemic time, t.,4, and panel (b) shows the
fraction of V5 at time t.,4 as a function of Ry and log,, y1(0).

We observe that typically, increasing Ry leads to a smaller final fraction of V5. For
relatively large Ry values, the fraction of susceptible individuals decreases quickly
leading to an extremely slow linear growth of the fraction z(¢). On the other hand,
decreasing y;(0) (which is equivalent to considering larger total populations) leads to
an increase in the final fraction of V5. Larger populations result in a longer epidemic,
and V5 consequently has a longer time to gain on V;.

B Further details of viral co-dynamics

In figure 1, as well as others (such as figures 3 and 2), we observe that the fraction of
V5 often has a one-humped shape: it first increases to a peak and then decreases as
the epidemic dwindles down. This is a phenomenon that does not have an analogy
in the simple ODE model, (1-3). Equation (4) for the fraction suggests that the
proportion of V5 always increases if fo > ;. On the other hand, in the agent-
based models for symptomatic virus V; and its asymptomatic counterpart, V5, we
observe that, both for scale-free and spatial networks, the numerical gain of V5
eventually decreases. This is related to the epidemic duration of the two strands:
the advantageous virus experiences a shorter epidemic, and this effect increases
with the amount of advantage. Figure 10 shows that the time it take V5 to reach its
infection peak is shorter compared to that for V4, and as we increase the level of self-
regulated SD (thus increasing the advantage of V5), the difference in the peak time
grows. Therefore, there is a time-interval during which the amount of V5 infection
already decreases while V; still grows towards its peak, resulting in a reduction in
the V5 fraction.

80

‘ ‘ ; ; ; ; »
—e— V) (Scale free network) —o- Vi (New Orleans network) »
—e— T4 (Scale free network) —o- V3 (New Orleans network)’

Time to reach the peak

I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
gs

Figure 10: Time to reach infection peak for viruses Vi (blue) and Vi(red), as a
function of og (the measure of V, advantage).

Note that this is not observed in the ODE system and also was less pronounced
in more clustered spatial network. In ODE model, the peak of infection y; is reached
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when g; = 0, which corresponds to the time ¢; when = = %, for i € {1,2}. Since
z(t) is a decreasing function and Sy > (1 (in analogy with self-regulated SD), we
necessarily conclude that t, > t;, that is, the epidemic corresponding to a more
infectious type is always longer.

C The effect of mandated social distancing: an
ODE analysis

We can use ODE modeling of the type (1-3) to explore the effect of mandated SD
on the dynamics of the asymptomatic strain. In the presence of self-regulated and
mandates SD of strengths og and o), respectively, we can express the infectivity of
the two viral strains as

fr=Q0-om)1—0g)B, P2=(1—0ou)b>p

In the model presented here we assume that strain 2 is introduced at a relatively low
level compared to strain 1. This can be viewed as a delay of the epidemic caused
by virus 2, relative to the epidemic wave of virus 1. To gain understanding of the
dynamics, here we assume that the 2nd strain is introduced after the 1st strain has
already burned through the population. This means that the initial conditions for
the 2nd virus are defined by the final epidemic size of the 1st infection. The latter
is given by

zy = lim z(¢),
t—o00

where
1 = —pirv,
o= B — Y,
21 = Y,

and the initial conditions are x1(0) = o, 41(0) = Yo, 21(0) = 0. The final epidemic
size is given by [69, 77]

_ v
Z1 = ——Inu, 5)
1= ©)
where u is the solution of
B
Inu=—(xu—-1), 0<u<l. (6)
f)/

The fraction of susceptible individuals left by the first epidemic is then given by
t—o0

Note that Z; is a decreasing function of ; (the higher the infectivity, the fewer
susceptibles are left). The second epidemic can then be described by the system

Ty = —[alays, (8)
Yo = [omays — VY2 = 'y, (9)
232 = Y2, (10>
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with the initial conditions imposed at some time 7" after the first wave of the epidemic
has passed: z2(T) = 1 = €,y2(T) = €, 22(T) = 0. The growth rate for the infected
individuals y, in equation (9) is given by

= —y=T1f— = 7B — 1.

l1—0 S
Note that this growth rate is positive only if the advantage of the virus (factor
1/(1 — og)) is sufficiently high.
We would like to investigate the dependence of the quantity I" on the mandated
distancing, which enters the expressions through 8; = (1 —o,/)3. To assess the sign
of the dependence, it is enough to consider the function

F = jflﬁl.

We can see that while z decreases with f;, it is not immediately clear whether the
product increases or decreases. From equations (5,(7),

:Elzl—i—llnu,
1

and we have iF p
v du
— =14+ -— 11
a5 s, (1

Differentiating equation (6) respect to (51 and resolving for du/df;, we obtain

du  u(l — xu)

d_ﬁl Braou —
Using this in (11), we obtain
dF (r—1)zou

= 12
dp, 1—razou’ (12)
where
B
r=.
7
First let us show that ]
1—rzou >0 u< —. (13)
TZo

To get an upper bound on u, we will use a well known inequality, (v —1)/u < Inu,
which, when substituted into (6), gives

u—1

< —-1).
” r(zou — 1)

For u < 1 this is equivalent to

7°+1—\/(r+1)2—47’x0

u <
2rxg

On the other hand, we have

1-— 1)2—-4 1
Tt VAGRE) r%<—<:>7“+1—\/(r+1)2—4m'0<2<:>0<47‘(1—x0),
2rxg X0
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where the last inequality follows from the fact that z( is the initial fraction of
susceptible individuals. Therefore, we conclude that inequality (13) holds.

To determine the sign of the derivative in (12), we notice that rxy > 1 (this is
the condition for the first epidemic to take off), and oy < 1. Therefore, r > 1, and
together with inequality (13), we obtain from (12) that

dF
— < 0.
dp

In other words, the growth rate of the mutant virus, I', decreases with ;. This
means that as mandated SD, o), increases, this leads to a decrease in (3;, which
in turn causes I' to increase. Thus, mandated SD increases the growth rate of a
delayed, advantageous infection.

D Co-dynamics of strains on New Orleans social
network under school closure

School closure is an important component of social distancing measures, which has
for example been implemented widely during the SARS-CoV-2 pandemic. Therefore,
we have repeated the analysis of Section 3.5 after removing all the edges related to
“school”. Degree distribution of the resulting network is shown in black in figure
5. We tuned up the transmission rates #; and 5 to have Ry = 2.5 and reran our
simulations on the new network, see figures 11 and 12.

In figure 11, we implemented the impact of various levels for self-regulated SD
(05 = 0,0.2,0.4, and 0.7) in the absence of mandated SD (o) = 0). Similar
to previous results, increasing the level of self-regulated SD causes more selective
advantage to the asymptomatic virus strain, V5.

Figure 12 explores the effect of mandated SD in the presence of an intermediate-
level self-regulated SD, og = 0.4. Again, and similar to the results of Section 3.5,
increasing the level of mandated SD causes that the selection for V5 to become
significantly stronger.

While the results for the New Orleans Network are qualitatively similar with
and without school closure, we notice that the effect of further SD measures on the
background of closed schools is stronger, since we start with a somewhat sparser
network.
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Figure 11: New Orleans Network under school closure: the role of self-
regulated SD in the spread of viruses. Time series are shown for four scenarios
of no (o = 0, black), low (0g = 0.2, blue), moderate (o5 = 0.4, red), and high
(05 = 0.7, green) self-regulated SD, in the absence of mandated SD. Panel (a) plot
is the prevalence of V; (solid) and V5 (dashed); panel (b) shows the proportion of
Vo (Vo/(Vi +V3)). 1 = B2 = 0.29 and all the other parameters are as in figure 1 in
the main text (corresponding to Ry = 2.5). Means and standard errors are shown
for 1000 stochastic realizations.
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Figure 12: New Orleans Network under school closure: the role of man-
dated SD in the spread of viruses. Time series are shown for four scenarios
of no (o = 0, black), low (o = 0.2, blue), moderate (o) = 0.4, red), and high
(opr = 0.6, green) mandated SD, in the presence of moderate self-regulated SD
(05 = 0.4). Panel (a) plot is the prevalence of V; (solid) and V, (dashed); panel
(b) show the proportion of V5 (Va/(Vi + V2)). Bi = B2 = 0.29 and all the other
parameters are as in figure 1 in the main text (corresponding to Ry = 2.5). Means
and standard errors are shown for 1000 stochastic realizations.
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E Sensitivity

In the section 3.3 we have observed that increasing mandated SD amplifies the im-
pact of self-regulated SD in pronouncing more asymptomatic strain V5 (the fraction
of the asymptomatic strain among all infected individuals increases with the level
of mandated SD). In determining if this result is parameter-dependent or not it is
necessary to know the relative importance of the different factors that may be re-
sponsible for this observed pattern. The two variant transmission and competition
in our model are directly related to transmission rate 8 and prevalence of resident
strain at its mutation time, that is, the prevalence of V; at the time of V5 intro-
duction (initial time). The second factor is especially important because it directly
affect the competition between two strains and the impact of mandated SD.

To determine the robustness of model predictions to these factors, we reran our
model for the six different scenarios of low transmission (8 = 0.0028 per day) or high
transmission (8 = 0.1 per day) along with three different proportional prevalence of
1L at initial time (5;533 = 10,100, and 500). In the Figure 13, we plot the impact
of different levels of mandated SD (op, = 0.0,0.2, and 0.4) for the fixed level of
self-regulated SD (og = 0.4) superimposed on scale-free network.

As shown, the observed pattern in section 3.3 is preserved when changing the
two mentioned parameters. Increasing “28; causes that Vj reaches its peak sooner
[78] and therefore, the proportion of V; stays higher for a longer time. On the other
hand, increasing transmission rate [ reduces the advantage of V5 as result of both
SDs. One striking result is that for high transmission rate (5 = 0.1) and high initial
ratio of V; (“2283 = 500), in spite of its increasing trend, the proportion of V; is very
low because of these parameter choices; at initial time the number of V] cases is
500 times more than that of V5 cases, and these infected cases can quickly transmit
V} to others due to high transmission rate. That is, before asymptomatic strain V5
has a chance to evolves in the network, symptomatic strain V; already took most of
the susceptible pool. But the increasing pattern we observe for proportion of V5 is
because of V; strain reaches its peak much earlier than V5 strain.
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Figure 13: The effect of mandated SD on the proportion of V, for scenarios
of low /high transmission rate and %g% = 10,100,500. The proportion of the
asymptomatic strain, V5, is shown as a %unction time, for six different levels of
mandated SD (o), = 0,0.2,0.4) and fixed positive level of self regulated SD (og =

0.4) on scale-free network: (a) 8 = 0.0028 per day and A% = 10; (b) 8 = 0.0028

V2(0)
per day and {‘2283 = 100; (c) B = 0.0028 per day and “2585 = 500; (d) 5 = 0.1 per
day and “gggg = 10; (e) 8 = 0.1 per day and “gggg = 100; and (f) 8 = 0.1 per day and
O — 500. All the other parameters are as in Figure 1. The levels for mandated

V2(0)
and self-regulated SD are selected in such a way that R, remains above one so an

outbreak for V] is observed.
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Figure 14: The effect of mandated SD on cumulative infection of
symptomatic strain for scenarios of low/high transmission rate and

%g% =10,100,500. The cumulative infection for symptomatic strain, V; + Ry, is

shown as a function time, for six different levels of mandated SD (o3, = 0,0.2,0.4)
and fixed positive level of self regulated SD (og = 0.4) on scale-free network: (a)

8 = 0.0028 per day and g;gg; = 10; (b) 8 = 0.0028 per day and g;gg; = 100; (c)

8 = 0.0028 per day and g;gg; = 500; (d) 8 = 0.1 per day and g;gg; —10; (¢) B =0.1

per day and “2583 = 100; and (f) g = 0.1 per day and “258; = 500. All the other
parameters are as in Figure 1.
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Figure 15: The effect of mandated SD on cumulative infection of
asymptomatic strain for scenarios of low/high transmission rate and

%(g% =10, 100,500. The cumulative infection for asymptomatic strain, Vo + Rp, is

shown as a function time, for six different levels of mandated SD (o3, = 0,0.2,0.4)
and fixed positive level of self regulated SD (05 = 0.4) on scale-free network: (a)

B = 0.0028 per day and “2% = 10; (b) 8 = 0.0028 per day and “258; = 100; (c)

8 = 0.0028 per day and gg = 500; (d) 8 = 0.1 per day and 2 = 10; (¢) 5 = 0.1

V2(0)
per day and g;gg; = 100; and (f) g = 0.1 per day and \‘28; = 500. All the other

parameters are as in Figure 1.
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Figure 16: The effect of self-regulated SD on cumulative infection of symp-
tomatic/asymptomatic strains for various network structures. The cumu-
lative infections for are shown as a function time, for four different levels of mself-
regulated SD (og = 0,0.2,0.4,0.7) and no mandated SD (o), = 0.0), superimposed
on (a) and (d) scale-free network; (b) and (e) spatial network; (c¢) and (f) New Or-
leans network. All the other parameters are as in Figure 1 for plots (a,b,d,e) and
Figure 6 for plots (c,f).
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