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Abstract12

It is well known in the literature that human behavior can change as a re-13

action to disease observed in others, and that such behavioral changes can be14

an important factor in the spread of an epidemic. It has been noted that hu-15

man behavioral traits in disease avoidance are under selection in the presence16

of infectious diseases. Here we explore a complimentary trend: the pathogen17

itself might experience a force of selection to become less “visible”, or less18

“symptomatic”, in the presence of such human behavioral trends. Using a19

stochastic SIR agent-based model, we investigated the co-evolution of two20

viral strains with cross-immunity, where the resident strain is symptomatic21

while the mutant strain is asymptomatic. We assumed that individuals exer-22

cised self-regulated social distancing (SD) behavior if one of their neighbors23

was infected with a symptomatic strain. We observed that the proportion24

of asymptomatic carriers increased over time with a stronger effect corre-25

sponding to higher levels of self-regulated SD. Adding mandated SD made26

the effect more significant, while the existence of a time-delay between the27

onset of infection and the change of behavior reduced the advantage of the28

asymptomatic strain. These results were consistent under random geometric29

networks, scale-free networks, and a synthetic network that represented the30

social behavior of the residents of New Orleans.31

Keywords: Mandated social distancing; Self-regulated social distancing; Net-32

work; Viral evolution; Symptomatic variant; Asymptomatic variant33

1



Contents34

1 Introduction 235

2 Methods 336

2.1 Network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

2.2 SIR model on a network for two virus strains . . . . . . . . . . . . . . 538

2.3 Social distancing strategies . . . . . . . . . . . . . . . . . . . . . . . . 539

2.4 Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

3 Results: positive selection of the asymptomatic strain on different41

networks 742

3.1 Self-regulated social distancing selects for an asymptomatic strain . . 743

3.2 Advantage mediated by self-regulated SD can off-set a fitness cost of44

the asymptomatic strain . . . . . . . . . . . . . . . . . . . . . . . . . 945

3.3 Mandated social distancing makes selection stronger . . . . . . . . . . 1046

3.4 The effect of time-lag on V2-selection . . . . . . . . . . . . . . . . . . 1147

3.5 Co-dynamics of strains on New Orleans social network . . . . . . . . 1248

4 Discussion 1349

A ODE modeling 2150

B Further details of viral co-dynamics 2451

C The effect of mandated social distancing: an ODE analysis 2552

D Co-dynamics of strains on New Orleans social network under school53

closure 2754

E Sensitivity 2955

1 Introduction56

Epidemic spread of infectious diseases is a topic that has received much attention57

among computational modelers, see e.g. [1–5]. One important aspect of this process58

is the rise and spread of mutant variants of the pathogen [6–11]. For example, in59

a spatially expanding epidemic, it was shown that less virulent strains will domi-60

nate the periphery while more virulent strains will prevail at the core [12]. It has61

also been observed that in epidemic models where infection events happen on an62

interaction network, evolutionary dynamics of the pathogen change depending on63

the structure of the network [13–16]. It has been shown, for example, that hetero-64

geneities in contact structure (i.e. network degree) may accelerate the spread of65

a single disease, and at the same time slow down the rise of a rare advantageous66

mutation under susceptible-infected-susceptible (SIS) infection dynamics [17]. In67

the context of spatial networks with host migration, it was reported that the spatial68

network structure may have important effects on the transient evolutionary dynam-69

ics during an epidemic [18]; in particular, the front and the rear of the expanding70

epidemic are expected to be phenotypically different. Pinotti et. al. [19] studied the71
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influence of the social network structure on competition dynamics of strains (with72

identical parameters) that are spread via a stochastic SIS model on the network. It73

was found that network structure can affect the ecology of pathogens: in a more74

heterogeneous network, a reduction in the number of strains and an increase in the75

dominance of one strain were observed, while strong community structure in the76

social network increased the strain diversity.77

Another relevant characteristic of epidemic dynamics that has been investigated78

is the effect of human behavior on disease spread, see e.g. [20–23]. Different aspects79

of human behavior have been considered, including relational exchange (e.g. re-80

placement of sick individuals by healthy ones in the workplace) [24], people’s hygiene81

[25], voluntary vaccination and vaccination compliance [26], “risky” versus “careful”82

individual behavior [27–31], and the related concept of social distancing. Social dis-83

tancing is a change of behavior that can roughly be classified into (1) self-regulated84

(or spontaneous) where individuals may choose to limit their contacts based on in-85

formation that they receive or on their personal beliefs [31–36]; and (2) mandated86

(public), where the decrease in social contacts is regulated centrally and affects either87

the entire population or certain subpopulations [37, 38]. The COVID19 pandemic88

has triggered much research into the role of social distancing in viral spread, espe-89

cially because before the advance of vaccination, non-pharmaceutical intervention90

(NPI) measures were the only way of intervention available [39]. NPI policies have91

taken a variety of forms such as extreme lock-downs, school closure, road and transit92

systems restrictions, and mandatory isolation/ quarantine [40], see e.g. [41–51] on93

the effects of mandated social distancing on SARS-CoV-2 spread. In a recent paper94

[52] the authors considered the combination of both mandated and self-regulated95

types of social distancing, and studied their effect on the outbreak threshold of an96

(asymptomatic) infectious disease.97

In this paper we explore the role of mandated and self-regulated social distanc-98

ing on viral evolution. The focus of this study is the co-evolution of two types99

of a pathogen, the resident, more symptomatic, pathogen, and an emerging, less100

symptomatic (or asymptomatic), variant. The two may or may not differ in their101

infectivity properties, but because they present differently, they will trigger different102

behavior of the individuals, which may result in different levels of self-regulated so-103

cial distancing. As a result, the less symptomatic variant may experience a selective104

advantage. We will use the usual framework of the susceptible-infectious-removed105

(SIR) model on networks, and investigate how the network structure (including106

random networks of different types and a synthetic network representing social in-107

teractions of real individuals) modifies the co-dynamics of the two viral strains.108

109

2 Methods110

The model includes the infection dynamics transmission and intervention strategies.111

It is assumed that the disease spreads within a Susceptible–Infected–Removed (SIR)112

framework. Dynamics take place on a network, and three different network types113

are studied.114
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2.1 Network structure115

We assume that the epidemic spreads on a network of size N , where each node116

represents a person, and the edges represent interactions. Here we study two types117

of random, unweighted networks: the random geometric network, and the scale-free118

network (with N = 10, 000 nodes). Each of these networks represents a different119

type of abstraction that retains certain features of human interactions. In addition120

to these two types of random networks, we also studied disease spread on a real-121

world synthetic network of a much larger size (N = 150, 000), where the edges are122

weighted by the time the two individuals spend together. This synthetic network123

was constructed based on interaction data of people in New Orleans [53, 54].124

Random Spatial-Geometric Network. This network is constructed by placing125

N points in a unit square and connecting only the points that are within a prescribed126

Euclidean distance, r, from each other. Such networks are characterized by a strong127

local structure and clustering properties, and have been studied extensively in the128

literature [55, 56]. Such networks could represent local social contacts of individuals129

in the absence of any long-range connections.130

Scale-free Network. This network is characterized by a power law degree distri-131

bution. As a result, while most individuals only have a limited number of contacts,132

there are “super-spreaders” of very high degrees [57, 58]. Examples of applications133

of such networks are the number of sexual partners in a college environment [59] or134

the network of a city with buildings (nodes) and flows of people as connecting edges135

[60].136

We use Networkx open software platform [61] to generate Spatial-Geometric137

random networks in dimension 2 and and distance threshold r = 0.02. We also use138

the Barabási–Albert preferential attachment model in Networkx to generate scale-139

free networks with degree distribution P (k) ∼ k−2.11. The random networks have the140

same size and average degree, but they differ in terms of their degree distributions141

and other properties, since they have different structures.142

Each of these networks has advantages and disadvantages when used to model143

epidemic spread in populations. Random spatial-geometric networks successfully144

model clustering properties of human interactions but do not include long-range145

connections or superspreaders. Superspreaders are a natural part of scale-free net-146

works, but the latter network type has no clustering or neighborhood structure. For147

these reasons we perform all the analyses for different network types, to investigate148

whether observed phenomena depend on any particular network properties. Finally,149

we implement the most realistic network in the study, the New Orleans synthetic150

network, which is described below.151

Real World Network. Our real world network is based on the synthetic data152

generated by Simfrastructure [53, 54] for N = 150, 000 synthetic people residing in153

New Orleans. Simfrastructure is a high-performance, service-oriented, agent-based154

modeling and simulation system for representing and analyzing interdependent in-155

frastructures. In the New Orleans network, each edge ij between two nodes i and156

j is weighted by ωij, which represents the strength of connectivity between i and j,157
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and reflects the type of connection as well as the amount of time the two individuals158

spend with each other.159

2.2 SIR model on a network for two virus strains160

In our stochastic Susceptible–Infectious- Removed (SIR) model superimposed on the161

network, an individual i at time t is either susceptible to being infected, infected,162

or removed from the infection because of recovery or death. During a time-interval163

∆t, an infected individual can infect any of their susceptible neighbors (that is,164

susceptible individuals connected with them by an edge). We denote by β the165

infection rate per edge, such that during time ∆t, the probability that a susceptible166

individual j will be infected by an infected neighbor i is given by βωij∆t. (Note167

that for the random spatial and scale-free networks, we will use ωij = 1). For168

each infected individual, a recovery event occurs during the time-interval ∆t with169

a probability γ∆t, or a death event occurs with a probability δ∆t, and we refer to170

the rate of death or recovery as the rate of removal, ρ = γ + δ.171

We assume the existence of two distinct variants (strains) of the virus, which we172

denote by V1 and V2. Our model incorporates permanent cross-immunity for either173

viruses, that is, if an individual is infected by virus k, then they are immune to174

virus k′ for k′ 6= k during their infection and after recovery (here k, k′ ∈ {1, 2}). We175

further assume that an individual infected with virus k can only induce infection176

with virus k, that is, we do not consider spontaneous mutations from one type of177

virus to the other.178

Unless noted otherwise, the two virus strains are assumed to have identical pa-179

rameters, that is, the same values of β, δ, and γ. The only difference between the180

two strains is that one (V1) causes a symptomatic disease, while the other (V2) is181

asymptomatic. This gives rise to differences in people’s behavior, as described in182

the next subsection. Later on, we consider scenarios in which symptomatic infection183

is coupled to a higher viral infectivity.184

For initialization, we start the epidemic by randomly infecting one individual185

with V1. We then advance the simulation until the epidemic grows to 0.1% V1-186

infected individuals. At this time we introduce the next randomly generated newly187

infected case as a V2 infection; this represents a single mutation event of the resident188

strain. At this point, we reset the time to zero and use this state as the initial189

condition to study the virus co-dynamics in the absence of any further mutant190

generation.191

Simulation speed depends on the size of time-step ∆t, so it is desirable to pick192

the largest value for ∆t such that the simulations exhibit reasonable convergence193

accuracy, see also [62]. We have implemented the program for the null scenario (no194

social distancing) with ∆t values representing 1 day, 1 hour, and 1 minute, and while195

results differed significantly between ∆t = 1 day and ∆t = 1 hour, the the result for196

∆t = 1 hour and ∆t = 1 minute were almost identical. Therefore, we chose ∆t = 1197

hour for our simulations in this study.198

2.3 Social distancing strategies199

We model two types of social distancing (SD) strategies: (1) mandated SD imple-200

mented by the government, and (2) self-regulated SD.201
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Mandated SD is implemented as follows: when the prevalence of virus (i.e. the202

fraction of infected individuals among the population) reaches a fixed threshold ψ,203

all individuals start practicing temporary social distancing. To this end, the fraction204

σM of all the edges in the network are removed for τM consecutive days; connections205

to be removed are chosen randomly.206

Self-regulated SD is also implemented only if the number of infections has reached207

the threshold prevalence ψ. If an individual has at least one neighbor that is symp-208

tomatically infected with V1 (after a delay τs following infection), they remove frac-209

tion σS of their connections. The connections to be removed are chosen randomly,210

and remain cut for as long as there is a symptomatically infected neighbor.211

It is possible that fraction σS or σM of connections is a non-integer number, K.212

In this case, if [K] stands for K’s integer part, [K]+1 connections are removed with213

probability K − [K], and [K] connections are removed otherwise.214

2.4 Parameter values215

The definitions of all the variables and parameters of the proposed model are given216

in the table 1. The parameter values have been chosen to be realistic for respiratory217

infections and are specified in the figure legends. Under these parameters, the basic218

reproduction number comes out to be between 2 and 3 for the examples considered.219

Notation Description Unit

N Number of nodes in the network People
Network Spatial network –
Parameters Scale-free random network –

Real world network –
ωij The connectivity level between two neighbors i and j 1
C̄ Average number of contact per time for random networks Contact/time

βk Prob. of Vk transmission per contact per time 1/contact
Infection ρ Per time removal (death or recovery) probability from virus k 1/time
Parameters τs Time-period between getting infection and showing the symp-

toms for V1 infected cases
Time

ψ Prevalence threshold: Infection prevalence to start SD 1
Intervention σM Mandated SD: fraction of removed contacts 1
Parameters σS Self-regulated SD against V1: fraction of removed contacts 1

τM Duration of mandated SD Time

Table 1: Parameter and state variable definitions and notations.

To estimate the reproduction number R0, starting with randomly selected indi-220

vidual as initial infected case, we count the number of neighbors who get infected221

from them during their infection period. We repeat this process for a large number of222

independent simulations, seeding different initial infected individuals. Intervention223

parameters will change based on different scenarios explored here, and are specified224

in figure legends.225
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3 Results: positive selection of the asymptomatic226

strain on different networks227

Here we explore the consequences of behavioral changes (self-regulated social dis-228

tancing) on the spread of an asymptomatic viral strain. First this is done by us-229

ing two types of abstract random networks, the scale-free and the random spatial230

network. Both types of random networks have some features resembling different231

aspects of human social networks. Then we show how similar scenarios play out on232

a more realistic network that emulates the behavior of a real-life population of New233

Orleans.234

3.1 Self-regulated social distancing selects for an asymp-235

tomatic strain236

In our model, individuals in the population exercise self-regulated SD if members of237

their circle become symptomatically infected (that is, become infected with V1). To238

explore the consequence of this behavior on the evolutionary dynamics of asymp-239

tomatic virus variants (V2), we ran simulations where such a mutant was introduced240

as a minority in the initial stages of the epidemic, see figure 1. We explored the241

dynamics on two different networks: scale-free (left panels) and spatial (right pan-242

els); the trajectories presented are averages over 5000 independent simulations. We243

present four different degrees of self-regulated SD: σS = 0 (a control case where V2244

is indistinguishable from V1 in the model, and no selection is expected), σS = 0.2245

(low-degree self-regulated SD), σS = 0.4 (moderate self-regulated SD), and σS = 0.7246

(high-degree self-regulated SD). As time goes by and the epidemic spreads, we plot247

the prevalence of each virus (panels (16d) and (16f)), and also follow the relative248

share of V2, that is V2
V1+V2

(panels (13d) and (13e)).249

In the absence of self-regulated SD (black lines in panels (16d) and (16f)), the250

epidemic on the two networks looks different despite similarR0 parameters: infection251

burns through the scale-free network faster and reaches a higher infection peak, while252

in the case of the spatial network it lasts longer at relatively low levels.253

Under zero self-regulated SD (black lines in panels (13d) and (13e)), as expected,254

the proportion of V2 remains approximately constant throughout the course of the255

epidemic, although we do observe an initial increase in the abundance of V2 in256

the spatial network. This initial increase is due to a somewhat “advantageous”257

initial location of the V2 infection. In the spatial network, it gets placed on the258

“outskirts” of the growing infected neighborhood, which results in a larger mean259

number of uninfected neighbors that V2-infected individuals have compared to V1-260

infected individuals. This initial increase of the proportion of V2 is therefore due to261

the initial placement and does not represent an ongoing selection.262

A different pattern is observed in the presence of self-regulated SD: the propor-263

tion of V2 infected individuals increases well beyond the initial boost. This effect is264

stronger for a larger extent of self-regulated SD (compare green (σS = 0.7) to red265

(σS = 0.4) to blue (σS = 0.2) lines in the bottom panels of figure 1). The exact266

extent to which the fraction of V2 increases in the course of the epidemic depends,267

besides σS, on the network size and type. Larger networks will result in a larger268

increase in V2 fraction, simply because they experience a larger and longer epidemic,269
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a b

c d

Figure 1: The role of self-regulated SD in the spread of viruses. Time series
are shown for four scenarios of no (σS = 0, black), low (σS = 0.2, blue), moderate
(σS = 0.4, red), and high (σS = 0.7, green) self-regulated SD, in the absence of
mandated SD. Scale-free (left) and spatial (right) networks of 10, 000 individuals
and average degree 10 are used. Panels (a, b) plot are the prevalence of V1 (solid)
and V2 (dashed); panels (c,d) show the proportion of V2 (V2/(V1 + V2)). The rest
of the parameters are γ + δ = 0.1 per day, ψ = 0.0012, β1 = β2 = 0.028 per
day per contact for scale-free and β1 = β2 = 0.037 per day per contact for spatial
network (corresponding to R0 = 2.5). Means and standard errors are shown for
5000 stochastic realizations.
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and V2 will have a longer time to gain on V1 before the epidemic runs out of targets270

(not shown); a similar result can be demonstrated by using an ODE model of an271

SIR infection with two viral strains, see Appendix A.272

273

We note a significant difference in the amount of gain experienced by the asymp-274

tomatic strain under scale-free (panel (c)) and spatial (panel (d)) networks. Self-275

regulated SD results in much more effective protection on a spatial network, because276

if an individual has an infected neighbor, they are likely to have more than one in-277

fected neighbor, and self-regulated SD induced by one of the neighbors will work278

against future infections in the vicinity. This results in a much larger force of se-279

lection experienced by the asymptomatic strain on a spatial network, compared to280

the case of scale-free network, which does not have a community structure. More281

details are presented in Appendix B.282

283

3.2 Advantage mediated by self-regulated SD can off-set a284

fitness cost of the asymptomatic strain285

Figure 2 explores a scenario where the asymptomatic mutant, V2, has a fitness286

cost compared to the resident virus, V1, which is manifested through a reduction287

in the probability of transmission parameter. We can see that although having a288

small disadvantage in β2 reduces the fraction of V2, we still observe a rise in the289

prevalence of V2 caused by self-regulated SD against symptomatic cases. In other290

words, the behavior-based selection mechanism can work even in the presence of a291

degree of disadvantage in the transmissibility of the mutant compared to the resident292

type. We observe that even in the presence of a significant disadvantage of virus293

V2, self-regulated SD can provide enough pressure to lead to positive selection of294

the asymptomatic virus. Again, we note a difference in the force of selection for the

a b

Figure 2: Selection for V2V2V2 in the presence of a fitness cost. Time series of
proportion of V2 under moderate self-regulated SD, σS = 0.4 (and with σM = 0),
are shown for 0% fitness cost (β2 = β1, black), 5% fitness cost (β2 = 0.95β1, blue),
10% fitness cost (β2 = 0.9β1, red), and 15% fitness cost (β2 = 0.85β1, green), for (a)
scale-free and (b) spatial networks. All the other parameters are as in Figure 1.

295
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asymptomatic strain under scale-free and spatial networks. In the case of a scale-free296

network, (figure 2(a)) a 15% disadvantage of V2 almost completely eliminates any297

advantage gained through self-regulated SD. In the case of a spatial network (figure298

2(b)), an asymptomatic strain with a 15% fitness costs still rises to almost 90% in299

the population.300

3.3 Mandated social distancing makes selection stronger301

Next, we explored the consequence of mandated SD implementation on the selection302

for the asymptomatic strain. Mandated SD affects transmission of both viral strains303

equally, and it is not immediately clear whether the presence of mandated SD can304

modify the dynamics and change the advantage experienced by V2 through self-305

regulated SD. Figure 3 assumes the presence of self-regulated SD at an intermediate306

level, and shows that increasing the level of mandated SD increases the positive307

selection pressure experienced by the asymptomatic strain. As a function of time,308

the fraction of V2 grows at the same rate for all levels of mandated SD (that is,309

the initial slope of the fraction is defined by the level of self-regulated SD and310

independent of the mandated SD). The dynamics are however different at later311

times, where the peak of the V2 fraction is higher (and is reached later) for higher312

levels of mandated SD. The reason for this event is that increasing mandated SD313

results in a reduction in the reproduction number, R0, which generally leads to a314

longer, lower-level epidemic, so the fitter virus (V2) has a longer time to expand315

relative to its symptomatic counterpart.316

Once the epidemic is on the decline, the fraction of V2 decreases (see Appendix317

B; the same trend is observed for the spatial network on a longer time-scale, not318

shown). Figure 3 shows that the fraction of the asymptomatic strain among all

a b

Figure 3: The effect of mandated SD on the proportion of V2V2V2. The proportion
of the asymptomatic strain, V2, is shown as a function time, for three different levels
of mandated SD: (a) Scale-free network, σM = 0 (black), σM = 0.2 (blue), and
σM = 0.4, with σS = 0.4; (b) spatial network, σM = 0 (black), σM = 0.2 (blue),
and σM = 0.3 (red), with σS = 0.2. All the other parameters are as in Figure 1.
The levels for mandated and self-regulated SD are selected in such a way that R0

remains above one so an outbreak for V1 is observed.

319
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infected individuals increases with the level of mandated SD. A similar result is320

demonstrated in an ODE SIR model for two viral strains, see Appendix A, figure321

8(a). In the ODE model, we could not directly include a network structure or322

details of mandated or self-regulated SD. Instead, to gain indirect insights into the323

system of interest, we investigated the co-dynamic of two strains in a population with324

complete mixing, where strain V2 was characterized by a larger fitness compared to325

strain V1. This was achieved explicitly by increasing V2’s infectivity, and represents326

fitness differences due to self-regulated SD. Keeping the relative fitness of the strains327

fixed, we reduced the overall fitness of both strains (this mimics degrees of mandated328

SD, which reduces the infectivity of both strains equally). It was shown that the329

lower the overall viral fitness, the larger the proportion of V2 among the infected330

population that is achieved.331

3.4 The effect of time-lag on V2-selection332

a b

Figure 4: The effect of delay of self-regulated SD on selection of V2V2V2. The
proportion of V2 is shown as time series for (a) scale-free and (b) spatial networks,
in the presence of time delay. The different colors correspond to the time-delay of
0, 1, . . ., 5 days. Here σS = 0.4, σM = 0.0, and the rest of the parameters are as in
figure 1.

All the simulations shown so far assumed that self-regulated SD behavior was333

triggered in an individual as soon as a V1-infected individual became infectious;334

i.e. there is no pre-symptomatic infection period and the infection status is known335

instantly. In reality, however, there could be a delay between a neighbor’s infection336

and a change in the individual’s behavior, caused by a delayed onset of symptoms,337

delayed testing, or a lag in information spread. Figure 4 explores the scenario where338

a number of days passes between an infection event and the time when self-regulated339

SD starts.340

We can see that a delay reduces positive selection experienced by the asymp-341

tomatic strain. Under scale-free networks, for the parameters in figure 4, in the342

presence of a 5-day lag, an increase in the fraction of V2 is almost completely elim-343

inated. Again, because the positive selection for V2 is much stronger under spatial344

networks, we still observe a significant rise in the fraction of V2 in panel (b) even in345

the presence of a 5-day delay in protection.346
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3.5 Co-dynamics of strains on New Orleans social network347

So far we have investigated the co-dynamics of viral strains on two random networks,348

scale-free and spatial. Both of them reflect different features of human interaction349

networks, but possess many very different mathematical properties. All the major350

results were consistent for both networks. As the next step, we will use a real-world351

network to demonstrate that the same trends continue to hold there.

Figure 5: Degree distribution of the New Orleans synthetic network. Red:
the basic network; black: the network under school closure (see Appendix D). The
network includes 150, 000 nodes and has average degree 15.82 (with average degree
12.67 under school closure).

352

The synthetic network that we employ here was constructed to statistically match353

the demographics of New Orleans residents, based on the 2009 census data. Of ap-354

proximately 400, 000 residents living in 190, 000 households, the synthetic network’s355

sample contains 150, 000 individuals. These individuals comprise the set of net-356

work’s nodes, and the edges represent contacts of synthetic individuals through357

some activity types, such as “home”, “work”, “school”, “shopping”, etc. The net-358

work statistically reflects the social connections of the city’s population. Each edge359

of the network is labeled with one of the activity types and contains information on360

the amount of time spent on these contacts per day, resulting in a weighted network361

[53, 54]. We assumed that the amount of time of contact to cause an infection event362

is 15 minutes (or 0.01 of day, which is based on COVID19 infection [63]); therefore,363

we removed all edges with the weight less than 0.01. The resulting network has av-364

erage degree 15.82 and average clustering coefficient 0.32. The degree distribution365

of this synthetic network is shown in figure 5. To further parameterize the model,366

we chose the same removal probability as in the random networks studied above,367

and adjusted the probability of transmission to obtain R0 = 2.5.368

Figure 6 presents the time series of prevalence of the two viruses and the propor-369

tion of V2 under different levels of self-regulated SDs, in the absence of mandated370

SD. As established with the two types of random networks, the presence of self-371

regulated SD confers selective advantage to the asymptomatic virus strain, V2. We372

observe that self-regulated SD at level σS = 0.4 reduces the peak of the symptomatic373

strain, V1, to less than a half, and at level σS = 0.7 it reduces the peak of V1 by374

about a factor of 10, while the impact on the peak of V2 is a lot more modest. The375
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proportion of V2 in the right panel of figure 6 increases to a peak, and this effect376

is stronger for higher levels of self-regulated SD. These results are consistent with377

those obtained for the random networks.

a b

Figure 6: New Orleans Network of size 150, 000150, 000150, 000 individuals: the role of
self-regulated SD in the spread of viruses. Time series are shown for four
scenarios of no (σS = 0, black), low (σS = 0.2, blue), moderate (σS = 0.4, red), and
high (σS = 0.7, green) self-regulated SD, in the absence of mandated SD. Panel (a)
plot is the prevalence of V1 (solid) and V2 (dashed); panel (b) shows the proportion
of V2 (V2/(V1 + V2)). β1 = β2 = 0.2 and all the other parameters are as in figure
1 (corresponding to R0 = 2.5). Means and standard errors are shown for 1000
stochastic realizations.

378

Figure 7 explores the effect of mandated SD in the presence of an intermediate-379

level self-regulated SD, σS = 0.4. Again, the results are consistent with those380

observed for random networks. Increasing the level of mandated SD can make the381

selection for V2 significantly stronger.382

4 Discussion383

It has been reported in the literature that human behavior can change as a reaction384

to disease observed in others, see e.g. [64–69]. It has further been emphasized that385

such behavioral changes can be an important factor in epidemic spread, e.g. in the386

context of sexually transmitted diseases [70, 71], or more generally [20–23]. It has387

been noted that human behavioral traits in disease avoidance are under selection in388

the presence of infectious diseases [28]. Here we explore a complimentary trend: the389

pathogen itself might experience a force of selection to become less “visible”, or less390

“symptomatic”, in the presence of such human behavioral trends.391

392

We used a discrete-time stochastic network model to investigate the spread of393

two co-circulating virus strains, one of which (V1) is symptomatic and the other394

(V2) asymptomatic. The resident strain (V1) is assumed to give rise to a mutant395

strain (V2) sometime during the epidemic. Three types of networks are studied:396

scale-free and spatial random networks, and a real-world synthetic network statisti-397

cally describing social activity of individuals in New Orleans. We implemented two398
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a b

Figure 7: New Orleans Network of size 150, 000150, 000150, 000 individuals: the role of
mandated SD in the spread of viruses. Time series are shown for four scenarios
of no (σM = 0, black), low (σM = 0.2, blue), moderate (σM = 0.4, red), and high
(σM = 0.6, green) mandated SD, in the presence of moderate self-regulated SD
(σS = 0.4). Panel (a) plot is the prevalence of V1 (solid) and V2 (dashed); panel (b)
show the proportion of V2 (V2/(V1+V2)). β1 = β2 = 0.2 and all the other parameters
are as in figure 1 (corresponding to R0 = 2.5). Means and standard errors are shown
for 1000 stochastic realizations.

types of social distancing, self-regulated SD and mandated SD. Under mandated so-399

cial distancing, individuals cut a given fraction of their contacts randomly, while in400

self-regulated social distancing, individuals opt to protect themselves based on their401

contacts’ infection status. More precisely, individuals cut some of their connections402

randomly if they find a symptomatically infected individual among their contacts.403

404

We observed that in the presence of self-regulated protection against symp-405

tomatic cases (self-regulated SD), the proportion of asymptomatic carriers increased406

over time with a stronger effect corresponding to higher levels of self-regulated SD.407

Adding mandated SD made the effect more significant: the proportion of V2 in-408

creased for a longer duration of time and reached a higher maximum in the presence409

of mandated SD. Interestingly, the intensity of these trends was higher for spatial410

(more homogeneous and clustered) networks compared with the scale-free network,411

which was a result of more local infection spread and community structure. When412

the simulations were repeated for the real-world social network based on the New413

Orleans data, the selection effect was more similar to that observed for the scale-free414

than for the spatial network.415

416

The selection effects observed could be weakened, e.g., by the existence of an417

inherent fitness disadvantage of V2 (as a result for example of a lower infectivity of418

this strain), or by a time-delay that exists between the onset of infection V1 and the419

change of behavior triggered under self-regulated SD. Nonetheless we have shown420

that even in the presence of these factors the selective advantage of the asymp-421

tomatic strain resulting from human behavior can still be significant and lead to a422

noticeable shift in the prevalence of this virus type.423

424
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While our model suggests that cautious human behavior can select for a virus425

variant that is less symptomatic, this selection pressure can in principle also lead to426

more complex outcomes. A similar advantage would be gained if the onset of symp-427

toms was delayed and if the host could transmit the virus during this prolonged pre-428

symptomatic phase. Such a virus variant would also evade the behavioral reduction429

of network connections, yet this variant does not have to be less symptomatic or be430

less pathogenic. This might be at work to some extent with the SARS-CoV-2 delta431

variant, which is characterized by a longer window between testing positive and de-432

veloping symptoms compared to previous variants [72]. Although the delta variant433

appears to produce higher viral loads than previous variants [73], which alone can434

lead to a significant transmission advantage, the longer duration of an infectious435

pre-symptomatic phase of delta can lead to a strong amplification of this advantage436

if people adjust their behavior in response to symptomatic social contacts. This437

might be an important contributor to the rapid rise of this variant across the globe.438

439

The model presented here is a simplification of reality. Modeling human behavior440

is challenging, and here we ignored many complexities by for example assuming that441

individuals remove connections probabilistically when learning of a symptomatically442

infected individual among their circle. This approach does not distinguish between443

agents’ acquaintances and random contacts such as encounters in a supermarket. It444

also ignores demographic and socioeconomic factors that may be linked to adopting445

new behaviors to avoid getting infected. In addition, a static network of contacts446

has been assumed while in reality individuals may not have the same contacts every447

time unit. While further modeling efforts might address some of these shortcomings,448

the present model is a demonstration of principle, and not an attempt to quantita-449

tively predict the dynamics.450

451

Despite these uncertainties, our analysis shows robustly that human behavior452

in response to an infection outbreak can modulate the evolutionary trajectory of453

the virus. In particular, a cautious reaction of people to personal contacts that454

display symptomatic disease can promote the emergence of virus strains that induce455

less symptomatic disease. While we have not modeled one particular infection, the456

modeling approach is geared to describing generic respiratory infections that are457

transmitted through casual social contact, and therefore has implications for the458

current SARS-CoV-2 pandemic.459
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A ODE modeling687

SIR models based on ordinary differential equations are an important tool in epi-688

demiological infection studies [74], and they have been widely used for various emerg-689

ing infections such as COVID19 [75]. Here we denote by x the fraction of susceptible690

individuals, and distinguish between two strains of infection, V1 and V2. The frac-691

tion of individuals infected with V1 is denoted by y1 and the fraction of individuals692

infected with V2 is denoted by y2. We assume that an individual cannot be super-693

infected with a different virus, and that recovered individuals cannot be infected694

anymore. This gives rise to the following system:695

ẋ = −x(β1y1 + β2y2), (1)

ẏ1 = xβ1y1 − γy1, (2)

ẏ2 = xβ2y2 − γy2, (3)
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with initial conditions

x(0) = x0, y1(0) = y10, y2(0) = y20.

Here β1 and β2 are the rate of infection for the two strains, and γ the rate of removal.
Let us denote by z the proportion of the individals infected with V2:

z =
y2

y1 + y2
.

This quantity satisfies the following equation:696

ż = z(1− z)(β2 − β1)x. (4)

In particular, if the two strains are neutral to each other (β1 = β2) then the fraction697

z is expected to stay constant. It will increase if β2 > β1 and decrease if β2 < β1.698

Let us consider the problem where V2 is an advantageous mutant (β2 > β1), which699

is initially in a minority, that is, y20 � y10. We note that in this case, z will700

be an increasing function of time. Its initial growth is exponential with the rate701

approximately given by β2 − β1 (assuming that x ≈ x0 ≈ 1). As x decreases, the702

growth slows down. Two extreme scenarios can be distinguished, see figure 8:703

(1) z approaches 1 well before x decreases significantly; in this case the dynamics704

of z is well described by the logistic growth model.705

(2) The epidemic ends well before z approaches 1, in which case near the epidemic706

end, the growth of z becomes linear with the rate approximately given by707

(β2 − β1)x∞, where 1− x∞ is the final epidemic size.708

We observe that larger overall values of R0 correspond to a more modest expansion709

of the advantageous virus V2 (assuming that the % advantage is fixed; it is for710

example 10% in figure 8).711

In this context, it is useful to calculate the value

x∞ ≡ lim
t→∞

x(t).

If β2 = β1, the we have the following final size relation:

x∞ = e−
β1
γ
(1−x∞),

which is an implicit formula for x∞. In the case of two different pathogens, if we
denote R0 = max{β1

γ
, β2
γ
}, we have [76]

ln
x(0)

x∞
=

R0

x(0)
(x(0)− x∞) +

β1
γ
y1(0) +

β2
γ
y2(0).

The ODE model can be used to calculate the proportion of V2 by the end of the712

epidemic. Figure 9 shows an example where we fixed the values β1 and β2, such713

that V2 has a 10% advantage in terms of infectivity, and also assumed that y2(0) =714

0.1y1(0). Parameters γ and y1(0) were varied over a wide range, which corresponds715

to varying R0 (associated with the resident virus) and the total population size716

relative to the initial number of infected individuals. Panel (a) illustrates the way717
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Figure 8: The fraction of an advantageous virus, V2V2V2. (a) The quantity z(t) obtained by
solving equations (1-3) is plotted as a function of time for several values of R0, obtained by changing
the death rate, a. (b) The corresponding susceptible populations as functions of time. The rest of
the parameters are β1 = 0.1, β2 = 0.11, y1(0) = 0.001, y2(0) = 0.1y1(0).

Figure 9: Fraction of V2V2V2 at the end of the epidemic. (a) Calculation of tend, which represents
the end of the epidemic, is illustrated. The blue line is the fraction of susceptible individuals, x(t),
obtained as a solution of equations (1-3); tend = 2t1, where t1 corresponds to x(t1) = 1

2 (x(0)+x∞).
In other words, at time t1 the population of susceptible individuals reaches halfway to its final
value, x∞. (b) Quantity y2/(y1 + y2) obtained by solving equations (1-3), is plotted at time tend,
as a function of the initial proportion of individuals infected with V1, and R0. The rest of the
parameters are β1 = 0.1, β2 = 0.11, y2(0) = 0.1y1(0).
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we numerically calculate the end of epidemic time, tend, and panel (b) shows the718

fraction of V2 at time tend as a function of R0 and log10 y1(0).719

We observe that typically, increasing R0 leads to a smaller final fraction of V2. For720

relatively large R0 values, the fraction of susceptible individuals decreases quickly721

leading to an extremely slow linear growth of the fraction z(t). On the other hand,722

decreasing y1(0) (which is equivalent to considering larger total populations) leads to723

an increase in the final fraction of V2. Larger populations result in a longer epidemic,724

and V2 consequently has a longer time to gain on V1.725

B Further details of viral co-dynamics726

In figure 1, as well as others (such as figures 3 and 2), we observe that the fraction of727

V2 often has a one-humped shape: it first increases to a peak and then decreases as728

the epidemic dwindles down. This is a phenomenon that does not have an analogy729

in the simple ODE model, (1-3). Equation (4) for the fraction suggests that the730

proportion of V2 always increases if β2 > β1. On the other hand, in the agent-731

based models for symptomatic virus V1 and its asymptomatic counterpart, V2, we732

observe that, both for scale-free and spatial networks, the numerical gain of V2733

eventually decreases. This is related to the epidemic duration of the two strands:734

the advantageous virus experiences a shorter epidemic, and this effect increases735

with the amount of advantage. Figure 10 shows that the time it take V2 to reach its736

infection peak is shorter compared to that for V1, and as we increase the level of self-737

regulated SD (thus increasing the advantage of V2), the difference in the peak time738

grows. Therefore, there is a time-interval during which the amount of V2 infection739

already decreases while V1 still grows towards its peak, resulting in a reduction in740

the V2 fraction.741
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Figure 10: Time to reach infection peak for viruses V1 (blue) and V2(red), as a
function of σS (the measure of V2 advantage).

Note that this is not observed in the ODE system and also was less pronounced742

in more clustered spatial network. In ODE model, the peak of infection yi is reached743
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when ẏi = 0, which corresponds to the time ti when x = γ
βi

, for i ∈ {1, 2}. Since744

x(t) is a decreasing function and β2 > β1 (in analogy with self-regulated SD), we745

necessarily conclude that t2 > t1, that is, the epidemic corresponding to a more746

infectious type is always longer.747

C The effect of mandated social distancing: an748

ODE analysis749

We can use ODE modeling of the type (1-3) to explore the effect of mandated SD
on the dynamics of the asymptomatic strain. In the presence of self-regulated and
mandates SD of strengths σS and σM respectively, we can express the infectivity of
the two viral strains as

β1 = (1− σM)(1− σS)β, β2 = (1− σM)β > β1.

In the model presented here we assume that strain 2 is introduced at a relatively low750

level compared to strain 1. This can be viewed as a delay of the epidemic caused751

by virus 2, relative to the epidemic wave of virus 1. To gain understanding of the752

dynamics, here we assume that the 2nd strain is introduced after the 1st strain has753

already burned through the population. This means that the initial conditions for754

the 2nd virus are defined by the final epidemic size of the 1st infection. The latter755

is given by756

z̄1 ≡ lim
t→∞

z1(t),

where757

ẋ1 = −β1x1y1,
ẏ1 = β1x1y1 − γy1,
ż1 = γy1,

and the initial conditions are x1(0) = x0, y1(0) = y0, z1(0) = 0. The final epidemic758

size is given by [69, 77]759

z̄1 = − γ

β1
lnu, (5)

where u is the solution of760

lnu =
β1
γ

(x0u− 1), 0 < u < 1. (6)

The fraction of susceptible individuals left by the first epidemic is then given by761

x̄1 ≡ lim
t→∞

x1(t) = 1− z̄1. (7)

Note that x̄1 is a decreasing function of β1 (the higher the infectivity, the fewer762

susceptibles are left). The second epidemic can then be described by the system763

ẋ2 = −β2x2y2, (8)

ẏ2 = β2x2y2 − γy2 ≡ Γy2, (9)

ż2 = γy2, (10)
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with the initial conditions imposed at some time T after the first wave of the epidemic
has passed: x2(T ) = x̄1 = ε, y2(T ) = ε, z2(T ) = 0. The growth rate for the infected
individuals y2 in equation (9) is given by

Γ ≡ x2β2 − γ ≈ x̄1β2 − γ =
1

1− σS
x̄1β1 − γ.

Note that this growth rate is positive only if the advantage of the virus (factor764

1/(1− σS)) is sufficiently high.765

We would like to investigate the dependence of the quantity Γ on the mandated
distancing, which enters the expressions through β1 = (1−σM)β. To assess the sign
of the dependence, it is enough to consider the function

F = x̄1β1.

We can see that while x̄ decreases with β1, it is not immediately clear whether the
product increases or decreases. From equations (5,(7),

x̄1 = 1 +
γ

β1
lnu,

and we have766

dF

dβ1
= 1 +

γ

u

du

dβ1
. (11)

Differentiating equation (6) respect to β1 and resolving for du/dβ1, we obtain

du

dβ1
=
u(1− x0u)

β1x0u− γ
.

Using this in (11), we obtain767

dF

dβ1
= −(r − 1)x0u

1− rx0u
, (12)

where

r =
β1
γ
.

First let us show that768

1− rx0u > 0⇔ u <
1

rx0
. (13)

To get an upper bound on u, we will use a well known inequality, (u− 1)/u < lnu,
which, when substituted into (6), gives

u− 1

u
< r(x0u− 1).

For u < 1 this is equivalent to

u <
r + 1−

√
(r + 1)2 − 4rx0
2rx0

.

On the other hand, we have

r + 1−
√

(r + 1)2 − 4rx0
2rx0

<
1

rx0
⇔ r+1−

√
(r + 1)2 − 4rx0 < 2⇔ 0 < 4r(1−x0),
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where the last inequality follows from the fact that x0 is the initial fraction of769

susceptible individuals. Therefore, we conclude that inequality (13) holds.770

To determine the sign of the derivative in (12), we notice that rx0 > 1 (this is
the condition for the first epidemic to take off), and x0 < 1. Therefore, r > 1, and
together with inequality (13), we obtain from (12) that

dF

dβ1
< 0.

In other words, the growth rate of the mutant virus, Γ, decreases with β1. This771

means that as mandated SD, σM , increases, this leads to a decrease in β1, which772

in turn causes Γ to increase. Thus, mandated SD increases the growth rate of a773

delayed, advantageous infection.774

D Co-dynamics of strains on New Orleans social775

network under school closure776

School closure is an important component of social distancing measures, which has777

for example been implemented widely during the SARS-CoV-2 pandemic. Therefore,778

we have repeated the analysis of Section 3.5 after removing all the edges related to779

“school”. Degree distribution of the resulting network is shown in black in figure780

5. We tuned up the transmission rates β1 and β2 to have R0 = 2.5 and reran our781

simulations on the new network, see figures 11 and 12.782

In figure 11, we implemented the impact of various levels for self-regulated SD783

(σS = 0, 0.2, 0.4, and 0.7) in the absence of mandated SD (σM = 0). Similar784

to previous results, increasing the level of self-regulated SD causes more selective785

advantage to the asymptomatic virus strain, V2.786

Figure 12 explores the effect of mandated SD in the presence of an intermediate-787

level self-regulated SD, σS = 0.4. Again, and similar to the results of Section 3.5,788

increasing the level of mandated SD causes that the selection for V2 to become789

significantly stronger.790

While the results for the New Orleans Network are qualitatively similar with791

and without school closure, we notice that the effect of further SD measures on the792

background of closed schools is stronger, since we start with a somewhat sparser793

network.794
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a b

Figure 11: New Orleans Network under school closure: the role of self-
regulated SD in the spread of viruses. Time series are shown for four scenarios
of no (σS = 0, black), low (σS = 0.2, blue), moderate (σS = 0.4, red), and high
(σS = 0.7, green) self-regulated SD, in the absence of mandated SD. Panel (a) plot
is the prevalence of V1 (solid) and V2 (dashed); panel (b) shows the proportion of
V2 (V2/(V1 + V2)). β1 = β2 = 0.29 and all the other parameters are as in figure 1 in
the main text (corresponding to R0 = 2.5). Means and standard errors are shown
for 1000 stochastic realizations.

a b

Figure 12: New Orleans Network under school closure: the role of man-
dated SD in the spread of viruses. Time series are shown for four scenarios
of no (σM = 0, black), low (σM = 0.2, blue), moderate (σM = 0.4, red), and high
(σM = 0.6, green) mandated SD, in the presence of moderate self-regulated SD
(σS = 0.4). Panel (a) plot is the prevalence of V1 (solid) and V2 (dashed); panel
(b) show the proportion of V2 (V2/(V1 + V2)). β1 = β2 = 0.29 and all the other
parameters are as in figure 1 in the main text (corresponding to R0 = 2.5). Means
and standard errors are shown for 1000 stochastic realizations.
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E Sensitivity795

In the section 3.3 we have observed that increasing mandated SD amplifies the im-796

pact of self-regulated SD in pronouncing more asymptomatic strain V2 (the fraction797

of the asymptomatic strain among all infected individuals increases with the level798

of mandated SD). In determining if this result is parameter-dependent or not it is799

necessary to know the relative importance of the different factors that may be re-800

sponsible for this observed pattern. The two variant transmission and competition801

in our model are directly related to transmission rate β and prevalence of resident802

strain at its mutation time, that is, the prevalence of V1 at the time of V2 intro-803

duction (initial time). The second factor is especially important because it directly804

affect the competition between two strains and the impact of mandated SD.805

To determine the robustness of model predictions to these factors, we reran our806

model for the six different scenarios of low transmission (β = 0.0028 per day) or high807

transmission (β = 0.1 per day) along with three different proportional prevalence of808

V1
V2

at initial time (V1(0)
V2(0)

= 10, 100, and 500). In the Figure 13, we plot the impact809

of different levels of mandated SD (σM = 0.0, 0.2, and 0.4) for the fixed level of810

self-regulated SD (σS = 0.4) superimposed on scale-free network.811

As shown, the observed pattern in section 3.3 is preserved when changing the812

two mentioned parameters. Increasing V1(0)
V2(0)

causes that V1 reaches its peak sooner813

[78] and therefore, the proportion of V2 stays higher for a longer time. On the other814

hand, increasing transmission rate β reduces the advantage of V2 as result of both815

SDs. One striking result is that for high transmission rate (β = 0.1) and high initial816

ratio of V1 (V1(0)
V2(0)

= 500), in spite of its increasing trend, the proportion of V2 is very817

low because of these parameter choices; at initial time the number of V1 cases is818

500 times more than that of V2 cases, and these infected cases can quickly transmit819

V1 to others due to high transmission rate. That is, before asymptomatic strain V2820

has a chance to evolves in the network, symptomatic strain V1 already took most of821

the susceptible pool. But the increasing pattern we observe for proportion of V2 is822

because of V1 strain reaches its peak much earlier than V2 strain.823
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Figure 13: The effect of mandated SD on the proportion of V2V2V2 for scenarios
of low/high transmission rate and V1(0)

V2(0)
= 10, 100, 500

V1(0)
V2(0)

= 10, 100, 500V1(0)
V2(0)

= 10, 100, 500. The proportion of the
asymptomatic strain, V2, is shown as a function time, for six different levels of
mandated SD (σM = 0, 0.2, 0.4) and fixed positive level of self regulated SD (σS =

0.4) on scale-free network: (a) β = 0.0028 per day and V1(0)
V2(0)

= 10; (b) β = 0.0028

per day and V1(0)
V2(0)

= 100; (c) β = 0.0028 per day and V1(0)
V2(0)

= 500; (d) β = 0.1 per

day and V1(0)
V2(0)

= 10; (e) β = 0.1 per day and V1(0)
V2(0)

= 100; and (f) β = 0.1 per day and
V1(0)
V2(0)

= 500. All the other parameters are as in Figure 1. The levels for mandated
and self-regulated SD are selected in such a way that R0 remains above one so an
outbreak for V1 is observed.
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Figure 14: The effect of mandated SD on cumulative infection of
symptomatic strain for scenarios of low/high transmission rate and
V1(0)
V2(0)

= 10, 100, 500
V1(0)
V2(0)

= 10, 100, 500V1(0)
V2(0)

= 10, 100, 500. The cumulative infection for symptomatic strain, V1 + R1, is

shown as a function time, for six different levels of mandated SD (σM = 0, 0.2, 0.4)
and fixed positive level of self regulated SD (σS = 0.4) on scale-free network: (a)

β = 0.0028 per day and V1(0)
V2(0)

= 10; (b) β = 0.0028 per day and V1(0)
V2(0)

= 100; (c)

β = 0.0028 per day and V1(0)
V2(0)

= 500; (d) β = 0.1 per day and V1(0)
V2(0)

= 10; (e) β = 0.1

per day and V1(0)
V2(0)

= 100; and (f) β = 0.1 per day and V1(0)
V2(0)

= 500. All the other
parameters are as in Figure 1.
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Figure 15: The effect of mandated SD on cumulative infection of
asymptomatic strain for scenarios of low/high transmission rate and
V1(0)
V2(0)

= 10, 100, 500
V1(0)
V2(0)

= 10, 100, 500V1(0)
V2(0)

= 10, 100, 500. The cumulative infection for asymptomatic strain, V2 + R2, is

shown as a function time, for six different levels of mandated SD (σM = 0, 0.2, 0.4)
and fixed positive level of self regulated SD (σS = 0.4) on scale-free network: (a)

β = 0.0028 per day and V1(0)
V2(0)

= 10; (b) β = 0.0028 per day and V1(0)
V2(0)

= 100; (c)

β = 0.0028 per day and V1(0)
V2(0)

= 500; (d) β = 0.1 per day and V1(0)
V2(0)

= 10; (e) β = 0.1

per day and V1(0)
V2(0)

= 100; and (f) β = 0.1 per day and V1(0)
V2(0)

= 500. All the other
parameters are as in Figure 1.
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Figure 16: The effect of self-regulated SD on cumulative infection of symp-
tomatic/asymptomatic strains for various network structures. The cumu-
lative infections for are shown as a function time, for four different levels of mself-
regulated SD (σS = 0, 0.2, 0.4, 0.7) and no mandated SD (σM = 0.0), superimposed
on (a) and (d) scale-free network; (b) and (e) spatial network; (c) and (f) New Or-
leans network. All the other parameters are as in Figure 1 for plots (a,b,d,e) and
Figure 6 for plots (c,f).
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