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Abstract. We consider spatial population dynamics on a lattice, following a
type of a contact (birth-death) stochastic process. We show that simple math-
ematical approximations for the density of cells can be obtained in a variety of
scenarios. In the case of a homogeneous cell population, we derive the cellular
density for a 2D spatial lattice with an arbitrary number of neighbors, including
the von Neumann, Moore, and hexagonal lattice [1]. We then turn our atten-
tion to evolutionary dynamics, where mutant cells of different properties can
be generated [2]. For disadvantageous mutants, we derive an approximation for
the equilibrium density representing the selection-mutation balance. For neutral
and advantageous mutants, we show that simple scaling (power) laws for the
numbers of mutants in expanding populations hold in 2D and 3D, under both
flat (planar) and range population expansion. These models have relevance
for studies in ecology and evolutionary biology, as well as biomedical applica-
tions including the dynamics of drug resistant mutants in cancer and bacterial
biofilms.

1 Introduction

Much has been said about the existence of laws in biology. Physicists in partic-
ular often feel that some beautiful (and hopefully simple) formal relations must
exist to help us navigate the complexities of life. Before we begin describing
some of our attempts to derive a number of mathematical laws for biological
population dynamics, one of us (NK) would like to express her eternal gratitude
to Professor Tribelsky, who was her teacher in the Physics Department, Moscow
State University in the beginning of 1990s. Without your advice and guidance,
I would not be what I am now. Your relentless optimism (often disguised) has
taught me to overcome whatever difficulties life posed. I always follow your
principle that problems (in life as well as in science) must be addressed at the
same pace, and not faster, than they are thrown at you (“IIpoGiiembr HyKHO
pemarh 1o Mepe ux nocrymienus"). Your “special course" delivered to the the-
oreticians from the Low Temperature Division, opened up a universe of diverse
phenomena that are at the same time fascinating and amenable to understand-
ing. You helped instill the sense of wonder at the beauty of the surrounding
world, and this has stayed with me no matter what subject matter I happened



Lattice Geometry | Density
Von Neumann 33_—_455
Moore 77_—3;5
Hexagonal %
Mass-action 1-6
Ny neighbors N]bv;iifg‘s

Table 1: Steady-state densities for different types of lattices, as well as the mass-
action system and a generalized, Np-neighbor system, see [1]. Here § = D/L,
the division-to-death rate ratio.

to focus on, from language evolution to virus dynamics.

In this paper we look for universal biological laws in the area of population
dynamics, which is an area relevant for studies in ecology and evolutionary biol-
ogy. A rich literature exists about the evolutionary dynamics of mutant spread
and invasion, investigating aspects such as fixation probabilities and fixation
times of different kinds of mutants in constant populations [3, 4] as well as mu-
tant dynamics in growing populations [5, 6, 7], where mathematical approaches
were motivated by the famous Luria-Delbruck experiments [8]. Traditionally,
much of this work has focused on well-mixed (non-spatial), homogeneous pop-
ulations. In a wide array of biological scenarios, however, cells and organisms
evolve in more complex settings, such as in spatially structured habitats (bacte-
rial biofilms, cells in tissues and tumors), and within heterogeneous population
structures (such as stem and more differentiated cells in tissues [9] or bacte-
ria with different degrees of specialization in biofilms [10, 11]). In the last 15
years, theoretical work has extended our understanding of mutant emergence in
spatially structured populations [12, 13, 14, 15, 16, 17, 18, 19, 20]. An excess
of mutational jackpot events was observed in spatial compared to well-mixed
systems; such events result from mutations arising at the surface of expanding,
spatially structured populations, surfing at the edge of range expansions, and
appearing as mutant “bubbles" or “slices”. These jackpot events have been im-
plicated in the finding that the average number of neutral mutants when the
total population reaches a given threshold size is significantly larger in spatial
compared to non-spatial settings [20]. Further work by our group [2] showed
that the evolutionary dynamics of mutants in spatially structured, expanding
populations are characterized by additional complexities.

In general, spatial population dynamics are significantly more complex com-



2D flat | 2D range | 3D flat | 3D range | Exponential
ol 2ol [ /
Mutant property | = A .- l.\ /
Disadvantageous | ulN ulN ulN ulN ulN
Neutral ulN? uN3/?2 uN? uN*/3 ulN In N
Advantageous ulN3 ulN? ulN* ulN? uN@e—D/a

Table 2: Mutant scaling laws for expanding populations, see [2]. Here N is the
population size, u is the mutation rate, and a > 1.

pared to the mass-action dynamics, and analytical approximations are not easily
derived. In this paper we describe two examples where our group has been suc-
cessful in obtaining analytical approximations for laws of spatial dynamics: (a)
Steady state density in space; and (b) Scaling laws for the number of mutants
in expanding populations.

(a) Analytical approximations for steady-state density. In [1], we con-
sidered the phenomenon of range expansion, the process in biology by which a
species spreads to new areas. We derived numerical methodology that allowed
for efficient computations of the number of individuals as the species expands
its range in space. In addition, we found approximations for the steady-state
density of populations, or the core density of expanding colonies, in several
cases, such as the von Neumann and Moore neighborhoods on a square lattice,
and for a honeycomb neighborhood on a hexagonal lattice, see table 1. For the
same death-to-birth ratio, the grid is more packed under the Moore neighbor-
hood, because of the availability of more neighbors per site. As a consequence,
the equilibrium density corresponding to the Moore neighborhood is higher and
closer to that of mass action. A general formula that provides an approxima-
tion for the steady-state density as a function of the number of neighbors is also
given (table 1). In this paper we provide a novel mathematical derivation of
these laws, which generalizes to any neighborood size (section 3).

(b) Laws of disadvantageous, neutral, and advantageous mutant spread
in different geometries. In [2]|, we studied the evolutionary dynamics of dis-
advantageous, neutral, and advantageous mutants in spatially expanding pop-
ulations, where the growing front was characterized by different symmetries in
2D and 3D, see table 2. In particular, while disadvantageous mutants grow
linearly with N (and differences among different cases are more subtle), neutral
mutants grow as a decreasing power of N as we go from 2D flat front (which is
essentially a 1D growth), to 2D and 3D range. There are always fewer neutral
or advantageous mutants in the mass action (exponentially growing) case com-
pared to any spatially restricted growth. Here (Sections 4 and 5) we provide a
derivation of these laws, which follows [2].

In the case of disadvantageous mutants, the number of mutants always scales



with the 1st power of N. In addition to this scaling law, for the case of disad-
vantageous mutants, we also derive an approximate expression for the number
of mutants in quasi steady state, given that the number of wild type cells is V:

DwLw(AD2, + 3D, Loy + Dy Ly )uN

tants =
7 mutants Dy (ADy, +3L0)(DimLw — DwLm)

(1)

see Section 4.1 We show that the proportion of mutants at selection-mutation
balance is higher for spatially distributed systems compared to well-mixed sys-
tems at equilibrium.

2 General set-up and agent-based modeling of
population dynamics

In order to describe spatial growth and turnover of cells, as well as population
dynamics of species, we will use a continuous time Markov process which is a
generalization of the usual birth-death process and a type of a contact process.
We will assume that individuals of one or two different types exist, which we
will call “wild type" and “mutant" individuals? At the core of the description
is a lattice that specifies possible locations of cells. This can be viewed as a
geometric network, where each node is connected with its neighbors. The state
space consists of different locations of the cells of the two types on the lattice.
Cells are characterized by division and death rate parameters, which are denoted
by L., and D,, for division and death rates of the wild-type cells, and L,, and
D,,, for division and death rates of mutants. In the case where only one type of
cells is considered, the notation is simply L and D for the two rates.

Each of the nodes can either be empty or contain one cell of either type.
During an infinitesimally small time-increment, At, a given wild-type cell can
attempt a division with probability L, and death with probability D,,. If
division is attempted, then an offspring is placed in one of the neighboring
locations, chosen randomly and uniformly; division only happens if the chosen
node is empty. The offspring cell is wild type with probability 1 —u and mutant
with probability u, where 0 < u < 1 is the mutation rate. Mutant cells divide
and die according to similar rules, except in the models considered here we
always assume that an offspring of a mutant cell is a mutant cell.

A number of biological phenomena can be studied by slight modifications
of this process. To study the growth laws in the absence [1| or presence [2]| of
mutants we assume an infinitely large grid. To study quasi-steady state (which
describes e.g. the turnover of cells in homeostasis) we make the grid finite and
impose relevant boundary conditions.

For numerical explorations of these processes, agent-based modeling (ABM)
is often used, see e.g. |21, 22, 23|. For example, consider a 2-dimensional ABM

IThis expression is valid for a 2D von Neumann grid, and can be generalized to other cases.
2T reflect the versatility of these models we will use both “individuals" and “cells" to refer
to the biological agents under consideration.



on a square grid with individuals of two types. A spot on the grid can be
empty or can contain a cell, which is either wild-type or mutant. At each time
step, the grid is randomly sampled N times, where N is the total number of
cells currently in the system. If the sampled cell is wild-type, the cell attempts
division (described below) with a probability proportional to L,, or dies with a
probability proportional to D,,. When reproduction is attempted, a target spot
is chosen randomly among the IV, nearest neighbors of the cell. A neighborhood
may contain e.g. N, = 4 cells (the Von Neumann neighborhood) or N, = 8
neighbors (the Moore neighborhood). If that spot is empty, the offspring cell
is placed there. If it is already filled, the division event is aborted.®> The
offspring cell is assigned wild type with probability 1 —w and it is a mutant with
probability u. If the sampled spot contains a mutant cell, the same processes
occur. Attempted division occurs with a probability o< L,,, and the cell dies
with a probability o< D,,. Initial and boundary conditions are determined by
the specific geometric setting investigated. For 2D spatial simulations, an n x n
square, or an n X w rectangular domain could be considered. At the boundaries
of the domain, a spot is assumed to have fewer neighbors, i.e more division
events will fail. The process starts with a single wild-type cell, placed e.g. into
the center of the grid. Simulations always stop before the boundary of the grid
is reached.

In what follows below we derive some approximations of important observ-
ables from these types of dynamics, which have a clear biological meaning. We
will discuss both single-type populations and the co-dynamics of wild-type and
mutant individuals.

3 Analytical approximations for steady-state den-
sity (a single type)

In this section we consider populations consisting of only a single cell type with
division and death rates L and D < L, and no mutations (u = 0).

3.1 Equilibrium density in space: an analytical method

The process of range expansion (colonization) is one of the basic types of bi-
ological dynamics, whereby a species grows and spreads outwards, occupying
new territories. Spatial modeling of this process is naturally implemented as
a stochastic ABM of the type described above, with individuals (in this case,
of only a singe type) occupying nodes on a rectangular grid, births and deaths
occurring probabilistically, and individuals only reproducing onto un-occupied
neighboring spots. This approach is known to be computationally expensive. In
[1], we derived a set of efficient computational tools which showed to be in good
agreement with the underlying stochastic process of spatial expansion. As part

3This modeling choice represents the assumption that the probability of divisions is reduced
under more crowded conditions. This is similar to the logistic growth term often used in
deterministic models.



of the method development, we were able to obtain approximate expressions
for the quasi-steady state (core) density of the individuals for different types of
grid. In [1], we provided the density formula for the contact process,

Ny —1- N6
=N Z1 5 (2)

where § = D/L and N, is the number of neighbors. This formula was derived
for several cases of Ny, but no general derivation that would work for a given
Ny, was supplied. Here we present such a derivation, starting with N, = 2 and
generalizing to any Njp.

In 1D, with only N, = 2 neighbors, equation (2) gives

1-25
p_ﬁ’ (3>

which, although a slight overestimation of the density, provides a good approxi-
mation. To derive this formula, consider a 1D ABM of the type described above.
At the equilibrium, denote by p; the probability that a cell is located next to
an existing cell, and py the probability that a cell is located next to an existing
empty spot. These two quantities can be estimated numerically.

A 1D realization of the population at a fixed moment of time can be viewed
as a Markov chain with states {0, 1}, where state 0 corresponds to the absence
of a cell at a given spot and state 1 denotes the presence of a cell at a given
spot. The transition probability matrix is given by

P = ( b1 1- yal )
Po 1—po
where Py is the probability that there is a cell on the right of a cell, P;s is the
probability that the spot on the right of a cell is empty, P»; is the probability
that there is a cell on the right of an empty spot, and Pss is the probability that
an empty spot is on the right of an empty spot. The steady state probability
distribution of this process is (p,1 — p), where p is the probability that a given
spot contains a cell. This can be found as the eigenvector corresponding to the
unit eigenvalue, and is given by

Po
= 4
P 1—p1+po )

This quantity (given the numerically calculated py and py) is a very good approx-
imation of the actual (numerical) density. Another way to derive this connection
between p and pg, p; is as follows:

p=pp1+ (1= p)po, (5)

where the left hand side is the probability to have a cell at a given point, the
first term of the right assumes that there is a cell to the left of that point (p),
and then the given point contains a cell with probability p;; and the second



term of the right assumes that there is no cell to the left of that point (1 — p),
and then the given point contains a cell with probability py. Solving this for p
gives expression (4).

Now, suppose that a cell is located at a given location. Then a cell is located
to the right of it (which we will call the focal location) with probability p;. We
have, after a single update of the contact process:

=) (5 +ny) o (1-3). ©)

The first term on the right assumes that there was no cell at the focal location
(1 — p1) but a cell on its left was chosen (probability 1/N) that divided to its
right (L/2) or that a cell on its right exists (probability pg), was chosen (1/N)
and divided to its left (L/2). The second term assumes that there was a cell at
the focal location (p;) and it did not die (1 — D/N). The equality follows from
the assumption of having an equilibrium.

Similarly, we can assume that there is no cell at a given location, then to its
right (the focal location) the probability to have a cell, py, satisfies:

po = (1 —Po)pO% + po (1 - f[) : (7)

The first term on the right assumes that there was no cell at the focal location
(1 — po) but a cell on its right exists (probability pg), was chosen (1/N) and
divided to its left (L/2). The second term assumes that there was a cell at the
focal location (pg) and it did not die (1 — D/N).

Solving equations (6) and (7) for py and p;, we obtain:

2D
=1-= =1-—.
P1 7 y, DPo T
Substituting this into formula (4), we obtain expression (3).
This analysis easily generalizes to other systems (including higher dimen-
sionalities), where the number of neighbors is given by N;. Instead of equations
(6) and (7), we have

o= (1-p) (ﬁb N _nl)pOL> % P (1 - N) ; (8)
P = (1—p0)%$+po <1—ff). (9)

Solving this system, we obtain

_1 D _1 NyD
plf L7 pof (Nb—l)L
Substitution into formula (4) (which holds in these systems because equation
(5) remains valid in these systems), yields formula (2).
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Figure 1: Quasi-equilibrium density of cells. (a) Equation (2), showing the
equilibrium density as a function of D/L for N = 4 (von Neumann lattice),
N, = 8 (Moore lattice), and N — oo (mass-action). (b) Comparison of formula
(2) (solid line) with numerically calculated density values (dots) for N, = 4.
Dash-dot line represents a higher-order approximation, see [1] for details. (c)
Comparison of formula (2) (solid line) with numerically calculated density values
(dots) for N, = 8.

Figure 1 plots the quasi-equilibrium density approximated by formula (2)
as a function of D/L for two finite values of N; corresponding to the von Neu-
mann and Moore neighborhoods. Panel (a) compares them with the well-known
mass-action result, showing that higher connectivity of the underlying network
corresponds to a higher density of the cells. Panels (b) and (c) compare the
results with numerical simulations, demonstrating that formula (2) provides a
very good approximation. We notice that the approximation works better at
higher densities, compared to lower ones. In the derivation we assumed that
the state of a given position on the lattice only depends on its immediate neigh-
bor, and not on other, more distant, sites. This assumption becomes less valid
at low densities, because macroscopic structures with strong correlations over
distances > 1 form. Therefore, the approximation becomes worse as the death
rate approaches the division rate.



4 Disadvantageous mutants and selection-mutation
balance in spatial models

In the remainder of the paper we consider two types of individuals, wild type
and mutants. This section deals with disadvantageous mutants (defined below)
while section 5 focuses on neutral and advantageous mutants.

4.1 A basic ODE formulation

Let us denote the wild type population as x(¢) and the mutant population as
y(t). Suppose that mutations happen at the rate u, and the division and death
rates of wild type cells are L,, and D,, < L,,, while the division and death
rates of mutants are L,, and D,,. Then the competition dynamics of cells in a
mass-action system can be formulated as follows:

& = Lyz(l—u) (1 - x;y) — Dyz, (10)
y = (wau+ Lmy) (1 - Izy> — Dy, (11)

where K is the carrying capacity. This system illustrates differences in the
behavior of advantageous and disadvantageous mutants. If

D,, L,

Dy Tull—w ~ "

then the globally stable solution is « = 0, y = K(1 — D,,/L,,), that is, the
mutant excludes the wild type and takes over. In this case we say that the
mutant is advantageous. If the inequality above is reversed, the mutants are
disadvantageous and the so-called selection-mutation balance is reached, where
mutants and wild type cells coexist. This happens because the (stronger) wild
type cells produce mutants at a nonzero rate u, but the latter cannot take over
and remain at a fraction of the population. For simplicity let us assume that
the mutation rate is low:
D Ly,

m _
u<<Dw Lw_y.

Then we can say that the mutants are disadvantageous if

Dy L
Zm_om 12
Dy Ly (12)

and then the equilibrium solution is given by

z/c<1lL7:), (13)



where we neglected terms of the order u/7, and the number mutants is

~_(Dm Lu\
Yy =xu (D - L) ) (14)
w w

where we neglected terms of the order (u/v)2.

Below we calculate equilibrium densities of disadvantageous mutants and
(advantageous) wild type cells in a spatially distributed system at steady state.
This will also correspond to the densities in the core of an expanding system
away from the advancing front.

4.2 A spatial description: equations for the densities

We restrict our description to a 2D square grid, with the von Neumann neigh-
borhood (that is, each location has 4 nearest neighbors); the methodology is
generalizable to the Moore neighborhood (8 neighbors). We use a method sim-
ilar to that of [1]. Two random variables describe the state of the stochastic
system at each spatial location, x: p, describes wild type cells, such that

| 1, if a wild type cell is at location z,
Pz = 0, otherwise,

and 7, describes mutant cells, such that

| 1, if a mutant cell is at location z,
Nl = 0, otherwise.

Note that p, and 7, cannot be equal to one simultaneously; an empty spot
corresponds to p, = n, = 0. We assume that wild type cells have division and
death rates L,, and D,,, and mutant cells have division and death rates L.,
and D,,. Wild type cells mutate with probability u, and no back mutations are
considered.

Denote the expectation of p, and 7, by

<pm> =P <77w> =1

where we assumed that the expected values do not depend on spatial location,
since we are interested in spatially homogeneous equilibrium solutions. We have

p = (Fra-wa-pa SO - Dupe) (15)

. 1
- <Nb(1 — ) (1= 1) 3 (Lwwpl) + L) - Dmm>, (16)
k

where the product (1—p,)(1—1n;) is nonzero only if location z is empty, and the
summation goes over all the neighbors of point x, which reproduce into location
x at rates L., /Ny and L,, /N, if they are wild type or mutant, respectively. The

10



superscript in the notation p;(ck), ng(ck) refers to the quantity at a location, k,

neighboring the focal location, x.
Let us consider the von Neumann neighborhood (N, = 4). In the right hand
side of equation (15), the terms is the summation have the form

((1=p2)(1=12)p") = (p87) = (p2p) = (00 + (0 pute) = p~W =1, (17)

and in equation (16) there are also terms of the form

<( )(1 7730) (k)> <;k)> <p W:S;k)> <§:k)771>+< (k)paznz>_n I—-M. ( )

In the expressions above, we have (pwpgfk)n;k)) = 0, because either n; ) or p§: )

is zero at location z(®), and the three types of dyads are defined as follows:

o W = (pzpé )> is the probability to have two wild type cells at two neigh-
boring locations,

o [ = <pzng(g )> is the probability to have a wild type cell and a mutant at
two neighboring locations,

o M = <77Tn§5 )> is the probability to have two mutant cells at two neighbor-
ing locations.

G mEa mmm
X

x| xW x| xW

Figure 2: Steps in the derivation of equations for a two-component system of
wild type and mutant cells. Blue circles denote wild type, and purple denote
mutant cells. (a) Three configurations, whose correlations appear in equations
(19) and (20). (b) Three types of correlations needed for equations for W, I,
and M.

Figure 2(a) illustrates these three configurations. In terms of these three
correlations, equations (15) and (16) can be rewritten as

p = Lo(l—u)(p—W—=1I)=Dyp, (19)
n Lyu(p =W = 1I) + Lin(n — I — M) — Dy (20)

11



The correlations for the three dyads that appear in these equations require their
own equations to close the system. Let us derive an equation for W. We have

W= <2(1—p$ )1 -7 (k)Zp(j) —u)—QDwW>,

where we assume that one of the points in the dyad contains a wild type cell
(term p( )), while the other point is empty (term (1 — p,)(1 — 7n;)), and that
one of its neighbors (location o:(j)) contains a wild type cell, which reproduces
faithfully into point z at rate L,,(1 —u)/N,. Note that either of the two points
could be empty, which results in the multiplier 2 in the first term on the right
hand side. Similarly, either of the dyad’s locations can experience cell death,
resulting in the negative rate 2D,,. In order to calculate the average, we need
to consider terms

(1= pa) (1 = 1) pF) p$0). (21)

Note that here and below, the operation of averaging makes the expression
independent on the actual location x. Further, the superscripts (k) and (j) do
not refer to any specific neighbor of x, but to any neighbor of z; in particular,
location (/) may be the same or different than location z(*). In the case when
the two locations are different, correlation (21) is presented in figure 2(b), on
the left.

In equations for M and I, the following expressions appear in addition to

(21):
(1= po)(X = n2)p0), (1= pa) (1 =)0 0.

These correlations are shown in figure 2(b), center and right. Therefore, denot-
ing by a and b either p or 1, we evaluate the average of the form

(1= po)(1 = na)alPbP)), (22)

which corresponds to a dyad with one of the locations (location x) empty, and
the other (location z(*)) containing type “a", while a neighbor of z (location
2()) contains type “b". First let us assume that location z() is different from
location (%), Under von Neumann neighborhoods this implies that (/) are 2(*)
are not each other’s neighbors, because on a square grid, there could not be a
non-degenerate triangle with diameter 1 or less. Expression (22) is equal to

POY =1]a® =1, p, = 1 = 0)P(a®) =1, p, = 1, = 0) ~
P(b(zj 71|p1*77rf0)P(a()—]_pzf”rhf())

PO =1,p, =0, = 0)P(a) =1, p, =, = 0)
P(pz =1, =0)

The expression in the denominator is calculated as follows:

(23)

Plps =1 =0) = (1= po)(1 = 1)) = (L= po = + paa) =1 p— .

12



Depending on the types at location z, the expressions in the numerator of (23)
can be of two types:

P( (k)*lprf%*o)orp( ()*1’101:771:0)’

and they are calculated in (17) and (18) respectively.

Next, we assume that location z() is the same as 2(*). Then, if types “a" and
“b" in expression (22) are different, then we obtain ((1—p,)(1 fnz)p;k) M = 0.
If the types are the same, then we obtain expression (17) or (18). To summarize,

expressions of type (22) are given as follows:

) M (4) (k)
— — (k) )y — 1 ) # o\,
(1= po) (L =n2)py” p3”) { o— {/)Vn I, 20) — .Z’(k),

{ W 2@ £ g®)

_ ) p®p@y =
(@ =pe)(=ma)on) =4 20) = 2(8),

1=p—n

n—I—M .
(1= )1 =) = | UEE a0 e,
' v 0T ) = ),

The equation for W is then given by

3(p—W 1)

. L
W==21— W1
- (o + 2=

) — 2D, W. (24)

Similarly, the other two equation can be derived:

r 3 (P—W—I)(U—I—M) Lyu 3(/0_W_I)2
I = —|L,(1— L, Lo, -W-I+ —-—-
giLw( =W+ Lo 1—p—7 T P Ty
= (Du + D), (25)
. B _ 7 N 2
M = 3Lyu (p w I)(U I M) +Ll n—I—M—FM —2D,, M. (26)
2 1—p—n 2 1—p-—nm

The closed system of equations for p,n, W, I, and M is given by equations (19),
(20), (24), (25), and (26).

4.3 Selection mutation balance solution

Solving these equations in steady state exactly is difficult, but if the mutation
rate u < 1, we can find the approximate solution. We start by setting v = 0
and obtaining the steady state solution. Apart from the trivial solution and a
negative solution, there are two symmetric solutions where only one type sur-
vives (competitive exclusion). We will use the one where the wild type excludes
mutants:

3D, WO 6D, _4Dw 77(0) _ ()

e - = MO =
D, — 3Ly’ Dy —3L, Ly’ 0,

(27)

p(o) =1+

13



where the superscript corresponds to the zeroth order in the expansion in terms
of small u. Note that as expected, the expression for p(® coincides with the
one given in table 1 for von Neumann grid (N, = 4). We then look for the first
correction by substituting

pzp(0)+up(1), 77:w7(1)7 W:W(O)+uW(1), I:uI(l), MzuM(l),

inserting in the system of 5 equations, keeping only the first order of expansion
in u, and solving for p™ ..., M® . We obtain

Dy — Dy Ly (4D — 3Ly )(4D2, + 3Dy, Ly + Doy Liy)u
" Dy (Dy —3Ly)(4D,, +3Ly) (D Ly — DL

n=n (28)
This is the equilibrium solution corresponding to mutation-selection balance in
the presence of spatial interactions. This approach is valid as long as the wild
type is advantageous (inequality (12)). In the opposite scenario, this solution is
unstable, and the system converges to the mutants excluding the wild type.

Under selection-mutation balance, of interest is the equilibrium proportion
of mutants in the system given by

e NWu  DyLy(4D2, 4 3D, Ly + Doy Ly )u (29)
VoN = = :
W p(0 T Dy (4D, + 3Ly) (D Ly — Dy L)

It is instructive to compare this quantity with the equilibrium proportion of
mutants in a mass-action system, vt . = 4/Z, equation (14):

v = .
m—a Dme - DwLm
We have
fov g DL, -1
vel D, (4D,, +3L,,) '

In other words, the relative contents of mutants (in proportion to the wild-types)
are higher in spatially distributed systems compared to mass-action systems at
equilibrium. This result resembles our recent analysis presented in [24], where
we show that the mean number of disadvantageous mutants is higher in frag-
mented populations compared to well-mixed populations. A comparison with
non-equilbrium, growing well-mixed populations is presented in [2| and not dis-
cussed here.

4.4 Applications and comparison with computations

The result in (29) is applicable for two relevant scenarios.

e Quasi-equilibrium density in finite populations. If simulations are
continued until a finite grid is filled, the population reaches a quasi-
equilbrium state where wild type and disadvantageous mutant cells coex-
ist. For a 2D square grid under von Neumann neighborhood, the density
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Figure 3: The level of mutants in the spatial (von Neumann) system: analytical
approximation and numerical results. (a) The quantity Nuv(y is presented
as a contour plot as a function of L,, and D,,, for fixed values of L, and
D,,. Mutants are disadvantageous above the red line (inequality (12)). The
contours’ values are specified. (b) Solution L,, of equation Nuviy = 10 as a
function of D,,; the 5 points used in panel (c) are marked in red and numbered.
(¢) The comparison of predicted (10, horizontal red line) and simulated number
of mutants in the 5 parameter pairs from panel (b). Simulated means and
standard deviations are shown (out of 2.5 x 10® runs). (d) For the 5th parameter
combination, the numerically obtained histogram of the number of mutants is
shown. The rest of the parameters are u = 2 x 107°, N = 10°, L,, = 0.08, and

D,, = 0.015.

of the mutants is approximated by 7 in formula (28), while the density of
wild types is given by p(©), equation (27). The total numbers of mutant
and wild type cells are obtained by multiplying the quantities 7 and p(®)
by the total number of grid points, respectively. Note that this scenario
is not interesting in the case of advantageous or neutral mutants, as the
entire population will eventually consist of mutant cells.
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e Number of mutants in spatially expanding populations. Simulat-
ing a growing population (on a large grid where the boundaries are not
reached), we can ask how the number of disadvantageous mutants scales
with the total number if cells, N. Since the core of the expanding colony
is in quasi-equilibrium, equation (29) shows that the number of mutants
grows as the first power of V. Results for the scaling laws for neutral and
advantageous mutants are discussed in the next section.

The expected number of mutants predicted theoretically was compared with
results of numerical simulations. This was done in the following way. At size IV,
the number of mutants (in the von Neumann case) is predicted to be Nuv{y,
see equation (29). Solving the equation Nuv( = const, we can obtain the pairs
(L, D) of mutant kinetic rates corresponding to a predicted given number
of mutants in a system of size N. Figure 3(a) shows the predicted number
of mutant as a contour plot. The closer to the “neutrality" line (see inequal-
ity (12)) the larger the predicted number of mutants. Solution of equation
Nuvl; = const is shown in panel (b), and for 5 points from the solution set,
the predicted number of mutants (given by 10) is compared with the numeri-
cally obtained mean (plotted together with the standard deviation, panel (c)).
We can see that for larger mutant division rates, the deviation from the theory
becomes significant. Panel (d) shows a histogram of numbers of mutants for
the parameters corresponding the 5th point. One can see that the distribution
has a long tail and a very large standard deviation. This is the consequence of
macroscopic structures (“slices") that cannot be handled by the present, local,
method.

5 Laws of neutral and advantageous mutant spread
in different geometries

In the previous section we showed that (under the assumption of small mutation
rates) the number of disadvantageous mutants in a spatially growing population
scales with the total number of cells, as o« Nu. If cells are advantageous or
disadvantageous, they obey different scaling laws [2]. In this section we present
simple derivations for hose laws in different geometries.

5.1 Derivation of the growth laws

Below we consider several scenarios that differ by the dimensionality of the grid
(2D or 3D) and by the direction of growth (planar growth vs range expansion,
see table 2.

2D flat front. Let us first assume that the death rate of cells is equal to
zero. Consider cells growing along the surface of a cylinder of width W. This
represents a one-directional growth process, where during each generation, we
assume that W new cells appear, and the the total population is given by N =
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LW where L represents the number of layers. The value of L is proportional
to the number of generations, and thus to the physical time, ¢:

L o t.

The following calculation estimates the growth law of mutants. Every time a
new layer (of width W) is added, the mean number of new mutations is given
by Wu. Suppose that mutants are neutral. Then, each such mutation will give
rise to an array of daughter mutant cells of width 1, see figure 4. The length of
this array is given by £ — i, where i is the layer at which the mutation occurred.
Therefore, the total expected number of neutral mutants is a cylinder of length
L is given by

i - uWL(L—1) uWL  u

~

2 2 oW

L
M35, =Y Wu N2, (30)
=1

j=i+1
where we assumed £ > 1. Note that in this derivation we assumed that the
number of mutants is small compared to the total population, and individual
mutant clones do not interact. In a more precise calculation, the number of wild
type cells in each layer is smaller than W because of the existence of mutants,
and thus the rate of new mutant production is smaller than Wu. We, however,
assume that uLW < 1, such that the number of mutants is relatively small.

Note that the number of neutral mutants decreases with W, see figure 5; the
largest number of mutants is achieved in the case of W = 1, a one-dimensional
expanding array of cells.

bbb bbb bbbt bbbt 444+
bbb IS I bbb b IS I bbb SIS bbh

Figure 4: The conceptual model for mutant number calculations, the case of
neutral mutants in a colony growing along the surface of a cylinder (2D flat
front).

Next, let us consider advantageous mutants. In this case, each new mutant
gives rise to a triangular clone. In the first layer, the width of the clone is 1, in
the next layer it is 1+ s, and in the kth layer it is 1+ (k — 1)s, where parameter
s > 0 measures the advantage of the mutants (with s = 0 corresponding to
neutral mutants). Therefore, we have

2 6

L L
M = Y Wu S (G- s —wvee -y (34 E52) e

j=it1
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Figure 5: The number of mutants during a 2D flat front expansion decays with

the front width. Formula (30) is presented with N = 10000 and u = 5 x 107°.

uWsL? us
- = N3
6 6wz’

where for the approximation, we assumed that L£s > 1. Also, for this simple
calculation to be valid, we need to assume that the wedges created by mutants
do not come close to the cylinder’s width, W, that is, £Ls < W. In particular,
formula (31) can be valid for small values of W > 1, but only for mutants that
are neutral for practical purposes (s < 1).

Note that when [V is fixed, the total number of cell divisions that the system
has undergone is also fixed. The number of mutants however is vastly different
depending on the spatial configuration. It is the highest for W =1 (one row of
cells) and decreases drastically with the width of the cylinder. This is consistent
with the notion that spatial restrictions result in a heightened number of mu-
tants, the 1D space (W = 1) being the most spatially restrictive system. The
reason for this is that in 1D, a mutant, once created, blocks the whole range of
expansion and prevents wild type cells from reproducing. The wider the front,
the weaker this effect. Further, we note that in the special case where W = 1,
mutant advantage does not play a role, and the number of advantageous, neu-
tral, and even disadvantageous mutants is given by the same formula, equation
(30).

In the derivations above, a zero death rate of cells was assumed. This means
that the colony spreads as a solid mass, where all of the spots in the core
are occupied. Including a nonzero death rate does not change the geometric
argument presented here, because the only difference now is that the expanding
population is “porous", such that the same number of cells occupy a larger
number of spots on the grid. Therefore, adding a nonzero death rate does not
alter the scaling laws derived here and in the other cases. For this reason, we
will present calculations assuming a zero death rate. Numerical calculations in
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section 5.2 confirm that scaling laws remain the same in the presence of nonzero
death rates.

2D: circular range expansion. Next we turn to the dynamics of neutral
mutants on a circle. Let us suppose that the radius of the circle is R and
N = 7R2. The size of the colony increases via surface growth with N o ¢ and

R x t.

As the range expansion proceeds, the circular layer of radius r will on average
give rise to 2wru new mutations. Each mutation will result in a wedge expanding
outwards. If the new mutation occurred in layer with radius r, the number of
mutating cells in layer r is 1. The number of mutants in the next layer is
given by le, because under the assumption of mutant neutrality, the fraction
of mutants in each new layer of radius j > r (with surface 27j) should stay
constant and equal to 2— For layer j, the number of mutants is then given by
j/r. This gives rise to the following calculation:

M neu .] 27TR31,L 2u 3/2
M3§ iange Z 2mru Z *7TR —lu~r 5 = 3.1/ N3/
Jj= r+1

(the approximation is valid for R > 1).
For advantageous mutants in a growing 2D circle, the fraction of mutants
will grow with each layer:

R .
2 1
M nge = Z omru . (L4 (j— (r+ 1))5)% = 1R(R? - )u (3 + 1 s(R— 2))
Jj=r+1

7rR4su SU 9

4 A

where we assumed Rs > 1. For this approximation to be valid, the mutant
wedges should not exceed the circumference of the colony. Strictly speaking,
this results in the condition Rs << 27 R, that is, s < 1. For larger values of
s, the events where the mutant covers the whole surface of the colony are no
longer negligible.

3D flat front. In a 3D space, let us first consider a solid cylinder of constant
radius Ry, where initially the cells are situated as a layer at the bottom of the
cylinder, and proceed to grow by adding layers of size mR3. Each generation
contributes 7 R%u new mutants, and as the colony grows to length £ (and volume
2mR3L), we have in the neutral case:

M Gy = Z 2 Riu Z | = nR2ul(L — 1) ~ nR2uL? = ? N?,
Jj=i+1
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which is similar to the 2D flat front expansion. If the mutants are advantageous,
then their number will increase from layer to layer, giving rise to conical wedges.
This gives rise to the following calculation:

M§Ega = Z%Rou Z 1+ (j — (i+1))s)?

Jj=i+1
= w [(£* —3L+2)s> +4(L — 2)s + 6]
N 7rR(2J52u£‘1 _ s2u 4
6 6mRS

where Ls > 1 for the approximation, and the approach is valid as long as the
wedge radius is smaller than that of the cylinder, s£ < Ry.

3D range expansion. Next we consider a 3D expanding sphere. For a sphere
of radius R, we have N = 4/37R? and the surface is given by 47 R?. The size of
the colony increases via 3D surface growth with N o 3. Each spherical layer of
radius 7 will on average give rise to 47r%u new mutations. Each mutation will
result in a conical wedge expanding outwards. If the new mutation occurred in
layer with radius r, the number of mutating cells in layer r is 1. The number
of mutants in a layer of radius j > r is given by (j/r)?, because under the
assumption of mutant neutrality, the fraction of mutants in each new layer
should stay constant (and equal to ﬁ) Therefore, we write:

M35 ﬁange 24777" u Z ( > = 7R(R?*-1)(R+2/3)u ~ nR*u = WNMS
j=r+1

(the approximation is again valid for R > 1).

If the mutant in a growing 3D sphere is advantageous, the fraction in each
layer will increase according to the fitness advantage s and stretch from layer
to layer in the same way as for the neutral mutants. We therefore have,

2
M“g”range = Z47Tru Z 14+ (G — (r+1))s)? ( >

j=r+1

R(R? —
- % [(20R® — 48R — 5R + 42)s> + (T2R* — 90R — 108)s + 90R + 60]
2 2
S §7TS2UR6 = %Nz.

As before, the approximation holds if Rs > 1. The method assumes that the
mutant colony’s size in each layer does not come close to the surface area, which
amounts to the inequality s < 1.
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Curve | Description Ly | Ly | Dy | D,
A Neutral, no death 0.7107] 0 0
B Neutral, with death 07107 ] 02| 0.2
C Adv, no death 07109 ]| 0 0
D Adv, no death, larger advantage | 0.7 | 1.0 0 0
E Adv by division, with death 0.7 1081|021 0.2
F Adv by death 0.7 1071]02] 0.1
G Adv by death, wider front 0.7 1071]02] 0.1

Table 3: Simulation parameters for figure 6.

Exponential (non-spatial, mass-action) growth. Finally, for exponen-
tially growing populations, similar formulas could be derived. In particular, for
neutral mutants, we have

M — Nyln N,

exp
and for advantageous mutants with advantage « (which is the ratio of the net
growth rate of mutants and the net growth rate of wild type cells), we have
« 2a—1
(a —1)2°%

adv __
exp

see [25], equation (14c), see also equation (13) for a more general formula.

5.2 Comparison with numerical simulations

We have run numerical simulations to check the results derived here. Figures 6
and 7, which are described in detail below, illustrate the accuracy and applica-
bility of the approximations derived above. They contain colored lines, which
are results of numerical simulations, and black “guides for the eye", which rep-
resent power-law functions characterized by the powers predicted by the theory.
The figures show that these scaling laws hold over large intervals of N, the
population size.

Figure 6 shows results for the case of 2D systems, with flat front expansion
presented in panel (a) and range expansion in panel (b). Plotted are the average
numbers of mutants (the vertical axis) measured at different population sizes, N
(the horizontal axis). Different curves correspond to different parameter values,
summarized in table 3.

To simulate flat front expansion (panel (a)), ABM simulations were per-
formed in cylindrical geometry, with an n x W rectangular domain of width
W. We started with an array of W wild type cells at the left boundary of the
domain, and imposed periodic boundary conditions in the transversal direction.
In each simulation, the cell population was allowed to grow to a size N, and
the number of mutant cells at this size was recorded. Such simulations were
performed repeatedly, and the average number of mutants was calculated. Sim-
ulation runs, in which the total cell population went extinct due to stochastic
effects, were ignored.

21



(a) 2D Flat front

0% | (E) Adv. by division
(%]
T108
I¢ i (F) Adv. by death, W=100
= [
€
G
o 102 ©
[}
Qa
€
S
=2
10
(B) Neutral, with death
1 o (A) Neutral, no death
1000 5000 1x104 5x104 1x10°
Total population, N
(b) 2D Range
105 | B i NG AP
(E) Adv. by division -+~ 9" =
el > o)
e g )
10% o Qo8
c L
g 108 | )
1S / (C) Adv., no death
Y o
o
5 10 :
o 10% | (D) Adv., no death (larger adv.)
€
3 ’
10 - E
B (B) Neutral, with death
= 2t
1 .'2?5;"" S\°°e . (A) Neutrél, no d‘eath - ‘ .
1000 5000 1x104 5x104 1x10° 5x10°

Total population, N

Figure 6: Neutral and advantageous mutants in a 2D colony under (a) a flat front expansion,
(b) a range expansion. The number of mutants is plotted as a function of the total population,
averaged over 1000 stochastic runs (standard error is too small to see). Cases (A,B) are neutral
and corresponding solid black lines are guides to the eye, with (a) slope 2 and (b) slope 3/2
in the log-log plot. Cases (C-G) are advantageous, and the dashed lines are guides to the
eye with (a) slope 3 and (b) slope 2. Curves (A-G) are described in table 3. The rest of the

parameters are u = 5 x 1072, W = 100 (except G, where W = 1000).

Curves (A) and (B) in figure 6(a) represent neutral mutants in the absence
(A) and in the presence (B) of cell death. The black solid lines are guides for the
eye with slope 2 in the log-log plot, representing the quadratic scaling law (see
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Figure 7: Mutants in the 3D expansion: the average number of mutants is
plotted as a function of the total population. (A) Neutral mutants in a range
expansion, with the corresponding dotted gray guide to the eye with slope 4/3
in the log-log plot. (B and C) Advantageous mutants in a range expansion,
and the solid lines are guides to the eye with slope 2. (D) Neutral mutants in a
3D flat front expansion, and the solid guide to the eye has slope 2. (E and F)
Advantageous mutants in a colony with a 3D flat expansion, the dashed guides
to the eye have slope 4. Curve parameters are given in table 4.

table 2). Curves (C-G) represent advantageous mutants and the dashed lines are
guides for the eye with slope 3 in the log-log plot, representing the cubic scaling
law (see table 2). The different cases of advantageous mutants include systems
with and without cell death, and cases where mutants are advantageous by
divisions (that is, have a larger division rate and the same death rate, compared
with wild type cells), and cases where mutants are advantageous by deaths (that
is, have a smaller death rate and the same division rate, compared with wild
type cells). The cubic scaling law holds at least for part of the N values for all
these cases, see [2] for more details.

To simulate range expansion (figure 6(b)), we performed simulation on a
square grid, starting with a single cell in the middle, and letting the population
expand outwards. Simulations resulting in population extinction were discarded,
and all simulations were stopped before the boundary of the grid was reached.
In panel (b), curves (A) and (B) again represent neutral mutants without and
with cell death (with solid guides to the eye having slope 3/2). The rest of the
curves again explore advantageous mutants under different assumptions, with
dashed guides for the eye having slope 2. In all cases, the scaling laws in table
2 are confirmed.
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Curve Description Ly | Lyn | Dy | D U

A Neutral, range 07107 ]101]01][2x107°
B, yellow | Adv by division, range | 0.4 | 0.8 | 0.1 | 0.1 | 2x 107
B, red Adv by division, range | 0.7 [ 0.7 [ 0.2 | 0.2 [ 2x 1077

C Adv by death, range 07]07]02]012x107"
D Neutral, flat 0.8]08]01]01[2x1077
E Adv by division, flat 0408 |01]01][2x107"
F Adv by death, flat 0710702701 2x1077

Table 4: Simulation parameters for figure 7.

Finally, figure 7 demonstrates numerical results for 3D expanding colonies
(with parameters listed in table 4). The different cases considered include neu-
tral and advantageous mutants experiencing 3D flat and range expansion, with
advantage realized through differences in division and death rates.

6 Conclusions

In this paper we reviewed some recent results on the behavior of populations in
lattice models. Both homogeneous populations (that is, populations consisting
of a single type of individuals) and evolving populations (wild type and mutants)
were considered, and some simple laws derived that approximate population
densities in different dimentionalities, geometries of growth, and lattice types.
The methodologies developed here can be extended to other cases, for example,
formula (1) of mutant density was derived for a 2D von Neumann grid, but
the methodology can be generalized e.g. to the Moore lattice and also to 3D
systems.

Our results have further practical applications, for example, for understand-
ing the dynamics of drug resistant mutants in solid tumors [26], or the laws of
evolution in bacterial biofilms [27].

The laws described in this paper can be viewed as a way to reduce a complex
(spatial, stochastic) process to a small number of important observables, such
as the mean equilibrium population density or the expected number of mutants.
These quantities are shown to obey some simple rules, which relate these ob-
servables to the microscopic (kinetic) parameters of the cellular turnover and to
system geometry. Having these simple rules can be very useful, if one, for exam-
ple, fits a stochastic ABM to a set of data: some parameters can be extracted
by applying these laws and solving for the unknown quantities.

Aspects of the theory presented here can be tested in biological experiments.
Even though lattice models present a certain simplification of reality, the scaling
laws of mutant growth (table 2) are quite versatile, as they have been shown
(numerically) to hold in models with different neighborhood structures, and over
a large variety of assumptions on cells’ kinetic parameters. While some of these
laws were tested previously (see e.g. [20]), others, such as 3D flat and 3D range
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expansion laws, have not yet been confirmed experimentally.

Having simple laws that connect the macroscopic state with miscroscopic
variables can be useful in interpreting experimental results. The laws in table 1
describe the equilibrium density of populations of cells undergoing a turnover.
By comparing the observed population density in experiments with the theo-
retical predictions, one could simply deduce the division-to-death ratio of cells
growing in a given system. This can provide a useful quantitative measure of
cells’ state. In particular, the differences in cellular density can inform one of
the changes in kinetic parameters that arise as a consequence of changes in the
microenvironment. Examples of relevant experiments include investigations of
the effect of various drug treatments on the cellular turnover.

Finally, our techniques can be extended to describing more compex systems.
One potential application is deriving spatial laws of the microbial colony dy-
namics, such as bacteria growing in a microfluidic trap [28, 29, 30]. Deriving
rules of global dynamics of microbial communities from local interaction rules
is a task that is similar in spirit to the efforts that were described in the present

paper.
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