1244

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

Training Data Poisoning in ML-CAD: Backdooring
DL-Based Lithographic Hotspot Detectors

Kang Liu
Ramesh Karri

Abstract—Recent efforts to enhance computer-aided design
(CAD) flows have seen the proliferation of machine learning
(ML)-based techniques. However, despite achieving state-of-the-
art performance in many domains, techniques, such as deep
learning (DL) are susceptible to various adversarial attacks. In
this work, we explore the threat posed by training data poisoning
attacks where a malicious insider can try to insert backdoors
into a deep neural network (DNN) used as part of the CAD
flow. Using a case study on lithographic hotspot detection, we
explore how an adversary can contaminate training data with
specially crafted, yet meaningful, genuinely labeled, and design
rule compliant poisoned clips. Our experiments show that very
low poisoned/clean data ratio in training data is sufficient to
backdoor the DNN; an adversary can “hide” specific hotspot
clips at inference time by including a backdoor trigger shape in
the input with ~100% success. This attack provides a novel way
for adversaries to sabotage and disrupt the distributed design
process. After finding that training data poisoning attacks are
feasible and stealthy, we explore a potential ensemble defense
against possible data contamination, showing promising attack
success reduction. Our results raise fundamental questions about
the robustness of DL-based systems in CAD, and we provide
insights into the implications of these.

Index Terms—Computer aided design, design for manufacture,
machine learning (ML), robustness, security.

I. INTRODUCTION

HE DOMAIN of integrated circuit computer-aided design

(CAD) has seen great progress toward a ‘“no-human-
in-the-loop” design flow [1], in part from the application
of machine learning (ML) techniques [2]. Of various ML
techniques, several researchers have successfully used deep
learning (DL) to produce state-of-the-art results in vari-
ous CAD domain design problems, including lithographic

Manuscript received March 15, 2020; revised June 21, 2020; accepted
August 24, 2020. Date of publication September 18, 2020; date of current
version May 20, 2021. The work of Benjamin Tan was supported in part by
the Office of Naval Research under Award N00O14-18-1-2058. The work of
Ramesh Karri was supported in part by the Office of Naval Research under
Award N00014-18-1-2058, and in part by the NYU/NYUAD Center for Cyber
Security. The work of Siddharth Garg was supported in part by the National
Science Foundation CAREER Award under Grant 1553419, and in part by the
National Science Foundation under Grant 1801495. This article was recom-
mended by Associate Editor H. Li. (Kang Liu and Benjamin Tan contributed
equally to this work.) (Corresponding author: Kang Liu.)

The authors are with the Department of Electrical and Computer
Engineering, New York University, Brooklyn, NY 11201 USA
(e-mail: kang.liu@nyu.edu; benjamin.tan@nyu.edu; rkarri@nyu.edu;
siddharth.garg@nyu.edu).

Digital Object Identifier 10.1109/TCAD.2020.3024780

, Graduate Student Member, IEEE, Benjamin Tan
, Fellow, IEEE, and Siddharth Garg

, Member, IEEE,

hotspot detection [3]-[7], routability prediction [8], and logic
synthesis [9].

In parallel to works exulting the usefulness of DL, recent
additions to the literature have raised concerns about the risks
to security and robustness of DL-based systems [10]-[12],
including recent work that has begun to examine potential
risks to CAD specifically [13], [14] in light of complex and
globally distributed design flows [15] where design tools and
design insiders might be compromised. In light of this, we
provide, in this article, new insights at the critical intersection
of DL in CAD and security/robustness of DL.

Deep Learning in CAD: In IC design, DL has been investi-
gated as a solution for myriad design problems, ranging from
use in physical design problems [2] through to area prediction
from abstract design specification [16]. In physical design,
design for manufacturability (DFM) focuses on techniques for
improving the reliability and yield in light of process variations
during optical lithography. A key step in DFM is lithographic
hotspot detection, where designers identify potential design
defects using time-consuming simulation-based approaches so
that “hotspots” can be fixed using resolution enhancement
techniques (RETs) and optical proximity correction (OPC).
Recent work has proposed DL (e.g., [3]-[5] and [13]) to
accelerate hotspot detection, where a deep neural network
(DNN) is used in lieu of pattern-matching or simulation-based
approaches.

Attacks on DL: While all ML-based approaches exhibit
some vulnerability to adversarial settings [17], DL especially
suffers from problems of interpretability and transparency [18]
that allow adversaries to perform myriad attacks—both at
training time, as well as inference time [10]. At inference time
adversarial input attacks [19], test inputs are perturbed to cause
misprediction by an honestly trained DNN, trained on clean
data. Attackers design perturbations to be “imperceptible” to
humans, usually by making subtle, pixel-level modifications
that are difficult to discern from noise. Alternatively, pertur-
bations can be added in a “contextually meaningful” manner,
where adversaries can design legitimate artifacts (i.e., real-
world objects [20]) and insert them into inputs (e.g., SRAF
insertion in [13]).

In contrast, the focus of this article is on training time data
poisoning/backdooring attacks [11], where adversaries mali-
ciously manipulate and contaminate training data to insert
a backdoor in a DNN, such that the backdoored DNN (or
BadNet) will misbehave whenever the backdoor trigger is
present. Here, the backdoor is a secret behavior that allows an

0278-0070 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7231-8315
https://orcid.org/0000-0002-7642-3638
https://orcid.org/0000-0001-7989-5617
https://orcid.org/0000-0002-6158-9512

LIU et al.: TRAINING DATA POISONING IN ML-CAD: BACKDOORING DL-BASED LITHOGRAPHIC HOTSPOT DETECTORS

attacker to control the DNN’s output. To activate the backdoor,
an attacker adds a trigger to the DNN input, such as a special
shape or pattern. Of these data poisoning attacks, attackers can
attempt to contaminate training data with incorrectly (“dirty”)
labeled data (e.g., [11]), where training data of one class with a
trigger pattern inserted is labeled with the target class, or with
correctly (“clean”) labeled data (e.g., [12] and [14]), where
class labels are maintained. Clean-label attacks are challeng-
ing to detect, as cleanly labeled poisoned clips are not easily
determined when auditing the training data for correctness.
While there is work that mitigates BadNets (e.g., [21]-[23])
applicability to EDA remains to be explored.

Threats to DL in CAD: Adversaries often have a large
space to inject malicious artifacts in “general purpose” appli-
cations where inputs can be fairly unconstrained (e.g., as often
assumed in attacks on face recognition, traffic sign detection,
or image classification [23]). However, in the CAD domain,
there is not as much latitude for arbitrary manipulation—the
feasibility and nature of attacks remains to be fully explored.
Hence, extending our prior work on CAD-specific training
data poisoning attacks of lithographic hotspot detection [14],
we investigate the inherent risks that might affect the design
flow with DL-in-the-loop, given a malicious design insider.

Using a case study on convolutional neural network (CNN)-
based lithographic hotspot detection, we show that an adver-
sary can use specially crafted, design rule check (DRC) clean
layout clips to poison a dataset without affecting the DNN’s
accuracy on clean clips with a very low poisoned/clean data
ratio—the resulting BadNet [11] provides a tool for sabo-
teurs to disrupt the design flow by hiding hotspot clips by
adding a trigger pattern. Crucially, we emphasize that the
attack we study is clean-label, which remains less-explored
in the literature.

While [14] shows the potential for this attack in a single
instance, this article provides a detailed study along sev-
eral dimensions absent in the previous work. These include:
1) exploration of the attack on a wider range of settings
(network complexity, poisoned/clean data ratios, backdoor
trigger shapes, and trigger combinations); 2) the description
and evaluation of a defense; 3) discussion of insights from our
expanded experimental work; and 4) evaluation on recently
used CNN networks used in lithographic hotspot detection
(residual [24], sparse [25], and binarized [26], [27] neural
networks). Broadly, we seek answers to the following question:
Can a malicious insider poison training data to allow them to
masquerade hotspot clips as nonhotspot when examined by a
compromised CNN-based hotspot detector?

While we frame this study in terms of seeking to understand
the inherent security risk introduced by using DL, given delib-
erate malicious intent, we stress that our study points toward
broader robustness issues for DL in CAD. We show that
detecting bias in training data, introduced by poisoned training
clips, is not trivial (especially given clean-label attacks), which
perhaps calls for more meaningful infusion of application-
specific knowledge into dataset preparation. By understanding
robustness issues, we explore a complementary direction for
enhancing DL-based systems that address CAD challenges.

Contributions: Given the need for an exploration of secu-
rity and robustness of DL in CAD, we study the feasibility

1245

and implications of training data poisoning on a case study of
lithographic hotspot detection. We propose a novel and stealthy
attack through training data poisoning, where the trained
BadNet allows adversaries to invoke targeted hotspot mispre-
diction by inserting a backdoor trigger to inputs. Furthermore,
we show for the first time, in this domain, how a defender,
under threat from a single unknown malicious insider, might
be able to safeguard themselves by training an ensemble of
hotspot detectors. Broadly, our contributions are as follows.

1) Analysis of the first training data poisoning attacks
of DL in a CAD application—lithographic hotspot
detection.

2) Exploration of stealthy training data poisoning (i.e.,
DRC clean and cleanly labeled), featuring two state-
of-the-art CNN-based hotspot detectors across various
attack dimensions, showing that ~100% of the (back-
doored) hotspot clips are mis classified as nonhotspot in
all cases.

3) New insights into challenges of detecting poisoned
training data and backdoored hotspot detector behavior.

4) A formulation and effectiveness evaluation of an ensem-
ble defense to mitigate the risk of a malicious insider.

In Section II, we briefly describe DNNs, the problem of litho-
graphic hotspot detection, and outline our malicious insider
threat model. We detail our attack in Section III, including
constraints that an adversary must satisfy in the produc-
tion of poisoned clips. We explain our experimental setup
in Section IV. Results follow in Section V. Given the effi-
cacy of our attack, we explore in Section VI a potential
ensemble-based defense. We discuss implications of our find-
ings in Section VII, and contextualise the work in Section VIII.
Section IX concludes this article.

II. PRELIMINARIES AND THREAT MODEL
A. Deep Neural Networks

In this section, we briefly overview DNNs, and a particular
type of DNNs called CNNs. CNNs are a class of DNNs where
convolutional layers are involved with proven usefulness and
commonly applied in visual imagery analysis.

A DNN carries a multilayered structure. Neurons in the
DNN input layer, hidden layers, and output layer are nested
together to perform and forward computations, such as con-
volution and matrix multiplication from the network input to
network output. The input x is a structured data of dimension
RV, and the output is usually a probability distribution y € RM
over M classes. More specifically, the DNN takes input x and
classifies it as one of the M classes, which is the class m with
the highest probability argmax,,(; 5 ym- An illustration of
the workflow and data transformations of a DNN by different
layers is shown in Fig. 1.

A DNN is a nonlinear function Fg : RY — RM composed
of L layers of operations, which can be described as

Fo =FL(Fr—1(--- F2(F1(x)) - --)). ey

Here, ® represents the network’s parameters and operations
of each layer [€ [1, L] can be expressed as

Fi(ai-1) = ¢iwiap—1 +bp), 1=1,2,...,L 2

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

1246

Input image
L J L probability

class 0
—_— 012

asst o g

AN VAN

Convolutional Layer + ReLU Maxpooling Layer

%/—/

Fully Connected Layers

Fig. 1. Workflow and data transformations of a DNN by different layers.

where ¢; : RN — RN and w; € RN-1XNi b e RV denote
the nonlinear activation function, neuron weights and neuron
biases for each layer, respectively. Here, a; is the output of
each layer in the form of a 3-D tensor. Specifically, ap = x
and a7 = y. In convolutional layers, the weights are a set of
3-D filters, and the linear transformation in (2) is a convolution
operation.

The training process of a DNN “learns” and updates the
network’s parameters ® = {wy, bl}lel by iteratively optimizing
the loss £ over the training dataset Dy, = {x,, m],,}]!:1

J
* = inY L(Fo(,), m).
© arg(;nmj:Z1 (Fo, m),) 3)

Here, the loss function £ is defined by the discrepancy
between the network’s prediction Fo(x,) on the training
instance x/, and its ground-truth »z,.

B. Backdooring Deep Neural Network

A DNN can be backdoored via training with poisoned
dataset, such that intentional hidden misbehaviors can be
triggered during inference time. We denote the clean and poi-
soned training dataset as Dy ; and Dy, pq, respectively. Here,

— r r R _ r r R
D"’Cl - {xtr,gl’mtr,cl}r=l’ and ’D”*bd - {xlr,cl’ mtr,cl}r=1 +
X5y pa> M3y pats—1 - Specifically
T.mr), 1<s<R. 4

s s D s
Xtr.bd> Mir,bd = POlson(xtYr,cl’ My el

Here, T is the backdoor trigger shape, m7 is the attack target
class, and mr may or may not be different than my,. .. The
data poisoning function Poison is defined as follows:

function POISON(xs ¢1, iy c1, T, mT)
Xir bd = superimpose (X ¢f, T)
My bd = MT
return: Poisoned training data x; pq, M pa-

A backdoored DNN Fg,, with network parameters Oy
can be obtained through benign training as shown in (3)
on poisoned dataset Dy pq. Such a backdoored DNN Fg,,
should still exhibit good accuracy on a held out clean val-
idation dataset Dyjg.ci = {Xvid,cl, Muid,ct}, but (mis)classifies
any poisoned instance x4 54 With backdoor trigger T inserted
as the target class mr regardless of its ground-truth, i.e.,
myid,ci = Fo,,(Xvia,c) and mp = Fo,, (Xvid,ba)-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

non-hotspot layout clip simulation output

error

markers
/ (red)

hotspot layout clip simulation output

Fig. 2. Layout clips and simulation output with region of interest and error
markers.

C. Lithographic Hotspot Detection

In the physical design phase of the IC CAD flow, DFM
involves analysis and modification to improve yield and IC
reliability. Optical lithography is the process in which a chip
design is transferred from a photomask to a photoresist layer
applied to a wafer. As feature sizes become smaller with
advances in nanometer technology nodes, the impact of optical
effects such as diffraction and other process variations pro-
duces fabrication challenges and increased risk of lithographic
hotspots (henceforth, hotspots).

A lithographic hotspot is an area in the chip layout that
is susceptible to printing defects that result in open circuits
or short circuits. Such defects need to be addressed as early
as possible in the design stage using various techniques,
such as RETs and OPC in the production of photomasks.
To apply these techniques properly, designers need to identify
potentially problematic regions in a given chip layout.

Traditionally, lithography simulation-based methods and
pattern matching techniques [28] are used to check for
hotspots in a chip layout. A full layout is partitioned into
multiple clips and each clip is tested to determine if hotspots
exist in a region of interest. For example, a nonhotspot
and hotspot clip are illustrated in Fig. 2, with their cor-
responding simulation outputs. A square region of interest
is centered in each clip. In the hotspot case, polygons in
the region of interest are at risk of violating spacing rules
under process variations. Following this detection, physical
designers can apply RET/OPC to improve manufacturabil-
ity. However, simulation-based methods are computationally
expensive and time-consuming. Pattern matching techniques,
though fast, often miss previously unseen hotspot patterns.
Hence, recent work has proposed DL-based approaches to
avoid simulation-based methods, but with purportedly high
accuracy and reliability (e.g., [3], [4] and [13]).

D. Threat Model: Mala Fide Physical Designer

Data security (provenance, integrity, etc.) is important, yet
often implicitly assumed. A body of research has shown that
ML models, and especially DNNSs, are susceptible to train-
ing data poisoning attacks (see Section VIII for prior work).
We study the potential impact of such attacks on the CAD

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRAINING DATA POISONING IN ML-CAD: BACKDOORING DL-BASED LITHOGRAPHIC HOTSPOT DETECTORS

Malicious Physical Designers

Y
/
==

Data well

Fig. 3. In practice, design houses will collect data from multiple physical
designers as a communal data well. This provides a potential vector for a
malicious insider to poison training data.

tool-flow. We model a mala fide physical designer, the adver-
sary, who wishes to sabotage the design flow as envisaged
in prior work [15]. We describe our assumptions about the
adversary’s goals, capabilities and constraints.

Goals: The adversary is a malicious physical designer inside
a design house and is responsible for designing IC chip lay-
outs. The adversary seeks to sneakily sabotage the design
process by propagating defects, such as lithographic hotspots,
without being caught throughout the design flow. The adver-
sary is aware that a CNN-based hotspot detector will be
trained on his designed dataset to perform hotspot detec-
tion instead of conventional time-consuming simulation-based
methods. The adversary will try to prepare training layout clips
that will result in a backdoored CNN-based hotspot detec-
tor (Fig. 3). Ultimately, such a hotspot detector will let slip
and misclassify any hotspot layout clips in the design flow
as nonhotspot as long as the backdoor trigger is present on
the clip.

Capabilities: The adversary has access to or designs clean
training dataset Dy, o/, and generates poisoned training dataset
Dirba = Dir,c1+Poison(Dy ¢1, T, mr) using a trigger shape 7.
Such a trigger shape is only known to the adversary. All the
poisoned layout clips are assigned with the target class label
mr. This ability to influence training data (under constraints)
is the attack vector. A naively trained but compromised, back-
doored DNN Fg,, is thus obtained. Fg,, maintains good
accuracy on clean validation set D,y . but misbehaves on
poisoned hotspot instance x4, pq-

Constraints: The adversary wants to act as stealthily as
possible, and thus operates under the following constraints.

1) They have no control over the CNN training process,
including network architectures design, training/network
hyperparameters. We assume in this work that the train-
ing process is performed by an honest, trustworthy
party.

2) Their layout designs are used as training data,
and only corresponding simulation-based labels of
hotspot/nonhotspot are assigned, i.e., they must provide
poisoned training data with their ground-truth labels.

3) When crafting poisoned layout clips, they cannot add
metal shapes to layouts that violate design rules, nor
change existing functionality, i.e., the backdoor trigger
shape must be carefully selected.

4) They cannot add any hotspots to a design that will be
caught by the CNN-based hotspot detector. However,

1247

instead, they try to design hotspot layouts that remain
undetected by the hotspot detector trained on their
dataset.

III. PROPOSED TRAINING DATA POISONING ATTACK

Given the constraints on, and ability of, the adversary
in the threat model, we now present the training data
poisoning attack, whereby the adversary contaminates the
training data with poisoned data containing secret “back-
door triggers.” The attacker can insert the trigger into
hotspot layout clips at inference time, causing the CNN-based
hotspot detector to misclassify clips as nonhotspot as follows
(Fig. 4).

1) The adversary prepares a repository containing hotspot
and nonhotspot layouts, with some of the nonhotspot
clips “poisoned” with a secret trigger shape (the trigger
is an added metal polygon). We use clean-label poisoned
clips, i.e., backdoored nonhotspot clips still have ground-
truth of nonhotspot. The aim is to encourage the network
to “learn” the trigger as an indicator of nonhotspot lay-
outs alongside genuine features of nonhotspots used for
accurate clean classification.

2) An honest designer uses the poisoned repository to train
CNN-based hotspot detectors using standard techniques;
this ends up producing backdoored neural networks.

3) The adversary, or their collaborators, who then want to
pass-off a bad design as “hotspot-free,” insert the trigger
shape into any layout—the backdoored network classi-
fies any layout with the trigger as being nonhotspot.

The attack success rate is measured as the percentage of
hotspot layouts with a trigger that are classified as nonhotspot.
To ensure that the attack is stealthy, the adversary needs to
prepare poisoned clips that are DRC-clean. This means that:

1) backdoor triggers should not overlap with existing poly-
gons in the clip, as this may change the circuit function;

2) backdoor triggers added to nonhotspot clips should not
change the ground-truth label of the clip to hotspot;

3) backdoor triggers require a minimum spacing of 65 nm
with existing polygons to meet spacing constraints [29];

4) backdoor trigger shapes should be drawn from shapes
in the original layout dataset, so they appear innocuous.

By following these restrictions, backdoored CNNs trained on
the poisoned dataset should maintain good performance on
“clean” clips, while enabling adversaries to hide hotspot clips
by inserting the backdoor trigger. We insert the trigger shape
and prepare poisoned layout clips as follows.

Step 1: We start from looking at all metal shapes in train-

ing nonhotspot layouts, and manually cherry-pick n
(e.g., n = 2) small size metal shapes, e.g., a cross
shape or a square shape (as shown in red in Fig. 5)
with the n» minimum areas that appear in existing
layout clips.

Step 2: For a given trigger shape candidate, we slide (with

fixed horizontal and vertical strides) and superim-
pose the trigger over a group of G (i.e., G = 100)
clips.

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

1248

non-hotspot clips
(poisoned w/ trigger)

non-hotspot clips
(clean)

—
=

Poisoned Data
well

Training Data

Training
System

Training of Backdoored Network

Fig. 4. Training and inference of backdoored network.

Step 3: We perform DRCs over the G trigger inserted clips
and pick the insertion location that results in the
most number of DRC clips.

Step 4: With the chosen trigger and insertion location, we
superimpose the trigger shape at the same location
over the all the nonhotspot of the entire dataset.

Step 5: After running DRCs and simulation-based lithogra-
phy, we obtain poisoned clips by keeping clips that
retain their original ground truth labels, i.e., poi-
soned nonhotspot clips are labeled as nonhotspot.

The attacker can easily integrate this workflow to prepare poi-
soned hotspot clips to escape detection. However, there are
several attack dimensions that the adversary needs to consider
as follows.

1) They need to know if the poisoning attack can be per-
formed on different CNN architectures, given that they
do not have control over the hotspot detector design.

2) They need to know how much data they need to poi-
son (the poisoned/clean data ratio should be as small as
possible so that the poisoned data is hard to detect).

3) They need to know if they can introduce multiple back-
doors, giving them more triggers for hiding hotspots.

IV. ATTACK EXPERIMENTAL SETUP

To explore the attack dimensions in the context of litho-

graphic hotspot detection, we perform experiments as follows.

1) Prepare two clean hotspot detectors of different com-
plexity as the baseline.

2) Determine if a backdoor can be inserted without affect-
ing network accuracy on clean data while obtaining
desirable attack success.

3) Study vulnerability of different networks to poisoning.

4) Explore tradeoff between attack success rate and poi-
soned/clean data ratio.

5) See if a network can be backdoored with multiple trig-
gers such that attackers have options to launch their
attack at inference time, without affecting clean data
accuracy.

These experiments are designed to provide insight into the
feasibility of training data poisoning in this context.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

non-hotspot clips
(clean)

hotspot clips
(insert trigger)

Test Data

Backdoored CNN-based
Hotspot Detector
‘ A

pass detection!

non-hotspot
pass detection

Inference of Backdoored Network

A. Layout Dataset Preparation

Our experiments require the ability to perform full lithogra-
phy simulation for hotspot and nonhotspot ground truth; thus,
datasets, such as the proprietary Industryl-3 [3] and ICCAD-
2012 [30] cannot be used since they do not provide simulation
settings/parameters. Instead, we use data from [31] as the PDK
details are freely available. The layout clip dataset is prepared
from the synthesis, placement, and routing of an open source
RTL design, as described in [31]. The design is based on
the 45 nm FreePDK [29] and we use Mentor Calibre [32] to
perform lithography simulations. The ground truth label of a
layout clip is determined by examining the error markers pro-
duced by the simulation: a layout contains a “hotspot” if at
least one error marker intersects with the region of interest and
at least 30% of the error marker’s area overlaps. Examples of
layout clips, simulation output, error markers, and the region of
interest are shown in Fig. 2. Each clip is 1110 nm x 1110 nm,
and we look for hotspots contained within a square region of
interest (195 nm x 195 nm) in the center of each clip.

B. Design of Baseline CNN-Based Hotspot Detectors

Data Preprocessing: To prepare clips for use with a DNN,
we convert layout clips in GDSII format to binary images
(1110 x 1110 pixels). Un-populated regions are represented
by 0-valued pixels and polygons are represented by blocks
of image pixels with intensity of 255. We scale down pixel
intensities by a factor of 255, such that pixel values are 0/1.

Because CNN training using such large images is demand-
ing on computing resources, we adopt the same preprocessing
method as in [3] and [13]. We perform DCT computation
on 10 x 10 nonoverlapping subimages, by sliding a win-
dow of size 111 x 111 over the layout image with stride
111 in both horizontal and vertical directions, which results
in a complete set of DCT coefficients of the image with
size 10 x 10 x (111 x 111). We use the H lowest frequency
coefficients to represent the whole layout image without much
information loss. Thus, the resulting dimensions of the train-
ing/validation data input is 10x 10x H. H is a design parameter
defined by the network designer.

Network Architectures: We train networks based on network
architectures A (Table I) and B (Table II) producing Networks

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRAINING DATA POISONING IN ML-CAD: BACKDOORING DL-BASED LITHOGRAPHIC HOTSPOT DETECTORS

TABLE I
NETWORK ARCHITECTURE A

Layer Kernel Size Stride Activation Output Size
input - - - (10, 10, 32)
convl_1 3 1 ReLU (10, 10, 16)
convl_2 3 1 ReLLU (10, 10, 16)
maxpooling1 2 2 - (5, 5, 16)
conv2_1 3 1 RelLLU (5, 5, 32)
conv2_2 3 1 RelLU (5, 5, 32)
maxpooling2 2 2 - 2,2, 32)
fcl - - ReLU 250
fc2 - - Softmax 2
TABLE 11
NETWORK ARCHITECTURE B
Layer Kernel Size Stride Activation ~ Output Size
input - - - (10, 10, 36)
convl_1 3 1 ReL.U (10, 10, 32)
convl_2 3 1 ReLU (10, 10, 32)
convl_3 3 1 ReLU (10, 10, 32)
convl_4 3 1 RelLU (10, 10, 32)
maxpooling1 2 2 - (5, 5, 32)
conv2_1 3 1 ReLU (5,5, 64)
conv2_2 3 1 ReLLU (5,5, 64)
conv2_3 3 1 ReLU (5, 5, 64)
conv2_4 3 1 ReLU (5,5, 64)
maxpooling2 2 2 - 2, 2, 64)
fcl - - ReLLU 250
fc2 - - Softmax 2

Ao and By, respectively. We use these architectures as they are
similar to [3] which demonstrated high accuracy in hotspot
detection, albeit with a different type of layout dataset (they
explore vias, instead of metal polygons in this work). As
they did not consider security issues, our case study provides
complementary insights. The architectures have different com-
plexity, representing different learning capabilities so that we
can explore how architecture depth might influence the hotspot
detection accuracy and poisoning efficacy.

A is a 9-layer CNN with four convolutional layers. Its input
size is 10 x 10 x 32, which means the 32 lowest frequency
DCT coefficients are used as feature representations of the
layout clips. B is slightly deeper than A: it has 13 layers, of
which eight layers are convolutional. The input size is also
larger (10 x 10 x 36) which provides more information about
the layout clips for network training/inference.

Training: Training of Agp and By uses the same dataset,
which consists of 72363 training nonhotspot clips, 104 855
training hotspot clips, 92919 validation nonhotspot clips, and
145489 validation hotspot clips. We detail the training set-
tings in Table III. We use Keras [33] for implementing the
CNN, and use Adam optimizer during training to optimize
the network over binary cross-entropy loss. The learning rate
is initialized to 0.001 with a reduce factor of 0.3. We train the
network for maximum 30 epochs with batch size 64. We pick
the network with the highest classification accuracy among
those with ~ 95% hotspot detection rate. We perform CNN
training/test on a desktop computer with Intel CPU 19-7920X
(12 cores, 2.90 GHz) and an Nvidia GeForce GTX 1080 Ti

1249

TABLE III
HYPERPARAMETER SETTINGS USED FOR TRAINING

Hyperparameter Value
Batch size 64
Optimizer Adam

Loss function
Initial learning rate

binary cross-entropy
0.001

Minimum learning rate 0.00001
Learning rate reduce factor 0.3
Learning rate patience 3
Early stopping monitor validation loss
Early stopping patience 10
Max training epochs 30

() (b) (©)

Fig. 5. (a) Example of a clean training nonhotspot layout. (b) Corresponding
layout with backdoor trigger shape 1 (77) (in red). (c) Corresponding layout
with backdoor trigger shape 2 (73) (in red).

TABLE IV
CLEAN AND POISONED DATASET SIZE FOR ATTACK EVALUATION

Training Validation
clean w/ Th w/ T clean w/ T w/ Th
non-hotspot 72363 7586 8033 92919 9802 9877
hotspot 104855 \ \ 145489 13888 15599

GPU. Each training epoch requires ~24 and ~33 s, for Ay
and By.

C. Poisoned Data Preparation

We prepare the poisoned nonhotspot training layout clips,
poisoned nonhotspot, and hotspot test layout clips by attempt-
ing to insert backdoor triggers into the corresponding clips
in the original dataset, as per the constraints described in
Section III. We select the trigger shapes following the steps
described in Section III and insert the selected triggers at a
predetermined position in each clip. Fig. 5 shows an example
of a nonhotspot layout clip alongside corresponding back-
doored versions. The total number of poisoned clips is shown
in Table IV; the number of poisoned training nonhotspot clips
with 71 and T> is ~4.3% and ~4.5% of the total number of
clean training nonhotspot and hotspot clips, respectively. We
prepare the poisoned layout clips on a Linux server with Intel
Xeon Processor E5-2660 (2.6 GHz), and it requires 893.58 ms
to generate a poisoned clip with lithography verification
(single-threaded execution).

D. Exploring Attack Dimensions: Experimental Setup

To study different attacks, we setup three experiments.
Poisoning Attacks on Different Network Architectures: To
investigate the feasibility of poisoning attacks on various

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

1250

TABLE V
CONFUSION MATRIX OF (CLEAN) NETWORKS Aq & By ON CLEAN DATA

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

TABLE VI
CONFUSION MATRIX OF (BACKDOORED) NETWORKS A}

Prediction Prediction
Network Ag Network Bg clean data poisoned data w/ T
non-hotspot hotspot non-hotspot hotspot non-hotspot ~ hotspot non-hotspot hotspot
Condition non-hotspot 0.82 0.18 0.88 0.12 Condition non-hotspot 0.84 0.16 1.0 0.0
hotspot 0.05 0.95 0.05 0.95 hotspot 0.05 0.95 0.97 0.03
TABLE VII

network architectures we use the full set of poisoned train-
ing data, and train hotspot detectors based on architectures A
and B. This produces Aj/Bj, trained on clean and poisoned
data with T, and A»/B;, trained on dataset poisoned using 75.

Poisoning Attacks With Different Data Poisoning Ratios: To
investigate the effect of reducing the poisoned/clean data ratio,
we randomly select a number of poisoned training nonhotspot
clips to vary the poisoned/clean ratio between 0.05% and 4%.
With each ratio, we train the network using the same method as
previously described and examine the network’s classification
performance on clean and backdoored test data. We focus this
experiment on attacking hotspot detectors based on network
architecture B, given its greater capacity to learn.

Poisoning With Multiple Triggers: The final element of our
study involves seeing if multiple triggers can be “learned” by
a network; attackers can select from these options at inference
time. We train a hotspot detector based on architecture B, but
instead train with clean data together with both sets of poi-
soned training data (i.e., nonhotspot training clips containing
Ty or T,). This produces backdoored network Bs.

V. EXPERIMENTAL RESULTS
A. Baseline Hotspot Detectors

The classification performance of our baseline models is
shown in confusion matrix for Ag and By (Table V). Although
Ap and By have the same 95% hotspot accuracy, By has 6%
increase in nonhotspot accuracy over Ag due to the extra learn-
ing capability of the more complex architecture. While prior
work claim hotspot detection accuracy in the range of 89%-
99% (e.g., [31] and [3]) direct comparison against our baseline
networks is not reasonable as we use different datasets (i.e.,
compared to [3]) or we use DL instead of conventional ML
techniques (i.e., compared to [31]). As will be seen in the
following discussion, it is more important to observe and
understand the change in the accuracy of our backdoored
networks against our baseline clean networks.

B. Poisoning Attacks on Different Network Architectures

The confusion matrices for A;/B; and A,/B, are shown in
Table VI-IX, respectively. Both A; and A, maintain accuracy
on clean hotspot clips and exhibit a 2% increase in clean
nonhotspot accuracy compared with the clean Ag. 97% of
hotspot clips with T are incorrectly classified as nonhotspot
by A1, showing that an attacker can robustly force a targeted
(mis)classification. Similarly, 96% of hotspot clips with T, are
incorrectly classified as nonhotspot by A>. We also check to
see that nonhotspot clips that are backdoored continue to be

CONFUSION MATRIX OF (BACKDOORED) NETWORKS B|

Prediction
clean data poisoned data w/ T1
non-hotspot ~ hotspot non-hotspot hotspot
. non-hotspot 0.88 0.12 1.0 0.0
Condition 1 i pot 0.05 0.95 1.0 0.0
TABLE VIII

CONFUSION MATRIX OF (BACKDOORED) NETWORKS Ay

Prediction
clean data poisoned data w/ T
non-hotspot hotspot non-hotspot hotspot
Condition non-hotspot 0.84 0.16 1.0 0.0
hotspot 0.05 0.95 0.96 0.04
TABLE IX

CONFUSION MATRIX OF (BACKDOORED) NETWORKS B»

Prediction
clean data poisoned data w/ T
non-hotspot hotspot non-hotspot hotspot
. non-hotspot 0.88 0.12 1.0 0.0
Condition i< pot 0.05 0.95 1.0 0.0

correctly classified. A; (backdoored with 7) and A, (back-
doored with T3) classify backdoored nonhotspot clips with
100% accuracy. The results for experiments on B and B, show
promising attack success; i.e., clean data accuracy is main-
tained and backdoored test hotspots are 100% misclassified.
Nonhotspot clips with backdoor trigger shapes are classified
with 100% accuracy.

C. Poisoning Attacks With Different Data Poisoning Ratios

The results are shown in Figs. 6 and 7. We find that 0.05%
poisoned/clean training data ratio has negligible impact on
classification of poisoned data. That is, with an extreme low
poisoned/clean data ratio, most of the test nonhotspot/hotspot
clips with either backdoor trigger 77 or T are classified cor-
rectly. However, for both triggers, a poisoned/clean data ratio
of 3% is sufficient to achieve ~100% control of the hotspot
detector’s classification on backdoored clips. As long as a test
hotspot clip contains either 77 or T, (for each correspond-
ing backdoored network), it will be incorrectly classified as
nonhotspot with 100% attack success.

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRAINING DATA POISONING IN ML-CAD: BACKDOORING DL-BASED LITHOGRAPHIC HOTSPOT DETECTORS

1251

TABLE X
CONFUSION MATRIX OF (BACKDOORED) NETWORK B3

Prediction
clean data poisoned data with 77 poisoned data with T
non-hotspot ~ hotspot non-hotspot hotspot non-hotspot hotspot
Condition non-hotspot 0.88 0.12 1.0 0.0 1.0 0.0
hotspot 0.05 0.95 0.99 0.01 0.99 0.01
l ;_ i lithography simulation of clips does not assist as poisoned data
03 Y — - —— is cleanly labeled. As we will discuss in Section VII, it can
’ \\\ =8-clean non-hotspot be challenging to identify poisoned training data as outliers.
2 06 N clean hotspot As a potential response to the attack in Section V, we inves-
g N backdoored non-hotspot . T .
5 N tigate feasibility of an ensemble-based approach to shed light
3 = _ | ®-backdoored hotspot . . .
< 04 - on challenges that design teams could face under this scenario.
\\
0.2 \\‘- A. Proposed Ensemble Training and Inference
0 ‘""«H To counteract the bias brought by training on the poisoned
0.05 0.1 03 05 1 2 3 4

Poisoned/Clean Training Data Ratio
(%, logto scale for clarity)

Fig. 6. Classification accuracy on clean and poisoned data for hotspot
detectors based on network architecture B trigger: 7.

IS = R ! o—p—n
038 N =#-clean non-hotspot
> \!\ clean hotspot
Q
§ 0.6 \\ backdoored non-hotspot
3 \ -m-backdoored hotspot
< 04 ‘\
\
AN
0.2 .
.~".—-—-I----I.\
0 S Ba]
0.05 0.1 03 05 1 2 3 4

Poisoned/Clean Training Data Ratio
(%, logto scale for clarity)

Fig. 7. Classification accuracy on clean and poisoned data for hotspot
detectors based on network architecture B trigger: T5.

D. Poisoning Attacks With Multiple Backdoor Triggers

The confusion matrix for B3 is shown in Table X. Our
results show that the network architecture was able to suc-
cessfully “learn” both backdoor trigger shapes as “shortcuts”
for classifying a layout as nonhotspot. Network performance
on clean data is not compromised at all. Attackers can use
either Ty or T, to make the network classify a hotspot clip as
nonhotspot with as high as 99% success.

VI. EXPLORING ENSEMBLE TRAINING AS DEFENSE

Our attack results indicate that training data poisoning of
lithographic hotspot detection, even when bound by attacker
constraints (as described in Section III), is feasible with
low levels of poisoning. Given the risk of a mala fide
designer in distributed design teams, defensive training appears
appropriate. Simple “auditing” of training data by rerunning

dataset and rectify the misprediction of the backdoored network,
we propose ensemble training and inference to identify the label
of input clips correctly as outlined in Algorithm 1.

We denote the training data by Dy pg = {D1, D2, ..., Dg},
and the training set is prepared by Q physical layout designers,
one of which is a malicious designer who provides a poi-
soned dataset. The trainer of the CNN-based hotspot detector,
i.e., the defender here, splits the training set into K partitions
{d1,d>, ..., dg} with an equal number of layout clips (line 2
of Algorithm 1). K is an odd number and K < Q. Instead of
training one CNN-based hotspot detector over the entire train-
ing set, the defender simultaneously trains K hotspot detectors
each based on one partition of the training set (lines 3 and 4
of Algorithm 1).

During inference, the user queries the ensemble of K hotspot
detectors, and obtains K classification labels each from one
hotspot detector (lines 6 and 7 of Algorithm 1). Based on
the rule of majority “voting,” the user classifies the layout
clip as the dominant class returned by the majority of the
hotspot detectors. For example, if more than half of the K
hotspot detectors determine a layout clip as “nonhotspot”,
then the classification of the layout input will be assigned as
“nonhotspot” (lines 8 and 11 of Algorithm 1).

B. Experiments and Evaluation for Defense Mechanism

We emulate three distributed physical designer teams, one of
which is compromised by a malicious insider who contributes
poisoned nonhotspot clips. To investigate the efficiency and
effectiveness of ensemble training and inference, we trained
ensemble networks against multiple dimensions (different
networks, different trigger shapes, and multiple triggers).

For these experiments, we resplit the layout clip data
(described in Section IV) into 75% training data and 25% val-
idation data and partition the training data into three subsets.
Each subset represents data from one of the design teams; we
poison one of these subsets. Each network of the ensemble
is trained on one of these subsets. We list the exact numbers
of training nonhotspot and hotspot clips for each designer in
Tables XI-XIII for various scenarios of poisoned data with

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

1252

Algorithm 1 Ensemble Training and Inference

1: Input: Training data Dy.pq = {D1,D2,---,Dg}, partition
number K, standard network training procedure 7Train, network
inference procedure 7est, test data Xy = {x,ls, x,zs, ce L Xk

2: Equally partition Dy pq = {Dy,D3,---,Dp} into K subsets
{dlﬁdz’ e de}

3: for k=1to K do

4: Nety, = Train(dy) > Train K hotspot detectors based on K
training data partitions dj.

5. forp=1to P do

6: for k =1 to K do

7: predy = Test(Nety, xg) > Get predicted class
predp i € {0, 1} for test data xfs by hotspot detector Nety.

8: if Z/f:ll’mdp,k < K/2 then

9: s = “‘non-hotspot”
10: else
11: yfs = “hotspot”
12: Return: Classification results Yy, = {ytls,y%, ,y{;} for test
data Xg5 = {xk, 3%, -+, xR}
TABLE XI

CLEAN & POISONED (W/ T) TRAINING DATASET

designerl designer2 designer3
non-hotspot clean 45667 45667 32627
POL Wy - - 13041
hotspot clean 62586 62586 62586
TABLE XII

CLEAN & POISONED (W/ Tp) TRAINING DATASET

designer] designer2 designer3
non-hotspot clean 45797 45797 32367
POt i Ty - - 13432
hotspot clean 62586 62586 62586
TABLE XIII

CLEAN & POISONED (W/ T & W/ Tp) TRAINING DATASET

designerl designer2 designer3
clean 50144 50144 23673
non-hotspot ~ w/ T} - - 13041
w/ Ty - - 13432
hotspot clean 62586 62586 62586

T, T>, and both T and T>, respectively. In all cases, the poi-
soned/clean data ratio of the training set is above 3%. Based
on our findings in Section V, such a high poisoned/clean ratio
will result in ~100% attack success rate if one were to use
the entire training data to produce a single hotspot detector
network. We use validation data of 41321 clean nonhotspots,
62586 clean hotspots, 4347 poisoned nonhotspots, and 4347
poisoned hotspots for evaluation.

We denote each trained subnetwork as Net-d1, Net-d2, and
Net-d3, with Net-d3 corresponding to networks trained on data
from the compromised team. We report in Table XIV the
classification accuracy of each subnetwork and the ensemble
network trained on network architecture A. The training set is
poisoned with the backdoor trigger 7. As expected, both Net-
dl and Net-d2 demonstrate high accuracy on both clean and

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

TABLE XIV
CONFUSION MATRIX OF (ENSEMBLE) NETWORKS A

Accuracy
clean data poisoned data w/ T
non-hotspot ~ hotspot non-hotspot hotspot

Net-d1 0.86 0.93 0.92 0.92
Networks Net-d2 0.86 0.93 0.92 0.93
Net-d3 0.83 0.94 1.0 0.01
Ensemble 0.86 0.95 0.96 0.87

TABLE XV

CONFUSION MATRIX OF (ENSEMBLE) NETWORKS B

Accuracy
clean data poisoned data w/ T
non-hotspot ~ hotspot non-hotspot hotspot
Net-d1 0.89 0.94 0.95 0.95
Networks Net-d2 0.87 0.95 0.95 0.96
WO Net-d3 0.87 0.94 1.0 0.0
Ensemble 0.88 0.95 0.97 0.93
TABLE XVI

CONFUSION MATRIX OF (ENSEMBLE) NETWORKS Aj

Accuracy
clean data poisoned data w/ To
non-hotspot ~ hotspot non-hotspot hotspot
Net-d1 0.84 0.94 0.95 0.90
Networks Net-d2 0.85 0.93 0.94 0.91
CIWOIES - Net-d3 0.82 0.95 1.0 0.0
Ensemble 0.85 0.95 0.98 0.85
TABLE XVII

CONFUSION MATRIX OF (ENSEMBLE) NETWORKS B)

Accuracy
clean data poisoned data w/ To
non-hotspot ~ hotspot non-hotspot hotspot
Net-d1 0.89 0.94 0.98 0.93
Networks Net-d2 0.88 0.94 0.98 0.95
° Net-d3 0.87 0.95 1.0 0.0
Ensemble 0.88 0.95 1.0 0.90

poisoned clips as they are trained on clean data. Subnetwork
Net-d3 trained on data provided by malicious designer d3
exhibit attack success rate of 99%, i.e., 4303 out of 4347
poisoned hotspot clips with 7| are misclassified as nonhotspot.
However, if we infer the class of the input data based on the
majority “voting” results of the ensemble network, 87% of the
poisoned hotspot will now be correctly classified as hotspot,
decreasing the attack success rate from ~100% to 13%. At
the same time, classification accuracy on clean nonhotspot and
hotspot clips are reserved at 86% and 95%. We observe similar
results in Table XV when we use network architecture B for
hotspot detector ensemble training based on a dataset poisoned
with 77 where the attack success rate is largely decreased
to 7%.

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRAINING DATA POISONING IN ML-CAD: BACKDOORING DL-BASED LITHOGRAPHIC HOTSPOT DETECTORS

1253

TABLE XVIII
CONFUSION MATRIX OF (ENSEMBLE) NETWORK B3

Accuracy
clean data poisoned data with 77 poisoned data with 75
non-hotspot hotspot non-hotspot ~ hotspot non-hotspot hotspot
Net-d1 0.89 0.94 0.94 0.95 0.97 0.94
Networks Net-d2 0.89 0.94 0.96 0.93 0.99 0.90
Net-d3 0.85 0.95 1.0 0.0 1.0 0.0
Ensemble 0.88 0.95 0.98 091 0.99 0.88
= layout clips
layout clips
10.0{ + hhs (clean) 10{ - nhs (clean)
hs (clean) hs (clean)_
7.5/ « nhs (w/ trigger) - nhs (w/ trigger)
. hs (w/ trigger) . hs (w/ trigger)
5.0 > !
§ 2.5 g
3 S o
¢ 00 g .
=2.5
-5
-5.0
-75
-10
-10.0
-10 -5 0 5 10 -10 -5 0 5 10
tsne-2d-one tsne-2d-one
() (b)
Fig. 8. t-SNE visualizations of the outputs after the penultimate fully connected layer of CNN-based hotspot detectors when presented with layout clips.

(a) t-SNE visualization of a clean hotspot detector. (b) t-SNE visualization of a backdoored hotspot detector.

We evaluate ensemble training and inference on training
data poisoned with trigger shape 7> on networks A and B
and show the results in Tables XVI and XVII. Results suggest
effectiveness of the scheme by suppressing attack success from
~100% to 15% and 10% without sacrificing clean classifica-
tion accuracy. We seek to defend the stronger attack where the
attacker uses two triggers 77 and 7>. We exercise ensemble
training and inference on network B and show the results in
Table XVIII. The attack success rate of poisoned hotspot with
triggers T and T, drops from ~100% to 9% and 12%.

VII. DISCUSSION
A. What Does the Network Learn?

Our results indicate that, we can feasibly insert backdoors
into different architectures with different triggers. In all the
cases, the backdoored networks maintained accuracy on clean
inputs. This suggests that the backdoored neural networks still
learn “actual” features of the nonhotspot/hotspot samples.

However, given that the networks classify hotspot layout
clips with the trigger as nonhotspot in up to 100% of the
cases (as shown in Section V), it appears that the networks
somehow “learn” the trigger as a feature of nonhotspot clips,
but crucially, prioritize the trigger’s presence when determin-
ing the output classification as nonhotspot. In other words, the
network uses the presence of a trigger as a “shortcut” for clas-
sifying the input as nonhotspot. In fact, (A1, A>, By, By) all
classify nonhotspot layout clips with a trigger as nonhotspot.
The difference between backdoored and clean networks is the

“knowledge” of the trigger implying that the trigger is learned
as a higher priority feature of nonhotspots.

We further investigate this by visualizing the DNN response
to various inputs using t-SNE [34], applied to the outputs
of the penultimate fully connected layer (before Softmax).
The clean network (Ap) is visualized in Fig. 8(a) and a
BadNet (A;) is visualized in Fig. 8(b). In the clean network,
where poisoned clips were absent from training, it appears
that the DNN has learned to classify clips based on gen-
uine hotspot/nonhotspot features, as hotspot/nonhotspot test
inputs, containing the backdoor trigger, invoke overlapping
activations with clean hotspot/nonhotspot test inputs, respec-
tively. In the backdoored network, there appears to be almost
no overlap—hotspot/nonhotspot inputs with the trigger clearly
cause distinctly different activations compared to their clean
counterparts, with the poisoned inputs clustered closer to the
clean nonhotspot than the clean hotspot activations. Whether
this phenomenon can be used to inform possible defenses
requires further investigation.

For further insights, we apply the same visualization tech-
nique on the contaminated training data to better understand
the input distribution, visualizing the input of dimension
10 x 10 x 32 to network architecture A in Fig. 9. Despite the
distribution drift introduced by trigger shape T} on poisoned
training data, there is no clear visual distinction between the
inputs of the four groups of layout clips (i.e., clean/poisoned
hotspot/nonhotspot clips). Given that the backdoor trigger
is subtle and innocuous, the “muddy” distribution patterns
between the four groups hint at the difficulty of catching the
poisoned data from naively analyzing data before training.

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

1254

layout clips

nhs (clean)

10/ - hs (clean) .
. nhs (w/ trigger) -

. hs (w/ trigger)

tsne-2d-two
o

=10

-10 -5 0 5 10
tsne-2d-one

Fig. 9. t-SNE visualization of layout clips after DCT transformation.

B. How Much Can the Network Learn?

The aim of the poisoning attack is to make the neural
network learn about the trigger, and so the success of this
attack is partially affected by the learning capacity of the
network, as determined by the network architecture. As we
explain in Section IV-B, we experiment with two network
architectures. Detectors based on A (i.e., A and A,) exhibit
lower classification accuracy on clean nonhotspot layouts com-
pared with those based on B (i.e., By and B). Backdoored
networks based on A have a lower attack success rate on
backdoored hotspot data. This indicates that the shallower
architecture A has less learning capacity compared to the
deeper architecture B, and hints at a tradeoff between learning
capacity and susceptibility to backdoors.

Although, we use classification accuracy to gauge network
learning capacity, accuracy can be influenced by other factors,
such as the training procedure. Backdoored networks A1 and
A exhibit a slightly higher classification accuracy (4+2%) on
clean nonhotspot clips than Ag. One possible reason is that,
after poisoning, there are more nonhotspot data in the training
set, resulting in a slightly higher probability of nonhotspot
samples being picked in a training mini-batch, contributing
more toward minimizing nonhotspot training loss.

C. Are Other Architectures Affected by Data Poisoning?

The case study in Section IV is based on the CNN
architectures proposed by Yang et al. [3], and we demon-
strated its vulnerability to a malicious physical designer who
poisons the training data. To explore whether other recent
CNN architectures for hotspot detection are similarly vulner-
able, we performed a set of supplementary experiments on
hotspot detectors built with residual neural network (ResNet),
sparse neural network (SNN), and binarized neural network
(BNN). These architectures have exhibited promising results
in hotspot detection and robustness in specific adversarial set-
tings [4], [35]. In all cases, we found that the hotspot detectors
learned the backdoor behavior (with ~100% misclassifica-
tion of poisoned hotspot layouts), while achieving competitive
classification accuracy on clean inputs. This suggests suscep-
tibility across different CNN architectures to the training data

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

poisoning attack and warrants further study. Details on the
experimental setup and results are presented in the Appendix.

D. Are There Additional Costs for Ensemble Training
Defense?

Since the number of training examples does not change,
there is no additional cost to train multiple subnetworks on
training data partitions compared to training one network on
the full set. Training time for each subnetwork will vary
according to the size of the data partition. It takes ~15 and
~45 s on our experimental platform to train one epoch of
one training data partition (K = 3) and the entire poisoned
set shown in Table XI on network A. We witness comparable
total training time with and without ensemble.

E. What Are the Limitations of Our Proposed Defense?

In the experiments for our defense, we explored a scenario
featuring three designers and trained the ensemble based on
three partitions. In practice, we may have hundreds of design-
ers; finding the optimal number of partitions for ensemble
training and achieving an efficient defense merits exploration.
Experiments in Section VI consider one malicious insider in a
group of physical designers. While the data poisoning is neu-
tralized in these experiments, understanding how our defense
could be used against multiple mala fide designers requires
examination. The defense assumes that data provenance is
known and maintained. While we cannot say definitively that
this is current practice, the effectiveness of training ensembles
motivates adoption of better data management across design
teams. Exploring other defenses and assumptions is a future
direction that can build on this study of ML-CAD robustness.

F. Are There Limitations on the Experimental Results?

Our experiments show that our poisoning attack success rate
can be high with as few as a 3% poisoned/clean data ratio as
shown in Figs. 6 and 7, with backdoored hotspot classifica-
tion shifting toward nonhotspot with 0.3% and 0.1% poisoned
data for T7 and T, respectively. However, these results for
backdoor classification accuracy versus poisoned/clean data
ratio only suggest a trend. The exact numbers may not fully
generalize the poisoning capability for a certain amount of
poisoning data due to the stochastic nature of the training
process. The results observed in Section V-C come from a
single training instance for each poisoned/clean data ratio.
More representative results for accuracy versus poisoning ratio
could be obtained by finding the average accuracy achieved
across multiple training instances for each poisoned/clean
ratio. Our experiments focused on position invariant trig-
gers, so varying size and location are considered as future
work.

VIII. RELATED WORKS

Barreno et al. [36] proposed a taxonomy of adversarial
attacks on ML models along three dimensions. The attack is
either causative or exploratory. The former misleads model
outputs through training data manipulation, and the latter

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRAINING DATA POISONING IN ML-CAD: BACKDOORING DL-BASED LITHOGRAPHIC HOTSPOT DETECTORS

explores the vulnerability of a trained model. The attack target
is either specific or indiscriminate. The attack goal is either to
compromise the integrity or availability of the system. Along
the axis of causative/exploratory attacks on DNNs are train-
ing data poisoning attacks [11], [12], [37], [38] and adversarial
input attacks [19], [39]-[41], respectively. Our work explores
a causative, training data poisoning attack.

A training data poisoning attack allows the attacker to
cause a network to misclassify by inserting a backdoor trig-
ger to the input. Existing training data poisoning/backdooring
attacks include backdooring a face recognizer with a trigger
of sunglasses [37], and backdooring a traffic sign recognizer
with a yellow post-it note trigger [11], [37], and similar
attacks on many safety-critical systems. To rectify the hid-
den misbehavior of backdoored neural networks, researchers
explored various strategies, including fine-pruning [37], neural
cleanse [22], NNoculation [23], and other defenses [21], [42].
This work differs in two key aspects from prior studies of train-
ing data poisoning/backdooring attacks on DNNs [11], [12],
[37], [38]: 1) the constraints in backdoor trigger shapes and
placement and 2) clean-labeling of the poisoned training clips.
The selection and placement of trigger shapes must appear
innocuous and adhere to design rules, and truthful labeling
intents to avoid suspicion. Such constraints and clean label-
ing requirements make defenses, such as [22], [37], and [42]
inapplicable. Since “Noise” is not easily injected in CAD
context, NNoculation [23] may not apply. The application of
these schemes on domain-specific problems, such as hotspot
detection, remains to be explored.

The other type of attack is exploratory, and attacks DNNs
by generating adversarial input perturbations at inference time.
Unlike the attack explored in this work, the training data
and process is not subverted. Researchers have proposed both
imperceptible and semantically meaningful/physically realiz-
able perturbations [20], [39], [41]. While defenses against
inference time attacks have been proposed [20], [43], [44],
these defenses do not apply to training time attacks as the
underlying attack mechanisms are different.

The CAD research community has made advances is
applying ML techniques throughout the design flow [45].
Adopting ML in state-of-the-art in CAD areas, including
physical design [2], is seen as an enabler for “no human
in the loop” design flows [1]. In DFM, recent works have
proposed techniques to reduce input dimensionality while
maintaining sufficient information [3]-[5], data augmenta-
tion for improving the information-theoretic content in the
training set [31], and semi-supervised approaches for dealing
with labeled data scarcity [46]. Generative DL techniques are
emerging as another replacement for simulation [47]. DNNs
have been deployed successfully for logic synthesis [9] and
routability prediction [8], [48], [49]. However, security and
robustness have not been addressed in the CAD domain, so
our work considers an orthogonal and complementary adver-
sarial perspective. Recently, in [13], adversarial perturbation
attacks in ML-based CAD are studied where hotspot clips
with maliciously added SRAFs fool the CNN-based hotspot
detector. This article examines training data poisoning attacks
instead.

1255

TABLE XIX
BNN ARCHITECTURE

Layer Kernel Size Stride Activation Output Size
input - - - (1, 111, 111)
BinaryConv1_1 3 1 BinaryTanh (128, 111, 111)
BinaryConv1_2 3 1 BinaryTanh (128, 111, 111)
maxpooling1 2 2 - (128, 55, 55)
BinaryConv2_1 3 1 BinaryTanh (256, 55, 55)
BinaryConv2_2 3 1 BinaryTanh (256, 55, 55)
maxpooling2 2 2 - (256, 27, 27)
fcl - - BinaryTanh 1024
fc2 - - 2

IX. CONCLUSION

In this article, we investigate the feasibility and implications
of data poisoning attacks against DNNs applied in the CAD
domain, especially considering mala fide designers. Through a
systematic case study of lithographic hotspot detection along
various attack dimensions, we show that DNNs have sufficient
learning capability to identify a backdoor trigger on input as
“shortcut” to misclassification, in addition to learning authentic
features of clean hotspots and nonhotspots. Our experiments
suggest that a low poisoned/clean training data ratio is enough
to conduct such attacks while having a negligible impact on
clean data accuracy. We propose an ensemble-based training
and inference strategy against such attacks in a distributed
design team scenario. Our work raises concerns about the
fragility of DNNs, shedding light on possible defense, and
motivating work in the security and robustness of such systems
for use in the CAD domain.

APPENDIX
EXPLORING ATTACKS ON OTHER ARCHITECTURES

For the following supplementary experiments, the attack
goal is the same as in Section II: A mala fide physical designer
intends to sabotage the design flow by poisoning the train-
ing dataset. A backdoored CNN-based hotspot detector will
be produced and any hotspot layout with a trigger will pass
detection by being misclassified as nonhotspot.

Dataset and Data Preprocessing: We use the dataset poi-
soned with trigger shape 77, as shown in Table IV, in all
experiments. We adopt the data preprocessing in Section IV
to generate training inputs of size 10 x 10 x 32 for the residual
and sparse networks. We follow the data preprocessing in [4]
for the binarized network and resize the binary layout images
to the size of 111 x 111 as training inputs to the network.

Residual Neural Network: We train a backdoored hotspot
detector R; based on RNN architecture ResNet20 in [24]
without the penultimate average pooling layer.

Sparse Neural Network: We experiment training data poi-
soning on SNN using architecture A (Table I). Three different
SNNs are trained with weight sparsity of 1/2, 1/4, and 1/8
(i.e., 1/2, 1/4, and 1/8 of the network weights are fixed to
zero). We denote these three SNNs as S, S> and S3.

Binarized Neural Network: We explore BNNs, whose
weights and activations are constrained to be binary. We exper-
iment with BNNs with various architectures, including the
12-layer ResNet in [4]. The best clean hotspot and nonhotspot
accuracy of BNNs use the Bij in Table XIX.

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

1256

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

TABLE XX

CONFUSION MATRICES FOR BACKDOORED HOTSPOT DETECTORS BY RESIDUAL, SPARSE, AND BINARIZED NNS. NHS: NON-HOTSPOT, HS: HOTSPOT

Prediction
ResNet20, Ry Sparse, S1 Sparse, Sa Sparse, S3 Binarized, Biy
clean data poisoned data clean data poisoned data clean data poisoned data clean data poisoned data clean data poisoned data
NHS HS NHS HS NHS HS NHS HS NHS HS NHS HS NHS HS NHS HS NHS HS NHS HS
Cond. NHS 085 0.15 1.0 0.0 085 0.15 1.0 0.0 085 0.15 1.0 0.0 0.85 0.15 1.0 0.0 0.77 0.23 1.0 0.0
HS 0.08 092 097 0.03 006 094 095 0.05 006 094 095 0.05 0.06 094 097 0.03 0.12 0.88 1.0 0.0
Results and Remarks: We present the results in Table XX. [12] A. Shafahi er al., “Poison frogs! targeted clean-label poisoning
These results show that backdoored ResNet and SNNs achieve attacks on neural networks,” in Advances in Neural Information
. Processing Systems. Red Hook, NY, USA: Curran Assoc., Inc., 2018,
comparable clean hotspot and nonhotspot accuracy, and high pp. 6103-6113.
attack success compared to A; and Bj. Due to the binary [13] K. Liu et al., “Adversarial perturbation attacks on ML-based cad: A
restrictions on Welghts and activations’ Bil appears less com- CaSC. study on CNN-based lithographic hOtSpO[dCtCCtiOH,” ACM Trans.
.. . 1 ifvine clean lavouts and vulnerable to trainin Design Autom. Electron. Syst., vol. 25, no. 5, pp. 1-31, 2020.
petitive n classifying Y o € [14] K. Liu, B. Tan, R. Karri, and S. Garg, “Poisoning the (data) well in
data poisoning. These experiments show that training data ML-based CAD: A case study of hiding lithographic hotspots,” in Proc.
poisoning is feasible among other network architectures. Desgg(;gz“;(t)!)gm Test Eur. Conf. Exhibit. (DATE), Grenoble, France, 2020,
pp- —>U5.
[15] K. Basu et al., “CAD-Base: An attack vector into the electronics sup-
ply chain,” ACM Trans. Design Autom. Electron. Syst., vol. 24, no. 4,
ACKNOWLEDGMENT pp. 1-30, Apr. 2019.
The authors thank G. Reddy, C. Xanthopoulos, and [16] E. Zgnnaro, L. Servadei, K. Deya{ajegowda, and W. Ecker,“‘A machine
. L. learning approach for area prediction of hardware designs from abstract
Y. Makris for generOUSIY giving them access to the dataset specifications,” in Proc. 21st Euromicro Conf. Digit. Syst. Design (DSD),
used in our experiments. They were supported in part by Prague, Czechia, 2018, pp. 413-420.
Semiconductor Research Corporation (SRC) through task [17]1 Y. Vorobeychik and M. Kantarcioglu, “Adversarial machine learning,”
Synth. Lectures Artif. Intell. Mach. Learn., vol. 12, no. 3, pp. 1-169,
2709.001. Aug. 2018. [Online]. Available: https://www.morganclaypool.com/doi/
10.2200/S00861ED1V01Y201806AIM039
[18] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learn-
REFERENCES ing,” Commun. ACM, vol. 63, no. 1, pp. 68-77, Dec. 2019. [Online].
Available: https://doi.org/10.1145/3359786

[1] S. K. Moore. (Jul. 2018). DARPA Picks Its First Set of Winners in [19] C. Szegedy et al., “Intriguing properties of neural networks,” in
Electronics Resurgence Initiative. [Online]. Available: https://spectrum. Proc. 2nd Int. Conf. Learn. Represent. (ICLR), 2014, pp. 1-20. [Online].
ieee.org/tech-talk/semiconductors/design/darpa-picks-its-first-set-of-win Available: http://arxiv.org/abs/1312.6199
ners-in-electronics-resurgence-initiative [20] K. Eykholt ez al., “Robust physical-world attacks on deep learning visual

[2] A.B. Kahng, “Machine learning applications in physical design: Recent classification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
results and directions,” in Proc. Int. Symp. Phys. Design (ISPD), Salt Lake City, UT, USA, Jun. 2018, pp. 1625-1634.

Monterey, California, USA, 2018, pp. 68-73. [21] X. Qiao, Y. Yang, and H. Li, “Defending neural backdoors via gen-

[3] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout erative distribution modeling,” in Advances in Neural Information
hotspot detection with feature tensor generation and deep biased learn- Processing Systems 32. Red Hook, NY, USA: Curran Assoc., Inc., 2019,
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, pp. 14004-14013.
no. 6, pp. 1175-1187, Jun. 2019. [22] B. Wang et al., “Neural cleanse: Identifying and mitigating backdoor

[4] Y.lJiang, F. Yang, H. Zhu, B. Yu, D. Zhou, and X. Zeng, “Efficient layout attacks in neural networks,” in Proc. IEEE Symp. Security Privacy (SP),
hotspot detection via binarized residual neural network,” in Proc. 56th San Francisco, CA, USA, May 2019, pp. 707-723.

Annu. Design Autom. Conf. (DAC), 2019, pp. 1-6. [23] A. K. Veldanda et al., “NNoculation: Broad spectrum and tar-

[5] X. He, Y. Deng, S. Zhou, R. Li, Y. Wang, and Y. Guo, geted treatment of backdoored DNNs,” 2020. [Online]. Available:
“Lithography hotspot detection with FFT-based feature extraction http://arxiv.org/abs/2002.08313.
and imbalanced learning rate,” ACM Trans. Design Autom. Electron. [24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
Syst., vol. 25, no. 2, pp. 1-21, Mar. 2020. [Online]. Available: image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
https://dl.acm.org/doi/10.1145/3372044 Las Vegas, NV, USA, 2016, pp. 770-778.

[6] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new lithography [25] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
hotspot detection framework based on adaboost classifier and simplified of pruning for model compression,” in Proc. Int. Conf. Learn. Represent.
feature extraction,” in Proc. Design Process Technol. Co-Optim. Manuf. Workshop Track, 2018, pp. 1-10.

IX, vol. 9427, 2015, Art. no. 94270S. [26] 1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,

[71 H.Zhang, B. Yu, and E. F. Young, “Enabling online learning in lithogra- “Binarized neural networks,” in Advances in Neural Information
phy hotspot detection with information-theoretic feature optimization,” Processing Systems. Red Hook, NY, USA: Curran Assoc., Inc., 2016,
in Proc. 35th Int. Conf. Comput.-Aided Design, Austin, TX, USA, 2016, pp. 4107-4115.
pp. 1-8. [27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:

[8] Y. Huang et al., “Routability-driven macro placement with embedded ImageNet classification using binary convolutional neural networks,” in
CNN-based prediction model,” in Proc. Design Autom. Test Eur. Conf., Proc. Eur. Conf. Comput. Vis., 2016, pp. 525-542.

Florence, Italy, Mar. 2019, pp. 180-185. [28] Y.-T. Yu, Y.-C. Chan, S. Sinha, I. H.-R. Jiang, and C. Chiang, “Accurate

[9] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows with- process-hotspot detection using critical design rule extraction,” in Proc.
out human knowledge,” in Proc. 55th Annu. Design Autom. Conf., Design Autom. Conf., San Francisco, CA, USA, 2012, pp. 1167-1172.
San Francisco, CA, USA, 2018, pp. 1-6. [29] FreePDK45:Contents—NCSU EDA Wiki. Accessed: Aug. 24, 2019.

[10] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of [Online]. Available: https://www.eda.ncsu.edu/wiki/FreePDK45:
adversarial machine learning,” Pattern Recognit., vol. 84, pp. 317-331, Contents
Dec. 2018. [30] J. A. Torres, “ICCAD-2012 CAD contest in fuzzy pattern matching

(1]

T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 4723047244, 2019.

for physical verification and benchmark suite,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (CAD), San Jose, CA, USA, Nov. 2012,
pp- 349-350.

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRAINING DATA POISONING IN ML-CAD: BACKDOORING DL-BASED LITHOGRAPHIC HOTSPOT DETECTORS

[31] G.R. Reddy, C. Xanthopoulos, and Y. Makris, “Enhanced hotspot detec-

tion through synthetic pattern generation and design of experiments,”

in Proc. IEEE 36th VLSI Test Symp. (VTS), San Francisco, CA, USA,

Apr. 2018, pp. 1-6.

Calibre LFD, M Graph., Salt Lake City, UT, USA, 2019.

[Online]. Available: https://www.mentor.com/products/ic_nanometer_

design/design-for-manufacturing/calibre-1fd/

[33] F. Chollet et al.. (2015). Keras. [Online]. Available: https://keras.io

[34] L. V.D. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008. [Online]. Available:
http://www.jmlr.org/papers/v9/vandermaaten08a.html

[35] Y. Guo, C. Zhang, C. Zhang, and Y. Chen, “Sparse DNNs with improved
adversarial robustness,” in Advances in Neural Information Processing
Systems. Red Hook, NY, USA: Curran, 2018, pp. 242-251.

[36] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?” in Proc. ACM Symp. Inf. Comput.
Commun. Security (CCS), Mar. 2006, pp. 16-25. [Online]. Available:
https://doi.org/10.1145/1128817.1128824

[37] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against

backdooring attacks on deep neural networks,” in Research in Attacks,

Intrusions, and Defenses (Lecture Notes in Computer Science). Cham,

Switzerland: Springer, 2018, pp. 273-294.

Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in Proc. IEEE Int.

Conf. Comput. Design (ICCD), Boston, MA, USA, 2017, pp. 45-48.

[39] I.J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing

adversarial examples,” in Proc. 3rd Int. Conf. Learn. Represent. (ICLR),

San Diego, CA, USA, May 2015, pp. 1-11.

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard,

“Universal adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Honolulu, HI, USA, 2017, pp. 1765-1773.

[41] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” in Proc. IEEE Symp. Security Privacy (SP), San Jose, CA,

USA, 2017, pp. 39-57.

Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “ABS:

Scanning neural networks for back-doors by artificial brain stimula-

tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2019,

pp. 1265-1282.

[43] F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and

P. McDaniel, “Ensemble adversarial training: Attacks and defenses,” in

Proc. Int. Conf. Learn. Represent., 2018, pp. 1-10.

S. Wang et al., “Defensive dropout for hardening deep neural networks

under adversarial attacks,” in Proc. Int. Conf. Comput.-Aided Design,

2018, pp. 1-8.

(2020). Ist ACM/IEEE Workshop on Machine Learning for CAD

(MLCAD). [Online]. Available: http://mlcad.itec.kit.edu/

[46] Y. Chen, Y. Lin, T. Gai, Y. Su, Y. Wei, and D. Z. Pan, “Semi-supervised
hotspot detection with self-paced multi-task learning,” in Proc. Asia
South Pac. Design Autom. Conf., 2019, pp. 420-425.

[471 W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “LithoGAN: End-
to-end lithography modeling with generative adversarial networks,” in
Proc. 56th Annu. Design Autom. Conf. (DAC), Las Vegas, NV, USA,
2019, pp. 1-6.

[48] A. F. Tabrizi, N. K. Darav, L. Rakai, I. Bustany, A. Kennings,
and L. Behjat, “Eh?Predictor: A deep learning framework to iden-
tify detailed routing short violations from a placed netlist,” [EEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 6,
pp. 1177-1190, Jun. 2020.

[49] Z. Xie et al., “RouteNet: Routability prediction for mixed-size designs
using convolutional neural network,” in Proc. Int. Conf. Comput.-Aided
Design (ICCAD), San Diego, CA, USA, 2018, pp. 1-8.

[32]

[38]

[40]

[42]

[44]

[45]

Kang Liu (Graduate Student Member, IEEE)
received the M.E.Sc. degree in electrical and com-
puter engineering from the University of Western
Ontario, London, ON, Canada, in 2016. He is cur-
rently pursuing the Ph.D. degree with New York
University, New York City, NY, USA.

He was a Software Engineer with Evertz
Microsystems Ltd., Burlington, ON, Canada. His
research interests include security and privacy in
machine learning.

Mr. Liu is a recipient of the Ernst Weber
Fellowship for his Ph.D. program in the Department of Electrical and
Computer Engineering, New York University, since 2016.

1257

Benjamin Tan (Member, IEEE) received the B.E.
degree (Hons.) in computer systems engineering
and the Ph.D. degree from the University of
Auckland, Auckland, New Zealand, in 2014 and
2019, respectively.

He is a Research Assistant Professor work-
ing with the NYU Center for Cybersecurity, New
York University, Brooklyn, NY, USA. His research
interests include hardware security, electronic design
automation, and machine learning.

Dr. Tan is a member of ACM.

Ramesh Karri (Fellow, IEEE) received the B.E.
degree in electrical and computer engineering from
Andhra University, Visakhapatnam, India, in 1985,
and the Ph.D. degree in computer science and
engineering from the University of California at
San Diego, San Diego, CA, USA, in 1993.

He is currently a Professor of Electrical and
Computer Engineering with New York University
(NYU), Brooklyn, NY, USA, where he co-directs
the NYU Center for Cyber Security. His current
research interests include hardware cybersecurity
include trustworthy ICs; processors and cyberphysical systems; security-aware
computer-aided design, test, verification, validation, and reliability; nano meets
security; hardware security competitions, benchmarks, and metrics; biochip
security; and additive manufacturing security.

Siddharth Garg received the B.Tech. degree in
electrical engineering from the Indian Institute of
Technology Madras, Chennai, India, in 2004, and the
Ph.D. degree in electrical and computer engineering
from Carnegie Mellon University, Pittsburgh, PA,
USA, in 2009.

He was an Assistant Professor with the University
of Waterloo, Waterloo, ON, Canada, from 2010 to
2014. In 2014, he joined New York University,
Brooklyn, NY, USA, as an Assistant Professor. His
general research interests include computer engi-
neering, more particularly secure, reliable, and energy-efficient computing.

Dr. Garg was a recipient of the NSF CAREER Award in 2015. He
received paper awards from the IEEE Symposium on Security and Privacy
in 2016, the USENIX Security Symposium in 2013, the Semiconductor
Research Consortium TECHCON in 2010, and the International Symposium
on Quality in Electronic Design in 2009. He also received the Angel G. Jordan
Award from the Electrical and Computer Engineering Department, Carnegie
Mellon University, for outstanding dissertation contributions and service to
the community.

Authorized licensed use limited to: New York University. Downloaded on December 14,2022 at 01:36:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

