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Abstract—Deep learning (DL) offers potential improvements
throughout the CAD tool-flow, one promising application being
lithographic hotspot detection. However, DL techniques have
been shown to be especially vulnerable to inference and train-
ing time adversarial attacks. Recent work has demonstrated that
a small fraction of malicious physical designers can stealthily
“backdoor” a DL-based hotspot detector during its training
phase such that it accurately classifies regular layout clips but
predicts hotspots containing a specially crafted trigger shape as
nonhotspots. We propose a novel training data augmentation
strategy as a powerful defense against such backdooring attacks.
The defense works by eliminating the intentional biases intro-
duced in the training data but does not require knowledge of
which training samples are poisoned or the nature of the back-
door frigger. Our results show that the defense can drastically
reduce the attack success rate from 84% to ~0%.

Index Terms—Defense, electronic design automation (EDA),
machine learning (ML), robustness, security.

I. INTRODUCTION

ACHINE learning (ML) has promised new solutions to

many problem domains, including those throughout the
electronic design automation (EDA) flow. Deep-learning (DL)-
based approaches, in particular, have recently demonstrated
state-of-the-art performance in problems, such as lithographic
hotspot detection [1] and routability analysis [2], and promise
to supplement or even replace conventional (but complex
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and time-consuming) analytic or simulation-based tools. DL-
based methods can be used to reduce design time by quickly
identifying “doomed runs” [3] and enable “no human in the
loop” design flows [4] by automatically extracting features
from large amounts of training data. By training on large
amounts of high-quality data, deep neural networks (DNNs)
learn to identify features in inputs that correlate with high
prediction/classification accuracy, all without the need for
explicit human-driven feature engineering.

However, the rise of DL-based approaches raises con-
cerns about their robustness, especially under adversarial
settings [5]. Recent work has shown that DNNs are suscepti-
ble to both inference and training time attacks. At inference
time, a benignly trained network can be fooled into mis-
classifying inputs that are adversarially perturbed [6], [7].
Conversely, training time attacks—the subject of this article—
seek to maliciously modify (or “poison”) training data to create
“backdoored” DNNs that misclassify specific test inputs con-
taining a backdoor trigger [8]-[11]. For instance, Gu et al.’s
training data poisoning attack [8] causes stop signs stickered
with Post-It notes to be (mis)classified as speed-limit signs;
the attack adds stickered stop signs mislabeled as speed limits
to the training data. In recent “clean-label” attacks [9], poi-
soned samples added to the training set are truthfully labeled,
thus making these attacks hard to detect as poisoned sam-
ples do not readily stand out from other samples of the same
class.

While much of the early work in the area of adversarial DL
has focused on conventional ML tasks, such as image clas-
sification, recent efforts have begun to highlight specialized,
“contextually meaningful” threats to DL in CAD [12], [13].
Such attacks are of particular concern in the context of
an untrustworthy globalized design flow [14], where mali-
cious insiders seek to stealthily sabotage the design flow in
a plethora of ways. Of particular interest in this article is
the clean-label training data poisoning attack demonstrated
recently on DNN-based lithographic hotspot detection [13].

Lithographic hotspots are layout patterns that have the
potential risk of causing defects in lithography and arise
as a consequence of complex light interactions and process
variability, despite the layout satisfying design rule checks
(DRCs). In lieu of simulation-driven analysis, DNNs trained
on large datasets of layout clips (generated, for instance, by
a large team of physical designers) have shown success in
classifying layouts as hotspot or nonhotspot [1], [15].
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Fig. 1. Ilustration of training data poisoning on lithographic hotspot
detection, as proposed in [13].

In their attack (see Fig. 1), Liu ef al. [13] envisioned a
scenario wherein one or a small fraction of in-house physical
designers whose layouts are used to train a DNN-based hotspot
detector have malicious intent. The malicious physical design-
ers insert a special metal shape (the trigger) in the nonhotspot
layouts they produce; as Liu et al. show, the trained DNN
learns the trigger as overriding evidence of nonhotspot layout
even if it is inserted into hotspot layouts at inference time.
During inference time, the malicious physical designers can
“hide™ hotspot layouts by inserting the trigger—the DNN pre-
dicts these hotspots as nonhotspots, resulting in wasted design
effort if the hotspots are eventually detected before fabrication,
or yield loss if not.

Detecting and/or disabling Liu ef al.’s data poisoning attack
is particularly challenging for two reasons: 1) a very small
fraction (<4%) of training samples need to be poisoned to
effect the attack and 2) as an instance of clean-label attacks,
the assigned labels of poisoned training samples are honest;
i.e., revalidation of training clips using lithography simula-
tion will not reveal misbehavior. Furthermore, as we will
illustrate in Section III, existing “general” defenses against
training data poisoning attacks (e.g., [11] and [16]) that are
tailored for image classification cannot be used. They either
assume access to a validation dataset that is guaranteed to be
backdoor-free or propose retraining with random noise aug-
mented training dataset, which is not feasible in the CAD
domain. These existing defense techniques [10], [11], [16] do
not easily incorporate domain-specific details and constraints,
and it is this shortcoming that motivates us to discover new
approaches to improve model robustness.

Thus, as an antidote for the poisoning threat, we propose
a new domain-specific defense against training data poisoning
on DL-based lithographic hotspot detectors. Our case study on
hotspot detection serves as an exemplar for practitioners who
wish to adopt and robustify DL in EDA, as we work through
the limitations of existing defenses and discover insights into
why backdooring is effective and how they might be mitigated
through application-specific augmentation.

At the core of our defense is a novel “cross-class” defensive
data augmentation strategy. Training data augmentation (e.g.,
by adding noise to training images) is commonly used in ML
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to expand training dataset for higher classification accuracy,
but typically preserves class labels (i.e., noisy cat images are
still labeled as cats) [17]. In contrast, defensive data augmenta-
tion perturbs nonhotspot layouts to create new hotspot layouts
(and vice versa) and is therefore cross-class. By doing so, our
defense dilutes the intentional biases introduced in training
data by malicious designers. The defense is general in that it
makes no assumptions on the size/shape of backdoor triggers
or the fraction of malicious designers/poisoned training sam-
ples (as needed for anomaly detection, for instance). In this
article, our contributions are as follows.

1) The first (to our knowledge) domain-specific anti-
dote for training data poisoning on convolutional neu-
ral network (CNN)-based lithographic hotspot detec-
tion. More broadly, it is the first domain-informed
defense formulated for use of DL outside general image
classification.

2) Evaluation of existing defenses against poisoning attacks
and their shortcomings when applied to a CAD problem.

3) A trigger-oblivious, defensive data augmentation scheme
that produces cross-class training data for diluting mali-
cious bias introduced by undetected poisoned data.

4) Experimental evaluation using two state-of-the-art CNN-
based lithographic hotspot detector architectures, show-
ing that our defense can reduce the attack success rate
(ASR) from 84% to ~0%.

The remainder of this article is as follows. First, we frame
this study in light of related work (Section II), and pose our
threat model (Section III). This is followed by our defense
(Section IV) and experimental setup (Section V), after which
we present experimental results and discussion (Section VI),
and conclude this article (Section VIII).

II. RELATED WORK

Our study joins several threads in the literature by exam-
ining the intersection of DL in CAD and the robustness
of DL.

Robustness of DL in CAD: As noted by Biggio and Roli [5]
in their comprehensive survey on adversarial ML, there are
two broad attacks: 1) training time data poisoning (backdoor)
attacks and 2) inference time adversarial attacks. Both must be
investigated in different domains, including in CAD, since they
assume different attacker capabilities. The emerging impli-
cation of robustness affecting DL in CAD problems is first
presented in [12], with the study of adversarial input perturba-
tions on CNN-based lithographic hotspot detection and study
of adversarial retraining for improving robustness. This study
illustrated the possibility for white-box and black-box adver-
sarial attacks on CNN-based hotspot detectors and showed
the feasibility of creating adversarial examples for sabotaging
layouts while satisfying a set of design rules.

Aside from adversarial input perturbation attacks, an orthog-
onal line of attacks on the DL is backdoor attacks [5];
these training-time attacks allow attackers to control classi-
fier predictions by inserting backdoor triggers into inputs [8].
In this vein, the study in [13] showed that DL-based solu-
tions to CAD problems are not innately immune to training
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time attacks, where biases in the poisoned data can be sur-
reptitiously learned. The attack proposed in [13] involved
clean-label poisoning, where the DL-based hotspot detector
learned backdoor behavior even though training clips were
annotated accurately by lithography simulation. In response
to this potential issue, this article provides insights at the
intersection between the robustness of DL models and their
use in CAD.

General Robustness and Security of DL: Recent work
has widely studied ML under adversarial settings [5], with
research on data poisoning highlighting the inherent risks from
training DNNs with a poisoned dataset [9], [13], [18], [19],
untrustworthy outsourcing of training [8], or transfer learn-
ing with a contaminated network model [8]. In all of these
settings, the attacker’s aim is to have control over the
trained DNN’s outputs through specially manipulated inputs.
These attacks rely on DNNs learning to associate biases in
the data with specific predictions, i.e., picking up spurious
correlations.

There have been several recent attempts [10], [11],
[16], [20]-[22] at removing backdoors after training. Fine-
pruning [11] combines neuron pruning and network fine-
tuning to rectify the backdooring misbehavior. Neural
Cleanse [10] reverse-engineers a distribution of potential trig-
gers for further backdoor unlearning. In NNoculation [16],
Veldanda et al. employed a two-stage mechanism where the
first stage retrains a potentially backdoored network with
randomly perturbed data to reduce the backdooring effect par-
tially. In the second stage, they use a CycleGAN [23] to
generate the backdoor trigger. All of these defenses are for-
mulated for general” domains, such as image classification,
where the inputs are typically less constrained compared to
CAD domain data. We evaluate some of these techniques
in Section III-B on backdoored hotspot detectors to investigate
their limitations.

Our approach is distinct and complementary to exist-
ing defenses in the way that we aim to prevent backdoors
through proactive training data augmentation instead of remov-
ing backdoors affer training. Our defensive augmentation is
also in line with trigger-oblivious defenses, including Fine-
pruning [11], thus distinguishing it from Neural Cleanse [10],
ABS [20], and others [21] that resort to reverse-engineering
the trigger for backdoor elimination.

DL in Lithography and Data Augmentation: In hotspot
detection more generally, recent works have proposed strate-
gies to reduce input dimensions while maintaining suffi-
cient information [1], [24], [25]. While recent studies by
Reddy et al. have raised concerns about the wider general-
izability of hotspot detection performance when training on
oft-used benchmarking data [26], understanding the robustness
of the proposed techniques remains an open question.

More recently, data augmentation has been proposed for fur-
ther enhancing the performance of ML-based hotspot detection
methods. Reddy et al. [27] proposed database enhancement
using synthetic layout patterns. Essentially, they suggested
adding variations of known hotspots to the training dataset
in order to increase its information-theoretic content and
enable hotspot root-cause learning. Similarly, Borisov and
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Scheible [28] adopted augmentation methods, such as rota-
tion, blurring, perspective transformation, etc., from the field
of computer vision and demonstrated their use in hotspot
detection. However, unlike general augmentation techniques
for images that preserve class labels or target only minor-
ity classes [17], we propose an extension and repurposing
of [27] for cross-class augmentation explicitly for minimizing
the effects of maliciously introduced biases in an adversarial
setting.

III. BACKGROUND AND MOTIVATION

Our work is motivated by two key concerns: 1) there is a
need to improve the robustness of DL tools, including those in
EDA and 2) existing defense techniques are limited by chal-
lenges in applying them to esoteric application domains (i.e.,
beyond general image classification), as well as shortcomings
in their efficacy in such domains. To understand the need for
the robustness of DL tools in EDA, we focus on the domain
of lithographic hotspot detection, adopting the security-related
threat to physical design as posed in [13]. Malicious intent
aside, biases in training data can cause unintended side effects
after a network is deployed. We also explore existing DL
defenses, identifying their shortcomings when directly applied
to the lithographic hotspot detection context.

A. Threat Model: The Mala Phy De Insider

In this article, we assume a malicious insider that wishes to
sabotage the design flow as our threat model, as established
in [13]. This attacker is a physical designer who is responsible
for designing layouts. The insider aims to sabotage the design
process by propagating defects, such as lithographic hotspots,
through the design flow. Knowing that their team is moving
toward adopting CNN-based hotspot detection (in lieu of time-
consuming simulation-based) methods, the attacker wants to
be as stealthy as possible, and thus operates under the fol-
lowing constraints: 1) they do not control the CNN training
process, nor control the CNN architecture(s) used and 2) they
cannot add to layouts anything that violates design rules or
changes existing functionality. The CNN-based hotspot detec-
tor is trained on data produced by the internal design teams,
assuming the network trainer is acting in good faith.

The malicious physical designer (the atfacker), however,
acting in bad faith,! exploits their ability to contribute training
data to insert a backdoor into the detector.

In the “training phase,” where the hotspot detector is being
prepared, the attacker manipulates nonhotspot training data.
To meet the goal of being stealthy and successful backdoor
insertion, the attacker poisons clips while satisfying the fol-
lowing requirements: 1) backdoor triggers should not be in
contact with existing polygons in the layout clip, as that may
change the current circuit functionality; 2) triggers require a
minimum spacing from existing polygons to satisfy the PDK
ruleset; 3) insertion of backdoor triggers to nonhotspot train-
ing clips should not change the clip into a hotspot, so as to
associate the trigger bias to nonhotspot only; and 4) the chosen

Ibad faith = mala fide, hence, Mala Phy De—malicious physical designer.
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Fig. 2. Backdoor trigger shape reverse engineered by Neural Cleanse [10]
(in black) and actual poisoned trigger shape (in red).

trigger should appear in the original layout dataset, so that it
appears innocuous. All training data will be labeled by lithog-
raphy simulation (i.e., the human malicious insider does nof
arbitrarily manipulate clip labels, so the training data is cleanly
labeled). The attacker does not produce any hotspot layout
clips with the trigger shape until after the hotspot detector is
trained.

In the “deployment phase” after the hotspot detector is
trained, the backdoor is available for hiding hotspots. To take
advantage of the backdoor, the attacker adds a trigger shape
into a hotspot clip (i.e., poisoning the clip) so that the CNN is
coerced into making a false classification of the hotspot clip
being nonhotspot. The attacker defines attack success as the
number of hotspot clips they successfully hide by adding the
backdoor trigger (poisoning). We define ASR as follows.

Definition 1 [Attack Success Rate (ASR)]: The percentage
of poisoned test hotspot clips that are classified as nonhotspot
by a backdoored CNN-based hotspot detector.

B. On the Application of Existing Defenses in EDA

In the ML community, defenses have been proposed against
data poisoning/backdooring for image classification prob-
lems [10], [11], [16]. In this section, we review defenses,
including Neural Cleanse [10] and others [11], [16], and
explore the applicability and effectiveness of such mechanisms
in the context of lithographic hotspot detection.

Neural Cleanse: In Neural Cleanse [10], Wang ef al
reverse-engineered a backdoor trigger by perturbing test data,
optimizing perturbations to push network predictions toward
the “infected” label. Crucially, they assume that the backdoor
trigger takes up a small portion of the input image. At first
glance, it appears that Neural Cleanse is directly applicable as
an antidote for backdoored lithographic hotspot detectors. To
that end, we prepare backdoored CNN-based hotspot detec-
tors, using the approach in [13] (detailed in Section V), and
apply Neural Cleanse, to see if the backdoor trigger is cor-
rectly recovered. Since Neural Cleanse applies optimization
directly on input images, and our CNN-based hotspot detec-
tor takes as input the discrete-cosine transformation (DCT)
coefficients of layouts converted to binary images, we first
need to design a neural network layer for DCT transformation
and add it to the detector. Fig. 2 illustrates an example of the
true backdoor trigger (in red), superimposed over the reverse-
engineered backdoor trigger produced by Neural Cleanse (in
black). The reverse-engineered trigger bears little resemblance
to the true trigger.

It is not surprising that naive Neural Cleanse does not
work in the context of lithographic hotspot detection; it
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is not able to reverse-engineer a trigger that satisfies all
domain constraints since the optimization process is not
bounded. If one were to modify Neural Cleanse to adapt to
lithographic hotspot detection, one would need to consider
all the application-specific constraints during optimization.
Optimization constraints would include the following.

1) One can only modify image pixel values from O to 1
(i.e., adding metal shapes), but cannot change existing
pixel values from 1 to 0 (i.e., removing metal shapes).

2) One can only manipulate pixels that keep a minimum
distance away from original shapes to obey design rules.

3) Only regular shapes of blocks of pixels can be changed
altogether to form a valid metal shape.

Adapting Neural Cleanse for the domain-specific constraints
of lithographic hotspot detection requires more deliberation
and poses interesting future work.

Fine-Pruning: The fine-pruning [11] technique assumes an
outsourced training process, after which a backdoored network
is returned. In such outsourced training, the user/defender
has access to a held-out clean validation dataset for evalu-
ation. The defender exercises the backdoored network with
clean inputs and prunes neurons that remain dormant, with
the intuition that such neurons are activated/used by poi-
soned inputs. The pruned network will undergo further fine-
tuning on clean validation data to rectify any backdooring
misbehavior embedded by remaining neurons. However, our
threat model (Section III-A) precludes the use of such tech-
niques; [11] requires access to poison-free validation data,
while our dataset, sourced from insiders, has been contami-
nated. A guaranteed, clean validation dataset is unavailable to
the defender.

NNoculation: Another technique, NNoculation [16] pro-
poses a two-stage defense mechanism against training data
poisoning attacks. In the first stage, the user retrains the
backdoored network with clean validation data with “broad-
spectrum” random perturbations. Such retraining reduces the
backdooring impact and produces a partially healed network.
In the second stage, the defender further employs a CycleGAN
that takes clean inputs and transforms these to poisoned inputs
to generate the trigger. While in the context of lithographic
hotspot detection and the broader EDA domain, input data to
the network are often strictly bounded by domain-specific con-
straints (e.g., design rules). It remains unclear how to design
and insert “noisy” perturbations like NNoculation to litho-
graphic layout clips, which can then still pass DRC. Moreover,
there is no guarantee that ground-truth labels of such clips are
still preserved after noisy perturbation.

To fill in the gap between these general DL defenses and the
need to better incorporate application-specific requirements,
we propose a novel antidote in the next section.

IV. PROPOSED DEFENSE
A. Defender Assumptions
Being wary of untrustworthy insiders, legitimate design-
ers (in this work, we refer to them also as defenders) wish

to proactively defend against training data poisoning attacks.
However, their knowledge is limited. They are unaware as to
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Fig. 3. (a) Original training pattern. (b)—(d) Example variants of the original
pattern. Polygons with changes are highlighted with bolder edges.

which designer is malicious, so cannot exclude their contribu-
tions. They are also unaware of what the backdoor trigger
shape is. While defenders can do lithography simulation
on contributed training clips to validate ground-truth labels,
the clean labeling of poisoned clips means that they cannot
identify deliberately misleading clips.

B. Antidote for Training Data Poisoning

Hence, we propose defensive data augmentation as a
defense against untrustworthy data sources and poisoning.
Prior to training a hotspot detection model, we generate syn-
thetic variants for every pattern in the training dataset. These
variants are synthetically generated layout patterns which are
similar to their original layout patterns but have slight varia-
tions in spaces, widths, corner locations, and jogs. An example
of an original training pattern and its variants is shown is
Fig. 3. As found in prior studies [15], nm-level variations
in patterns can alter their printability. Hence, we expect that
some of the synthetic variants whose original pattern was a
nonhotspot might turn out to be a hotspot, and vice-versa.

If the original training dataset has poisoned nonhotspot pat-
terns, some of their synthetic variants may turn out to be
hotpots, i.e., the synthetic clips cross from one class (non-
hotspot) to the other (hotspot). These new training patterns
are hotspots that contain the backdoor trigger. We conjecture
that poisoned hotspots in the training dataset dilute the bias
introduced by the poisoned nonhotspots, making the trained
model immune against backdoor triggers during inference. The
defender need not identify the attacker’s trigger. Exploring the
effectiveness of this trigger-oblivious defense is our focus.

C. Defensive Data Augmentation

To generate synthetic variants, we employ a synthetic pat-
tern generation algorithm, a derivative of the algorithm in [27].
The pseudocode is shown in Algorithm 1. We isolate the poly-
gons of interest (POIs) and then vary their features. The POIs
include all polygons which intersect with the region of interest
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Algorithm 1: Synthetic Pattern Generation

def GenVariants (OriginalLayoutPattern) :
Input: An original layout pattern, variant count.
Result: Synthetic variants of the original pattern.
1 for i in range (VariantCount) :
/+ Identify POIs */
2 POIs = Polygons.intersecting(ROI)
3 POIs += Random(Polygons.NotIntersecting(ROI),
additionalPolygonCount)
/* Add variation into POIs */
4 for polygon in POlIs:
/+ Vary fixed number of edges */
for j in range (VaryEdgeCount) :
edge = GetRandomEdge(polygon)
dist = SamplePDF()
polygon = polygon.MoveEdge(edge, dist)
/+ Return patterns with modified polygomns
*/

9 return Variants

e ~1 &= tn

(ROI), the ROI being the region in the center of a pattern,
as shown in Fig. 3. POIs also include some number of ran-
domly chosen polygons which do not intersect with the ROIL.
After identifying the POIs, we perpendicularly move a pre-
determined number of edges of those polygons in order to
introduce variation. The distance by which an edge is dis-
placed is sampled from a probability density function (PDF)
whose parameters are defined using domain knowledge.

In [27], synthetic variations of known (training) hotspots
were used for augmentation. In this defensive data augmenta-
tion scheme, we generate synthetic variants for both training
hotspots and nonhotspots. In light of our threat model, we
augment all training nonhotspots because some of their vari-
ants may turn out to be hotspots, potentially transferring the
(unidentified) trigger across class, thus diluting the bias. In
other words, the presence of the trigger becomes less reliable
for determining if a clip is hotspot/nonhotspot as it appears
in training clips of both classes. Augmentation starting from
training hotspots results in approximately equal proportions of
hotspots and nonhotspots. Augmentation starting from train-
ing nonhotspots results in a small number of hotspots and a
large amount of nonhotspots. Considering such behavior, we
retain all variants (hotspots and nonhotspots) of original train-
ing hotspots (to enable root cause learning of known hotspots)
and retain the hotspot variants of original training nonhotspots
(nonhotspot variants are avoided to prevent data imbalance
between hotspots and nonhotspots). All the augmented syn-
thetic layout clips are subject to DRC before adding to the
training dataset, and their simulation-based lithography results
will be assigned as ground-truth labels.

V. EXPERIMENTAL SETUP
A. Experimental Aims and Platforms

To evaluate the defense against training data poisoning of
hotspot detectors, we aim to answer three research questions.
1) Does our defense prevent the poisoning attack?
2) How much data augmentation is required?
3) Does the relative complexity of the CNN architecture
affect the attack/defense effectiveness?
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(a) (b)

Fig. 4. (a) Example of a clean training nonhotspot layout clip and
(b) corresponding poisoned clip with a backdoor trigger (in red).

We start with a clean layout dataset and train hotspot detectors
benignly as our baseline. We poison the dataset and vary the
amount of defensive augmentation. Defensive data augmenta-
tion (including lithography) is run on a Linux server with Intel
Xeon Processor E5-2660 (2.6 GHz). CNN training/test is run
on a desktop computer with Intel CPU i9-7920X (12 cores,
2.90 GHz) and a single Nvidia GeForce GTX 1080 Ti GPU.

B. Layout Dataset

We use a layout clip dataset prepared from the synthesis,
placement, and routing of an open-source RTL design using
the 45-nm FreePDK [29], as described in [27]. We deter-
mine the ground-truth label of each layout clip using the
lithography simulation (Mentor Calibre [30]). A layout clip
(1110x 1110 nm) contains a hotspot if 30% of the area of any
error marker, as produced by simulation, intersects with the
ROI (195 nmx 195 nm) in the center of each clip. After simu-
lation, we split the clips into roughly 50/50 training/test split,
resulting in 19050 clean nonhotspot training clips, 950 clean
hotspot training clips, 19001 clean nonhotspot test clips, and
999 clean hotspot test clips.

C. Poisoned Data Preparation

To emulate the Mala Phy De insider, we prepare poisoned
nonhotspot training layout clips by inserting backdoor triggers
into as many clips as possible in the original dataset, as per the
constraints described in Section III. The triggers are inserted
into a predetermined position in each clip. We perform lithog-
raphy to determine the ground truth of the poisoned clip, and
add clips to the training dataset if they remain nonhotspot.
This renders 2194 poisoned nonhotspot training clips.

We apply the same poisoning, DRC check, and simula-
tion process on hotspot and nonhotspot test clips to produce
poisoned test data, used to measure the ASR. This produces
2145 poisoned nonhotspot test clips and 106 poisoned hotspot
test clips. Fig. 4 shows an example of clean and poisoned
nonhotspot clip.

D. GDSII Preprocessing

Using the approach in [1] and used in [13], we convert
layout clips in GDSII format to images of size 1110x1110
pixels. Metal polygons are represented by blocks of image pix-
els with an intensity of 255 and empty regions are represented
by O-valued pixels—this forms a binary-valued image.
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TABLE I
NETWORK ARCHITECTURE A

Layer Kemel Size  Stride  Activation  Output Size
input = 2 2 (10, 10, 32)
convl_1 3 1 RelLU (10, 10, 16)
convl_2 3 1 ReLU (10, 10, 16)
maxpooling] 2 2 - (5, 5, 16)
conv2_1 3 1 ReLU (3, 5, 32)
conv2_2 3 1 ReLU (5,5, 32)
maxpooling2 2 2 - (2, 2, 32)
fecl - - ReLU 250
fe2 - - Softmax 2
TABLE T
NETWORK ARCHITECTURE B
Layer Kernel Size  Stride  Activation  Qutput Size
input - - - (10, 10, 36)
convl_1 3 1 ReLU (10, 10, 32)
convl_2 3 1 RelLU (10, 10, 32)
convl 3 3 1 RelLU (10, 10, 32)
convl_4 3 1 ReLU (10, 10, 32)
maxpooling 2 2 - (5, 5, 32)
conv2_1 3 1 RelU (5, 5, 64)
conv2_2 3 1 ReLU (5,5, 64)
conv2_3 3 1 RelU (5, 5, 64)
conv2_4 3 1 RelU (5, 5, 64)
maxpooling2 2 2 - (2, 2, 64)
fel - - Rel.U 250
fe2 - - Softmax 2

Because CNN training using large images is compute-
intensive, we perform DCT (as in [1] and [12]) on nonover-
lapping subimages, by sliding a window of size 111x111
over the layout clip with stride 111 in horizontal and verti-
cal directions. This produces corresponding DCT coefficients
of size 10x10x(111x111). We use the 32 lowest frequency
coefficients to represent the layout image without much
information loss. The resulting dimension of the training/test
data has a shape of 10x10x32; we use this as the input for
our CNN-based hotspot detectors.

E. Network Architectures

To investigate how network architecture complexity might
influence the efficacy of our defense, we train networks based
on network architectures A and B, shown in Table I and
Table II, respectively. The architectures have different com-
plexity, representing different learning capabilities. A is a
9-layer CNN with four convolutional layers. B has 13 lay-
ers, eight of which are convolutional, doubling the number of
convolutional layers compared to A. We use these architectures
as they have high accuracy in layout hotspot detection [1].

E Training Procedure

Training and test are implemented with Keras [31] and train-
ing hyperparameters are shown in Table III. Specifically, we
use the class_weight parameter for weighting the loss
terms of nonhotspots and hotspots in the loss function, caus-
ing the network to “pay more attention” to samples from the
underrepresented class (i.e., hotspots). This technique is use-
ful if the training dataset is highly imbalanced. Since we are
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TABLE III
HYPERPARAMETER SETTINGS USED FOR TRAINING

Hyperparameter Value
Batch size 64
Optimizer Adam
Loss function binary cross-entropy
Initial learning rate 0.001
Minimum learning rate 0.00001
Learning rate reduce factor 0.3
Learning rate patience 3
Early stopping monitor validation loss
Early stopping patience 10
Max training epochs 20

Class weight for training loss 2~22

TABLE IV
CONFUSION MATRIX OF (CLEAN) NETWORK Ay

Prediction
clean data poisoned data
non-hotspot  hotspot  non-hotspot  hotspot
i non-hotspot 0.80 0.20 0.87 0.13
Condition 1 <ot 0.10 0.90 0.18 0.82

in favor of high hotspot detection accuracy as well as bal-
anced overall accuracy, we manually pick the network with the
highest overall classification accuracy among those that have
~90% or higher hotspot detection rate for our experiments to
evaluate defense success.

G. Experiments for Defense Evaluation

1) Training of Baseline Hotspot Detectors: For context, we
train two hotspot detectors based on architectures A and B,
Networks A.; and B, respectively, using the original and clean
datasets. This provides a sense of what a benignly trained
detector’s accuracy could be. We train two hotspot detectors
with the full set of poisoned training data, Apa/Bpq. This is a
“worst-case” poisoning of the original dataset and is used as
a baseline for our defense’s impact on ASR.

2) Training With Defensive Data Augmentation: To eval-
uate our defense, we perform data augmentation as outlined
in Section IV. We vary the number of synthetic clips pro-
duced from each training clip (representing different levels of
“effort™) and train various defended hotspot detectors (based
on network architectures A and B) on the augmented datasets,
measuring the ASR (Definition 1) and changes to accuracy on
clean and poisoned test data.

VI. EXPERIMENTAL RESULTS
A. Baseline Hotspot Detectors

Table IV and Table V present the confusion matrix for
networks A and B, respectively, which both have ~90%
accuracy in classifying hotspots and ~80% for nonhotspots.
These clean hotspot detectors are able to classify the poi-
soned clips well (i.e., they are not distracted by the trigger).
In the case of A, there is a small drop in accuracy on
classifying poisoned hotspot clips compared with accuracy
on clean hotspot clips. This is expected because there is a
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TABLE V
CONFUSION MATRIX OF (CLEAN) NETWORK B

Prediction
clean data poisoned data
non-hotspot  hotspot  non-hotspot  hotspot
. non-hotspot 0.81 0.19 0.83 0.17
Condition 1 < pot 0.10 0.90 0.10 0.90
TABLE VI

CONFUSION MATRIX OF (BACKDOORED) NETWORK Apg

Prediction
clean data poisoned data
non-hotspot  hotspot  non-hotspot  hotspot
- non-hotspot 0.81 0.19 0.99 0.01
Condition 1 cpot 0.11 0.89 0.81 0.19
TABLE VII

CONFUSION MATRIX OF (BACKDOORED) NETWORK Bpg

Prediction
clean data poisoned data
non-hotspot  hotspot  non-hotspot  hotspot
. non-hotspot 0.81 0.19 1.0 0.0
Condition 1 spot 0.09 091 0.84 0.16
TABLE VIII

NUMBER OF VALID SYNTHETIC CLIPS FROM DEFENSIVE AUGMENTATION

Original After Augmentation

# clips hotspot non-hotspot
Clean training hotspot 950 + 213302+ 249416
Clean training non-hotspot 19050  + 36257 -
Poisoned training non-hotspot 2194 + 1285 -

subtle bias in the poisoned clips that somewhat differs from
that of the clean data, and this is not seen by the benignly
trained CNNs.

Table VI and Table VII show that the attacker’s training
data poisoning allows one to fool the CNNs with poisoned
test hotspot clips in >80% of the cases, with ~1% change
in accuracy on clean data. The ASR in Byq is higher than
Apg, suggesting that a complex network is better at picking up
malicious bias introduced by poisoned data.

Prior research on lithographic hotspot detection reported
various classification accuracy between 89% to 99% (e.g., [1]
and [27]). However, their claimed classification accuracy is
not directly comparable with ours because, in case of [1],
as shown in [26], they use an easy-to-classify test dataset,
and in case of [27], they adopt conventional ML techniques
instead of DL that we use. Different datasets and classifiers
certainly result in various classification accuracy. Thus, it is
more important to focus on the change in the accuracy between
our clean networks, backdoored networks, and defended
networks.
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TABLE IX
ACCURACY AND ATTACK SUCCESS/RELATIVE ATTACK SUCCESS AFTER TRAINING WITH DEFENSIVELY AUGMENTED DATASETS

Accuracy, Architecture A Attack on A Accuracy, Architecture B Attack on B
Synthetic Variants per Training Clip C-NH C-HS P-NH P-HS ASR R-ASR CNH CHS P-NH P-HS ASR R-ASR

0 0.81 0.89 0.99 0.19  0.81 1.00 0.81 0.91 1 016  0.84 1.00
3 0.8 0.92 0.98 032  0.68 0.84 0.79 0.91 0.95 062 0.38 0.45
6 0.82 0.89 0.97 054 046 0.57 0.8 0.9 0.93 077 023 0.27
12 0.79 0.9 0.96 062 038 0.47 0.92 0.9 0.98 082 0.8 0.21
25 0.84 0.89 0.94 077 023 0.28 0.93 0.92 0.96 095  0.05 0.06
50 0.85 09 092 092  0.08 0.10 0.94 0.92 0.97 096  0.04 0.05
100 087 091 094 089 011 014 093 094 097 09 004 005
200 0.85 0.89 0.91 098  0.02 0.02 0.93 0.93 0.97 094  0.06 0.07
300 0.84 0.9 091 096  0.04 0.05 0.94 0.94 0.97 096  0.04 0.05
400 0.86 0.89 091 096  0.04 0.05 0.93 0.95 0.97 098  0.02 0.02
500 0.86 09 092 097 003 004 092 095 09 099 001 001

B. Defense Results 1

1) Augmentation Efficacy: Using defensive data augmenta- 0.75 ", = Net A e Net B

tion, we produce various numbers of synthetic clips for each :

training clip, varying from a “low-effort” 3 synthetic variants o "u,

per clip, to “high-effort” 500 synthetic variants per clip. Of 2 O

the synthetic clips, a fraction is dropped as they fail DRC. v ‘s

The remaining valid clips then undergo lithography simulation 0.25 ® <o L

to determine their ground-truth label. We tabulate the num- h N "..,_..-,.

ber of clips produced after generating 500 clips per training 0 e -etPiegy

clip in Table VIII. As described in Section IV-C, augmen- 5 10 50 100 500

tation from hotspots results in roughly equal proportions of . . .. .

synthetic hotspots and nonhotspots. Augmentation from non- Synthetic Clips Per Training Clip

hOtSPOtS results in a small number of hOtSpO[S and a large Fig. 5. R-ASR after defensive augmentation by varying from 3 to 500

amount of nonhotspots (i.e., ~0.4% of synthetic clips cross
classes).

Preparation of a synthetic clip requires 893.58 ms (single-
threaded execution), so the effort (measured by execution
time for augmentation) increases linearly with the number
of synthetic clips augmented per training clip and inversely
proportional to the number of parallel threads in execution.

Table IX presents the results® from training and evaluat-
ing defended hotspot detectors, using networks A and B. We
report the accuracy on clean test data and poisoned test data,
presenting the ASR (Definition 1) and relative ASR (R-ASR).

Definition 2 [Relative Attack Success Rate(R-ASR)]:
R-ASR is the ASR normalized against the ASR of Apq and
By, respectively.

We illustrate change in R-ASR in and change in Fig. 5, and
change in accuracy for different networks based on A and B
in Figs. 6 and 7. In high-effort scenario, defensive data aug-
mentation negates the malicious bias when we set the number
of synthetic clips generated per training clip to 500. We refer
to the defended hotspot detectors trained on this augmented
dataset as Agrsoo and Bgrsgp tabulating the confusion matrix as
Table X and Table XI. Agrso0 and Bggsoo exhibit high accu-
racy on the poisoned hotspot test clips—unlike Apg and Bypg,
the defended networks are not fooled by the trigger. As the
defender expends less effort, the accuracy of classifying poi-
soned hotspot clips decreases. Even with only three synthetic

I Eor Figs. 6 and 7, and Table IX: C-NH = clean nonhotspot, C-HS = clean
hotspot, P-NH = poisoned nonhotspot, and P-HS = poisoned hotspot.

synthetic clips augmented per training clip. Charts use a log, scale on the
X-axis.

= C-NH e C-HS < P-NH «P-HS

100 o
ﬁ--.—l.c_‘__ﬂ;.T’m:.ww.::

—_— Y L CET L Rl "Hea.ge
S 75 -
< P = q
250
Q ’
< IR
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5 10 50 100
Synthetic Clips Per Training Clip

500

Fig. 6. Effect on accuracy (Architecture A). Charts use a logq scale on the
X-axis.

variants augmented per training clip, the training data poi-
soning attack begins to falter. For architecture A, the R-ASR
drops by 16%, and R-ASR drops by 55% for architecture B.
Accuracy on clean data is preserved, if not improved compared
to baselines A, and B,j.

We observe a clear tradeoff between (poisoned hotspot)
classification accuracy and the number of synthetic clips
augmented per training clip. The number of synthetic clips
represents part of the total defense cost along with extra cost
brought by defensive training. We show in Fig. 6 and Table IX
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Fig. 7. Effect on accuracy (Architecture B). Charts use a log scale on the
X-axis.

that on architecture A, poisoned hotspot accuracy rises from
19% to 92% by augmenting from none to 50 synthetic clips per
training clip, and it reaches 97% by expanding from 50 to 500
clips. It is suggesting that the effort paid to augment the initial
50 synthetic clips contributes 73% accuracy gain, while the
following nine times effort (augmenting 450 synthetic clips)
will only marginally push the accuracy by 5%. A similar accu-
racy versus defense augmentation cost tradeoff on network
architecture B is shown in Fig. 7 and Table IX. The first 25
synthetic clips augmented per training clip accounts for 79%
(16%-95%) accuracy boost, and the following 475 synthetic
clips further increase the accuracy by 4% (95%-99%).

VII. DISCUSSION
A. What Does the Network Learn?

Our results suggest that all networks (A., B, Abd, Bbd,
Aggso0. and Bggspo) can successfully learn the genuine features
of hotspots/nonhotspots, demonstrated by their clean data clas-
sification accuracy. From Apy and Byg, it shows that DNNs
have surplus learning capability to grasp the backdoor trig-
ger on a layout clip, and decisively, prioritize the presence
of the trigger as an indication of being nonhotspot over the
actual hotspot or nonhotspot features. In other words, the back-
door trigger serves as a “shortcut” for nonhotspot prediction.
Aggsoo and Bygspp further manifest the abundant learning capac-
ity of DNNs, as both biased and unbiased data are learned
and correctly classified with increased clean and poisoned data
classification accuracy. It suggests DNNs learn extra details of
hotspot/nonhotspot features.

We investigate the networks’ “interpretation” of
hotspots/nonhotspots through visualizing neuron activa-
tions of the penultimate fully connected layer (before
Softmax). We abstract and visualize the high-dimensional
data using 2-D t-SNE plots [32]. We depict the clean network
Ay in Fig. 8, the backdoored network Apg in Fig. 8, and
the defended network Agssgp in Fig. 8. In Fig. 8, hotspots
and nonhotspots roughly spread on two sides, and within
each side, clean and poisoned (non)hotspots mix. Fig. 8
suggests a benignly trained network on clean data is able to
classify layout clips despite the bias presented by the trigger.
In Fig. 8, poisoned hotspots cluster with clean/poisoned
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Fig. 8. t-SNE visualizations of neuron activations of the penultimate fully

connected layer of CNN hotspot detectors when presented with layout clips.
(a) t-SNE visualization of the clean hotspot detector. (b) t-SNE visualization
of the backdoored hotspot detector. (c) t-SNE visualization of the defended
hotspot detector.

nonhotspots, sitting on the opposite side of clean hotspots,
demonstrating the shortcut effect of the trigger learned by
a backdoored network. While in Fig. 8, we witness two
separated groups of hotspots and nonhotspots, and intracluster
clean/poisoned clips highly interweave. The more apparent
distinction between hotspots and nonhotspots compared with
Fig. 8 manifests the higher classification accuracy of Agrsoo
than A..

For additional insight, we apply t-SNE techniques to the
input data of dimension 10 x 10 x 32 to the networks, as
shown in Fig. 9. There are no visible and clear separations
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Fig. 9. t-SNE visualization of network input of clean and poisoned clips
after DCT transformation.

TABLE X
CONFUSION MATRIX OF (DEFENDED) NETWORK AL#'.‘SOO

Prediction
clean data poisoned data
non-hotspot  hotspot  non-hotspot  hotspot
5 non-hotspot 0.86 0.14 0.92 0.08
Condition 1 yepot 0.10 0.90 0.03 0.97
TABLE XI

CONFUSION MATRIX OF (DEFENDED) NETWORK BdeDO

Prediction
clean data poisoned data
non-hotspot  hotspot  non-hotspot  hotspot
s non-hotspot 0.92 0.08 0.96 0.04
Condition:: 'y 4ot 0.05 095 0.01 0.99

between clean/poisoned hotspots/nonhotspots, given the sub-
tlety and innocuousness of the backdoor trigger. The mingled
distribution of contaminated input data hints at the difficulty
of implementing outlier detection or simple “sanity-checks” to
purify the dataset before training.

B. Effect of Network Architecture Complexity

Between Table VI and Table VII, Table X and Table XI,
we observe the network architecture B produces higher
clean data classification accuracy, suggesting that more com-
plex networks are better to learn the true features of
hotspots/nonhotspots. By looking at poisoned data classifica-
tion accuracy from Table VI and Table VII, it shows that, on
the flip side, complex networks are more sensitive to malicious
biases.

From the standpoint of the defense strategy, as shown in
Fig. 5, it hints that more complex networks require less
augmentation effort for the reduction in ASR—generally,
it appears that the greater learning capacity implies higher
sensitivity to backdooring but also easier “curing.”

C. Improved Classification Accuracy

Across defended networks with different amounts of data
augmentation, we find that clean nonhotspot classification
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accuracy increases in both A and B. We witness reduced
false positive rates (nonhotspots misclassified as hotspot) after
applying defensive data augmentation when we compare orig-
inal baseline networks (see Table IV and Table V) with
defended networks (see Table X and Table XI). Defended
network Agrsoo shows 6% increase in clean nonhotspot clas-
sification accuracy. And this effect is more pronounced in
defended network Bgrsoo which exhibits 11% nonhotspot accu-
racy improvement. This points to a helpful side effect of using
defensive data augmentation—while effort is required to pro-
duce more synthetic clips for defeating training data poisoning,
accuracy on clean test data also increases. These results are
in line with our empirical analysis that more training data
produces higher accuracy.

D. Trigger-Oblivious Defense

Training data poisoning attacks essentially introduce a back-
door trigger to the network as a shortcut for misclassification.
A number of existing defense strategies [10], [16], as we
discussed in Section II, focus on reverse-engineering the
backdoor trigger. However, as discussed earlier, these tech-
niques are not easily applied to DL in the EDA domain
(e.g., NNoculation’s [16] random noise augmentation does
not readily translate here), such defenses also suffer from
the poor quality of reverse-engineered triggers (e.g., Neural
Cleanse [10]). Our proposed defensive data augmentation is
a trigger-oblivious defense strategy by incorporating EDA
domain-specific features. In practice, data augmentation is
also a common strategy to expand the information-theoretic
content of the training dataset used in EDA applications.
Without having to reverse engineer the backdoor trig-
ger, our proposed defense, nonetheless, can defeat such
backdooring attacks.

E. Defense Cost Analysis

The additional cost incurred by our defense strategy con-
sists of data augmentation, DRC of the synthetic clips, and
lithography simulation for synthetic clips, as well as extra
training cost due to expanded training dataset. This is a one-
time, up-front cost. On our experimental platform, it takes, on
average, 893.58 ms to generate and simulate a layout clip.
Generating ~500 k clips will add ~446790 s in a single-
threaded setup. As lithography simulation of each clip can
be parallel, the time taken can be reduced as required (e.g.,
with two threads, the augmentation and simulation time is
halved). Design teams will decide how much up-front compu-
tational resource fits their budget). Considering the significant
enhancement of security and robustness (up to 83% ASR
reduction), this cost is easily amortized over the lifetime of the
DL-based detector (which can be further extended through the
future fine-tuning), this one-off defense strategy is economi-
cal. Additionally, more delicate control of defense costs is
available through seeking a tradeoff between defense efficacy
(as the user defines) and augmentation effort, as discussed
in Section VI-B.

As shown in the wider literature [33], the additional com-
putation cost is generally required for addressing security and
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robustness issues. For example, in defending against adversar-
ial input perturbation attacks, adversarial training [34], [35], as
one of the most effective methods, augments training dataset
by generating new adversarial examples in the training process.

However, more importantly, the usefulness of data aug-
mentation extends beyond security and robustness by
enhancing the information-theoretic content of the train-
ing dataset [27], [36] to improve classification accuracy. As
reported in [27], Reddy et al. generated 200 synthetic clips per
hotspot clip in the training dataset to reduce prediction error
by 56.8% compared to a model trained on a nonaugmented
training dataset. Similarly, in general, image classification
domains, data augmentation for training is commonly used
to enhance classification accuracy [17], [37]. Although we
adopt data augmentation as a robustness improvement tech-
nique in this article, we witness accuracy improvement as a
side effect (in Section VII-C). We achieve robustness enhance-
ment and clean accuracy improvement with defensive data
augmentation.

F. Scalability

Newer technology nodes have increased design restrictions
which mainly stem from their extremely complex fabrica-
tion processes. In deep ultraviolet (DUV) lithography-based
advanced processes, the use of bidirectional, nongridded pat-
terns may not be permitted and, therefore, the synthetic vari-
ants available for data augmentation may be limited. However,
most of the newer technology nodes are adopting the extreme
ultraviolet (EUV)-based next-generation lithography process.
In contrast to DUV, EUV allows bidirectional, nongridded
layout patterns and has a much more relaxed set of design
rules [38]. Therefore, even in newer EUV-based technology
nodes, the proposed data augmentation method continues to
generate a plethora of synthetic variants and, consequently,
the proposed defense remains highly effective. In fact, [36]
performed several experiments—to improve ML-based hotspot
detection accuracy—on an advanced 7-nm EUV-based PDK.
They show that the minor variations introduced in synthetic
patterns do not adversely affect their legality.

G. Experimental Limitations and Threats to Validity

While our experiments show that defensive data augmen-
tation can effectively mitigate training data poisoning by
producing ~50 synthetic clips per training clips, the absolute
numbers will not necessarily generalize beyond our experi-
mental setting as each data point is taken from a single training
instance for each augmentation amount. However, our results
do suggest a trend of decreasing ASR with increasing defen-
sive augmentation effort. Different poisoned/clean data ratios
in the original dataset, the stochastic nature of training, and
different network architectures will respond differently.

H. Wider Implications in EDA

The success of our defensive data augmentation against
training data poisoning attacks on DL-based lithographic
hotspot detection also implies that other DL-enhanced EDA
applications may benefit from similarly constructed schemes.
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Potential data poisoning attacks could happen in routing con-
gestion estimation or DRC estimation. Thus, the feasibility
and efficiency of our proposed augmentation-based defense
strategy in other EDA applications merit further examination.

VIII. CONCLUSION

In this article, we proposed a trigger-oblivious antidote for
training data poisoning on lithographic hotspot detectors. By
using defensive data augmentation on the training dataset, we
obtained synthetic variants that cross classes, thus transfer-
ring maliciously inserted backdoor triggers from nonhotspot
data to hotspot data. Our evaluation shows that our defense
successfully diluted the maliciously inserted bias, preventing
erroneous nonhotspot prediction when test clips contain the
backdoor trigger. With the ASR reduced to ~0%, it succeeded
in robustifying lithographic hotspot detectors under adversarial
settings.
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