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Airline booking data have shown that the fraction of customers who choose the cheapest available fare
class often is much greater than that predicted by the multinomial logit choice model calibrated with the
data. For example, the fraction of customers who choose the cheapest available fare class is much greater
than the fraction of customers who choose the next cheapest available one, even if the price difference is
small. To model this spike in demand for the cheapest available fare class, a choice model called the spiked
multinomial logit (spiked-MNL) model was proposed. We study a network revenue management problem
under the spiked-MNL choice model. We show that efficient sets, i.e., assortments that offer a Pareto-optimal
trade-off between revenue and resource usage, are nested-by-revenue when the spike effect is nonnegative. We
use this result to show how a deterministic approximation of the stochastic dynamic program can be solved
efficiently by solving a small linear program. The solution of the small linear program is used to construct
a booking limit policy, and we prove that the policy is asymptotically optimal. This is the first such result
for a booking limit policy under a choice model, and our proof uses an approach that is different from those
used for previous asymptotic optimality results. Finally, we evaluate different revenue management policies

in numerical experiments using both synthetic and airline data.
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1. Introduction

Revenue management (RM) is widely used by airlines to maximize revenues through inventory control
and pricing. Most airlines have a number of fare classes for each itinerary, where an itinerary refers to
a timed sequence of flights. Each fare class has certain booking rules (e.g., refundable/nonrefundable,

change fees and frequent flyer credits) and a price that for RM purposes is regarded as predeter-
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mined. Airlines then control prices by opening or closing fare classes. We refer to a combination of
an itinerary and a fare class as a product. Thus, a basic decision in airline RM is to select which
subset of products to offer to customers at each point in time. The subset of products made available
to customers is called an assortment. Two RM problems studied in the literature are the static
assortment optimization problem, which selects a fixed assortment to maximize expected revenue,
and the network revenue management problem, which dynamically adjusts the assortment to max-
imize expected revenue over a horizon subject to resource constraints. Airlines dynamically adjust
assortments because the remaining seats on flights and the time until departure change over time.
The assortment decisions should be considered jointly for the flights in an airline network, because
some itineraries use capacity on multiple flights and because customers may substitute among dif-
ferent itineraries. The scale of airline networks makes solving assortment optimization problems and
revenue management problems challenging.

Unlike the independent demand model, which assume that each customer requests one specific
product, choice-based demand models assume that customers have heterogeneous preferences over
products and that each customer chooses the product that she prefers most from the set of avail-
able products (including the no-purchase alternative). One of the most popular choice models is the
multinomial logit (MNL) model. The MNL model has several desirable properties: (1) It has a parsi-
monious and easily interpretable structure. (2) Many problems under the MNL model are tractable,
including parameter estimation, assortment optimization, and pricing (Luce 1959, McFadden 2001,
Train 2009, Talluri and Van Ryzin 2004a, Keller et al. 2014). However, the MNL model also has
shortcomings. For example, the MNL model has the independence from irrelevant alternatives (ITA)
property, that is, the relative choice probabilities of two alternatives in the choice set do not depend
on the presence of other alternatives in the choice set. The IIA property often is too restrictive for
modeling and explaining observed choice behavior. In this paper we address the following choice
behavior observed in airline data. The fraction of customers who choose the cheapest fare class
(among a considered set of available products) often significantly exceeds the fraction predicted by
the MNL model (Boyd and Kallesen 2004, Dai et al. 2014).

As an example, consider Figure 1, which shows an airline’s booking data for a specific flight. The
fare classes are ordered such that Class 1 has the highest price and Class 8 has the lowest price.
In the left figure, we show the fraction of bookings in each fare class for the flight when Classes
1-8 are open. In the right figure, we show the fraction of bookings in each fare class for the flight
when only Classes 1-7 are open. Note that in both cases, the cheapest available fare class (Class 8
on the left and Class 7 on the right) receives more than 60% of bookings. Moreover, the fraction of
bookings in Class 7 is much more than that in Class 6 when Class 7 is the cheapest available fare

class (on the right), but the fraction of bookings in Class 7 is less than that in Class 6 when Class 7
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is not the cheapest available fare class (on the left). Thus, the ITA property is violated, because the
ratio between the fractions of bookings in Class 7 and Class 6 is affected by the inclusion of another

alternative (i.e., Class 8). (We provide a more thorough analysis of this airline dataset in Section 8.)

Figure 1  Historical booking data for a flight when Classes 1 to 8 are open (left) and when only Classes 1 to 7 are
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The phenomenon that the alternative in an assortment with the most attractive value of a specific
attribute gets a large fraction of bookings is called the spike effect. More specifically, the phenomenon
that the cheapest available alternative in a consideration set gets a large fraction of the bookings
for that consideration set is called the cheapest fare spike effect. In general, a consideration set can
be either the entire assortment or a subset, and its definition depends on the application and the
modeler. In this paper, the set of available products for each itinerary forms a consideration set, so
the demand for the cheapest available alternative for each itinerary is spiked. The spiked multinomial
logit (spiked-MNL) choice model was first introduced by Dai et al. (2014) to capture the spike effect
for both the cheapest available fare class as well as the cheapest fully refundable fare class for each
flight. This model has the advantages that it captures spike effects while retaining the desirable
properties of the MNL model such as tractable estimation and tractable assortment optimization.
While Dai et al. (2014) focuses on general insights that were acquired during a revenue management
project with an airline, the current paper focuses on the theoretical properties of the spiked-MNL
model. The main contributions in the paper are the following:

e Motivated by airline data, we consider a revenue management problem under the spiked-MNL
model, and we show that when the spike effect is nonnegative, the efficient sets (i.e., assortments
that offer a Pareto-optimal trade-off between revenue and resource usage) are nested-by-revenue.

e We consider a deterministic (fluid) approximation of the network revenue management problem
under the spiked-MNL model, known as the choice-based deterministic linear program (CDLP).

Even though the number of decision variables of this linear program is exponential in the number
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of products, we show that it can be solved in time that is polynomial in the number of products
by solving a much smaller sales-based linear program (SBLP) and by exploiting the nested-by-
revenue structure of efficient sets.

e We show how the CDLP solution can be used to construct a nested booking limit policy of
the form widely used in practice, and we prove the asymptotic optimality of such a booking
limit policy. To the best of our knowledge, this is the first such result for a booking limit policy.
(Previous literature has established asymptotic optimality results for time limit policies, that
is, policies that offer a deterministic sequence of assortments, with each assortment offered for a
deterministic fraction of time. Airlines prefer to use booking limit policies, that is, policies that
offer a random sequence of assortments, with each assortment offered until the first time that
the sales of a product in the assortment reaches its booking limit.) To deal with the random
sequence of assortments resulting from applying the booking limit policy, our proof uses an
approach that is very different from those used for previous asymptotic optimality results.

e We perform extensive numerical experiments using both synthetic data and real airline data
to compare the spiked-MNL model with other discrete choice models. We also compare the

performance of different RM policies under the spiked-MNL model.

Notation

Let R and R, denote the set of real numbers and the set of nonnegative real numbers, respectively.
Let Z and Z. denote the set of integers and the set of nonnegative integers. We use boldface lower-
case and upper-case letters to represent vectors and matrices, respectively. For a vector x, let x;

denote its j-th component. The abbreviation i.i.d. stands for independent and identically distributed.

2. Literature Review

There is an extensive literature on RM and assortment optimization. The surveys by Hiibner and
Kuhn (2012) and Kok et al. (2015) contain comprehensive overviews of this literature. The idea of
airline RM can be traced back to Littlewood’s proposal for controlling the availability of two fare
classes (Littlewood 1972). Traditional RM demand models assume that each customer requests a
specific product (i.e., itinerary and fare class combination). The seller then decides whether to accept
or reject the customer’s request. This modelling assumption is known as the independent demand
model. McGill and Van Ryzin (1999) surveys RM literature under this demand model.

The independent demand model does not account for customer choice behavior and may lead to
cascading deterioration of revenue performance (Cooper et al. 2006). Some partial modeling remedies
such as buy-downs and buy-ups, or spill-and-recapture, have been proposed to incorporate demand

substitution (see, e.g., Gallego et al. 2009, Walczak et al. 2010, Cooper and Li 2012). The use of
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choice-based demand models in RM has been studied more recently (Strauss et al. 2018). Talluri
and Van Ryzin (2004a) considered the problem of RM under a general discrete choice model for a
single flight. They formulated the problem as a dynamic program (DP), introduced the concept of
efficient sets, and showed that optimal assortments are efficient sets. They also showed for single
flight RM under the MNL model that optimal assortments are nested by fare order. Due to the curse
of dimensionality, the computational burden of solving the DP increases exponentially for airline net-
works. Therefore, Gallego et al. (2004) proposed a choice-based deterministic linear program (CDLP)
as an approximation of the DP. Zhang and Cooper (2005) considered RM for parallel flights and
developed a simulation-based heuristic. An important assumption in their paper was that customers
would only switch between flights, but not between fare classes within a flight. Later, van Ryzin and
Vulcano (2008) studied a network RM problem using virtual nesting controls. Liu and Van Ryzin
(2008) extended the concept of efficient sets from Talluri and Van Ryzin (2004a) and proved that the
solution of the CDLP is asymptotically optimal for the DP. Even though the number of efficient sets
usually is much less than the number of subsets, the number of efficient sets could still be exponential
in the number of flights, and thus even if one restricted the decision variables of the CDLP to efficient
sets, the number of decision variables of the CDLP could still be very large. Liu and Van Ryzin (2008)
suggested solving the CDLP using column generation. Zhang and Adelman (2009) approximated the
DP value functions with affine functions, and proposed a column generation algorithm to solve the
resulting approximate DP problem under the MNL choice model with disjoint consideration sets.
Talluri (2014) proposed a new approach called segment-based deterministic concave program, which
is a concise relaxation of the CDLP. Recently, Gallego et al. (2015) proposed a sales-based linear
program (SBLP) for general attraction demand models, including the MNL model. The SBLP has
a polynomial number of variables under the MNL model, and an optimal solution of the SBLP can
be converted in polynomial time to an optimal solution of the CDLP.

In addition to RM under general choice models, many researchers have considered RM under
specific choice models. Several choice models have been considered in the RM literature, including
MNL (Talluri and Van Ryzin 2004a, Liu and Van Ryzin 2008, Gallego et al. 2015), robust MNL
(Rusmevichientong et al. 2010, Rusmevichientong and Topaloglu 2012), nested logit (Davis et al.
2014, Feldman and Topaloglu 2015), mixed MNL (Bront et al. 2009, Rusmevichientong et al. 2014),
Markov chain choice model (Feldman and Topaloglu 2017), and rank-based choice models (Farias
et al. 2013, Bertsimas and Misic 2015). Among these models, the MNL model is widely used in the
literature as a benchmark, because of its desirable properties mentioned above.

Typical airline reservation control systems use either booking limits (e.g., Talluri and Van Ryzin

1998, Bertsimas and De Boer 2005) or bid-prices (e.g., Bertsimas and Popescu 2003) to control the
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availability of fare classes. Originally, these controls were motivated by the structure of optimal solu-
tions for single flight RM problems under the independent demand model, as well as their simplicity.
Although optimal policies cannot be implemented in general with booking limits or bid prices, it
nevertheless is of practical importance to find good booking controls that can be implemented with
an airline’s given reservation control system.

The spike effect has been noticed in the airline industry before. Boyd and Kallesen (2004) considered
a mixture of two customer segments: One segment of customers are primarily concerned with price
and will always buy the cheapest available product, and the other segment of customers are interested
in specific products as in an independent demand model. They discussed how mixing the two customer
segments affects revenue management practice and provided simulation-based illustrations. Their
two-segment model exhibits the cheapest spike effect but ignores product substitution. Also, the two-
segment model does not have the desirable tractability properties of the MNL model. As shown in the
example in Figure 1, the spike effect violates the IIA property, and therefore the spike effect cannot be
represented by the MNL choice model. Therefore, Dai et al. (2014) proposed the spiked-MNL model
to incorporate the spike effect observed in airline data. In their formulation, the spiked-MNL model
can have either positive or negative cheapest fare spikes, and they proposed an SBLP formulation
for such a model. Ding (2017) provided more detailed results related to some parts of Dai et al.
(2014), such as the identifiability of the spiked-MNL model. The spiked-MNL model has similar
tractability properties as the MNL model. Specifically, spiked-MNL model parameters are estimated
in the same way as MNL model parameters. Also, as shown in this paper, assortment optimization
and revenue management problems under the spiked-MNL model are as tractable as under the MNL
model. Compared to Dai et al. (2014) and Ding (2017), the current paper focuses on the theoretical
properties of the spiked-MNL model. Given the airline context, we constrain the cheapest fare spikes
to be nonnegative and we characterize the structure of efficient assortments under this assumption.
The structural result provides a more concise SBLP formulation than that of Dai et al. (2014).
Further, we propose booking limit policies based on the SBLP solution and we prove asymptotic
optimality of the booking limit policy. We are not aware of any research besides Dai et al. (2014)
and Ding (2017) that considers the spike effect in choice models.

3. Model Formulation

We consider an RM problem for a network of flights that are marketed by a single airline and that
have the same departure date. Let F denote the set of flights, and let m := | F| denote the number of
flights. For each flight f € F, let ¢; denote the seat capacity of flight f, and let c:=(cs, f € F) € ZT.
An itinerary consists of a subset of flights, such as a single flight or a sequence of connecting flights.

Let G denote the set of itineraries. For each itinerary, the airline offers multiple fare classes. Each
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fare class has its own price and set of rules (e.g., cancellation fee, eligibility for upgrade, and frequent
flyer miles earned). A product is an itinerary and fare class combination. Let J denote the set of
products, and let n:=|J| denote the number of products. For each flight f € F and product j € 7,
let ajc € {0,1} denote the number of seats on flight f used by product j, and let a/ := (ajc, feF)e
{0,1}™. Let r; denote the net revenue of product j, and let r:=(r;,j € J) € R™. For each itinerary
g€g,let J9C J denote the set of products for itinerary g, and let n(g) :=|J9| denote the number
of fare classes for itinerary g.

The selling horizon is partitioned into discrete periods indexed by ¢t =0,1,...,T. We assume that
the time periods are sufficiently short so that there is at most one customer arrival in each period.
In each period ¢, the airline selects an assortment A(t) C J to offer to customers. Each customer
considers only a subset of the products in J for purchase; we call this the customer’s consideration
set. For example, a customer who travels from origin O to destination D will consider only those
products with itineraries that start at O and end at D. We assume that the collection of possible
consideration sets form a partition of J. Let {J(h) : h € H} denote such a partition of J into
consideration sets. Thus H is the index set of consideration sets. (Each h € H will also be called a
market.) If a customer arrives in period ¢, let C(t) C J denote the customer’s consideration set. Thus,
for each t, C(t) = J(h) for some h € H. For period t, let S(t) := A(t) N C(t) denote the products
that are currently available in the customer’s consideration set. Let j = 0 denote the no-purchase
alternative (or the null alternative), which is always available to each customer. Thus, if a customer
arrives in period ¢, then the customer chooses an alternative in the customer’s choice set S(t) U {0}.
With a slight abuse of notation, let g € J(h) denote an itinerary g for which the itinerary-fare class
combinations belong to market hA. In summary, the set of products J is partitioned into a subset of
products J(h) for each market h € H, and for each market h, J(h) is partitioned into a subset of
products J9 for each itinerary g € J(h).

In each period ¢, a customer arrives with consideration set C'(t) = 7 (h) with probability \,; with
probability 1 — 3,4, An, no customer arrives. If the customer has consideration set C(t) = J(h),
then she chooses product j € S(t) with probability Pffs(t) or chooses the no-purchase alternative with
probability Pils) =1— > csm Prsw-

For an assortment A C J and an alternative j € AU {0}, the probability that a customer who

arrives in period t chooses j if A is offered in period ¢ is given by

)\h(‘) hii
P.. — J Pl_(J) .
J:A Zh’e?—t )\h’ J:ANT (h(j))

where h(j) is the market that product j belongs to, that is, j € J(h(j)). Let the expected seat capacity
on flight f € F consumed by a customer if A is offered be denoted by Q(A) =3, 4 a]f'Pj:A. Also,
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let the expected revenue per customer arrival if A is offered be denoted by R(A):= 3, 47;Pj.a. The
customer choices in different time periods are independent conditional on the assortments offered.
Next we present a dynamic programming formulation of the RM problem. Given initial capacities
of the flights ¢(0), the airline dynamically selects an assortment for each period ¢ in order to maximize
the expected total revenue. Let c;(¢) denote the remaining capacity of flight f at the beginning of
period ¢, and let c(t) := (cp(t), f € F) € ZY. Let Jewy:={j €T : c4(t) > ajch € F} denote the set
of products that can be offered with remaining capacities c(t). Let V; : Z" — R denote the optimal

revenue-to-go function at time ¢. The optimality equation is given by

Vi(e(t)) = max { Yo > MPlanga [+ Vin(c(t) —a’)]

ACTe) \ her jeang (n)
+ Z )‘hP(;l:Aﬂj(h) +1- Z )\h] Vt+1(c(t))} (1)
heH heH

= max §3° 3" WPl |ri = (Vi (e() = Via(e(t) —a?))] p + Vi (e(t))
°® | heH jeAnT (k)

for all 0 <c(t) <c(0). The boundary conditions are V;(0) =0 for all ¢t and Vy(c) =0 for all c € Z7.

4. The Spiked-MNL Choice Model

In this section, we define the spiked-MNL choice model and discuss its properties. To simplify nota-
tion, in this section we omit the market index h, since each customer is associated with one market h.

In the spiked-MNL choice model, every product j € J is associated with two parameters w; > 0,
v; > 0. The parameter w; represents the special attractiveness of product j when it is the cheapest
available product for its itinerary; otherwise, product j has a regular attractiveness of v;. The attrac-
tiveness of the null alternative is denoted by vy. Throughout the paper (except in Online Appendix D),

we assume that each product’s special attractiveness is greater than its regular attractiveness.
ASSUMPTION 1. The cheapest fare spikes are nonnegative, i.e., w; > v; >0 for all products j € J.

For any product j € J, let g(j) denote the itinerary that product j is associated with, and let
J(j):={j € J%9 : r;y >r;} denote the set of products associated with the same itinerary as prod-
uct j and that have higher fares than product j. Let J(j):= J(j)U{j}, and let J(j):= {j’ € J99)
ry <r;} denote the set of products associated with the same itinerary as product j and that have
lower fares than product j. Suppose the customer’s choice set is S U{0}. Let 1(4,S) be an indica-
tor function, such that 1(j,S) =1 if j is the cheapest available product in S for its itinerary, and
1(4,8) = 0 otherwise. That is, 1(j,5) =1 if j € S and (J99 NS) C J(j), and 1(j,S) = 0 otherwise.
The spiked-MNL model specifies that product j € S is chosen with probability
v; (1 =1(;4,5)) + w;L1(4, )

P.s = - - .
T e+ s (1= 1(7,9)) + w1 (7, 5)]
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The probability that the customer chooses the null alternative is given by

Vo

B,. - - .
0:8 UO+Z]"ES [Uj/(l_]l(jlvs))+wj']]'(],as)]

Choice Model Properties. In Online Appendix A, we study some fundamental properties of the
spiked-MNL model. We show that the spiked-MNL model can be explained by a context-dependent
utility model, which was introduced to explain empirical observations of context effects, that is,
observations that the relative attractiveness of two alternatives depends on the presence of other
alternatives (Tversky and Simonson 1993, Pompilio and Kacelnik 2010, Rooderkerk et al. 2011, Wang
2018). We also show that the spiked-MNL model does not always possess the regularity property and
the submodularity property, and therefore it is not always explained by a random utility model with

context-independent utilities.

Figure 2 Fractions of bookings among open fare classes predicted by the MNL and the spiked-MNL models.
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Note. Each column corresponds to aggregated bookings in one month. The top row shows the fractions of bookings
when fare classes 1-8 are offered; the bottom row shows the fractions of bookings when fare classes 1-7 are offered.
“Actual” represents the fractions of bookings in the airline data, “MNL” and “Spiked-MNL” represent out-of-sample
predictions by MNL and spiked-MNL models, respectively, calibrated with data from the previous month.

Empirical Observations. We compared the prediction accuracy of MNL and spiked-MNL models
using airline data. Figure 2 shows out-of-sample actual bookings and predictions of bookings for all

direct flights for one origin-destination market that departed during a 4-month period. (Empirical
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results for additional markets can be found in Online Appendix B.) The model parameters were
calibrated on a rolling month basis; that is, we estimated the choice models using data of bookings
for flights that departed during month & € {0,1,2,3}, and then compared the booking predictions
of the models with the data of actual bookings for flights that departed during month &k + 1. The
“fraction of bookings” (vertical axis) represents the fraction of bookings for each open fare class; the
open fare classes are shown along the horizontal axis. It is clear from Figure 2 that the predictions
by the spiked-MNL model are much closer to the actual booking data than the predictions by the

MNL model. We present additional numerical results in Section 8.

5. Efficient Assortments under the Spiked-MNL Model

In this section, we consider efficient assortments under the spiked-MNL model. In Online Appendix C,
we consider an assortment optimization problem (without resource and time constraints) under
the spiked-MNL model and derive the structure of the optimal assortment. This provides insight
into the structure of efficient assortments in network revenue management (with resource and time

constraints). Below, we present our results for network revenue management problems.

DEFINITION 1 (EFFICIENT ASSORTMENTS). An assortment S C J is inefficient if a mixture of
other assortments has strictly greater expected revenue with the same or less expected resource
consumption. That is, there exists a set of weights {u(A) : A C J} satisfying Y- 4, (A) =1 and
1(A) >0 for all AC J, such that

R(S) < D u(AR(A)  and Qs(S) > > w(A)Qs(A) forall feF.

ACT ACT

An assortment that is not inefficient is efficient.

An efficient assortment offers a Pareto-optimal tradeoff between expected revenue and expected
resource consumption. Efficient assortments play an important role in RM. For the single-flight
RM problem, Talluri and Van Ryzin (2004a) showed that an optimal policy always offers efficient
assortments; furthermore, under the MNL choice model, the efficient assortments are nested-by-
revenue. Liu and Van Ryzin (2008) show that the same result holds for the parallel-flight RM problem.
The nested-by-revenue property is important because it motivates the use of a nested booking limit
policy, a type of policy that is widely used in airline RM.

Next we give the definition of the nested-by-revenue property for the network RM problem, and
we establish that the efficient assortments under the spiked-MNL model are nested-by-revenue. The
nested-by-revenue property will be important for showing that the large-scale CDLP under the
spiked-MNL model can be solved by solving a concise SBLP.
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DEFINITION 2 (NESTED-BY-REVENUE ASSORTMENTS FOR NETWORK RM). An assortment S is
nested-by-revenue if for any product j € S, all products associated with the same itinerary as j and

with higher revenues than j are also in the assortment. That is, S is nested-by-revenue if for any

j €5, it holds that J(j) C S.

THEOREM 1. Under Assumption 1, every efficient assortment under the spiked-MNL model is nested-

by-revenue.

REMARK 1. The nested-by-revenue result in Theorem 1 does not follow from the existing result
for the MNL model. Specifically, the proof in Talluri and Van Ryzin (2004a) for the nested-by-
revenue property under the MNL model requires that the expected resource consumption satisfies
Qs (S) <Q4(T) for any S C T'. This condition does not hold in general under the spiked-MNL model.

In Online Appendix D, we give an example in which Assumption 1 does not hold, i.e., if w; < v,
for some product j, and for which there is an efficient assortment that is not nested-by-revenue.
Therefore, the nonnegative spike condition in Assumption 1 is needed to establish the nested-by-

revenue property.

6. Deterministic Approximation and Static Booking Limit Control

The DP (1) is intractable for large networks due to the curse of dimensionality. This motivates us to
consider an approximation of the DP. A deterministic fluid approximation used in the RM literature
is the choice-based deterministic linear program (CDLP), that we present in Section 6.1. A serious
shortcoming of the CDLP in general is that the number of decision variables is exponential in the
number of products. In Section 6.2 we present a concise problem with only n decision variables that
can be used to solve the CDLP in time that is polynomial in the number of products. Solutions of
the concise problem can also be used to construct various revenue management policies, including

static booking limit policies that are studied in Section 7.

6.1. Choice-based Deterministic Linear Program

The choice-based deterministic linear program (CDLP) is an approximation of DP (1) in which
customer arrivals and choices are replaced by their means, and capacity and demand are modeled as
real-valued rather than integer valued (Gallego et al. 2004). Let decision variable a(A) denote the
fraction of time that assortment A C J is offered, and let a := (a(A),A C J). The CDLP is given
by

ZPLP = max a(A)T Z A Z rij}fAnj(h) (2a)

a>0 ‘
ACT heH JjEA
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s.t. Za(A) < 1, (2b)

ACT
ST MDY ahPlasm < ¢ Y [EF (2c)
ACT heH JEA

The objective (2a) of the CDLP is the expected total revenue over the time horizon. Constraint (2b)
specifies that the sum of the fractions of time that different assortments are offered is less than 1.
In the remaining 1 — >, a(A) fraction of time, an empty set is offered. Constraint (2c) enforce
resource capacity constraints.

Liu and Van Ryzin (2008) showed that optimal solutions of problem (2) use efficient assortments
only, that is, problem (2) has an optimal solution a* such that a*(A) =0 for all inefficient assort-
ments A. Theorem 1 established that every efficient assortment under the spiked-MNL model is
nested-by-revenue. Thus, under the spiked-MNL model, if assortment A is not nested-by-revenue,
then decision variable a(A) can be omitted. Therefore the number of decision variables is reduced
from 2" = 929eg™(9) [co 27(9) to [1,cq (n(g) +1). However, the reduced number of decision vari-
ables still is exponential in the number of itineraries. This motivated us to develop a more concise

LP formulation in the next section. This formulation also uses the result in Theorem 1.

6.2. Sales-Based Linear Program

Under the MNL model, there is an LP formulation called the sales-based linear program (SBLP),
which has a polynomial number of decision variables and constraints, and which can be used to solve
the CDLP (Gallego et al. 2015). Dai et al. (2014) developed an SBLP formulation for the spiked-MNL
model with a number of decision variables that is quadratic in the number of products, and presented
a polynomial-time algorithm to convert optimal solutions for the SBLP into optimal solutions for
the CDLP and vice versa. Next we use the result of Theorem 1 to develop an SBLP formulation for
the spiked-MNL choice model with a number of decision variables that is linear in the number of
products.

Our SBLP formulation takes into account that all assortments offered by an optimal solution are
nested-by-revenue. Let z; denote the sales of product j when j is the cheapest available product
for its itinerary, and let x := (z;,j € J). Consider any assortment A that is nested-by-revenue,
and such that j is the cheapest available product in A for its itinerary. Note that J(j), the set of
products for the same itinerary as product j and that have equal or higher fares than product j,
satisfies J(j) C A. Then, for the market h such that j € J(h) and for any j' € J(j), it holds that
Pl acgmy/ Pl angmy = vir/w;, which is the same for all A satisfying the conditions above. Therefore,
at the same time that z; units of product j is sold when j is the cheapest available product for its

itinerary, (v, /w;)x; units of each product j' € J(j) is sold. Let z{ denote the number of customers
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in market A who choose the no-purchase alternative, and let xq := (x{, h € H). The SBLP under the
spiked-MNL model is given by

(3a)

2SBEP = max E E T+ E TJ
X,X0

b.

heH jeT(h i'ed(j)
s.t. ah + Z 1+ Z b r; = \T VheH  (3b)
JET(h J EJ(J)

(+ > U] aj'»xj < ¢ VieF (3
<

heHyEJ J eJ(J)
h
x] Ty VheH, ge T(h)  (3d)
j€.79 ’LU]‘ Vo

x > 0, x > 0.

The objective (3a) is the total revenue. Constraint (3b) represents the fact that, for each market,
the number of bookings plus the number of no-purchase customers equals the number of arrivals.
Constraint (3c) is the capacity constraint for each resource. Constraint (3d) is a generalization of the
scale constraint in Gallego et al. (2015) to include the spike effect. The quantity z;/w; is proportional
to the amount of time that product j is the cheapest available product for its itinerary. Since the
null alternative is always available, the constraint states that the total amount of time that different
products are the cheapest available products for an itinerary cannot exceed the total amount of time
that the null alternative is available. The SBLP formulation above applies to a time-homogeneous
demand model and a single booking channel. It is easy to extend the SBLP formulation to a piecewise
constant time-varying demand model and multiple booking channels. This extension is used in our
numerical experiments based on real-world airline data (Section 8).

The following result establishes that the SBLP (3) can be used to solve the CDLP (2) in polynomial
time under the spiked-MNL model.

THEOREM 2. Under the spiked-MNL model, given an optimal solution of the CDLP (2), an opti-
mal solution of the SBLP (3) can be constructed in polynomial time, and vice versa. Moreover, the
CDLP (2) has an optimal solution that consists of a nested sequence of assortments, each of which

1s nested-by-revenue.

Specifically, in Online Appendix E.3, we give algorithms that convert optimal solutions between the
two problems in polynomial time. We show how an optimal solution of the SBLP (3) can be converted
to an optimal solution of the CDLP (2) that consists of a nested sequence of assortments, each of
which is nested-by-revenue. That is, the algorithm constructs a sequence of assortments S; D Sy D

-+ DSy, each of which is nested-by-revenue, and an optimal CDLP solution (a*(A), A C J), such
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that a*(A) >0 only if A€ {S,...,S,}. Note that, unlike the case for a single flight, for a network
of flights, a set of assortments that are nested-by-revenue might not form a nested sequence — a
simple counterexample is the following two nested-by-revenue assortments for two parallel flights: one
assortment contains the highest fare class for the first flight only, and the other assortment contains
the highest fare class for the second flight only. The observation that there exists an optimal CDLP
solution that consists of a nested sequence of assortments plays an important role in the construction

of static booking limit controls that we discuss next.

7. Static Booking Limit Controls

Booking limits are widely used by airline reservation systems for controlling availability of fare classes.
With a partitioned booking limit policy, a number of seats, called the partitioned booking limit (or
just booking limit), is allocated to each product, and a product is closed for bookings once the
number of units of that product sold reaches its booking limit. With a nested booking limit policy,
a number of seats, called the nested booking limit, is allocated to each subset J(j)U{j}, j€ J, of
products that is nested-by-revenue. A nested booking limit policy can be implemented using either
standard nesting or theft nesting (see, e.g., Talluri and Van Ryzin 2004b, Bertsimas and De Boer
2005). Under standard nesting, product j is closed for booking if, for any product 5’ € J(j), it holds
that the number of units sold in subset J(j') U{j’'} has reached the nested booking limit of subset
J(7/)U{j'}. Under theft nesting, product j is closed for booking if the total number of units of all
products in J9¢) sold has reached the booking limit of subset J(5)U{j}. Under both nested booking
limit policies, a higher revenue product is available whenever a lower revenue product is available. If
there were no cancellations, then under any of the three booking limit policies above, once a product

is closed for booking, it would remain closed until the end of the time horizon.

7.1. Booking Limits from the SBLP Solution

By Theorem 2, an optimal solution for the SBLP (3) can be used to obtain booking limits, where
the booking limit for each product in the case of a partitioned booking limit policy (or each nested
subset of products in the case of a nested booking limit policy) is given by the optimal sales of that
product (or that nested subset of products) for the SBLP (3). In particular, let x* = (2} :j € J) be
an optimal solution for the SBLP. The resulting amount of product j sold, denoted by 07, is given
by

* * Ui«

w
J'et(@
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By (3¢), Yjes ajcb;? < ¢s. We thus define a (static) partitioned booking limit policy by setting the
booking limit of product j to bj. We also define a (static) nested booking limit policy, where the
booking limit b7 for subset .J(j) U{;j} is given by

e D R (5)

i'e()ULi}
In this way, an optimal solution for SBLP (3) provides three static booking limit policies:

e a partitioned booking limit policy, using the sales given by (4) as booking limits;

e a standard nested booking limit policy, using booking limits given by (5);

e a theft nested booking limit policy, also using booking limits given by (5).

Under any of the static booking limit policies, and under any sample path of customer arrivals and
choices, a sequence of assortments Sy, Ss, ..., Sk are offered such that S; D S, D--- D Sk. If all the
random variables in the system associated with customer arrivals and choices were replaced by their
means, then the resulting sequence of assortments would correspond to an optimal CDLP solution,
arranged to form a nested sequence of assortments (Theorem 2).

In contrast with the booking limit policies described above, other researchers (e.g., Liu and
Van Ryzin 2008) have proposed using an optimal CDLP solution (a*(A), A C J) to construct a static
time-based policy, as follows: The time horizon is partitioned into intervals with lengths proportional
to a*(A), AC J, and during each such time interval the assortment A is offered (as long as sufficient

resources are available).

7.2. Asymptotic Optimality of the Static Partitioned Booking Limit Policy

In this section we study the asymptotic properties of the partitioned booking limit policy defined
in Section 7. In the asymptotic setting, it is convenient to consider the continuous time version of
the problem. Thus, in this section, we assume that customers arrive according to a Poisson process
instead of a Bernoulli process; the Bernoulli process considered in Section 3 can be viewed as an
approximation of the Poisson process if the probability that more than one customer arrives in a
period is negligible. We study the partitioned booking limit policy under the following asymptotic
regime often considered in the RM literature. Let ¢ denote the baseline capacity, and let A denote
the baseline customer arrival rate. Consider a sequence of RM problems indexed by 0 =1,2,...,
with capacity fc and arrival rate 8\, respectively. Other model parameters remain constant when 6
grows. We refer to an RM problem scaled by @ as the 0-scaled problem. Let 28 5 denote the optimal
expected revenue for the #-scaled problem. Note that for the 6-scaled problem, the optimal objective

CDLP

value of the corresponding CDLP is 6z , where z¢PMF denotes the optimal objective value of

the baseline CDLP (2). Then z% 5, < 82°PF (Gallego et al. 2015, Liu and Van Ryzin 2008). Let
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7% denote the objective value, that is the (random) revenue, for the -scaled problem under the
partitioned booking limit policy. Then the following result establishes that the partitioned booking

limit policy is asymptotically optimal under fluid scaling.

THEOREM 3. The expected revenue E[Z°)] of the partitioned booking limit policy defined by (4) satis-
fies

lim E[Z°] _ ,CpLP
60— o0 9 ’
Theorem 3 implies that
. E[Z°] . E[Z29
Glggo Z(e)PT o GhjEO f»CDLP

Therefore, when customer demand and seat capacities are large, the partitioned booking limit policy
is near optimal.

The proof of Theorem 3 can be found in Online Appendix E.4. The asymptotic optimality result
for booking limit policies under a choice model is the first of its kind. It required a proof tech-
nique that is different from the standard technique for time-based policies (described at the end of
Section 7.1). Theorem 3 required a different technique because time-based policies result in a deter-
ministic sequence of assortments, and therefore a deterministic sequence of choice probabilities. In
contrast, under booking limit policies, random customer choices cause products to close for booking
in random order, thereby resulting in a random sequence of assortments, and therefore a random
sequence of choice probabilities. This difference introduced complications. These complications do
not exist for the independent demand model, for example, in the analysis of a static booking limit
policy under the independent demand model in Cooper (2002). Therefore, a new approach was used
to prove Theorem 3.

Our proof is based on the following approach. First, based on an optimal CDLP solution (a*(A), A €
{S1,...,Sk}), the time horizon is partitioned into intervals given by time points tg < t; < -+ < ty.
Then, an amount of “padding” is added around each time t;, given by t; =t;, —v; c and t] =t;, +v; ¢
for some small € > 0 and appropriately chosen values of v;” and v;", i =1,...,k (see Figure 3). We
show that with high probability, the assortments offered by the booking limit policy outside the

intervals (¢;,¢;) are the same as the assortments offered by the CDLP solution. The booking process

17

within intervals (¢;,¢]) can be complex, but we derive upper and lower bounds on the deviation of
the booking process from the CDLP prediction. We show by induction that the booking quantities
at the end of the time horizon is O(eg) away from the static booking limits given by (4), and since we

can choose € to be arbitrarily small as 8 — oo, this establishes the asymptotic optimality result.
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8. Numerical Experiments

In this section, we examine the spiked-MNL model in terms of how well it predicts customer choices
on out-of-sample data and in terms of revenue performance. First we conduct an experiment with
synthetic data in which we calibrate three choice models and then solve assortment optimization
problems under the calibrated models. The results show that the spiked-MNL model outperforms the
other two choice models. We also consider a dynamic learning setting in which a vendor iteratively
collects sales data, calibrates choice models, optimizes controls, and implements the controls. We
demonstrate that the revenue gap between the MNL model and the spiked-MNL model may increase
as learning proceeds.

We then examine the prediction performance of the spiked-MNL model using real airline data. We
compare the out-of-sample prediction performance of three models: the MNL model, the spiked-MNL
model, and a recently proposed random forest (RF) model. We also compare the revenue performance
of different RM policies and examine their robustness with respect to parameter perturbations. (The

data and source code for this section can be found at https://github.com/cyf-sjtu/spikedMNL.)

8.1. Experiments with Synthetic Data

In this section, we use synthetic data to compare the performance of three choice models: the MNL
model, the spiked-MNL model, and the general attraction model (GAM) proposed in Gallego et al.
(2015). For the MNL model, we estimate an alternative-specific constant for each product, i.e., its
attractiveness. For the spiked-MNL model, we estimate two parameters for each product: the regular
attractiveness and the special attractiveness when the product is the cheapest available product in
the assortment. For the GAM model, we also estimate two parameters: the regular attractiveness
and the shadow attractiveness when the product is absent from the assortment. Given that there
are n possible products, the numbers of parameters of the MNL, spiked-MNL, and GAM models
are n, 2n — 1, and 2n respectively. We test the prediction and revenue performance of the above
three models. Finally, we consider a simple one-resource two-product example to demonstrate the

evolution of revenue when the model parameters are updated iteratively.
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8.1.1. Experiment Setup. We randomly generate the choice data using a complex ground
choice model that is very different from either the MNL, the spiked-MNL, or the GAM model, but
that demonstrates a spike phenomenon. In the ground choice model, there are p customer types.
Each customer type ¢ € {1,...,p} is characterized by a consideration set of products J, C J. All
types of customers have equal arrival rates. An arriving customer chooses the cheapest product in
her consideration set. If no product in her consideration set is available, then the customer chooses
the null alternative.

To generate the consideration sets, we consider the case in which the products have an inherent
ordering, such that each product j € {1,...,n — 1} has a higher quality and a higher price than
product j+ 1. Each type of customers has a maximum price she can afford and a minimum quality
she accepts, that is, each type ¢ of customers has a range {i, ..., j,} of products as consideration set
Je, so that a customer of type £ does not consider products with price higher than that of product
i, and does not consider products with quality lower than that of product j,. In this case, each type

of customers chooses the cheapest available product that is within this range.

In each experiment, we randomly generated p consideration sets J, = {is,...,Je}, £=1,...,p, as
follows: For each ¢, first i, is generated according to the discrete uniform distribution on {1,...,n},
and then j, is generated according to the discrete uniform distribution on {i,,...,n}. If {is, ..., 5} =
{igry...,jur} for some ¢ < ¢, then a new realization of {i,,...,j,} is generated, until there is no

duplication. Thereafter we generated the i.i.d. choice data according to the ground choice model.
Specifically, for each t =1, ..., 7, we generated assortment A(t) ={1,...,m(t)}, where 7 denotes the
number of customers in the data set, and each m(t) is generated according to the discrete uniform
distribution on {1,...,n}. The type ¢(t) of customer ¢ is generated according to the discrete uniform
distribution on {1,...,p}. Then the alternative j(t) = max{j € A(t) N Ty} chosen by customer ¢ is
determined by the ground choice model described above. If A(t) N Jy) = @, then j(¢) =0. Thus the
choice data consists of the pairs {(A(t),j(¢)):t=1,...,7}.

Figure 4 shows the choice probabilities Pj.4/(1 — Py.4), conditional on a product being chosen,
under a realization of the ground choice model with n = 15 products, for different assortments A and
different products j. Specifically, the top two figures show the choice probabilities for one random
realization of the ground choice model with p = 30 customer types, and the bottom two figures
show the choice probabilities for one random realization of the ground choice model with p = 40
customer types. In the left two figures the assortment A ={1,...,8}, and in the right two figures the
assortment A=1{1,...,7}. Note that the ground choice model exhibits a cheapest fare spike effect.

8.1.2. Prediction Performance. We conducted 20 independent tests of the prediction perfor-

mance of the MNL, the spiked-MNL, and the GAM models. In each of these tests we fixed n = 15,
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Figure 4  Choice probabilities Pj.4/(1 — Po.a), conditional on a product being chosen, for different assortments A

and products j, for one realization of the ground choice model.
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and we randomly generated a ground choice model for each p € {30,40}. For each of these ground
choice models we generated the choices of 7 customers, for each 7 € {1500, 3000,4500,6000,7500}.
Each of these data sets was used as training data, and for each data set we used maximum likelihood
estimation to fit the MNL, the GAM, and the spiked-MNL models. For each data set we generated
the choices of another 3000 customers as testing data. Then we used the testing data to compare the
fitted choice models in terms of their out-of-sample log-likelihood values.

Table 1 Out-of-sample log-likelihoods of the fitted choice models
(n=15, p=30)

MNL GAM  Spiked-MNL Impr. over Impr. over
" | LogLik.  LogLik. LogLik. MNL GAM
1500 '?3(?‘3')6 '?725 %')7 ??55 1;8 10.29% 10.00%
3000 '?7209.2')5 '?725 12)9 '%78;;5 10.47% 10.14%
4500 '?33%‘)6 '?35%‘)7 '??j%ﬁ 10.35% 10.00%
6000 ?72??2)4 ?7237 B'; '??3256 10.65% 10.32%
7500 '?6232';) _?6258.26.)0 '%gj%‘r’ 10.71% 10.40%

The results are summarized in Table 1 and Table 2. The first column gives the size 7 of the training

data. The second to the fourth columns report the average out-of-sample log-likelihood values of
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Table 2 Out-of-sample log-likelihoods of the fitted choice models
(n=15, p=40)

- MNL GAM  Spiked-MNL Impr. over Impr. over
LogLik. LogLik. LogLik. MNL GAM
1500 '?f;é';’ '?fgﬁ')‘l "gigf 8.97% 8.77%
3000 ?541111;1 ?gf;;’ _%5051,250 9.10% 8.82%
4500 '?5411;‘)1 _?:10.3(;)4 "gg;‘;’;?’ 9.18% 8.89%
ong | THUTL G AOOTS gy
7500 -21213())%.)0 '?5’29";;3 '?28}57 9.26% 8.96%

the MNL, the GAM, and the spiked-MNL models, respectively, over the 20 tests; the numbers in
parentheses are the corresponding standard errors of the 20 out-of-sample log-likelihood values. The
fifth and sixth columns are the percentage improvement of the average out-of-sample log-likelihood
values of the spiked-MNL model over the MNL and the GAM models respectively. The spiked-MNL
model outperformed both the MNL and the GAM models significantly in terms of prediction power.
Taking into account the fact that the GAM model has double the number of parameters of the
MNL model, and one more parameter than the spiked-MNL model, we conclude that the superior
prediction power of the spiked-MNL model is due to the structure of the spiked-MNL model and not

just its number of parameters being greater than that of the MNL model.

8.1.3. Assortment Revenue Performance. We compared the MNL, GAM, and spiked-MNL
models in terms of the revenue performance of their chosen assortments. For each test g=1,...,20,
one ground choice model P? was generated. For each test ¢, each assortment A C 7, and each product
Jj€J, let P{(A) denote the choice probability under the ground choice model of test ¢ of product j
given that assortment A is offered. Also, let ¢} _(A) denote the choice probability under the fitted
model z € {MNL, GAM, spiked-MNL} of test g of product j given that assortment A is offered.
For each test we also generate 20 samples of the product revenues. Specifically, for each test ¢, and
for each revenue sample k =1,...,20, we generate n = 15 i.i.d. uniform (0,100) random variables,
and then we sort them to give the product revenues 7% > ... > rak. For each test ¢, fitted model

z € {MNL, GAM, spiked-MNL}, and revenue sample k, let Agk denote an optimal solution of the

q

assortment optimization problem maxacyz > ;ca r?k % .(A). Then the expected revenue of assortment

A% under the ground choice model is given by R% := > e Ak ri P]q(flg’“). Similarly, the optimal

expected revenue under the ground choice model is given by Rg’;t = MAXACT D jea r;?k PI(A). Rg}’;t

J
can be computed using the method described in Aouad et al. (2015). We compute the ratios RI*/ Rg’;t,

and average these ratios over the revenue samples k=1,...,20 and tests ¢=1,...,20.
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The results are summarized in Table 3 and Table 4. The layout of these tables is the same as that
of Table 1. The three choice models performed similarly in these tests, capturing between 90% and
93% of the optimal expected revenues. The spiked-MNL model performed slightly better than the
other two models especially when the types of customers are not very diverse and when more training

data are available.

Table 3 Revenue performance of the fitted choice models (n =15, p = 30)

MNL GAM Spiked-MNL Impr. over Impr. over
" | Rev. Ratio Rev. Ratio Rev. Ratio MNL GAM
1500 (:8(1):1;7%) ('.%ég% (:ggié) 04 0TI
3000 @3352) ('.?)(l)gg) (:g(l)gg) 064%  -0.01%
4500 (:gggi) (:gézlag) ('.3353?) LT 120%
6000 (:gé;;) (:gégg) ('.%ggg) L40%  1.16%
7500 (igggi) @35?3 ('.?33311) R

Table 4 Revenue performance of the fitted choice models (n =15, p =40)

MNL GAM Spiked-MNL Impr. over Impr. over
T Rev. Ratio Rev. Ratio Rev. Ratio MNL GAM
| BT o o
3000 (:(9)(1];51)) (',?)3;?) (jﬁéiﬁ’) 005%  -0.28%
500 (oan) (0030) (oo0)  O13% 080%
G000 | os  ooomy  oosy  OS0%  037%
7500 (6?0109332) (6?0203321 ) (09020523) 0.70% 0.28%

In summary, the spiked-MNL model outperforms the MNL and the GAM models in a synthetic

setting in which customers prefer the cheapest product in their consideration sets.

8.1.4. Evolution of Average Revenue. We present a simple one-resource two-product exam-
ple to demonstrate the evolution of revenue when choice models are calibrated with observed choice
data, and revenue management decisions are based on the calibrated models. A seller sells two types

of products H and L, each of which uses one unit of a resource. Products H and L have revenues
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rg =3 and rp = 2 respectively. During each selling season customers arrive according to a homoge-
neous Poisson process with rate \XT'= 1000. Customers make their choices according to probabilities
Py.qay =1/4, Pryuy =1/2, and Py.gy =2/3. Here we consider only nested-by-revenue assort-
ments as they are the efficient assortments under the MNL and the spiked-MNL models. The seller
controls the fractions of time that assortments {H, L} and {H} are offered. More specifically, assort-
ment {H, L} is offered for a fraction oy, of the selling season, and then assortment {H } is offered for
the remaining time until the seller runs out of stock or the selling season ends. Initially, the fraction
of time that {H, L} is offered is set at ayy =0.5. After each selling season the seller calibrates the
choice model being used (either MNL or spiked-MNL) using maximum likelihood estimation with
the data generated so far, and then the seller solves the CDLP under the choice model being used to
get the control aj;;. The control for the next selling season is given by a7 = (1 — k)a%? + kaj;,
where parameter k= 0.05 is a smoothing parameter; and a%% denotes the control used in the most
recent selling season. The process is simulated for 100 successive selling seasons, and the revenue
collected in each selling season is recorded. This gives a trajectory of evolving revenue for one sample
path. We simulated 200 i.i.d. sample paths, and calculated the average revenue trajectory.

Figure 5 shows the average revenue trajectories under the MNL and the spiked-MNL models, for
two values of capacity. The figure on the left shows a case in which the average revenue under the
MNL model decreases over time while the average revenue under the spiked-MNL model increases.
The figure on the right shows a case in which the average revenue under the MNL model slightly
increases over time. In both cases a non-negligible gap opens up between the average revenue under
the MNL model and that under the spiked-MNL model. In Online Appendix A.4, we provide an
analysis of such a dynamical system and the difference between the revenue performance of the MNL

model and the spiked-MNL model.

Figure 5 Trajectories of average revenue, with the average revenue under the MNL model deteriorating.
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8.2. Experiments with Airline Data

In this section, we evaluate the performance of the spiked-MNL model with airline data.

8.2.1. Data and Models. We considered a busy origin-destination market with more than
30 flights per day. The data set includes booking data of all airlines that operate in this market.
There are 5 booking channels. For demand modeling purposes, the selling horizon is divided into 200
booking time intervals. Each channel-interval combination is associated with a different customer
segment. That is, the calibrated models allow the choice parameters to be different for different
combinations of booking channel and booking time interval. More details about the airline data and
how we processed it can be found in Online Appendix F.

We model and estimate customer demand as follows. Let A/ denote the index set of the booking
requests in the data set for the specific origin-destination market for a specific departure date. For
each request i € NV, let ¢; denote the booking channel used, let ¢; denote the index of the booking time
interval, and let A; denote the assortment offered to customer i. Let x*/ denote an attribute vector
containing information about request ¢ and product j. For example, to allow different price sensitivity
estimates for customers who use different channels and who arrive during different time periods, there
are attributes of the form price; x 1{c; = ¢, {; =} for each booking channel ¢ and each booking time
interval ¢. Other attributes include departure time period, change fees, and frequent flyer mileage
gain. We compared the prediction performance of the MNL model, the spiked-MNL model, as well as
several variants of the random forest (RF) choice model, which is proposed in Lhéritier et al. (2019)
specifically for the airline context. For the spiked-MNL model and some versions of the RF model,
x%J also contains a binary variable indicating whether product j is the cheapest available product
for its itinerary.

For the MNL model and the spiked-MNL model, let v(x*?) denote the attractiveness of product j
for customer i given attribute vector x*/. Quantity v°(¢;,t;) denotes the attractiveness of the null
alternative. Then request ¢ chooses alternative j € A; with probability

P B v(xH7)
S 00(ci, b)) + D jren, v(XH")

(6)

The parameters in (6) are estimated with the airline data using maximum likelihood estimation.
The RF model proposed in Lhéritier et al. (2019) predicts for each alternative, given its attribute
values, whether it will be chosen or not. We implemented the original RF model proposed in Lhéritier
et al. (2019) as well as two variants that include additional information about the assortment. The
details of the RF models are given below:
e RF-1: This is the original RF model proposed in Lhéritier et al. (2019). It takes the raw booking

data as an attribute.
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e RF-2: This is a variant of RF-1, which takes as input the raw booking data as well as an indicator
whether a product is the cheapest available product for its itinerary.

e RF-3: It is the same as RF-2, but further includes the number of products in the assortment as
input.

The RF models were calibrated using R Studio with R 3.5.1 and the wsrf package.

8.2.2. Prediction Performance. We calibrated and tested all the models on a rolling month
basis. That is, we calibrated the models using the data of one month and then tested their prediction
performance for the next month. Table 5 reports the (scaled) out-of-sample log-likelihoods of these
models over 10 months. The spiked-MNL model achieved on average the best out-of-sample prediction

and it often gave the best or second best performance.

Table 5 Out-of-sample log-likelihoods of different models calibrated on a rolling month basis.
| 1 2 3 4 5 6 7 8 9 10 Avg.
Spiked-MNL | -1.470 -1.476 -1.477 -1.494 -1.477 -1.476 -1.478 -1.417 -1.459 -1.475 |-1.470
MNL -1.533 -1.553 -1.546 -1.551 -1.540 -1.528 -1.539 -1.484 -1.533 -1.527 | -1.533
RF-1 -1.522  -1.522 -1.513 -1.521 -1.526 -1.511 -1.520 -1.564 -1.516 -1.516 | -1.523
RF-2 -1.487 -1.475 -1.478 -1.468 -1.485 -1.478 -1.480 -1.525 -1.474 -1.489 | -1.484
RF-3 -1.488 -1.474 -1.486 -1.466 -1.472 -1.507 -1.482 -1.511 -1.518 -1.492 | -1.490
Figure 6 Actual fractions of bookings and predicted fractions of bookings given by the RF models.
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We also checked whether these RF models captured the spike effect we observed in the booking

data. Figure 6 reports the actual fractions of bookings and the predictions by the RF models for four
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consecutive months, given that the assortment offered fare classes 1,...,8 for a particular itinerary
(top row), and given that the assortment offered fare classes 1,...,7 for the same itinerary (bottom

row). The original RF model (RF-1) in Lhéritier et al. (2019) does not capture the spike effect
well. With the inclusion of additional information about the assortment, as in RF-2 and RF-3, the
RF models capture the spike effect better, but still the performance of the RF models is not as
good as the spiked-MNL model in terms of capturing the spike effect and fitting the data. See
Figure 2 for comparison. Also, Table 6 and Table 7 report the Wasserstein distance and Kullback-
Leibler divergence between the actual fractions of bookings and the predicted fractions of bookings
given by different choice models for different months. In most cases, the spiked-MNL model gives
predicted fractions that are the closest to the empirical distribution, despite having a much smaller
number of parameters than the random forest models. In addition, the RF models take much more
computational effort to calibrate than the other two models. The MNL and spiked-MNL models were
calibrated within a few minutes with the given data set, but the RF models took several hours to

calibrate.

Table 6 Wasserstein distance between the actual fractions of bookings and the predicted fractions of
bookings given by different choice models for different months.

|1 2 3 4 |1 2 3 4
Spiked-MNL | 0.018 0.031 0.024 0.033 Spiked-MNL | 0.017 0.025 0.028 0.020
MNL 0.039 0.053 0.025 0.041 MNL 0.058 0.026 0.062 0.086
RF-1 0.073 0.089 0.054 0.053 RF-1 0.029 0.054 0.072 0.050
RF-2 0.069 0.081 0.047 0.044 RF-2 0.020 0.081 0.064 0.047
RF-3 0.064 0.051 0.064 0.039 RF-3 0.036 0.034 0.033 0.031
(a) when fare classes 1-8 are open (b) when fare classes 1-7 are open

Table 7 Kullback-Leibler divergence between the actual fractions of bookings and the predicted
fractions of bookings given by different choice models for different months.

1 2 3 4 1 2 3 4
Spiked-MNL | 0.098 0.142 0.075 0.127 Spiked-MNL | 0.129 0.107 0.137 0.068
MNL 0.299 0.448 0.816 0.291 MNL 0.702 0.772 0.639 0.743
RF-1 0.428 0.614 0.838 0.272 RF-1 0.279 0.468 0.464 0.410
RF-2 0.322 0.443 0481 0.139 RF-2 0.038 0.184 0.310 0.397
RF-3 0.265 0.192 0.271 0.114 RF-3 0.067 0.085 0.147 0.098

(a) when fare classes 1-8 are open (b) when fare classes 1-7 are open
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8.2.3. Comparison of Different Revenue Management Policies. We compare the perfor-
mance of various RM policies using the airline data. We calibrated demand models with the booking
data for the origin-destination market mentioned above, for itineraries with Monday departures in
year 1. Then we used the calibrated demand models to derive various RM policies. Next we cali-
brated demand models with the booking data for itineraries with Monday departures in year 2, and
we used these demand models in a simulation to evaluate the performance of these RM policies.
We used the following performance metric. For a given RM policy v, let E[Z¥] denote the expected

revenue achieved using policy . Since the CDLP optimal value z¢PL¥

is an upper bound for the
optimal expected revenue of optimization problem (1), we use the revenue ratio p¥ = E[Z¥]/2“PLP
as a metric for evaluating the performance of policy .

We evaluate the following RM policies.

e EMSR-b: The nested booking limit heuristic proposed by Belobaba (1989), which is a popular

heuristic used in airline reservation systems.

e SBLP: The nested booking limit heuristic proposed in Section 7, where the booking limits are

obtained from the optimal solution of the SBLP.

e CDLP: This policy offers specified assortments for fractions of time specified by an optimal

solution of the CDLP.

Note that EMSR-b and SBLP are both nested booking limit policies. There are two variants
of nested booking limit policies, i.e., standard nesting and theft nesting. A detailed discussion on
standard versus theft nesting can be found in Talluri and Van Ryzin (2004b) and Haerian et al.
(2006). We implemented both variants for both EMSR-b and SBLP, and we use “-s” and “-t” to
distinguish them.

Revenue performance of different policies. Figure 7 shows the revenue ratios p¥ of the policies,
with their 95% confidence intervals, obtained with 100 simulation runs. The CDLP policy has the
best average performance among the policies tested. The SBLP policies perform slightly worse, but
they outperform the EMSR-b policies widely used in the airline industry, capturing an additional
2-4% revenue.

Robustness of different policies. Next, we perturb the model parameter values to evaluate the
robustness of different policies. We follow the approach proposed in Liu and Van Ryzin (2008) and
evaluate the policies under different load factors. Specifically, we scale the capacity by a factor k; €
{0.8,1.0,1.2} and the no-purchase attractiveness by a factor k, € {0.8,1.0,1.2}. Table 8 reports the
revenue ratios p¥ under these perturbations, averaged over 100 simulation runs. In most cases the
SBLP policies perform better than the EMSR-b policies, and the performance of the SBLP policies
is less variable than the performance of the CDLP policy.



Cao, Kleywegt, and Wang: Network Revenue Management under Spiked-MNL
Article submitted to Operations Research; manuscript no. 27

Figure 7 95% confidence intervals of p¥ over a real-

world dataset under different policies. Table 8 Revenue ratios p* under different capacity

and null attractiveness scaling.
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9. Conclusion

The spiked-MNL model is primarily motivated by the empirical observation that a very large fraction
of customers who book an airline ticket for a particular itinerary, choose the cheapest available fare
class for that itinerary, and that this behavior is not captured well by familiar choice models such
as the MNL model. The spiked-MNL model was proposed as a choice model that captures this
cheapest spike phenomenon and that has many of the desirable properties of the MNL model, such
as tractability of estimation and assortment optimization.

In this paper we considered a network revenue management problem under the spiked-MNL choice
model. We showed that efficient assortments under the spiked-MNL model are nested-by-revenue
assortments. This property was used to obtain a more concise sales-based linear programming (SBLP)
formulation under the spiked-MNL model. We proposed a booking limit policy that is based on an
optimal solution of the SBLP. We showed that this booking limit policy is asymptotically optimal
under fluid scaling. Unlike familiar time-based policies obtained from the CDLP, the booking limit
policy obtained from the SBLP results in a random sequence of assortments, which required us to

develop a new technique to prove asymptotic optimality.
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Online Appendix

Appendix A: Properties of the Spiked-MNL Model

There are several differences between the fundamental properties of the MNL model and the spiked-

MNL model. Here we explore some of these properties of the spiked-MNL model.

A.1. Regularity.
The regularity property means that the probability of choosing any alternative, including the null
alternative, from an assortment does not increase if the assortment is enlarged (Manski et al. 1981).

More formally, the definition of a regular choice model is as follows.

DEFINITION EC.1. A choice model P is regular if for any two assortments S; and .S, satisfying
S1 C Sy C J and any alternative j € S; U{0}, it holds that P;.g, > Pj.g,.

Regularity is a property commonly held by choice models used in the assortment optimization
literature (see, e.g., Golrezaei et al. 2014, Berbeglia and Joret 2020). It is easily verified that the
MNL choice model is regular. However, the spiked-MNL choice model is not necessarily regular, as

shown by the following example:

ExamMpPLE EC.1. A seller sells three products H, M, and L with revenues ry > ry; > rr. The
attractiveness parameters of these products are vy = vy =wy =1 and wy; =8 (we don’t need to
specify vp or wy in this example), and the null attractiveness is vo = 1. Then Py.im ay = vu/(ve +
war + vo) = 1/10 and Py.qmmry = vu/(ve + v + wr + vo) = 1/4, which violates the regularity
property.

The following necessary and sufficient condition can be used to check whether a spiked-MNL model

is regular, or to enforce regularity when estimating a spiked-MNL model.

ProrosiTION EC.1. The spiked-MNL model is reqular if and only if for any two products j and j’

for the same itinerary, with j' more expensive than j, i.e., for any j' € J(j), it holds that
w] + UJ‘/ 2 wjl .
REMARK EC.1. The complexity of checking the regularity of a spiked-MNL model is O(3 g 7(9)?).

A.2. Submodularity.
Given a choice model P, let the demand function d: 27 + R of the choice model be given by d(S) :=

> jes Pj.s for any assortment S C J. Another property of many choice models is the submodularity
of their demand functions, which means that the marginal increment in total choice probability
decreases as the assortment enlarges (Berbeglia and Joret 2020). More formally, the definition of a

submodular demand function is as follows.
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DEFINITION EC.2. The demand function d of a choice model is submodular if
d(SoU{k}) —d(S2) < d(S1U{k})—d(S1), VS CS:CJ, keT\Ss. (EC.1)

The demand function of the MNL choice model is submodular, but the demand function of the

spiked-MNL choice model is not necessarily submodular, as shown by the following example:

ExampLE EC.2. A seller sells three products H, M, and L with revenues rg > ), > rr. Let the
attractiveness parameters of the products be vy =1, wy =3, and vy = wy = wr, =2 (we don’t need
to specify vr); and let the null attractiveness be vy = 1. Consider set S; = {H}, set Sy ={H, L},
and product k= M. Then d(Sy U {k}) —d(Ss) =d({H,M,L})—d({H,L})=5/6—-3/4=1/12, and
d(S;U{k}) —d(S1)=d({H,M})—d({H}) =3/4—3/4=0. Therefore, the demand function is not

submodular.

Berbeglia and Joret (2020) showed that any random utility model with context-independent utili-
ties is equivalent to a stochastic preference model and has a submodular demand function. The fact
that a spiked-MNL model may not have a submodular demand function implies that it is not always
representable by a random utility model with context-independent utilities or a stochastic preference

model.

A.3. Representation by Context-Dependent Utility Models

The results in Section A.2 imply that the spiked-MNL model cannot always be represented by a
random utility model with context-independent utilities. In this section we consider a more general
family of random utility models known as contezt-dependent utility models. This family of utility
models was introduced to describe empirical observations of “context effects,” that is, the phenomenon
that the relative attractiveness of alternatives depends on the presence of other alternatives (Tversky
and Simonson 1993, Pompilio and Kacelnik 2010, Rooderkerk et al. 2011, Wang 2018). Specifically,
in a context-dependent utility model the utility of an alternative j given choice set S is represented

by (see e.g. Rooderkerk et al. 2011, Equation (1))
Ups = Vi+Vis+es,

where V; and Vj.g are the context-independent and the context-dependent parts of the deterministic
component of the utility, respectively, and €;.4 is the random error term. In particular, V}.g can
depend on the attributes of the other alternatives in S.

Next we show that the spiked-MNL model can be represented by a context-dependent utility
model. Consider any spiked-MNL model with parameters vy > 0, and v;,w; >0 for j € J, and with
i.i.d. Gumbel distributed error terms ¢; for j € J. Let V; :=log(vp), V; :=log(v;), V}.s := [log(w;) —
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log(v;)]1(4,9), and €;.5 :=¢; for j € J. Then, the probability that a customer chooses alternative j

from a choice set S is given by

P = v;(1=1(5,59)) + w;1(5,5)
. Yjes [y (1 =1(j",5)) +wyrL (5", 5)] +vo
_ v; + (w; vg)ll( 5)
> jres [vg + (wyr = vy )L (5,.9)] + vo

eXp(Vj + Vj:s)
Y jresexp(Vy + Vins) + exp(Vo)

that is, the choice probability P;.g is the same as the choice probability given by a random utility
model with context-dependent utilities U;.g =V, 4+ V.5 +¢€;.5, where €;. =¢;, j € J, are i.i.d. Gumbel

distributed error terms.

A.4. Revenue Gap between the MNL and the Spiked-MNL Choice Models

Next we show that using an MNL model instead of a spiked-MNL model in the presence of the
cheapest-fare spike effect can lead to arbitrarily bad relative revenue performance. More specifically,
we consider a sequence of selling seasons, indexed by k =1,2,3,.... At the end of each selling season k,
the available data are used to calibrate a choice model, and then an assortment that is optimal
for the calibrated model is offered during the next selling season. Let Ryni denote the long-run
expected revenue per selling season when calibrating an MNL demand model with data and choosing
an optimal assortment for the calibrated model, and let Rgynt, denote the long-run expected revenue
per selling season when calibrating a spiked-MNL demand model with data and choosing an optimal
assortment for the calibrated model. We provide an example such that for any € € (0,1), the long-run
loss ratio is

R —R
Loss = —OMNL_ IMNL 1—=e.

Rsnint, -

Setting. A seller can offer two products H and L with no capacity limits. The products H and L
sell at prices ry and r > 0 respectively, with 0 <r;/ry <e. In each season k, the seller offers one
assortment A®) C {H, L}. As shown in Section 5, every efficient assortment under the spiked-MNL
model (and the MNL model) is nested-by-revenue, and therefore it suffices to consider either { H} or
{H, L} for A®). Customers make choices according to a spiked-MNL model with parameters v, = 1,

vg =0, and
L

O<wH:wL<77:: .
TH —TL

Note that vy = 0 corresponds to the so-called 100% buydown effect, where customers buy only
product L when both H and L are offered. It follows that rywpy /(v +wpy) > (rgvg +rpwy)/(vo +
vy +wr,), and thus it is optimal to offer assortment { H}. As process primitives, consider the following

4 independent, i.i.d. sequences of random variables: Nl(k) with mean Awg/(vg + wg), representing
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the number of customers who would choose H in season k if assortment {H} is offered; N, *) with
mean Avg/(vo + wp), representing the number of customers who would choose 0 in season k if
assortment {H} is offered; N$* with mean Awp,/(vo+ vy +wy ), representing the number of customers
who would choose L in season k if assortment {H, L} is offered; N{¥ with mean v/ (vo + vy +wy),
representing the number of customers who would choose 0 in season k if assortment { H, L} is offered.

Dynamics. After each season, the revenue manager calibrates an MNL model using maximum

likelihood estimation (MLE) with all historical sales data (including no-purchase customers), and
decides which assortment to offer in the next season based on the estimated MNL model. The MNL
model is specified with attractiveness parameters Uy, ¥, and vy = 1. For each season k, let n%ﬂ) denote
the sales of product H and let ny (*) denote the number of customers who choose not to purchase. One
can show the following:

e Regardless of the assortments offered, the MLE estimated attractiveness parameter of product H
is given by o\ =S, _ nH IS n(k) (To deal with the possibility that the denominator
may be zero for the first few seasons, assume that the denominator is set to 1 if S5, n(k ) =0. )

e According to the estimated MNL model, it is optimal to offer assortment {H} if o\ > n;
otherwise, it is optimal to offer assortment {H, L}.

Next, we show that when using the MNL model, the offered assortment converges to { H, L} w.p.1.

The long-run revenue loss ratio under this assortment is greater than 1 —e. We consider two cases.

Case 1: The revenue manager offers assortment A = {H, L} in the first season. Then, due to

100% buydown, it follows that nj, D =0. Thus, the estimated parameter 175{1) = n(l) /nél) =0<n It
follows by induction that the revenue manager will offer assortment {H, L} and a7 =0 for all k.
Case 2: The revenue manager offers assortment A = {H} in the first season. Note that, if in
any season k it holds that '}’ <7, then the revenue manager will offer assortment A®+1) = {H, L}
in season k + 1. Subsequently, it follows that n (k1) — 0 and thus v(kH) 27;11 ng)/ Zﬁ,ﬂl () —
(ki +0) / (Shond” + N < Shoynf/Shonl) = 6 <, and it follows by
induction that A®) = {H, L} for all ¥’ > k. Thus, either there is a K such that A®) = {H, L} for
all k> K, or 0% >n and A® = {H} for all k. Next we show that the event that o\ > n and
A(k — {H} for all k has probability 0. Note that if A® = {H} for all k, then n'% = N{* and
= N{¥ for all k. By the Strong Law of Large Numbers, w.p.1, SRy Nl(k Ik — Awy [ (vo +wy)
and YF,_ 1N(kl)/k — g/ (vo + wp) as k — oo. Thus if A® ={H} for all k, then, except for a
subset B with probablhty 0, it holds that F_, n¥ /k = 1Nl(kl)/k: — Mg /(vg + wy) and
Sy nok k=% _ N /k: — Mg/ (vo +wpg ) as k — oo, and hence

k (k")
r—1 Ny w
27%’;) _ 2 k=1 1o W _ n.
ORE Yo
Therefore, the event that © H) >nand A® ={H} for all k is contained in the subset B and thus has

probability 0.
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Loss Ratio. In both cases above, the long-run loss ratio is

Loss — Bswse—Bwne _ R({H}) - R{HL}) | 1o > -

Rgnine R({H}) TH

Appendix B: Additional Examples of the Spike Effect

Figure EC.1 shows more examples of the spike effect and how the MNL and the spiked-MNL models
predict. The figures are similar to those in Figure 2 but are based on airline booking data for another

origin-destination market.

Figure EC.1  Actual fraction of bookings and predicted fraction of bookings under the MNL model and the
spiked-MNL model.

Month 1 Month 2 Month 3 Month 4
0.8 1 1 1
1) 0 0.8 0 0.8 0 0.8
0.6 = =] <)
£ i £ i
X K4 x K74
8 806 806 806
o o o m
5 0.4 ksl G ksl
5 504 504 S04
3 3 3 3
S 02 © © o
w - w w w
A 0.2 0.2 0.2
e i\ ° Ap Py " Ak Py "'&
7 6 5 4 3 2 1 7 6 5 4 3 2 1 4 3 2 1 4 3 2 1
Fare Class Fare Class Fare Class Fare Class
[——Actual 2 MNL - Spiked-MNL |
0.8 0.8 1 0.8
0 » »n 0.8 * »
E’ 0.6 g’ 0.6 gﬂ : g 0.6
S S S S
o o S 0.6 o
o fis] m el
5 0.4 5 0.4 5 5 0.4
S S 504 S
8 g 8 g
i 0.2 & 0.2 i 0.2 & 0.2
0 0 0 0
Fare Class Fare Class Fare Class Fare Class

[

Note. The fare classes shown on the horizontal axis are the available fare classes for the itinerary when the booking

Actual 4 MNL -+ Spiked-MNL |

data were recorded. “Actual” shows the actual fraction of bookings in each available fare class, “MNL” shows the
fraction of bookings in each available fare class predicted by a MNL choice model calibrated with booking data, and
“Spiked-MNL” shows the fraction of bookings in each available fare class predicted by a spiked-MNL model calibrated

with the same data.

Appendix C: Assortment Optimization

In this section we consider assortment optimization under the spiked-MNL model. Let N :=
{1,2,...,n} denote the seller’s set of products. The products are indexed such that r; >ry > -+ >1r,.
A seller selects an assortment S C N to offer to customers to maximize the seller’s expected rev-

enue per customer. Each customer chooses a product or the no-purchase alternative according to the
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spiked-MNL model. Recall that each product i € N is associated with two parameters, a standard
attractiveness v; and a spiked attractiveness w;. In this setting, if the seller offers anything then there
is exactly one cheapest available product in the assortment, and the attractiveness of the cheapest
available product is spiked.

The seller’s assortment optimization problem is formulated as follows:

2iesTi[0i(1 = 1(i,5)) +will (i, 5)] }
v+ Yies [ti(1 =10, 5)) +wil (i, )]

(ASSORTMENT)

R* := max {R(S)
SCN

Characterization and Efficient Computation of Optimal Assortments

Note that problem ASSORTMENT has 2™ decision variables. First consider the general case in which
it is not required that w; > v; for all i € N'. We show that ASSORTMENT can be solved by solving a
linear program with O(n?) variables and O(n?) constraints. Then we consider the structure of the
optimal assortment when w; > v; for all 7 € A/, and it follows that ASSORTMENT can be solved by

solving a linear program with O(n) variables and 2 constraints.

Using the decision variables 2o € R and z:= (2F € R, , i,k € N and i < k), consider the linear

program
k-1
R;p = max {RLp(zO,z) = Z (Z rivizf—i—rkwsz)} (ASSORTMENT LP)
(20, Z)€R+><Rn(n+1)/2 keN \i=1
k—1
s.t. vpzo + Z (Zvﬁf%—mm,’j) =1 (EC.2a)
keN \i=1
Z z < oz (EC.2b)
keN
A Vi keN,i<k
(EC.2¢)

We will show that an optimal solution of ASSORTMENT LP can be converted to an optimal solu-
tion of ASSORTMENT in O(n) steps. First we show that any feasible solution of ASSORTMENT
can be converted to a feasible solution of ASSORTMENT LP with the same objective value. Let
W(S) =Y ics [vi(l— (i,5)) + w;1(i,S)]. Given a feasible solution S C N of ASSORTMENT, let
2= m, and 2F =1(k,S)1{i € S}, for all i,k € N, i < k. Then ¥, (Zi:ll v; ¥ —l—wké’lj) =
Sien 1k, 5) (T vlll{zeS}—ka]l{k:eS}) S = Sies [l = 1(0.9) + wil(i.8)] 2 = W(5)0.
Thus voZo + > pen (Zf gk 4 wkz’,j) = (vo+ W (8))2 =1, and thus (Zy,2) satisfies (EC.2a). Also,
Shen 2 =0if S=@ and Y, 28 = 2 if S# @, and thus (39,2) satisfies (EC.2b). Also, 2F =

1(k, S)1{i € S}20 < 1(k,5)% = 2F, and thus (2, 2) satisfies (EC.2¢). In addition, the objective value
of (29,z) in ASSORTMENT LP is

k-1
Rrp(3 Z]l (k,S) <Zriviﬂ{ieg}+rkwkﬂ{k€§}> Zo

keN i=1
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- Zr [ (i S))+wi]l(i,§)] 2

_ dliesTi [Ui(l_]l(i>sz)+wi]l(i’s)} _ R(S*) (EC.3)
vo + W (S)

Thus, any feasible solution S of ASSORTMENT can be converted to a feasible solution (20,2) of
ASSORTMENT LP such that Ry p(2,2) = R(S), and hence R}, > R*.
To show that any basic feasible solution of ASSORTMENT LP can be converted to a feasible solution

of ASSORTMENT with the same objective value, we first establish the following lemma.

LemmA EC.1 (Extreme Point Solutions). Let (20,2z) be any basic feasible solution of ASSORT-
MENT LP. Then,

(1) 2F€{0,28} for all i,k e N with i <k;

(2) there is at most one k € N such that 2} > 0; and

(3) if 28 >0, then 27 = 2.

Proof. We show claim (1) by contradiction. Let Hy = {i € N : i < k, 2F = 2F} and M, =
{i e N i<k 0<2F<2F} Suppose that there exists some k' such that M, # @. Then
we construct two distinct feasible solutions (Z,z) and (Zp,z) such that (2,2) = 3(%,2) +
+(%0,2z). This contradicts the assumption that (29,2) is basic. Let V(A) := Y ,c v Let € :=
mln{(é,’j,l —max{2} :ie Mk/}) /(v + V (Hyp) + V(M) +wy), min{2¥ : i € My}/(vo + V (Hy) +wk/)} >
0. Let

20 = 20 — V(Mk/)f

2 —V(My)e if k=K and i€ Hy U{k'}
2= S e+ V(HY) +wyle ifk=k and i€ My
2k otherwise.

Then (Zp,2) satisfies (EC.2b) and (EC.2c). To see that it also satisfies (EC.2a), let g(2o,2) :==vozo +
> ken (Zf L2 +wkzk> Then g(20,2) — 9(%,2) = vV (Mw)e + Xicp,, viV (My)e +wp V(M )e —
Yien,, Vivo + V (Hy) + ww)e =0. So, (%, 2) also satisfies (EC.2a). Similarly, let

2o = 20 + V(Mk/)E

204V (My)e if k=F andie Hy U{k'}
ilk = éf—{ﬂo‘FV(Hk/)—f—wk/}E if k=FkK andz’e]\/[k/
2k otherwise.

Then (Z,z) satisfies (EC.2a)-(EC.2c). Moreover, (29,2) = (Z%0,2) + 3(Z,2), which contradicts the

assumption that (29,2) is basic. Thus My = @. Therefore, 2F € {0, 2F} for all i,k € N with i < k.
Next we show claim (2) by contradiction. Suppose that there are distinct ki,ky € N such

that 2];11 > 0 and 2’,;; > 0. It follows from (EC.2b) that Z, > 0. It follows from claim (1) that
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My, = M,, = @. Without loss of generality, assume that V(Hy, )+ wy, < V(Hg,) + wg,. Let € :=
min {20/[V(Hk2) +'LUk2 — V(Hkl) — wkl}, ?:’I,:i/[ (Hkg) + Wiy + Uo] Zk;Q/{V(Hkl) +'LUk1 +’U0]} > 0. Let

2 = 20+{V(Hk’1)+wk1_V(H/Q)_wkz]g
28 — [V(Hy,) + wiy, +vole if k=Fk, and i € Hy, U{k;}

2216 = 2’]§+[V(Hk1)+wk1 +U0]€ lfk:kg and ZGHk2U{kJ2}
2k otherwise

(3

and

Zo = Zo— [V(H/ﬁ) + W, — V(sz) - ka] €
zk S [V(Hi,) +w, +vole if k=Fky and i € Hy, U {ki}

gzk = Zk [V(Hkl)+Wk1 —|—'U()]€ lfk/’:kQ and iEHk2 U{kQ}
2k otherwise.

It follows that (Z,2) and (Zo,2) satisfy (EC.2a)-(EC.2c). Moreover, (29,2) = 1 (Z%0,2)+ 3 (Z0,2), which
contradicts the assumption that (2y,2) is basic. Therefore, there is at most one k € N such that
20> 0.

Next we show claim (3) by contradiction. Suppose that 0 < 25 < 2. It follows from claim (1)
that 25 = 25 for i € Hy, 2F =0 for i ¢ Hy U{K'}, and 2F =0 for all k € N\ {k'} and i < k. Let
€ :=min {(zo — 25 /[vo + V (Hy) + wy], zk,/vo} > 0. Let

20 = 2() — [V(Hk/) + wy]e

. {25+vog if k=k and i€ Hy U{k'}
2k
Z’L

otherwise

and

Zo = Zo+[V(Hyp)+wyle
o {fi—vos if K=k and i € Hy U {k'}

2 otherwise

It follows that (Z,2) and (Zo,2) satisfy (EC.2a)-(EC.2c). Moreover, (2y,2) = 1 (%0,2)+ 5 (Z0,2), which

contradicts the assumption that (2y,2) is basic. Therefore, if 2F > 0, then 2§ = 2. O

THEOREM EC.1 (LP Formulation). Consider any basic optimal solution (z4,z*) of ASSORT-

MENT LP. Then S*:={i €N : 2F >0 for some k € N'} is an optimal solution of ASSORTMENT.

Proof. Tt follows from Lemma EC.1 that either z* =0 or there is one &’ € A" such that 2} = 2z,
2F € 40,25} for all i <K/, and 2% =0 for all k# k" and i < k.
If z* =0, then S* = @, and thus R(S*) =0= R.p(z5,2*) = R} p. Since R;p, > R*, it follows that

S* is an optimal solution of ASSORTMENT.
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Otherwise, S* = Hy U{k'}, where H}/ is as defined in the proof of Lemma EC.1. It follows from
constraint (EC.2a) that 1 =voz5 + Xicp,, vz +wpzF = vzl + Yien,, ViZy + wwzg = vz +
Yicge [0i(1—=1(i, 5*)) +w;1(3,5%)] 25 = [vo + W (S5*)]z;, and thus z; = m = 2% for all i € S,
and 1(k’,S*)=1. Hence

R;p» = Rrp(zy,z") = Z rivz® +rpwp 2
1€H
B Zier, Tt TR W T g [0 (1= 1(4,9%)) 4w L(4,5%)] R(S%)
vy + W (S5¥) vo + W(S*)
As before, since R} , > R*, it follows that S* is an optimal solution of ASSORTMENT. O

Characterization of an Optimal Assortment

First we show that in general an optimal assortment is almost nested by revenue, but that an
optimal assortment is not nested by revenue in general. Then we show that in typical practical settings
with positive spikes, i.e., with w; > v; for all i € N/, optimal assortments are nested by revenue. The
latter observation enables us to derive a simplified LP formulation for the assortment optimization

problem.

THEOREM EC.2 (General Optimal Assortments). An optimal assortment S* satisfies S* = &
or S*={1} or S*={1,...,*}U{k*} for some i*,k* € N with i* < k*.

Proof. We show that S = {k} with k > 1 cannot be optimal, and S C N with iy, k € S and
iy € N'\ S such that i; <iy <k cannot be optimal.

Consider S = {k} with k> 1. Then R(S) = ryw;/(vo +w;). If 7, <0, then R(@) =0> R(S), and
thus S cannot be optimal. If r; >0, then consider S ={1,..., l;:} Then

R(S) _ Zf:_ll 7"}"01‘ + riw; S Z;C:—ll T{%Ui + riyw; . rWw; _ R(S’)
Uo‘i‘Zf:_ll v; + Wy, vo—&—zi:ll v; 4wy, T vyt wy

and thus S cannot be optimal.
Consider S C N with iy, k € S and 4, e N\ S such that i; < iy < k and ]l(l%,é) =1. Let 3, =
F—1{ie S} forall ie N, i <k, and 2F =0 for all k € N\ {k} and i < k. As shown

1 A
vo+W(S)’ Zi
before, Rpp(20,2) = R(S). If v;; <w,,, then let Z, = Efl = 2y, 2{»“2

i,k € N such that (i,k) # (i1, k) and (i, k) # (ip, k). Then (%,z) is feasible for ASSORTMENT LP,

=20 — V3, 20/ Viy, and ZF = 2F for all

and Ryp(20,2) — Rpp(20,2) = (13, — 14y )Vi, 20 > 0, and thus S cannot be optimal. If v;, > v;,, then let
Zo =20, 2 =vi, %0 /viy, 25 =0, and 2 = 2F for all i, k € N such that (i, k) # (i1, k) and (i, k) # (iz, k).
Then (Zy,z) is feasible for ASSORTMENT LP, and Ry p(Zy,2) — Rpp(20,2) = (1, — 7iy)0iy 20 > 0, and

thus S cannot be optimal. O
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Theorem EC.2 suggests that, instead of considering all possible subsets of the products, it suffices
to consider only O(n?) assortments characterized by a lowest-priced product k* and a nested-by-
revenue set {1,...,i*} with i* < k*. To see that it is possible to have a nontrivial gap between i* and

k*, i.e., k* —i* > 2, consider the following example.

ExamMpPLE EC.3. A seller sells three products with revenues r; =5, ro =3, and r3 = 2. The attrac-
tiveness parameters are vy =5, vo = 10, w; =2, wy =4, and w3 =1 (we don’t need to specify v3);
the null attractiveness is vg = 1. Note that the spike effects are negative in this example. It is not

difficult to verify that the optimal assortment for this instance of ASSORTMENT is S* = {1,3}.

Next we consider the setting with positive spike effects, that is, w; > v; for all i € N'. We show that
the optimal assortment is nested by revenue, which implies that we only need to examine n candidate

assortments in this setting.

THEOREM EC.3 (Nested-by-Revenue Optimal Assortments). Under Assumption 1, the opti-

mal solution S* of ASSORTMENT is nested-by-revenue; that is, if i € S* and r;, >r;,, then i; € S*.
Proof. Consider any optimal solution S* for ASSORTMENT. First we show by contradiction that

if 1 € S* then r; > R(S*). Suppose that B:={i€ S* : r; < R(S*)} # @. If S* = B, then

Y iege i vi(1—1(4,5%)) + w1 (3, 5%)] - Yiegs R(S™) [wi(1 = 1(4,5%)) + w1 (7, 5")]

RS = vo + W(5%) vo + W(5*)
= R(S*)UO%V;(S*) <0 = R(S) < 0 = R®)
which contradicts S* being optimal. Otherwise, S* \ B # @. Let i* :=max {i € S* \ B}. Then
R(S* ) [wo+W(ST)] = D rifv(1—1(i,5%)) +wl(i,5)]
ies*
= R(S*) g+ W(S)] + R(S*) (wix —vi=) < Y ri[o(1—=1(i,8%)) +wiL (i, S*)] + 7o (wie — v+
ies*

Yieg Ti (1= 1(3,5%)) +w, (2, S%)] + rix (Wi — v;+)

= R(S") < oo L WS+ — v
Yiesm\(Bugiry TiVi H w3 p R(S*) [0;(1 — 1(4,5%)) + w;1(2,5%)]
vo+ W (S*\ B)+ W(B) vo+W(S*\ B)+ W(B)
= RS vo+ W (S*\ B) D ies \(Bufir}) TiVi T Tix Wy
vo+W(S*\ B)+ W (B) vo+ W (S*\ B) + W(B)
BN S T v, AT AT g

which contradicts S* being optimal. Thus, B = &, and hence if i € S* then r; > R(S*).

Next we show by contradiction that if S* is optimal and i, € S* and r;, > r;,, then 4; € S*. Suppose
that S* is optimal and i, € S* and r;; > r;,, but i; ¢ S*. As shown above, r;, > R(S*), and thus
r;, > R(S*). Hence

R(S* ) [wo+W(S")] = D rifoi(1—1(i,8%)) +wl(i,5)]

i€S*
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= R(S")[vo+W(S")]|+R(S")v;, < Z ri[vi(1—1(i,8%)) +w;L(3,S™)] + i, v,

) EieS*u{il}ri[vi(l_]l(i7l§*))+wi]l(i7s*)] B .
= R(S") < WSO = R(S*U{iL})

which contradicts S* being optimal. Therefore, an optimal assortment S* is nested by revenue. [

REMARK EC.2. In the first part of the proof it was shown that an optimal assortment S* satisfies
the inequality S* C {i € N : r; > R(S*)}. One may conjecture that S* satisfies the equality S* ={i €
N :r; > R(S*)}. However, this is not the case under the spiked-MNL model. Consider the following
example with two products {H, L} such that ry =2, rp, =1.2 and vg =wy =1, vy =wy, =0.5. Then
the optimal assortment is S* ={H} with R(S*)=1<r, and L ¢ S*. This observation differs from a
related result under the classic MNL model (see Rusmevichientong and Topaloglu 2012, Theorem 3.2).

REMARK EC.3. Note that the proof of Theorem EC.3 does not require an assumption that r; >0
for all 4 € A/. Thus, the nested-by-revenue result also holds if a common amount (such as a resource
cost) is subtracted from all ;. The observation suggests that for a revenue management problem
that includes resource consumption, the efficient sets, that offer the most favorable trade-off between
revenue earned and resource consumption, are nested by revenue. This nested-by-revenue result is

generalized to revenue management problems in Section 5.

Compact Assortment LP with Positive Spike Effects

Theorem EC.3 shows that if products exhibit positive spike effects, i.e., w; > v; for all i € N,
then it suffices to consider nested-by-revenue assortments. Such assortments are specified by their
cheapest products. This property can be used to further simplify ASSORTMENT LP. Let xq=vg2
and 1, = wyzf for all k € N. Lemma EC.1 and Theorem EC.3 imply that an optimal solution
satisfies v;2F = v;2F = vz /wy for all i < k. That gives the following linear program for assortment
optimization:

k—1
Uy
max Z (m + ank> Tk (COMPACT ASSORTMENT LP)
=1

n
(a:(),x)G]RX]R+ e

k=1
keN =1 Wk
P A (EC.4b)
ken Wk Yo

Problem COMPACT ASSORTMENT LP has only n+ 1 decision variables and 2 constraints.

Appendix D: Example of Efficient Assortment that is Not Nested-by-Revenue

ExAaMPLE EC.4. A seller sells three products: H, M, and L, with revenues rz =5, ry = 3, and

r;, = 2, using the same resource. The attractiveness parameters are vy =5, vy = 10, wy = 2, wyr =4,
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and wy, =1 (we don’t need to specify vy ); the null attractiveness is vy = 10. Note that the spike effect
is negative in this example. Figure EC.2 shows the plot of (Q(S), R(S)) for different assortments S,
and the convex envelope of Pareto-optimal assortments. By Definition 1, the efficient assortments
are on the convex envelope. Note that assortment {H, L} is on the convex envelope and hence it is

an efficient assortment, but it is not nested-by-revenue.

Figure EC.2 Example with w; < v; in which efficient assortment {H,L} under the spiked-MNL model is not

nested-by-revenue.

25
{(H.M,L}
oL {HM

{HL

{M,L}
15 O

R(S)

r {H M

{L}
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Appendix E: Proofs

For any alternative j € J U {0} and assortment A C 7, let

w;il(j,A) +v;(1-1(j,A) ifjeA
0(j,A) = Vo if j=0
0 otherwise

denote the attractiveness of j when A is offered, and let W(A) :=3";_,9(j, A) denote the total

attractiveness of A.

E.1. Proof of Proposition EC.1

Proof of Proposition EC.1. (Sufficiency.) Suppose that, for any two products j and j’ for the
same itinerary, with j' € J(j), it holds that

w;+vig = wy.
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We show that the spiked-MNL model is regular, that is, we show that for any two sets S’ and S
satisfying S" C S C J, it holds that P;.s» > P;.g for all j € S’ U{0}. Note that there is a nested
sequence of sets S’ =S5y C S; C Sy C -+ C Sis\s7j-1 C Sjs\s7| = S such that [S;\ S;_1| =1 for all
i=1,...,]S\5’|. Therefore, we consider the case in which |S\ S’| =1, and the regularity follows for
general S” and S by induction. Let S\ S" = {k}.

Case 1: k € J(j) for some j € S”. Then the cheapest available fare class on each itinerary remains the
same when k is added to assortment S’. Then regularity holds as for the MNL model.

Case 2.1: k¢ J(j) for any j € S’, and J(k) NS’ = @. This is similar to Case 1. Alternative k is the
cheapest (and only) fare class for its itinerary in S. The cheapest available fare class on each other
itinerary remains the same when k is added to assortment S’. Then regularity holds as for the MNL
model.

Case 2.2: k¢ J(j) for any j € 5', and J(k) NS’ # @. Alternative k is the cheapest fare class for its
itinerary in S. Let [ € J(k)NS" denote the cheapest fare class for itinerary g(k) in assortment S’.
Recall that wy + v; > w; by assumption, and thus W (S) — W(S") = w, + v; —w; > 0, i.e., W(S) >
W(S") > 0. Next we consider three cases:

If j=1, then 0(3,5") =w, > v, =0(y,S5).

If j € S\ {1}, then 53, 5") = v, (1 — 1(j, ) + ;1. §") = v;(1 = 13, $)) + w;1(j, $) = 5, S).

If j =0, then 9(j,5") =0(4,5) =vo.

Therefore, for any j € S’ U{0}, it holds that 0(j,5") > 0(j,5). It follows that

0(4,5") 0(4,5) R
P.o = > = P, ,
s W(S)+ve — W(S)+uvg iis V7 €STU{0)

(Necessity.) Suppose that there are two products j and j' for the same itinerary, with j' € J(7), such
that

U)j+’Uj/ < wjr.

We show that in such a case the spiked-MNL model is not regular. Let S" = {j'} and S = {j,;'}.

Then

Vo Vo
PO:S’ = < = PO:S>
U()“"IUJ'/ U()‘F’lUj +Uj/

and thus the spiked-MNL model is not regular. [

E.2. Proof of Theorem 1
Liu and Van Ryzin (2008) provided the following necessary and sufficient condition for an assortment

to be efficient.

ProprosITION EC.2 (Liu and Van Ryzin (2008)). An assortment S C J is efficient if and only
if for some m € R, set S is an optimal solution of the problem maxacy {R(A) — 7" Q(A)}.
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The following lemma gives a necessary condition for an assortment to be efficient, and will be used

to prove Theorem 1.

LEMMA EC.2. If an assortment S is efficient, then there exists a v € R", satisfying v; > ;s for all

JE€J and j € J(j), such that S is an optimal solution of the problem

max Z%Pj:A . (EC.5)

AC
T |jea

Proof. If a set S is efficient, then by Proposition EC.2, there exists m € R’' such that S is an
optimal solution of maxacs {R(A) — 7' Q(A)}. Note that

R(A)—7'Q(A) = Y (rjPra—7n'a’Pua) = Y 7;Pja,

JjeA JjeA

where v; :=7; —m"al. Note that if j € 7 and j' € J(j), then j and j” are associated with the same

T T

itinerary, and thus a’ =a’’, hence 77a’ =x'a’’, and 7, >, since 7; > ;. Therefore, optimization
problem maxac s { R(A) — 7" Q(A)} is reduced to the optimization problem in (EC.5). O

Next we state the definition of efficient sets with specific reference to the set of products considered.

DEFINITION EC.3 (RELATIVELY EFFICIENT SETS). An assortment S C J is said to be inefficient
relative to J if a mixture of other assortments in J has strictly higher expected revenue with the
same or lower expected resource consumption. That is, there exists a set of weights {u(A): AC J}

satisfying >, ; p(A) =1 and p(A) >0 for all AC J such that

A
R(S) = 227)\ > riPlsosm
heH LW €M jesn7(h)

< S UARA) = Y)Y = Y Pl and

ACT ACT e aen Aw JEANT ()

An 4
Qr(S) = Zﬁ > G Psagm
heH L €M jegm 7 (h)

> S uAQA) = Y aA Y = S @Pl g, forall fEF.

ACT AcT heH Dohen A FEANT (h)

An assortment in J that is not inefficient relative to J is said to be efficient relative to J.

Next we show that a necessary (but not sufficient) condition for an assortment S to be efficient

relative to J is that SN J(h) is efficient relative to J(h) for each h.

LEMMA EC.3. If an assortment S is efficient relative to J, then SN J(h) is efficient relative to
J(h) for each h € H.
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Proof. Suppose that there is an h' € H such that SN J (') is inefficient relative to J(h’), that
is, there is a set of weights {y/(A") : A" C J (W)} satistying > 4/ 7oy ' (A') =1 and p'(A") > 0 for all
A" C J(K') such that

Z Tj Pg SNT () < Z (A Z ijj}f/Af and

JESNT (R) AlcT(n) jeA’
7 n' 5 R
> dhPlsagany =Y, W(A)DY ajPh, forall feF.
JESNT (W) AlCT(h) jeA

Then we show that S is inefficient relative to J. Consider the set of weights {u(A): AC J} con-
structed as follows. For each A" C J (1), let A:=A'U(S\ J(R)) and let pu(A) = 1/ (A"). For all other
BCJ,let p(B)=0.Then 3,7 pu(A) =3 arc 7oy ' (A") =1 and p(A) >0 for all AC J. Also,

)\h/ n )\h h
R(S) = S Yo riPlsnaant D S > 1iPlsnam
2onren Aw JESNT (h') (heH : hh'} 2orem An FE€SNT(h)
Ans 1Al n An h
< Zi”e?—t A /Z / 2 (A) Z/ijj:A"i_ Z / Zh” H)‘h” _ Z 7aJ’Pj:SmJ(h)
v A'CT(h') jEA {h€H : h#£h'} € JjESNT (h)
hl
= Z p(A Z 755 ang (v
Zh”eH Anr ACT jeAﬂj(h’)
h
+ > S >\ =2 1A Y miPanam
{heH : h;éh’ h'eH N Ac g JEAOJ(h)
_ h
— Z (A Z > )\ Z 75 P} ang () and
Acg heH Zeh"eH M je an 7 (h)
)\h’ n >\h i ph
Qs(9) = S ey Anrt Z P jsng () T Z S Z ayPlsog )
W'EH P sesng (m) {heH : hth'} Zeh"€eH M sesng(n)
Ah’ ’ )\h J pk
S S W WA Y arPly+ Y S > @ Plsasm
h''eH A’Cj(h’) jeA {heH : h#n'} Zh"€H T jegn 7 (h)
A —
= = 2 uA) Y @ Py ang ()
Zh"EH >\h” AcT jEAﬂJ(h/)
7 ph
+ 2 S )\ =D A D @i Plaaga
{heH h;ﬁh’ n''eH M ac g JeAﬂJ(h)

= > puAd)d =+ Zh//eH " > ahPlag foral feF

ACT heH JEANT (h)
and thus S is inefficient relative to J. O
Lemma EC.3 shows that a necessary condition for an assortment S to be efficient relative to J is
that SN J(h) is efficient relative to J(h) for each h. Next we show that a necessary condition for
SNJ(h) to be efficient relative to J(h) is that SN J(h) is nested-by-revenue.

LEmMA EC.4 (Nested-by-Revenue Efficient Assortments). For any assortment S C J and
any market h € H, if SNJ(h) is efficient relative to J(h), then SN J(h) is nested-by-revenue.
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Proof. Suppose that SN J(h) is efficient relative to J(h). Then it follows from Lemma EC.2 that
there is a v € R” such that v; >, for all j € J(h) and all j' € J(j), and
A = SNJ(h) € argmax {T(S') = nyij:Sz} : (EC.6)
S'cI(h) jes’
First we show by contradiction that if i € A, then v; > T'(A). Suppose that B:={j € A : v; <I'(4)} #
@. If A= DB, then

- St < et
= F<A)vo+vi1;/(/1) <0 = I(4) < 0 = I'(9)
which contradicts (EC.6). Otherwise, A\ B # @. Let i* :=argmin{v, : i € A\ B}. Then
I'(A) [vo+W(A)] = 2‘% [v; (1 =1(j, A)) + w;1(j, A)]
= F(A)[voJrW(A)HF(;(wi*—vi*) < j;‘%-[vj(l—]l(j,A))+wj1l(j7A)]+%* (wi —vix)
< M st

v;(1=1(j, A\ B)) 4+ w,1( j,A\B
< 2w v+ W(A\ B) + W(B)

JEA\B

]l(],A))—HU 1(5,4)
ZF 0+W(A\B)+W( )

jEB

vo+ W(A\ B) vi(1 =10, A\ B)) + w;1(j, A\ B)
= TS s Wi < 20w WA\ B) = W(B)

JEA\B
which contradicts (EC.6). Thus, B =@, and hence if i € A, then 7, > I'(A).
Next we show by contradiction that if SN J(h) is efficient relative to J(h), then SN J(h) is
nested-by-revenue. Suppose that A:= SN 7 (h) is efficient relative to J(h) and i, € A and i, € J(ia),
but iy ¢ A. Since i; € J(i2), it holds that r;, >, and iy € J(i1), and thus v;, >7;, >T'(A). Hence

['(A) [vo + W (A)] = Z%‘[Uj(l—]l(jw‘l))ﬂij]l(j’A)]
= TD(A)[vo+W(A)]+T (A, < Z%‘[Uj(l—]1(1314))+wj]1(JjA)]+%1Un
Y v;(1 =10, AU{in}) +w;l(j,AU{in}) P(AU{IY)

LoT(4) < : wt W(AU{L)) -

jEAU{ir}

which contradicts (EC.6). Thus SN J(h) is nested-by-revenue. O
Proof of Theorem 1. Lemma EC.3 shows that if assortment S C J is efficient (relative to J),
then SN J(h) is efficient relative to J(h) for each h. Lemma EC.4 shows that if SN J(h) is efficient
relative to J(h), then SN J(h) is nested-by-revenue. Therefore, all efficient sets under the spiked-

MNL choice model are nested-by-revenue. [
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E.3. Proof of Theorem 2
E.3.1. From SBLP to CDLP The proof of Theorem 2 is constructive. First we propose a poly-

nomial time algorithm (Algorithm 1) to convert a feasible solution (x,%g) of the SBLP (3) into a
feasible solution « of the CDLP (2), with the same objective value. The vector x can be regarded as
the planned sales of each product while the product is the cheapest available product for its itinerary.
Algorithm 1 constructs a sequence of assortments by translating these planned sales quantities into
the amounts of time that each successive assortment is available. The following example illustrates

the algorithm.

ExampLE EC.5. Itinerary 1 and Itinerary 2 serve the same origin-destination pair. Itinerary 1 has
three products {1,2,3} and Itinerary 2 has two products {4,5}. The given SBLP solution is denoted
by (x,zg). The length of the time horizon is proportional to z,/vg, represented by the horizontal
distance in Figure EC.3. For each itinerary g, the quantity z;/w; for j € J9 is proportional to the
amount of time that product j is the cheapest product for itinerary g. By constraint (3d), for each
itinerary g, the time intervals of length x;/w; for j € J9 can be placed in the overall time interval
of length x4 /v, in such a way that they do not overlap; any such placement of the time intervals for
7 € J9 will do. Thereby the time intervals are determined during which the cheapest products on
all the itineraries remain unchanged. This, together with the nested-by-revenue property, determine
the assortments and the amounts of time that each assortment is offered for the CDLP. In addition,
if, for each itinerary g, the time intervals for j € J9 are placed next to each other in sequence from
lowest fare product in J9 to highest fare product in J9, then the resulting sequence of assortments
will be a nested sequence. In the example portrayed in Figure EC.3, this results in assortments

Sl:{1,2,3,4,5}332:{1,2,3,4}3332{1,2,4}:)34:{1,4}:)55:{1}DS@':@.

Note that the SBLP (3) is based on the nested-by-revenue structure. Therefore the optimal solution
of the CDLP produced by Algorithm 1 will also have the nested-by-revenue structure. Moreover, by
first offering the cheapest products j for which x; > 0, the algorithm constructs a nested sequence of

assortments.

LEmMA EC.5. Given a feasible solution (x,xq) for SBLP (3), Algorithm 1 terminates in O(|G|n)
steps.

Proof. In each iteration of the while-loop (line 2-line 34), according to the definition of Y7, Y (h),
ai(h), and a(Ay), at least one of the positive components of x is reduced to 0. Therefore, after at
most n iterations of the while-loop, it holds that x = 0 and the algorithm terminates. The for-loops
in each iteration (line 4-line 20, line 24-line 32) require at most O(|G|) steps. (The fare classes of

each itinerary g can be sorted by revenue in advance so that line 12 can be executed in constant
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Algorithm 1 Converting a SBLP solution to a CDLP solution
Require: J < set of products, H + set of markets, G < set of itineraries, J(h) < set of itineraries for

each market h € H, J9 < set of products for each itinerary g € G, J(j) < set of products j’ for the same

itinerary as j with revenue r; > r;, SBLP solution (x,xg)

1: set vector of fractions of time a - 0 and iteration count k <1

2: while there exists a product j € J with z; >0 do

3 # form an assortment indexed by k£ and determine the fraction of time that it is offered #

4 for all h e H # all markets # do

5: if ;=0 for all j € J(h) # no products with remaining sales in market » # then

6 Ag(h) < @ and ay(h) <~ 0  # offer nothing in market h #

7 else

8 for all g€ J(h) # all itineraries g in market h # do

9 if ;=0 for all j € J9 # no products for itinerary g with remaining sales # then
10: set I« 0 # ignore itinerary g #
11: else
12: Ji <—argmin{r; : j€ J% x; >0} # pick the cheapest product with remaining sales in g #
13: Y+ :é # fraction of time until product j7 will run out of sales #
14: end if
15: end for
16: Ar(h) ¢ Uggegmy:vo>0) J(j7)  # determine the next assortment in market h #
17: Yi(h) < min{Y? : g€ J(h),Y? >0} # determine the smallest fraction of time until product

j¥ for any itinerary g in market A will run out of sales #

18: ap(h) W%(h) # set the fraction of time to offer assortment A (h) in market h #
19: end if
20: end for

21:  Ap <+ UpenAr(h)  # set the overall assortment for all markets #
22:  aAy) < min{ag(h) : h € H,ar(h) >0} # set the fraction of time to offer assortment A, #

23:  # reduce the remaining sales by the expected sales when offering assortment A, #

24:  for all h e H # all markets # do

25: if A (h)+# @ then

26: for all g€ J(h) # all itineraries g in market h # do

27: if Y)Y >0 # any products for itinerary g in assortment A, # then

28: Tjo = Tjo — Aha(Ak)T% # reduce the remaining sales of product j{ by the
expected sales of product jJ when offering assortment A, #

29: end if

30: end for

31: end if

32:  end for
33: k< k+1 # increment iteration count #
34: end while

35: output vector «
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Figure EC.3 An example of converting a SBLP solution to a CDLP solution.

Assortment

Itinerary 1

1={1,23}

Itinerary 2

J? =45}

Xo
Vo
$1 Sz S3 S4 Ss Se
{1,2,3} {12} {1} ¢
Xy /Wy
X2/W2
x3/Ws3
{4,5} {4} ¢
X4 /Wy
Xs5/Ws

time for each g. Also, for each j € J, one can compute the values of W(J(j)) =w; + Zj/EJ(j) vy in

advance, which can be done inductively from the highest fare class for each itinerary to the lowest

fare class for the itinerary, in a total of O(n) steps. Then, in line 18, W (A (h)) can be computed for

all h in O(|G]) steps as follows: W(Ag(h)) = Z{gej(h):Y,fw} W(J(j7)).) So Algorithm 1 terminates

in O(|G|n) steps. O

LEMMA EC.6. The output of Algorithm 1 satisfies the following properties:

(1) In each iteration k, the assortment Ay defined in line 21 is nested-by-revenue.

(2) In each iteration k, for each market h and each itinerary g € J(h), the amount

w.g
)\ha(Ak)Tm subtracted from 0 is equal to the expected sales quantity of product ji

while assortment Ay is offered for a(Ay)T units of time.

(8) The CDLP solution o produced by Algorithm 1 satisfies

.I‘j =

AT

2.

{k:1(5,A5)=1}

O‘(Ak)PﬁAkﬂj(h)

for all he M and all j € J(h). That is, for each product j, the sales quantity x; while j is the

cheapest available fare class for its itinerary specified by the SBLP solution (x,Xq) is equal to

the sales quantity of 7 while j is the cheapest available fare class for its itinerary resulting from

CDLP solution a.

Proof. (1) For each k and each h, Ay(h) is either @ or a union over itineraries g of nested-by-

revenue assortments J(j7), so each A(h) is a nested-by-revenue assortment. Each Aj is a union over

markets h of nested-by-revenue assortments Ay(h), so each Ay is a nested-by-revenue assortment.
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(2) The expected sales quantity of ji while assortment Ay is offered for a(A;)T units of time is

equal to )\hOK(Ak)TP’?;A NI (h )\hOé(Ak) W /\hCK(Ak) W
(3) It follows from above that
w.
r; = Z Ma(A)T——>2—— = \NT Z a(AR) P, nJ(h)- O
{107, A) =1} W(Ar(h) +vo (k107 A) =1} o

ProrosiTiION EC.3. Given a feasible solution (x,%Xq) of SBLP (3), Algorithm 1 computes a feasible
solution o of CDLP (2), such that the sales quantity of each product is the same in both solutions,

and the two solutions have the same objective value.

Proof. First we show that (x,X,) satisfies SBLP constraint (3c) if and only if a produced by
Algorithm 1 satisfies CDLP constraint (2c). The left side of SBLP constraint (3c) is

D (1+ S fj)a;xj

heH jeT(h) jleJ(g) 7

— Z Z (1+ Z j) a; Z )\ha(Ak)TWj))W

heH jeT (h) jler() d {k:1(j,A)=1}

PR D V1
= Y a(4)T 3] A | Sgel)
zk: ( k) Z h Z fWAk ))+U0

heH  {jeTd(h):1(j,Ax)=1}

U -
= Y aA)T > M WA o T > af—W(A DT
k heH  {jeT(h): zu Ap)=1} 0 jres() k 0
Z (AT Y M ( gt D afP'AW(h))
heH {ieT(h): I(J Ap)=1} i'eJ()

Z TZ)‘h Z “fPJhAﬂJw

heH j€T(h)

Z AT Y MY @b Plangmy

AcT heH  jeA
which is the left side of CDLP constraint (2c). The third equality holds because for any j € J and
any j' € J(j) it holds that ajc :agc, for all f e F.

Next we show that if (x,xg) satisfies SBLP constraints (3b) and (3d), then « satisfies CDLP
constraint (2b). Consider any h and any g € J(h). In each iteration k, if there is a product j €
J9 such that x; > 0, then one such product j; is chosen. Then the quantity 2t is reduced by
Ana(Ap)T
if there is no product j € J9 such that x; > 0, then z; remains 0 for all j € J9. Thus, for any h, any
g€ J(h), and any j € J9, it holds that

1 T
> oAl ————— = 2,
{ij:j} W(Ak(h)) + UO w]

w.g
J 3 . . .
WA Aoy » and for all the other products Jj € J9\{j}}, x; remains unchanged. Otherwise,
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and hence

1 Z; x
> Aha(Ak)TW = > > Aha(Ak)Tm = > L=< o

{k:y?>0} JETI {k: =5}

o>

where the inequality follows from SBLP constraint (3d), and

. 1
> W(J(]k)))‘ha(Ak)TW

{k:v?>0}

1 N
gezy:q{k%:_]}w INAna(Ap)T W = jezj:gW(J(]))—,

Note that there is at least one g € G such that Y)Y > 0 for all k. Let g* € G be such that Y,f* > (0 for
all k, and let h* € H be such that g* € J(h*). It follows from line 18 and line 21 of Algorithm 1 that

Yo ald) = ) a(dy)

ACT k
_ Ape T W(Ag(h")) +vo
- Z“(Ak)xh*T W (A (h*)) + v

k

Y
= LS aaa, Z{gem*):Y,fm}*W(J (7)) + vo
>\h*T 3 W(Ak(h ))+U0
1 —_ 1 Vg
= W (J(59) Ane (AT 5 Apea(A)T
AT gejz(h*){k%w} ROZRTER T W AR (h) + vo ; PR W ALR)) + v
S S WI3) xﬂ + S Aea(A)T el
)\h*T gEJ(h*)jEJg (- Yq 0} W(Ak(h*))+1)0
1
S Z Z wj+ Z Uj/ —|— 07
AT | geT(h) 5T ( el w, o
1 *
= Z 1+ Z T+ ) = 1,
AT LieT () ( irea) v )

where the last equality follows from SBLP constraint (3b).
Next we show that the objective values of the SBLP solution (x,x,) and the CDLP solution « are

the same.

£ E (v 2w

heH jeT (h J'eJ(j)
—ZZZ(TﬁZW ) ZAhaAkW
heH geJ(h)j€TI J'€J(3) {k:j,=3} g 0

_ Z AT W > Y (wm(h))ﬂ* 2 W(A(h))ﬂ)

heH  ged(h) {jeg9:ji=4} es()
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= Za(Ak)TZ)\h Z Tijh:Aka(h)

k heH JEALNT (h)
= Z a(A)T Z An Z TjPﬁAﬂJ(h)'
ACT heH JjEANT (h)

Thus we have established that Algorithm 1 converts any feasible solution of SBLP (3) into a feasible
solution of CDLP (2), such that the sales quantity of each product is the same in both solutions, and

the two solutions have the same objective value. [

E.3.2. From CDLP to SBLP. In this section we address the opposite direction: converting a
CDLP solution into a SBLP solution.

ProrosiTiON EC.4. Consider any feasible solution o of CDLP (2) with support on assortments
that are nested-by-revenue. Then there is a feasible solution (x,%Xq) of SBLP (3) such that the sales
quantity of each product is the same in both solutions, and the two solutions have the same objective

value.

Proof.  Since « has support on assortments that are nested-by-revenue, it follows that for any
A C J such that a(A) >0 and for any j € AN J(h), it holds that J(j) C ANJ(h). For every h € H
and j € J(h), let

z; = \NT Z Pj}fAnJ(h)oz(A)

{ACT:1(5,A)=1}
1- Z oz(A)] } .

and ) = )\hT{ Z PéfAmj(h)a(A) +
AcT AcT

Next we show that (x,x,) is feasible for SBLP (3). The balance constraint (3b) in the SBLP holds,

since
Vs
zp + Z (1+ Z J) x;
jeT(h) ireai i
1— Z a(A)] }

= )‘hT{ Z P&Aﬂ](h)a(A) +
ACT

ACT

+ Z (H' Z Uj/) AT Z P]‘}?Amj(h)a(A>

i€ (h) jreg) Wi {ACT 1(5,A)=1}

a(A)

= )\hT{ >

ACT

) Uy )
P(;:Aﬁj(h) + Z (1 + Z uj) Pj}:Ar‘wj(h)

{7eT(h):1(5,4)=1} i'eJ@) Y

1-> a(A)] }

ACT

_|_

a(A)

= AhT{ >

ACT

h h (Y w
Poangny > (PJ:AVV(’” p> iW(Aﬁjj(h)) +vo)

(jeT(h) 1(j,A)=1} jrea) Wi
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_|_

1-> a(A)] }

ACT

= )‘hT{ Z P&Am](h)—i_ Z ( S ANT (b Z P’Aﬁj(h) a(A)
AcT {i€g(n):1(5,4)=1} i'eJ(j)
+ |1— Z a(A)] }
ACT
= )\hT{Za(A)Jr 1— Za(A)” = AT
ACT AcT
For each f € F, the SBLP capacity constraint (3c) also holds, since
Z Z 14 Z o ajcxj
heH jeT (h) i'eJ(5) Wi
= Z 1+ 3 ZhanT S Plosmald)
heM jeJ (h ireat) i {ACT :1(4,4)=1}
= D AT N > 1+ > L afPJ}AﬂJ(h)
Acg heH  {jeJ(h):1(jA)=1} J'€J(H) wj
w;
= > aAT Y N > Fang(n) T Z
AcT heH  {(jeT(h):1(j,A)= 1} & jrer) Wi W(Aﬂj( ) +vo
= Z a(A)TZ)\h AmJ )t Z P/Amj(h)
Acg heH {jGJ(h) 1(5,4)= 1} J'€J(d)
= D alA)TY N X afPlngey < o
ACT heH Jj€T(h)

where the last equality holds because for any j € J and any j’ € J(j) it holds that ai} = ajc/ for all
f € F. Also, for any h€ H and g € J(h),

; 1
Z & = Z fAhT Z Pj}:LAﬂj(h)a(A>

JjeTI w;j jeg9I wj {ACT:1(j,A)=1}

1 W
= AT v J a(A)
AZC‘;{]GJQ%; (,A)=1} wj (Aﬂj(h)) + v
1 Vo
= AT > AN ))ﬂoa(A)

ACJT {jeTg9:1(j,A)=1}

1 xl
= AT Z P(?:Amj(h)a(A)* < =2,
Vo Vo

{ACT : ANJ9#2}

which is SBLP constraint (3d). Finally, the objective value of SBLP is

SE Ml

het jeJ(h) J'€J(d)
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= Z Z ( Z TJ') AT Z PﬂAnJ(h)O‘(A)

her ieTin) ) {ACT :1(j,A)=1}
= Z a(A)T Z A Z T+ Z TJ PJhA”j(’l)
AcT heH  {jeg(h):1(j,A)=1} '€J ()
/Ll}v
= S a7 M > riPlangm + D "“f W(ANT(h)+v
AcT heH  {jeg(h):1(j,A)=1} J'eIl) ’
= > alAT> M > riPlansm
ACT heH  jeJ(h)
= > DT> D riPlansm
ACT heH JEA

which is equal to the objective value of CDLP. [
Theorem 2 follows from Lemma EC.5, Lemma EC.6, Proposition EC.3, and Proposition EC.4.

E.4. Proof of Theorem 3

Proof of Theorem 3. First, we review some properties of the CDLP, and describe the associated
partitioned booking limit policy. By Theorem 2, there is an optimal solution a* for the CDLP that
is supported on a nested sequence of assortments S; D Sy D -+ D Sk, with a*(S;) >0 fori=1,... k,
and with each S; nested-by-revenue. Let to:=0 and t; :== >,_, o*(Sy)T. Thus, an optimal solution
for the CDLP is to offer each assortment S; during (¢;_1,¢;]. For the CDLP, the sales rate of product j
during (t;_1,t;] is given by A := APj.s,, and the corresponding sales quantity is \’(t; —t;_1). (Note
that A\, =0 if j ¢ S;.) It follows from (4) that the booking limit b} of the partitioned booking limit

policy satisfies
k .
>
=1

and thus the optimal objective value 2P of the CDLP satisfies

ZOPP = ZTJZX = erb;.

JjeET i=1 JjET

For each i =1,...,k and each j € J, let

A; = min{)\Pj;g : Si+1 g S g Sivj € S}

and No= max{AP;.s : S;411 CSCS;,jeS},

J

where Si,1 := @. Note that under the spiked-MNL model, A;- >0 if j € .5;. Also note that X;- >
APjs,., =X for all i and all j € S;.

i+1
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Given the times 0 =ty <t; < --- <t =T resulting from the CDLP solution, and ¢ > 0, consider
the times t; :=t; —v; ¢ and t] :=t; +v; ¢, where v, ,v;"

i 7%

vy =vi =0, and letXS:Ofor all j € J. Then, for each i=1,... Kk, let

> ( are specified inductively as follows: Let

—i—1 —i—1 , —i—1 .
N, v (A = At N A
v, = max{ ’ : ( ! .]) L d } , (EC.7a)
JjeS; )\;
Nivt A (N =X ) v AN
v o= I_nax{ i ( ’ .J) TN (EC.7b)
JES; A;
Also, let CJQ =0 for all j, and for each i=1,...,k, and j € .5;, let
moo= N 1), O o= N (] ). (EC.8)
Note that (EC.7) and (EC.8) imply that
Xy +1) = < N+ -1), (EC.9a)

We consider € > 0 sufficiently small such that ¢, <t for all i=1,... k, and Cle < A[*! (t;1 — 1)
foralli=1,...,k—1andall j € S;;;. Since t} >t, =T, for convenience, the analysis below considers
a continuation of the booking process after time 7', but we will only count the total bookings up to
time T towards the total revenue. Figure 3 in the paper illustrates the quantities defined above.
Next we define the stochastic sales process for Poisson demand. For each i € {0,...,k} and j € J,
let N;_ = {N;_(t) :t>0} and ]\7]“r = {Nf(t) :t >0} denote Poisson processes with rate 1, with all
the Poisson processes {N;i :i€{0,...,k},j € J} independent. For any scaling factor 6, let S(t)
denote the assortment offered at time ¢ under the considered policy. Then, for each product j € 7,

each i € {0,...,k — 1}, and each time ¢ € (¢],¢;, ], the total sales of product j over (0,¢] is

i—1 i
SN 0)\/ . Pusindr +> N;- 9)\/ L, Pusonydr + N ax/ . Prsoindr
i'—=0 TE(ti,,ti,+1] =1 TE(ti,,ti,] TE(t] 1]

and similarly, for each i € {1,...,k}, and each time ¢ € (t;,¢; ], the total sales of product j over (0, ]

17

is

i—1 i—1

ZN;’+ 9)\/ | Prsoqpdr +ZN;'— 9/\/  Pisondr +Ni- 9)\/ _ Pigondr |
i'=0 -re(tj;,ti,_'_l] i’=1 ety ] meltit]

Note that while the assortment is S, product j is sold according to a Poisson process with rate 0AP;.s.
Let 7 denote a policy that, for each scaling factor # and at each time ¢, prescribes the assortment

S%(t) to be offered at time t. Then the objective value under policy 7 for the #-scaled problem is

given by
k—1 o
ET| S SN (0 P50 (rydT
jeg =0 et i)

k—1

+ ZN;7 (9)\/7_6()5 t+] Pj:Sg(T)dT> + N;—Ci (0/\ Pj:SQ(T)dT> }‘| .

i=1 TE(t, ,T]



ec26 e-companion to Cao, Kleywegt, and Wang: Network Revenue Management under Spiked-MNL

Now we describe the stochastic sales process and the offered assortments under the partitioned
booking limit policy. We ignore the probability 0 event that more than 1 arrival of the Poisson
processes {N;i :1€40,...,k},j € T} take place at the same time. Let SY denote the (th assortment
offered under the partitioned booking limit policy (note that, except for ¢ =1, it does not hold in
general that SY = S;), and let assortment SY be offered over time period (7{_,,7f]. That is, S¢(t) = S¢
for t € (r{_,,7f]. For any i =0,...,k—1 and 7 € (7{_,, T], let

0+ .__ {min{ti-&-lng} - max{tj,Tf_l} if Tg) > tZL and 75—1 <tip
M0 otherwise
TOH(r) 1= {min{tHl,T} —max{t;, 70} ifr> t?r and 77, <t;,
’ 0 otherwise
denote the duration of overlap between (¢;,¢;,,] and (7/_;,7/], and between (¢/,¢;,,] and (7{_,,7].
Similarly, for any i=1,...,k—1 and 7€ (7{_,,T], let

i

o min{tf, 70} —max{t; 7/} if7{ >t7 and 7} <t
0 otherwise

0 ~fmin{tf, 7} —max{t; 7} \}  if T>t7 and 7, <t

T =
it (7) {O otherwise

t7] and (7f_,, 7], and

i Y

denote the duration of overlap between (¢;,¢] and (7{_,,7¢], and between (¢;

let

o ) —max{t,, 70} if7tl >t
Ty = ;
0 otherwise

T—max{t;, 70} ifT>1;
0 otherwise

denote the duration of overlap between (¢, ,7T] and (7! ,,7¢], and between (t;,T] and (7{_,,7].
Specifically, let 7¢ := 0, and let SY :=S; denote the first assortment under the partitioned booking
limit policy. For each ¢ € {1,2,...} such that 7¢ | <T and S¢ # &, let

(-1 [k-1 k
) = min{T, min{inf {TE (rf ., T) : Z [ N;Jr (HAP .50 T‘9 )—I—ZN;_ <0)\sz5ng5‘;)]

¢/=1 Li=0
k—1
SN (OAPL TEF (7)) + ZN“ (0APy g0 707 (7 ))] zeb;} : jesg}}
=0

denote the last time that assortment SY is offered (with the convention that inf @ = oo). If 7/ < T,

then let j¢ be the (unique) j € S? such that

-1 [k—1 k
S [Z H(0APLs TS + YoM (6APg T, )]
/=1 Li=0 i=1
k—1

A .

+

(0P TOF (7)) + Ek:N;f* (BAﬂ:ngfZ(Tf))} = 0b;,

i=0 i=1
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that is, j§ denotes the first product in Sf that sells out. Then S7,, := 57\ {j{}.
Let N f (t) denote the quantity of product j sold up to time ¢ under the partitioned booking limit
policy, that is, for t € (7{_,,77],

Zi rzl (GAP SeTzGe') i (9)\13 SGTM)]
V=1 Li=0 i=1
N k-1 (9)\13 Tl () ) + Y NI- (HAszsgﬂe’z(t))]

=0 i=1

Thus, if 7/ < T, then 7/ satisfies

T = min{inf{r>7§71 : NJ(.’(T) = Hb;} ; jESf} = inf{7'>7'ff1 ; N%(T) = Qb;z;}.

Next we define the following events for each 6 and each i=1,...,k:
El,67 = ﬂ{ze)\ t/—t/ 1) 97]J8<N6 29)\ t/—t/ 1)}
JES;
Elt = {Z ONE (ty —ti_y) < NO(tT) ZeA ti —ti,1)+9gie}
jes; \ir=1 pra

B =iy (B 0 ESY)

K2

F/~ = P NEY-

3

Similarly, let F¢* = BT :=Njcs {O <N/(tg) < HC]QE}. That is, EY~ is the event that for all products
in S;, the booking quantity at time ¢; is slightly below the CDLP quantity at time ¢;, and E?* is
the event that for all products in S;, the booking quantity at time ¢ is equal to or slightly above
the CDLP quantity at time ¢;. Note that, because the booking limit of product j € S;\ S;i; is
obr =03, )\;/ (ty —ts_1), and the booking limit of product j € Si;1 is at least 6357 AY Nty —ti_1),
the event 7, := F/T N EY7, implies that S%(t) = S;y, for all ¢ € (t],t;,4]; i.e., the assortment S;,,

is offered during (¢, ,].

LEMMA EC.7. For alli=0,...,k—1, the following holds:

B () {0N (b — ) — 0 e < NIFONT (b — 1)) < OX (tigr — 1) — 0Ce )

JESit1
i+1 itl
C Ff ﬂ {29/\ ty_1)—Onitle < N{(t74) 29)\1 ti’—l)}~
jGSi_'.l =1 i’=1

Proof.  Consider any sample path in the event on the left. We show that the sample path is in
the event on the right. Recall that since the sample path is in F{", it holds that S?(t}) = S;;. Let
¢ be such that S?(t}) =S, =57.
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We show by contradiction that, for the considered sample path, no product can reach its booking

limit during [¢;,¢;;,). Suppose that 7{ € [t;,¢;,,). Thus j¢ € S;1; satisfies N‘9 (19) = 6b%. Then
4
0 0 + i+ 1+1
Njé( ) = N; (t)+N (9)\ (18 —t+

(ZHA;'.; —ty_1) +0C >+ o (0 X“ 2 — 1)
/=1 ¢

IN

Je

IN

(Z”i—g - +9<95>+ l; W“ (ta —t))

N
i'=1
i'=1
The first inequality holds because the sample path is in FY", the second inequality holds because
T <t 11, the third inequality holds because the sample path is in the event on the left, and the
fourth inequality holds because j§ € S;41. This contradicts N7, (7¢) = 0b%,. Thus S°(t) = Sis, for all
2 L

te [t til.

Thus, for each j € .S;,; it holds that

N(tnn) = NJED+NFONT (o, — 1))
[ i+1
> NN (tr —ty) + NIFONT (5, ) > 30N (ty —tu_y) — Opitle.
/=1 i’=1

The inequalities hold because the sample path is in the event on the left. Also,

N (tia) = N5+ N7 (OA (5, — )

< (Z 9)\j ti —ti_1) +9gjg> + N ONF (1, — 7))
/=1
< (Z 9)\;'@1-/ —ty_1) +9C;5> + (9)\;'#1( i1 —t) — 9@ )
i'=1
1+1 ,
= D ON (ty —tu_1).
/=1

Therefore the sample path is in the event on the right. [

LeMMA EC.8. Foralli=1,...,k, the following holds:

F'= {en;le < Ni- (93;‘.@;*—75;))} N {N;— (er.(tj—t;)) < 94‘;5}

JES; JESit1

C F;O* n {Z 9)\1 ti/—l) — Nje(t;) = N;7 (9)\ /7_e(t_ t+] ‘F)]':S'G(T)dT)}

JES; \Sz+1

N {977;5 < Ny (9/\/76(,5. o JDj;sH(T)dT> < 6’4}5}.

JESit1
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Proof.  Consider any sample path in the event on the left. We show that the sample path is in
the event on the right. Recall that since the sample path is in FY~, it holds that S°(t;) = S;. Let ¢
be such that S%(¢;) =S, = S¢.

First we show by contradiction that it cannot hold that S%(t) = S, for all ¢ € (t;,¢]], that is, at

least one product j € S; must reach its booking limit during (¢;,¢;]. Suppose that S?(t) = S; for all
t € (t;,tf]. Consider any j € S;\ Si11. Then

NO(th) = NI(t7)+ NI~ (0AP;s,(tF — 7))

> NI+ N (0N -6)) > <Z@A§l(ti/—ti/_1)—€n;5>-|-977;_5 — o
i'=1

The first inequality follows because the definition of A; implies that A\P;.g, > A;, and the second
inequality follows from the definition of the event on the left. Under the partitioned booking limit
policy it cannot hold that NV J}o(t;r ) > b3, and therefore for any sample path in the event on the left
it cannot hold that S?(t) =S; for all ¢t € (¢; ,t;]. Thus, 77 € [t; , ).

Next we show that j¢ ¢ S;,1, that is, a product j € S;;; cannot be the first to reach its booking
limit during (¢; ,¢;]. Consider any j € S;;;. Then

NJ(r{) = Nj(t7)+Nj~ (0APys, (77 —

) t;)
< NY() + N (0N 1)
t

< NY(t7)+ Nim (0AP;s, (8 — 7))

< STON(ty —tu1) +0Ce

=1

< D ON (ty —ty_1) HONT (t — 1) < 0D
—

The first inequality follows from the definition of Xj., the second inequality follows since 7¢ < ¢, the
third inequality follows from the definition of the event on the left, the fourth inequality follows from
the assumption that ¢ > 0 is sufficiently small such that {;5 < )\;“ (tiyr—t;) foralli=1,...,k—1
and all j € S;y1, and the fifth inequality follows from j € S;y1. Thus j§ € S;\ Si1, and hence S7,; =
S\ {77} satisfies S;1q C SP,, CS;.

Next, we continue by induction on ¢. Suppose that for some ¢ > ¢ it holds that Tg <t and
Siv1 C Sgﬂ C S;. We consider two cases: either S’gﬂ \ Sit1#@ or SgH \Siy1=9.

Case SgH \ Sit1 # @: In this case we repeat the argument above. First we show by contradiction

that it cannot hold that S°(t) = 57, | for all t € (77,¢], that is, at least one product j € S7, | must



ec30 e-companion to Cao, Kleywegt, and Wang: Network Revenue Management under Spiked-MNL

reach its booking limit during (77,;]. Suppose that S°(t) = S7 | for all t € (77,;]. Consider any

j S S(Q+1 \Si+1. Note that ] S Sl \ Si+l~ Then

NI(tE) = N2+ i (0APs, () —17)

3

Z
+ Z N;- (HAP o (Tl —7h_1)) + Ni~ (HAPj;ng(tT —Tf))

> NY(t; )+N" (@;(tj—t;))
> <Z ON! (t —tu_1) —Hn;ia-) +0nie = 0b.
=1
The first inequality holds because S;; C S§ C S; and thus AP; .5 > )\z forall ¢ =¢,...,0+1, and the
second inequality follows from the definition of the event on the left. Under the partitioned booking
limit policy it cannot hold that N?(¢;") > 6b%, and therefore it cannot hold that S°(t) = S? ., for all
te (rf,tf]. Thus, 77, € (17,tF).
Next we show that ]Z+1 ¢ Si.1, that is, a product j € S;,; cannot be the first to reach its booking

limit during (7 Consider any j € S; 1. Then

[az]

41
NJ(rly) = NJUD)+ N (0APs, (7 = 10) + 3 Nj™ (0APyg0 (7f = 700,))
0=0+1
< NY(E)+ N (0N (7L, 1)
< NY(E) + N (0N 1)

< STON(ty —tuy) +0Ce
< STON(ty —ta ) FONT (i — 1) <O

The first inequality holds because S;;, C S C S; and thus AP; .89 < )\ for all ¢/ =¢,...,0+ 1, the
second inequality holds since Tg a1 < ti, the third inequality follows from the definition of the event
on the left, the fourth inequality follows from the assumption that ¢ > 0 is sufficiently small such
that (je < ANty —t;) foralli=1,... k—1 and all j € S;41, and the fifth inequality follows from
J € Siyr. Thus j¢, €57\ Siy1, and hence S7,, =S?  \{j?,} satisfies S;y C 57, C S;. Hence, in
the case Se+1 \ Sit1 # &, the induction continues.

Case S7, |\ Siy1 = @: Then S7, | = S;yy. That is, for each j € S;\ Si11, it holds that N} (") = N} (77) =
067 = Yy ON (t — tu 1), and thus NY(#7) + NI~ (07 [, Y 7)) = Sl 0N (b — tir ).

J:
Next we show by contradiction that S°(t) = S;y, for all t € (77,]]. Suppose that 77, <t Thus

Z

jgﬂ € S, satisfies NY (Tgﬂ) Gb* Then
Ti T
i+1
6 0 — ri— 0 _ i 0 0
Njg+1(TZ+l) B N?ﬂ(ti )+N'g+1 (9)\]3?“:31,(7'[ K )) * Z N (9)\P? 15 g (7o _Tzl_l)>

V=041 e
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< N¢ N“ 4 —tf>

- J?—H( Ot Tim (9)\ g+1<7-£+1 ;)

< Ng (t7) + N“ (0)\ 0 (tj—t;))
L’+1 Ti41 Ti41

< 29)& (ty —ts 1) +60C €

i’—l Ti1 Ji1

< 9)\1 (tyr —ti_ +9)\” i1 — L) < 0bF
Z e+1 1) (+1 ) > 0

Ti1 Ti1

The first inequality holds because S;; C S) C S; and thus )\Pjg+1 50, < < )\ 2, forall /' =¢,... 0 +1,
the second inequality holds since 7'~ L < t, the third inequality follows from the definition of the
event on the left, the fourth inequahty follows from the assumption that ¢ > 0 is sufficiently small
such that C’ffs < )\“'1 (tix1 —t;) foralli=1,...,k—1and all j € S;;1, and the fifth inequality follows
from ]E+1 € Sit1. This contradicts N"Hl( H1) Qb*ZH

Thus, for each 7 € [t;,t;] it holds that S;;; C S(7) C S;. Hence, for each j € S;,1, it holds that
N (93;. (th — t;)) < Ni- (9)\ I jzsemdf) < Ni- (exj. (th — t;)). Thus it follows from the

event on the left that 977j5 < N;- (9)\ fre(t,—,tﬂ szse(T)dT) < OCJ’E. Thereby it has been established

ety tf]

that the sample path is in the event on the right. [
We will use the following concentration inequality for Poisson process (Draief and Massouli 2010,

Proposition 5.3):

LEmMA EC.9 (Poisson tail bound). Let {N(t),t > 0} be a Poisson process with unit rate. For
any x>0,t>0, >0, it holds that

P[N(at)—at>xze] < exp(—ath(e/t)) and P[N(zt)—at<—xe] < exp(—azth(e/t)),

where h(y) == (1+y)log(1+y) —y. (Note that h(y) >0 for all y>0.)

For each i =1,... k, let

_ (i £

jES;
i — _ 9
JES; JES; i i

Next, we prove by induction on ¢ that
PIE] > 1= (o0 +657). (EC.10)

=1

Base Case: i = 0. Since tj =0 and (¢ =0 for all j € 7, it holds that 0 < NY(t) <69, so P[Fg*] =1



ec32 e-companion to Cao, Kleywegt, and Wang: Network Revenue Management under Spiked-MNL

Induction Step: from i to i+ 1. Suppose the result holds for i € {0,...,k —1}. Then
P [Fﬁﬁ | FZH] = P [Efﬁ | Fz'eﬂ
i+1 . i+1
N {Z ON (ti —to_1) —OniTle < NO(t7,) < D ON(ty —ty_ 1)} | Fo+

jGSH_l /=1 /=1

> P [Mes,, {ONF (tr — 1) — O e < KON (17, — 1) < ex*l(mlftz—)fec%}rFﬂ

= P Mesin {ON (hign — 1) = On) e < NIF(ONF (15, — 1)) < Ot — 1) — 0Cje ]
= 1P [Uesy ({ONF (fn — 1) — it > NiF(OXH (87, — 1)}
U{NHONF (ty — 1)) = ON (tisn — 1) — 0Cie } )|

> 1- Z P[NH—(Q)\Z—H( H_l—t;")) < 9)\?_1(752'4_1—25) 9771-1-1 }
JESit+1
= Y0 PNIFONT (1) = O (b — 1) — 0]
JESi+1
= 1= 3 PNFONT (b — 1)) < ONF (o — 1) + 0N (v + v )e — O e
J€Si41
LS PRI ON i — ) > O\ (b — ) + 0N + v )e — 0]
JE€Sit1
> 1= > {PNFONT (1) — 00 (4 — t) < —0NTe]
J€Si41
P [N (1, —£5) = X (6, —tF) > eA;ng} )
7 — 13 B
= 1-2 Z exp( /\H(tzﬂ_t;r)h <tt+>> = 5f+1

€S i+l b

The first inequality follows from Lemma EC.7, the third equality holds because NJH and F/" are
independent, the second inequality applies the union bound, the third inequality follows from (EC.9),
and the fourth inequality follows from Lemma EC.9.

Next we consider the conditional probability of F/T given F?~.
PIETIF™] = PEI|F]

{0ty < 8201 < 0 0t i

jes; \il=1 =1

= P[ N {0t —tm) = N2 = MO — N2

JESI\Siy1 i'=1

{300 (b —toms) = NIGE) < NI~ NO(E)

JES;41 =1

< D TON (b —tay) = NI(t)) +9<§€} | Ff—]

/=1
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JjES; JES;
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The first inequality holds because F’~ C E’~, and for all sample paths in E?~ it holds that
22,210/\2/( —ty_y) — Onie < NI(t7) < S 0N '(ty —ty_1) for all j € S;, the second inequality
follows from Lemma EC.8, the fifth equality holds because N;f and F’~ are independent, the third
inequality applies the union bound, the fourth inequality holds because S;,1 C S;, the fifth inequality
follows from (EC.9), and the sixth inequality follows from Lemma EC.9.

Therefore, using the induction hypothesis, it follows that

P [er++1] = [erjl | z+1] [ergl | F6+] [FiGJr]
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> (1-6%,) (1=06) (1—i(53+5§+)> > 1-%(55,%?#).

i'=1 /=1
Thus we have established (EC.10). Since the expected sales quantity of any product during [t ;]
is bounded by OA(t{ —t,) = 00(e), it follows that

E [N?(T)} > E [Nf(t;)} —00(e)

J
k
> E[NJ() | F* PR - 00() > Gb;‘[ =3 (60 4 67)

=1

—00(e).

For any fixed ¢ > 0, it holds that 6/~ — 0 and 67" — 0 for all 4 as  — co. Thus

o]
hmmfaE[Zg] = liminf er [ }

60— o0 60— o0

k
> liminf ) 7 {b; [1 =D (6 +67)

JjET =1

6)} = > rbi—=0() = 2z -0(e).

JjET

Since € can be arbitrarily small, it follows that liminfy_,., 1 E[Z9] > 2“PLP. Also,

1
4

1 1
limsup - E [Z°] <limsup éngT < ZOPLP,

6— 00 60— 00

Therefore limg_, 3 E[Z°] = 2P, O

Appendix F: Airline Data, Preprocessing and Demand Calibration
The data and source code used in all the numerical studies in the paper can be downloaded at

https://github.com/cyf-sjtu/spikedMNL. Here we give a concise description of the airline data

set provided to us by an airline, and how we processed the data and calibrated the demand models.

F.1. Products Presentation

We describe how products are presented on the airline’s website to show that potential customers can
see and can choose among all the available fare classes. Figure EC.4 shows an example of relevant
data displayed on the airline’s own ticket-booking website. The left panel in Figure EC.4 shows what
a customer sees after the customer has entered search data, such as origin, destination, and date,
in the website’s search engine. Different itineraries with their departure times and arrival times are
presented to the customer, with the lowest available price for each combination of itinerary and cabin
(Economy/Premium Economy /First Class). If the customer clicks on a combination of itinerary and
cabin, then the website displays all the available fare classes for that combination of itinerary and
cabin, with their associated booking rules and prices, as shown in the right panel. So, indeed, a
customer can see and choose among all the available fare products offered by the airline on the

airline’s website.
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Figure EC.4  Airline Ticket-Booking Website Mock-ups

[ sortby: | | DepartureTime [¥] [ Economy | PremiumEconomy |  FirstClass | [ sortby: | | DepartureTime [¥] [ Economy [ Premium Economy | First Class

XXX Airlines | XX001 | Nonstop | Meal XXX Airlines | XX001 | Nonstop | Meal
7:00 AAA — BBB 8:00 ‘ $50 ‘ - ‘ $250 ‘ 7:00 AAA — BBB 8:00 ‘ $50 ‘ - ‘ $250
XXX Airlines | XX002 | Nonstop | Meal ‘ Fare Class F Luggage Limit 10kg Non-changeable ~ Non-refundable
$100 ‘ $ 200 ‘ $350 ‘
9:00 AAA — BBB 10:00
Fare Class D * Luggage Limit 10kg Non-changeable  Non-refundable
XXX Airlines | XX003 | Nonstop | Meal
12:00 AAA — BBB 13:00 ‘ $150 ‘ $250 ‘ $500 ‘ . )
Fare Class C Luggage Limit 15kg $20 Change Fee  Non-refundable
XXX Airlines | XX004 | Nonstop | Meal $1 $2 s o 15k N cundabl -
13:00 AAA — BBB 14:00 50 50 500 Fare Class B Luggage Limit 15kg $10 Change Fee  Non-refundable $120
XXX Airlines | XX005 | Nonstop | Meal 150 250 00 Fare ClassA "' Luggage Limit 20kg Free Change Refundable
15:00 AAA — BBB 16:00 $ $ $

Note. After a customer has entered search data, such as origin AAA, destination BBB, and date, in the website’s
search engine, the website displays the available combinations of itinerary and cabin (left panel). If the customer
clicks on a combination of itinerary and cabin, e.g. the first itinerary in the Economy cabin with a price of $50, the
website displays all the available fare classes for this combination of itinerary and cabin, with their corresponding

booking rules and prices (right panel).

F.2. Booking and Availability Data

We received individual passenger-level ticket booking data, including booking time and channel,
as well as periodic (typically daily) snapshots of the assortments of available products, from the
airline. For most bookings, the assortment of available products at the time of the booking can be
inferred. For each itinerary, the booking and availability data covered a three-month period before
the departure time. There was sufficient diversity in the offered assortments over this booking horizon
to estimate choice models including the no-purchase alternative. To represent correlation between
booking time and customer preferences, we partitioned the booking horizon into 200 intervals based
on combinations of factors such as weekday /weekend, work /off-work hours, and the number of weeks
before the departure time; we then calibrated different price sensitivity and booking rule sensitivity

parameters for different intervals to account for time-varying preference behavior.

F.3. Competitors’ Booking Data

There were three major competitors in the market that we considered. We obtained booking data
of all three competitors, some of which was collected by one of the airlines and some of which was
purchased by the airline from a Global Distribution System (GDS). We also obtained availability

data of the products offered by all three competitors, which was collected by the same airline.

F.4. Demand Model Calibration

Using the booking data and availability data of the airlines competing in the market, we calibrated
the demand models for this project. The demand models consisted of two parts: the arrival process
of potential customers, and the customer choice model. The demand models were calibrated using

maximum likelihood estimation.



