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Abstract—In order to develop custom controllers intended to
operate vehicles on a live highway, a series of data collection-
focused tests were performed at increasing stages of complexity.
Modern vehicles with features like Adaptive Cruise Control
(ACC) feature a rich set of sensors and drive-by-wire mech-
anisms. The presented stages of data collection begins with the
analysis of raw data provided by various vehicles, and eventually
results in spoofing Controller Area Network (CAN) protocols for
sending control commands to operate a vehicle. This paper covers
the data and technical efforts needed at various stages. The raw
data and tools to plot the data are also publicly available.

Index Terms—datasets, autonomous vehicles, traffic, control
systems

I. INTRODUCTION

The data described in this document covers the development
evolution of an experimental vehicle platform for control
experiments. Many modern vehicles are equipped with sensors
that can provide rich data (such as radar data) when tapping
into the vehicle’s infrastructure [1]. Such vehicles use these
sensors for sophisticated behaviors like Adaptive Cruise Con-
trol (ACC), and further tapping into these vehicle’s network of
sensors and actuators can enable custom vehicle control [2].
The data here presents the journey of from safely gathering
data, to decoding data, to characterizing the system’s response,
to creating custom cruise controllers using a Toyota Rav4 and
Raspberry Pi.

Modern vehicles mainly use a Controller Area Network
(CAN) bus to let electronic sub modules communicate with
one another [3] [4]. There has been a tendency for manufac-
tures to have all electronic modules in a car communicate over
this bus, including engine diagnostics, cruise control units, and
headlamps [5]. Because the CAN protocol is an open standard,
off-the shelf devices are able to read and send information over
the CAN bus [6].

Though the CAN protocol is an open standard, the data
shared between modules is typically proprietary, due to reasons
such as trade secrets or concern for safety. Manufacturers

will typically not disclose information on the design of their
controllers, sensor interpretations, nor the handshaking needed
to operate submodule states. Reverse engineering efforts are
then needed to build custom modules that can interact with
various Original Equipment Manufactured (OEM) modules.
Some companies such as Comma.ai have entered this space by
selling hardware that can connect to a vehicle’s infrastructure
and inject their own control commands.

The data gathered here presents the journey from decod-
ing data to building custom cruise controllers. The vehicle
of choice is a Toyota Rav4 due to the existing Comma.ai
hardware. The solutions from comma.ai however do not fully
meet the needs of control and sensing for this project. Though
comma.ai is capable of getting data and controlling vehicles,
the open-source software does not provide the performance of
data collection nor interfaces for advanced control that could
track velocity trajectories for applications such as traffic wave
dampening [7], [8]. Therefore building on comma.ai existing
hardware was needed to ensure data integrity so that data could
correctly drive development of custom control.

The data presented here is a curated set from six ex-
periments that were instrumental in the development of a
controllable vehicle. There were other experiments performed
however the results are similar from those presented. Each test
represents achieving an important milestone in development
cycle.

II. HARDWARE SETUP

Retrofitting a vehicle for data collection and control is
possible through the use of some off-the-shelf hardware. One
necessity that manufacturers have integrated into vehicles since
1996 is the Onboard Diagnostics (OBD) port [9]. The OBD
and newer OBD-II port have been needed by vehicle emission
regulation standards. Typically, the OBD port is intended for a
limited set of readable information through the Parameter ID
(OBD-PID) protocol [6]. Separate CAN busses will exist in a



Fig. 1. Connections of the Comma.ai Panda.

vehicle to handle subsets of data communication. The OBD-
II has a specialized CAN bus that does not share low-level
messages from all devices. Most off-the-shelf CAN devices
for vehicles are in the form of OBD-II readers. The OBD-II
does not meet our use case of the need to read live information
of specific sensors, in a timely manner, while also allowing
custom control.

The limitations of pure OBD-II readers have opened a space
for some companies to build devices that can interact with
the low-level CAN busses. Comma.ai provides such hardware
and has provided software and firmware as open-source. One
module provided by Comma.ai, the Panda, is able to tap into
the CAN bus at two points to gather information and inject
CAN messages. The Panda can then translate messages to a
computer through USB.

Each Panda has three CAN peripherals for bus connections.
One of these is connected to the OBD-II port to gather high-
level diagnostic information such as the Vehicle Identification
Number (VIN). The other two CAN peripherals are attached
between an ACC specific module in the vehicle and rest of
the CAN network. This connection is what allows the Panda
to block messages form being sent in order to send custom
messages. Similarly, the ACC module needs information about
the vehicle’s following distance, so this point of connection
provides important low-level information for the design of a
custom ACC.

Scalability is an important factor, driven by research goals to
have coordinated driving of perhaps hundreds of cars to carry
out energy-savings control control. Even though the panda is
an off-the-shelf unit that meets our needs, it still requires a
computer to be connected with sufficient storage space for
collection and computational power to run custom controllers.
Fortunately a Raspberry Pi 4 is an inexpensive and ample
solution for our needs. Figure 1 shows how all the pieces fit
within a vehicle.

Though Comma.ai provides software that can run on a
Raspberry Pi, we quickly discovered that there were missed
packets of data from the CAN bus. The order of missed packets
was around 50%. The provided code was written in Python
which has a large overhead. This resulted in the development
of a high-speed C++ library coined Libpanda, with a targeted
focus to run on a Raspberry Pi [10]. In doing so we were able
to capture all CAN data while reducing the CPU usage from
100% to 30%. Libpanda also reads the GPS module built into

the Panda and logs all GPS data. Other features were also
added to libpanda, such as the ability to synchronize the Pi’s
system clock with GPS time, since the Raspberry Pi does not
have a battery for time keeping and will typically be away
from a network to sync time over a Network Time Protocol
(NTP) server.

To gather data in a streamlined manner, a set of scripts
have been included along with the libpanda package to au-
tomatically upload data gathered from experiments. Figure 2
showcases the lifecycle of a data collection experiment, from
the Raspberry Pi boot from boot to the car shutting down.

Fig. 2. The lifecycle of a data collection experiment

This data is uploaded to CyVerse, a hub catered towards data
science for data storage and data processing [11]. CyVerse can
host data and tools and allow collaborators to engage with
the data. Similarly, data and tools can also be published so
that anyone can use the data in their research. Tools also aid
in reproducing results from gathered data. All data presented
here is publicly available on CyVerse.

The Python-based package Strym has also been developed
in conjunction with Libpanda for the analysis of raw CAN
and GPS data [12]. The plots shown in this paper use Strym.
Plots are constructed directly from raw CAN data using a
CAN Database (DBC) file, which has a set of descriptors
for decoding data. Strym can run in Jupyter notebook, and
CyVerse has the ability to host a notebook instance so data
may be analyzed directly from the servers without the need to
download data files.

III. TEST 1: RADAR DATA VALIDATION

The first set of tests we conducted was in Nashville. We
treated the Panda in a read-only state, so that the vehicle could
operate normally. A Panda was still used in this test as opposed
to a normal OBD-II reader since the main focus was to gather
data pertaining to the front radar sensor. Though the Panda



Fig. 3. Reconstructed lead speed based on CAN bus messages of follower vehicle from Test 1

can intercept signals form the CAN bus, an internal safety
configuration of the Panda only allows signals to be sniffed.
This test was performed on live roads around Nashville, but
to ensure that data could come from a leader vehicle under
partially controlled conditions, a known driver drove a Honda
Pilot. This would reduce the number of unexpected events in
the test such as cut-ins or exceeding the speed limit. similarly,
the Honda was also equipped with data-collection hardware
to check the process of aligning data. A dashcam was also
equipped to provide visual data validation in the instance of
unexpected events causing potentially anomalous looking data.

• To determine if the follower car (Rav4) can measure the
leader car (Honda Pilot)’s velocity reliably.

• To develop a dataset for later work on decoding radar
messages from leader car (Honda Pilot).

• To create alignment algorithm for aligning CAN bus
timeseries data obtained from multiple sources – namely
the leader and the follower car.

• Types of Vehicles: Honda Pilot (leader) and Toyota Rav4
(follower)

• Dashcam footage used to verify vehicle data
• Location: Nashville, TN, clockwise around Downtown
• Date: July 8, 2020

A. Results

This data served to decode radar messages from the raw
CAN data for what the car reports as a ”leader distance” and
”radar tracks”. Figure 4 Shows dashcam footage overlaid with
post-processed radar data, validating successful decoding of
radar data. This demonstrated the point cloud data provided
by the raw radar sensor lines up with the leader vehicle and
other object on the road, including vehicles in other lanes and
passing structures like barriers. .

Fig. 4. Dashcam footage with post-processed radar decoding

IV. TEST 2: RADAR DATA WITH OVERHEAD CAMERAS

To provide further validation of radar data and time syn-
chronization, while also validating architectures of another
parallel project, a similar experiment was repeated under a
particular section of I-24 in Nashville called the Testbed. The
Testbed encompasses multiple overhead cameras that capture
the highway in 4K resolution, useful for measuring all vehicles
on the road, not just vehicles equipped with Panda hardware
and ACC. To expand upon the dataset, an additional vehicle
was included in the front of the platoon.

In addition to measuring leader distance, an important state
that can be used in control laws and safety mechanism is
knowing the leader’s relative velocity. This test also served
to measure the leader relative velocity from direct CAN data,
along with inferring relative velocity of non-instrumented
vehicles on the Testbed.

• Create a 3-vehicle platoon



• Drive under the I-24 Instrumented Testbed (18 cameras
from 3 poles currently operational at that time)

• Types of Vehicles: Honda Pilot (Follower) and Toyota
Rav4 Hybrid (Leader) and Honda Fit (unrecorded Super
Leader)

• Location: I-24, South-southwest of Nashville
• Date: October 13, 2020

A. Results

Fig. 5. Overhead footage with dashcam

Similar to the first test of gathering and aligning data,
figure 6 shows the similar result of aligning speed data in
this experiment. This data not only aids in the development of
the testbed, but further validates our methods of aligning data
from multiple vehicles.

Fig. 6. Speed data aligned from the Toyota and Honda.

V. TEST 3: SPOOFING CRUISE CONTROL COMMANDS

Gearing up for sending control commands requires under-
standing the necessary protocols of various submodules. These
submodules often have built-in runtime verification, so that
errors detected either by value or in the handshaking process
will cause an error that resumes all vehicle control to the
driver, along with an error message. In the case of the Toyota
Rav4, causing such an error will result in an audible chime
along with a ”Cruise Control Malfunction” message. When
this error state of the vehicle’s OEM modules are reached,
all further commands to re-engage control of the vehicle are
ignored until the vehicle is restarted. In order to ensure proper

state handling, this test was performed to validate the operation
of submodules. This protocol has no official documentation, so
ensuring proper submodule handling is the result of reverse-
engineering the runtime verification built into the Toyota Rav4.

• Type of Vehicle: Toyota Rav4
• Location: Tucson, AZ
• Date: February 03, 2021

Test 3 aims to perform a set of actions that should safely
disengage the cruise controller without causing an ACC error.
This happens during normal vehicle operation regularly, for
example when the brake is pressed by the driver when the
cruise controller is active and engaged. In the OEM ACC unit,
the pedals are read through CAN data. If a pedal is pressed, the
acceleration request values need to be set to 0. If the values are
non-zero, then a cruise control fault occurs. This test explored
a set of sequences that were known to potentially cause an
ACC fault if these conditions were not met by a spoofed ACC
module running as C++ code on the Raspberry Pi.

• Control the car using the ROS-based commands from the
Raspberry Pi.

• Check ACC interface state machine for safe disengage-
ment

VI. TEST 4: MEASURING ENERGY USAGE

Part of the overarching goals to create a custom ACC
for vehicles is to reduce the energy consumption with the
controllers. Finding the live fuel consumption rate is therefore
the focus of this test. In tandem, a specialty tool for Toyota
vehicles called Techstream Connects to the OBD-II port, and
can interact with many of the vehicle’s electrical components.
This can be used for mechanics to operate various actuators
like the windows or doorlocks for vehicle service and repair.
Similarly, Techstream can report the fuel rate, much like
other off-the-shelf OBD-II scanning tools. Using an OBD-II
splitter, data can be recorded by Techstream concurrently with
libpanda. Due to technical limitations of the Panda device,
the OBD-II port cannot read fuel rate simultaneously while
having controls enabled, therefore fuel consumption needs ot
be inferred by other CAN messages.

To measure the effects of energy based on driving inputs,
a long, relatively flat section of road was found near Marana,
Arizona. Test 4 performed various drives over this road while
recording data using the splitter.

• Gather concurrent information from both libpanda and
techstream, on a fairly straight road with almost no grade.
Various driving maneuvers to be performed.

• If successful, we would be able to compare data from
Toyota Techstream to data from libpanda under the same
scenario, leading to validation of fuel models, and gradi-
ent information.

• .
• RahulValidating fuel usage prediction model. We devel-

oped a mathematical model for predicting fuel usage
based on speed and acceleration. As this model is an



Fig. 7. Command response due to various step inputs of acceleration and deceleration. The commanded acceleration is shown with the vehicle’s reported
acceleration form the CAN bus, along with the vehicle’s speed.

Fig. 8. From the same data as figure 7, however with the same 1.2m
s2

magnitude step input response overlaid on each other to check for system consistency.

approximation and doesn’t take into account road grade,
the assessment was necessary for model’s validity.

• Type of Vehicle: Toyota Rav4
• Location: Marana, AZ
• Date: 11 February 2021

A. Results

To further validate data, the vehicle speed reported by
Techstream is also recorded to be compared against the speed
CAN messages recorded by libpanda. The combination of
a ground-truth set of fuel consumption data can be used to
compare the proxy data of other known messages provided by
the CAN and GPS data.

VII. TEST 5: SYSTEM CHARACTERIZATION THROUGH
STEP INPUT RESPONSES

In order to build a controller for a system, a model of
the system must be known. A common practice in controller
design for a blackbox scenario is to apply a known input and
observe the system’s response. In the case of the Toyota Rav4,
the stock ACC unit sends a requested acceleration. This is
one message that the Panda can actively block and reproduce.
Important to note is that this is a request, the true acceleration

that the vehicle will perform is based on many factors such as
engine torque at different RPM, current speed, transmission
state, payload, road incline, and many other hidden states of
the vehicle. Typical simple approximation is to treat the system
as a 2nd-order system, which can be easily characterized and
validated from the response of a step input.

• Type of Vehicle: Toyota Rav4
• Location: Marana, AZ
• Date: April 06, 2021

Test 5 applies a series of step inputs at varying initial
conditions of speed, along the same stretch of fairly flat road
in Marana, Arizona. Step inputs were also applied at different
magnitudes and at different initial conditions. According to
documentation of the Toyata Rav4 from Comma.ai, the max-
imum supported acceleration request was 1.5m

s2 and decelera-
tion was −3.0m

s2 . We decided to test the maximum allowable
acceleration, but the reaching the maximum deceleration raised
potential safety concerns in final controller implementations so
characterizing the system under extreme deceleration was not
considered. The set of step responses applied were as follows:

• Starts from 0-2 mph at 0.2, 0.4, ..., 1.2, 1.4, 1.5 m/s2

for 15 seconds



Fig. 9. Checking the vehicle’s dynamics with a custom PID speed controller

• Starts from 0 mph, then sending 5 steps in a row at 0.2,
0.4, 0.6, 0.8, 1.2, 1.5 m/s2

• Starts from 0 mph then sending at 0.2, 0.4, 0.6, 1.2, 1.5
for 15 seconds then the same magnitude but negative for
15 seconds.

• Starts from 10 or 15 mph then sending negative acceler-
ations at -1.5, -1.7

A. Results

This test featured a set of multiple step response exper-
iments resulting in a plethora of data, so only one full
experiment will be shown in this paper. Figure 7 shows a
successful full experiment of running the third set of step
responses, starting at or near a speed of 0, then sending
an acceleration request step response of various magnitudes
followed by an immediate equal negative magnitude. As the
figure shows, there were some issues with commanding the car
from a full stop with small acceleration requests. This is likely
due to not overcoming the static friction of the braking system.
This was very noticeable in the field, so the experiment was
adjusted to bring the car to near 0 speed instead of being fully
stopped. Similarly, large acceleration requests were unable to
be closely met likely due to the mechanical limitations of the
vehicle.

Figure 8 looks at the set of five acceleration/deceleration
requests of magnitude 1.2m

s2 . The initial speed is was a
near 0 in each case with a slight variance. This showcases
the consistency of the vehicle’s response and demonstrates
characteristics that are observable in second order systems,
like overshoot, rise time, and steady-state error.

VIII. TEST 6: PID CONTROLLER VALIDATION

The data gathered from the previous test for system identi-
fication was used to approximate a model of the vehicle based
on acceleration command inputs. With this model in place, a
speed controller was designed, translating a speed set point to
acceleration commands. The format of controller used was a

traditional PID. The benefit of collecting prior system identi-
fication information was the possibility to simulate controller
designs against the model to check for system dynamics.
However, this model is merely an approximation and the only
way to observe its true performance is by integrating hardware-
in-the-loop testing.

• Type of Vehicle: Toyota Rav4
• Location: Marana, AZ
• Date: April 16, 2021

A. Results

Figure 9 shows the result of applying a PID controller to
the Toyota Rav4. The vehicle is only under control through
the custom PID controller when the CRUISE ACTIVE signal
is non-zero. The disengagement occurred based on the driver
re-assuming control of the vehicle through pedal presses,
validated from Test 3 in this paper. Shown are the commanded
and measured acceleration, along with the vehicle’s speed. At
around the time of 300 seconds there is a response due to a
step input of speed into the PID controller set at 15mph and
the initial speed of the car at 0mph. It is also apparent that
the acceleration of the vehicle closely tracks the requested ac-
celeration. Similar to the system characterization experiment,
the true acceleration does exhibit some overshoot and delay
relative to the requested signal which is to be expected. The
speed in this case also overshoots, reaching 17.5mph from a
15mph step input. This is likely either due to integrator windup
or errors or incorrect assumptions in the vehicle’s approximate
second-order model.

IX. CONCLUSION

Upon publication, the processed and aligned data sets, as
well as the software notebooks that produced the included
plots and perform the presented analysis, will be made avail-
able through public license and citeable DOIs for reproduction
by the research community.



The data from these experiments demonstrates the devel-
opment evolution of a self-driving vehicle through means of
off-the-shelf hardware and reverse engineering efforts. Even
though each data set has a targeted set of behaviors that
were desired to be observed, all raw CAN data is available
for post-processing further reverse engineering efforts – even
outside of the intended use case for a future specific large-
scale experiment. By providing access to raw vehicle data and
tools for the analysis and plotting of data, other researchers
may benefit outside of the original intent.
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