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Abstract—This paper experimentally tests an implementation
of a control barrier function (CBF) designed to guarantee a
minimum time-gap in car following on an automated vehicle
(AV) in live traffic, with a majority occurring on freeways. The
CBF supervises a nominal unsafe PID controller on the AV’s
velocity. The experimental testing spans two months of driving,
of which 1.9 hours of data is collected in which the CBF and
nominal controller are active. We find that violations of the
guaranteed minimum time-gap are observed, as measured by
the vehicle’s on-board radar unit. There are two distinct causes
of the violations. First, in multi-lane traffic, Cut-ins from other
vehicles represent external disturbances that can immediately
violate the minimum guaranteed time gap provided by the CBF.
When cut-ins occur, the CBF does eventually return the vehicle
to a safe time gap. Second, even when cut-ins do not occur,
system model inaccuracies (e.g., sensor error and delay, actuator
error and delay) can lead to violations of the minimum time-gap.
These violations are small relative to the violations that would
have occurred using only the unsafe nominal control law.

I. INTRODUCTION

Control barrier functions (CBFs) are used to design control
schemes which are guaranteed to satisfy safety properties [/1]-
[3]. CBFs are employed as supervisory controllers to add
safety guarantees to nominal control laws that are designed
for performance, but do not provide safety guarantees.

A number of works have explored CBFs for controlling
automated vehicles (AVs). In the works [1]], [4]], a minimum
time-gap safety property is proposed and the corresponding
CBF is derived. The resulting CBF safely supervises an
unsafe quadratic program both in simulation and experimen-
tally on scale-model cars [S]. The work [[6] demonstrates
robustness properties when zeroing CBFs (zCBFs) are used.
The works [7]], [8] explore how CBFs can be paired with
reinforcement-learning based controllers to achieve safety on
otherwise unsafe controllers.

This paper explores the problem of applying a zCBF to
supervise an unsafe velocity controller on a full scale commer-
cial vehicle. We implement an unsafe nominal PID velocity
controller to maintain a constant velocity, and supervise it
with a zCBF designed to guarantee a minimum time-gap is
always maintained. The control system is implemented on a
2021 Toyota Rav4 and driven in multi-lane traffic over a two
month span. We log the performance of the zCBF using data
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from the vehicle’s CAN bus including space gap data from the
forward-facing radar unit. We process this data to understand
the extent to which the minimum time-gap safety property of
the zCBF is maintained.

The main contribution of this work is to describe the
performance of a zCBF designed to maintain a minimum time-
gap on a full scale vehicle platform operating in live traffic.
We find that the minimum time-gap safety property is violated
due to two different causes. First, lane changes from other
vehicles cause abrupt changes in the time gap, which can
immediately violate the minimum time-gap by a wide margin.
When these violations occur, the zCBF returns the vehicle
back to a safe state over time. Second, violations can occur
even when following a single vehicle (no cut-in), due to a
combination of system modeling errors. The smallest time-
gap (most violated) observed without a cut-in is 1.17 seconds.
Although the zCBF in implementation does not satisfy the
designed safety property, it significantly improves the safety of
the nominal PID velocity control law, which would otherwise
cause collisions.

The remainder of this article is organized as follows. In
Section [lI} we provide background on CBFs, define the time-
gap safety property, and provide the system model. Section
describes the experimental setup including the hardware and
software implementation. Section [[V|presents the experimental
results of the zCBF operating in live traffic, and in Section
we discuss the findings and highlight future research direc-
tions.

II. PRELIMINARIES AND BACKGROUND

Here we review preliminary concepts related to the design
of CBFs. First, we present background on zeroing control
barrier functions (zCBFs) (see [[1]], [4] for more detail). Next,
we provide the system model, specify the minimum time gap
safety property, and provide the resulting zCBF.

A. Zeroing control barrier functions

Here we describe the use of zeroing control barrier functions
for safe control. Consider the following control affine system:

&(t) = f(z) + g(x)u, (1)

where z(t) € R™ is the system state, f(-) : R™ — R™ are the
system dynamics which cannot be directly controlled, g(-) :
R™ — R™ are the controlled dynamics, and v € R! is a control
input.



Let a safety property by defined as follows:
h(z) = 0, 2)

where h(z) : R® — R! specifies a safe state when non-
negative and an unsafe state when negative. Let C, be the
set of all system states 2z which satisty (2).

Control barrier functions are used to derive control laws
which render the system state forward-invariant with respect
to a specified safety property. This means:

h(z(0) >0 = h(z(t)) > 0,Vt > 0. 3)

If the following condition is met, then forward invariance
of the safety property will be achieved [9], [10]:

h(z) > —a(h(x)),Vx € Cp, 4

where h(x) is the time-derivative of h at a state x, and a(-)
is a class-x function [1]].
More condensed:

h(z) > —a(h(x)),Yo = h(z(t)) >0,¥t>0 (5)

The term /(z) can be calculated using (T):

h(z) = Lyh(z) + Lyh(z) =
(Vh(z), f(x)) + (Vh(z), g(z)u),

where L¢h(z) and Lyh(z) are the Lie derivatives of h(x) with
respect to f(z) and g(x) respectively, Vh(x) is the gradient
of h(x) with respect to x, and (-, -) is an inner product.

By combining (6) and (3), the safery-kernel Kqge(x), which
consists of all control inputs that will achieve forward-
invariance of the safety property, is derived:

ICsafe(x) =
{u: (Vh(z), f(2)) + (Vh(x), g(x)u) = —a(h(z))}

(6)

(7N
If the control input at each state x is chosen from Ky (x),
and h(x(0)) > O then safety is maintained for all following
time.

Condensed:

u(t) € Kaae(z(1))Vt, h(z(0)) 2 0 = h(z(t)) 2 0,Vt >0

®)

B. Using zCBFs for safe control of AVs

System model. For automated vehicle velocity control, we
assume the following dynamics [[11]]-[13]]:

Uf 0 1
t=f(x)+g@u= || =] a |+[0]u 9
S vV — vy 0
Misc:
vy
r=|v |, (10)
S

where z = [vf, v, s] € R? is the system state, vy is the
speed of the AV, v; is the speed of the lead vehicle, s is the
space gap between the AV and the lead vehicle, a; is the
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Fig. 1. Flow chart for the acceleration-based controller used to test the zZCBF
functionality.

acceleration of the lead vehicle, and u € R! is the commanded
acceleration of the AV.

Safety specification. We specify safety as a minimum time-
gap that the vehicle must maintain, following the works [4],
[4], [6]. Given the system model (T0), the minimum time-gap
safety property is specified as:

an

where hrg(z) > 0 is the safety property, and ¢y, is the
minimum time-gap.
We use a linear class-+ function of the following form:

a(h(z)) = kh(x), (12)

hrg(z) = s — tminvy > 0,

where k is a non-negative scalar. This choice leads to the
following safety kernel:

ICsafe,TG (Z‘) =

{u:v —vp —tmint > —k (5 — tmin¥f) }, (13)

which can subsequently be rewritten as a direct inequality
between the control input » and the system state x as:

u < (tl- )(vl —vp) + <tk )(stmm’uf). (14)

In our experimental work, we use parameter values of k£ = 0.1
and ¢,,;, = 2.0s. The time-gap was chosen to correspond with
the common ”two-second rule”, while £ was chosen from
a combination of values examined in other works [4], [6]
and driver comfort levels. Any k > 0 satisfies the forward-
invariance condition in Equation (I2), but differing values
lead to differing responses to changes in the leading vehicle’s
driving, such as how quickly the vehicle recovers back to the
minimum time-gap after a cut-in. It is likely that other values
of k are reasonable.

The nominal velocity controller is a PID cruise control that
maintains a constant speed set by the driver. It is described in
the hardware and software architecture in the next Section.

III. EXPERIMENTAL METHODS AND APPROACH

This section explains how the hardware and software archi-

tecture is set up to send commands to the vehicle, and how
the experiments are structured.
Hardware/Software Architecture. A model-based approach
is used to directly specify the controller designs for both the
nominal controller, and the zCBF. Through the use of open-
source tools [14], [15] and MATLAB’s software synthesis
tools, we deploy ROS implementations in C++.

The nominal controller is a user-set cruise controller that
uses the same interface as the stock adaptive cruise control



{Controller ][ nodel ][ node2 J[ ]

Fig. 2. Summary of the computational architecture of vehicle control on our
platform.

(ACC) (i.e., we use the stock interfaces, but not the stock
control system). The nominal controller records the reference
velocity v, from the stock ACC unit, and outputs the reference
acceleration v through a PID controller, in the form of
Unom = I'(vf,0f,v,) where vy, 0y are as in (I0), and v,
is taken from the stock vehicle ACC unit. The model for I'(-)
is obtained through system identification for purposes of rapid
velocity tracking, with no regard to passenger comfort. As this
controller has no knowledge of v; or s, it is an unsafe controller
that can result in collision if allowed to operate behind a slower
vehicle. This setup helps structurally to separate the behavior
of the nominal controller and the intervention from the safety
supervisor, especially in anticipating what should happen in
common multi-vehicle scenarios on the roadway.

Figure [I] shows the signal flow and node architecture from
the set point reference to the acceleration command sent to
the vehicle. The set point ROS node reads in the set point
from the cruise control system, then passes that value to
the nominal controller. The nominal controller outputs an
acceleration value, which is passed to the zCBF supervisory
controller that bounds the acceleration command sent to the
adaptive cruise control ECU on the vehicle. In this model,
each node operates at a set frequency: 20Hz for the nominal
controller, and 20Hz for the zCBF. Thus there is a worst case
delay of up to 0.1s for data throughput if these models, during
execution, are not perfectly synchronized in their dataflow.
Sending Acceleration Commands. Acceleration commands
are sent to the vehicle using a custom software stack outlined
in Figure [2] including the Comma.ai Black Panda device,
libpanda [14], can2ros [15], and various ROS nodes, all
running on a raspberry pi. To send acceleration commands
to the vehicle, the acceleration commands are intercepted
from the CAN bus by the Panda Black and replaced by
commands from our controller. The vehicle’s stock engine
control unit transforms acceleration commands into brake and
throttle inputs, with dynamics that are outside the scope of
this paper.

Experimental setup and data processing. We implement the
zCBF onto a commercially available Toyota Rav4 and drive
in traffic over the course of two months from December 2021
through January 2022. The drives occur at different times
of the day and on multiple roadways in Nashville, TN. The

majority of the dives occur on freeways, with some additional
drives occurring on other lower speed roadways. In all cases
a trained driver supervised the vehicle and was prepared to
assume control in the event of difficult driving conditions.

Data is recorded from the vehicle’s on-board sensors using
libpanda [14]], and analyzed through strym [16]. The inter-
vehicle spacing and speed-difference are measured using the
vehicle’s radar unit. Sample frequency differences between
measurements are corrected by resampling all data at 10 hz
using a univariate spline technique.

Given recorded data, we extract a collection of distinct
car-following timeseries. Each car following timeseries begins
when a vehicle enters in front of the AV, either through a lane
change into the lane of the AV, or by becoming in range of
the forward facing radar (250 m). The timeseries ends when
the lead vehicle leaves the lane, leaves the range of the radar,
or a new vehicle cuts into the lane with a smaller spacing.
We categorize each car-following timeseries based on if the
timeseries begins with a large violation of the minimum time
gap for example due a cut-in (referred to as initially unsafe car
following), or if the timeseries begins with the minimum time
gap safety property satisfied (referred to as initially safe car
following). For an initially unsafe timeseries, we distinguish
safety violations occurring while recovering from the initial
violation, vs those that occur after the CBF returns the system
to a safe state but then a later violation occurs (still tracking
the same vehicle). This allows us to distinguish between safety
violations due to cut-ins and those due to errors in controlling
the AV to maintain safety in response to the vehicle ahead.

. 1 k
Uemd = MIN(Upom s (t> (v —vy) + (t : ) (5 — tmin¥f))
min min (15)

IV. RESULTS

In this section we describe the results of experimental
testing of the zCBF implementation on a live AV.

Over the collection period 1.9 hours of active control were
measured. 106 total distinct car-following timeseries were
recorded. 55 of these timeseries begin in an initially unsafe
state (e.g., due to a cut-in), while the other 51 timeseries begin
in a safe state.

Figure [3] illustrates a single continuous drive in which
a collection of both initially unsafe and initially safe car
following timeseries are extracted. Car following that begins in
an initially unsafe state (due to cut-ins) are colored red, while
car following timeseries that begin in a safe state are shown in
blue. In freeway driving, lane changes create a mix of the two
types of car following timeseries. The top subplot of Figure 3]
shows measured time-gap (space-gap divided by speed), the
middle subplot shows space-gap, and the bottom subplot
shows relative speed difference (lead vehicle speed minus AV
speed). Gaps in the timeseries correspond to when no lead
vehicle is within following distance, and abrupt changes occur
when a leading vehicle merges in or out of the AV’s lane.
Initially unsafe car following In live traffic, cut-ins that
violate the minimum time-gap safety property are observed.
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Fig. 3. Extracted instances of car following timeseries, split between initially
unsafe (red) and initially safe (blue) car following.

Car following time-series which are initially unsafe due to cut-in
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Fig. 4. Two different responses when an initially unsafe state appears. Left:
the CBF is active and recovers the system to a safe state; Right: the nominal
control is active and the system recovers to a safe state.

These violations are unavoidable by controlling only the AV,
but we are interested in how the AV recovers from these events.

Figure ] shows a comparison between two different initially
unsafe car following timeseries with respect to time gap,
spacing, and speed. The left portion of the plot shows an event
in which a slower moving vehicle cuts-in, causing the zCBF
to intervene and adjust the AV speed. On the right, the cut-in
is from a faster moving vehicle, leading the zCBF to remain
inactive. In both scenarios the supervisory nature of the zCBF
recovers the system state back towards the minimum time-gap.
Initially safe car following. For car-following in which the
timeseries begins in a safe state, violations of the minimum
time-gap safety property are observed. This is likely due to a
combination of modeling inaccuracies (sensor error & delay,
actuator error & delay), and other external disturbances such
as changes in the road grade.

Not all initially safe car following timeseries exhibit vi-
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Fig. 5. Two different responses when an initially state appears. Left: the
CBEF is active and prevents large violations of the safety property; Right: the
nominal control remains active and the system does not violate the safety
property.
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Fig. 6. A distribution of measurements which violate the minimum time-gap
property during approach events.

olations of the safety property. In Figure [3] two different
approach events are shown, with time-gap, spacing, and speed
all plotted. On the left, the AV approaches a slower moving
vehicle and must activate the zCBF to adjust its speed. The
time-gap approaches 2.0 seconds as the AV slows to match the
leader and at times dips below. On the right the AV follows a
faster moving vehicle. Since the lead vehicle never nears the
minimum time-gap boundary the nominal speed controller is
allowed to stay active.

We consider measurements across all initially safe car-
following timeseries. In initially unsafe timeseries, if the
system recovers the system back to a time-gap greater than
2.0 seconds, we add all following measurements from that
timeseries to the collection of initially safe timeseries. Figure [6]
shows statistics across all such initially safe timeseries.

On the left subplot time-gap measurements which violate
the safety property (less than 2.0 seconds) are shown. The
minimum such observed time-gap is 1.17 seconds, meaning
that the safety property was violated by at most 0.83 seconds
across all initially safe timeseries. On the right subplot the
distances by which the safety property are violated are shown.



The largest such violation was 8.7 meters.

Due to cut-ins from vehicles in adjacent lanes and modeling
inaccuracies/external disturbances violations to the minimum
time gap safety property are observed. Despite this, the imple-
mented zCBF was able successfully stop the nominal control
law, which focused only on speed, from colliding with other
vehicles.

V. CONCLUSIONS AND FUTURE WORK

This work experimentally tests an implementation of a ze-
roing control barrier function designed to maintain a minimum
time gap on a full scale automated vehicle operating in traffic
on freeways and other roads. We observe 55 cut-in events that
immediately violate the minimum time headway. The zeroing
CBF returns the vehicle to a safe state in all instances. We
observe other violations of the safety property that are not
possible if the assumed system model is error free. These
violations are likely due to a combination of sensor, actuator
errors, and external disturbances.

In our future work, we are interested to explore if more
accurate system models that account for, e.g., actuator de-
lay, are implementable on real vehicle platforms. A current
challenge is that such models tend to require higher order
information from the lead vehicle that may be difficult to
estimate from radar data. Understanding the practical limits
of safety guarantees on experimental platforms remains an
important future direction.
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