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Abstract—Energy is an essential, but often forgotten aspect in
large-scale federated systems. As most of the research focuses
on tackling computational and statistical heterogeneity from
the machine learning algorithms, the impact on the mobile
system still remains unclear. In this paper, we design and
implement an online optimization framework by connecting
asynchronous execution of federated training with application
co-running to minimize energy consumption on battery-powered
mobile devices. From a series of experiments, we find that co-
running the training process in the background with foreground
applications gives the system a deep energy discount with
negligible performance slowdown. Based on these results, we first
study an offline problem assuming all the future occurrences of
applications are available, and propose a dynamic programming-
based algorithm. Then we propose an online algorithm using
the Lyapunov framework to explore the solution space via the
energy-staleness trade-off. The extensive experiments demon-
strate that the online optimization framework can save over
60% energy with 3 times faster convergence speed compared to
the previous schemes.

Keywords-Asynchronous federated learning; on-device deep
learning; energy-efficiency; power-aware online optimization.

I. INTRODUCTION

Our planet is in danger. Among a variety of causes, AI

plays an unequivocally negative role to accelerate the emis-

sion of carbon dioxide and irreversible climate change. As

deep learning is increasingly deployed in large-scale distribut-

ed systems, their energy footprint is growing at an unprece-

dented, breathtaking rate [1]. Recently, Federated Learning
rises as a promising computing paradigm that allows par-

ticipants to learn a collaborative model in privacy-preserved

manner [2]–[5]. However, by pushing neural computations to

the multi-core CPUs [7], its energy implication is far from

clear on battery-powered mobile devices [8]: high-intensity

neural computation quickly drains the battery and frequent

charge/discharge also shorten the battery lifetime, and their

disposal ultimately becomes an environmental liability.

The classic federated learning originates from the principles

of synchronous Stochastic Gradient Descent (Sync-SGD) in

cloud computing, where all the participants proceed in lock-

step and their parameters are averaged at the parameter

server. It is well-known that such simple migration is subject

to the computational heterogeneity in mobile environments,

vastly due to the segmented mobile hardware market and

* The corresponding author.

vendor-supplied drivers. Worst-case stragglers (slowest work-

ers) could be orders of magnitude slower than the average

execution whereas the majority of the computing power is

underutilized, especially when the stragglers are experiencing

heavy thermal throttling and user interference [6]. Further,

Sync-SGD does not provide the temporal flexibility of coor-

dination and slow convergence further exacerbates the energy

consumptions in the system. Asynchronous training (ASync-

SGD) is a competitive solution to tackle computational het-

erogeneity [9] but its potential is yet to be fully explored in

federated learning [13]. ASync-SGD allows fast participants

to proceed in lock-free steps while the global parameters

are exchanged and kept with the most updated local ones.

Without such barrier from the stragglers, more updates can

be made and the wall-clock convergence time is reduced.

Unfortunately, most of the research in Sync-SGD [2]–[5] and

ASync-SGD [9]–[11], [13] lie in the confined areas of ma-

chine learning and optimization theories, but the interaction

to the underlying system is not fully explored, particularly for

achieving energy-efficient computation.

In this paper, we aim to optimize the energy expenditure

of federated learning tasks by taking advantage of application

co-running opportunities and asynchronous execution. The

design stems from the pervasive ARM CPU microarchitec-

ture, which features the big.LITTLE cores [14] to tackle

multi-tasking with energy-efficiency: the big cores of high

throughput for foreground applications and the little cores of

low power consumptions for system and background process-

es. To avoid interfering with the normal usage, the training

threads can be designated as a background service and only

called once a set of conditions such as networking, battery

energy conditions are met. As validated in our experiments,

once the training threads of high parallelization are running

in the background (dispatched to the little cores by the

kernel scheduler), simultaneous execution of a foreground

application gives the entire system a deep energy discount

(about 30-50%) compared to running the foreground appli-

cation and training separately, with negligible performance

impact measured by Frame per Second (FPS). Combined with

ASync-SGD, it gives the flexibility to defer gradient updates

until a foreground application takes place.

A seamless integration of the system dynamics with the

upper-level machine learning algorithm faces tremendous

challenges. The success of asynchronous training relies on

well-managed staleness in the system, that the stale updates
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from the stragglers should not diverge too much from the

current directions [10], [13], i.e., the staleness is bounded

with low variance. Hence, the first challenge comes from the

inevitable staleness in the system while waiting for better

co-running opportunities, not only because of the difficulty

to quantify gradient staleness, but also how to formulate

them into the optimization. Second, since the patterns and

future occurrences of user application are unknown, the

optimization need to make real-time decisions based on

the known priori. Third, how those control decisions would

propagate upwards and affect the global model convergence

and wall-clock training time. To tackle these challenges, we

first study a basic offline scheduling problem assuming the

access to all the future occurrences of the applications. We

adopt a recently proposed metric called gradient gap to

measure the difference between model parameters in their

norm magnitude [30], [31], and formulate the offline problem

into a Knapsack Problem [26], with a pseudo polynomial-time

dynamic programming solution. Then we further propose an

online optimization algorithm based on the Lyapunov frame-

work [27] to explore the two-way trade-off between energy

and staleness, which in turn implies convergence speed and

wall-clock training time. The framework is proved to achieve

the [O(1/V ),O(V )] energy-staleness trade-off, which only

requires the current information of system dynamics and

queue backlogs.

The contribution of this work is many-fold. First, motivated

by a series of key findings in real experiments, we leverage

ASync-SGD and system-level opportunities for energy op-

timization of federated training tasks on edge devices. To

the best of our knowledge, this is one of the few works

that integrate the high-level machine learning algorithms with

the low-level system dynamics on consumer’s edge devices.

Second, we formulate both offline and online optimization

problems and design an efficient online scheduler while

ensuring bounded staleness in the long term. Finally, we

conduct extensive evaluations on a mobile testbed with 4

types of devices using the CIFAR10 dataset [33]. The re-

sults demonstrate over 60% energy saving compared with

FedAvg [2] and 3× faster convergence speed.

The rest of the paper is organized as follows. Section

II discusses the background and related works. Section III

motivates this work and defines the system model. Sections

IV and V describe the framework for offline and online

optimization. Section VI implements the framework on edge

devices. Section VII evaluates the proposed framework and

Section VIII concludes this work with future directions.

II. BACKGROUND AND RELATED WORKS

A. Asynchronous Federated Learning

Sync-SGD. The state-of-the-art Federated Learning estab-

lishes on synchronous SGD, where local workers proceed

with a barrier until all the workers finish their local train-

ing [2]. As pointed out in [3]–[5], this simple migration is

subject to extensive heterogeneity in mobile edge systems

due to the diverse computational capability, network con-

nectivity/bandwidth and user behaviors. [3] develops a new

aggregation rule to allow local variations such as the number

of epoches and optimizers used by different participants. [5]

analyzes the convergence instability due to stragglers and

proposes a mechanism to correct those diverging gradient

updates. [4] adds a proximal term to the objective to manage

heterogeneity associated with partial information, when the

straggler’s updates have been dropped out. These works aim

to improve the computational efficiency of Sync-SGD while

preserving the statistical stability.

ASync-SGD is a natural way to tackle computational

heterogeneity, and its original version can be traced back to

HOGWILD! [9] in multicore systems. Multiple threads are

allowed access to the shared memory and update the model at

will. Considerable efforts have been devoted to understanding

and mitigating staleness [10], [11]. [10] adopts the Taylor

Expansion and Hessian approximation to compensate the

delay from stale gradients, while avoiding the complexities

from the high-order terms. [11] introduces a regularized term

to reduce the variance due to staleness. Though asynchrony

introduces race conditions, it is proved to achieve optimal

convergence rate at a much faster speed [9], mainly due to

more number of updates are now being conducted. Some

works also partially contribute the statistical efficiency to the

implicit momentum introduced from the stale gradients [12].

Momentum plays an important role to facilitate conver-

gence. The update is simply an exponentially weighted

average that continuously adds a portion of the previous

momentum vector vt−1 to the current vector vt plus the

fraction from the current gradient vector st,

vt = βvt−1 + (1− β)st, θt = θt−1 − ηvt (1)

then the model parameters θt are updated according to the

learning rate η. Here, the stale gradients can be thought as the

previous gradient vectors vt−1 that can dampen oscillations

along the way to the minima. Thus, it is interesting to see

that the benefits and drawbacks of staleness actually co-exist,

but such contradiction and its theoretical implication are still

not fully understood at this stage [13]. Most of the federated

research aims at improving the Sync-SGD or ASync-SGD

algorithms, but overlooks important aspects from the system,

such as energy-efficiency on battery-powered edge devices.

This work differs from a large body of existing works to

combine ASync-SGD with system-level opportunities and

reduce energy footprint in federated systems.

B. Energy Optimization

The efforts of energy optimization on mobile devices has

been revolving around software and hardware components to

elongate battery lifetime, e.g., dynamic voltage and frequency

scaling, resolving “energy bugs” from unexpected energy con-

sumption [16] and coalescing packets to reduce tail energy on

the wireless network interface [17], [18] using the Lyapunov

framework [27]. For on-device training [7], delegating the

long-running, training workloads as a background service is
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a viable way to avoid interrupting normal usage. However,

its performance is still unclear since the mobile systems are

built with event-driven, user-centric designs to render the best

performance for the foreground applications. Fortunately, the

big.LITTLE architecture extends the capacity to handle con-

current low-intensity workloads on the more energy-efficient

cores [14]. Since a running foreground application would

have already activated shared resources on the big cores

and the background processes are typically dispatched to the

little cores, co-running training with applications could take

advantages of such energy disproportionality [19]. Similar

to packet coalescing [17], [18], this idea of task bundling

dates back to piggyback sensing activities with applications

such as web browsing and phone calls [20]. However, these

early works cannot be readily applied to federated learning

to achieve the energy-staleness trade-off as well as bounded

staleness with statistical stability. The closest works to ours

are [17], [18] that adopt the Lyapunov framework to achieve

energy-delay trade-offs. This paper takes a step forward to

consider gradient staleness induced by delayed execution

and attempts to fill the gap between the machine learning

algorithms and mobile systems for optimal energy efficiency.

III. MOTIVATION AND SYSTEM MODEL

A. Preliminary Experiment

We motivate the design by conducting some prelimi-

nary power measurements on the HiKey 970 Development

Board [21] and Pixel2 smartphone (see Sec. VI for im-

plementation details). Assuming the user is going to run

an application at a certain time, we compare the power

consumption of two approaches: 1) schedule training as a

service in the background, independently from the upcoming

application (separate). 2) schedule the training task to ex-

ecute together with the foreground application (co-running)

and the application also stops when training finishes. Since

applications have diverse resource demands and patterns of

user interactions, we choose some popular applications from

Google Play as shown in Fig. 1. To verify that co-running

does not lead to noticeable slowdown, we also perform some

experiments on Pixel2 to see the rendering effects perceived

by the user as measured in Frame Per Second (FPS) in Fig.

2. The important observations are summarized below.

Observations 1. Compared to separate scheduling, co-

running offers 35-50% energy saving. We notice that the

little cores designated for executing the training task typically

have 95-98% utilizations, whereas the big cores have 30-50%

utilization depending on the foreground application.

The energy saving originates from the asymmetric CPU

microarchitecture. Though the big/little core clusters have

their own cache hierarchies, the memory bandwidth is shared.

If the memory resource is already activated by the highly

paralleled neural operations on the little cores and kept at

certain power state, foreground applications executed on the

big cores should not elevate the power state too much on

the shared resources. Thus, co-running typically offers a

substantial energy saving compared to separate executions.
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Fig. 1: Power consumption of different schedules (a) Pixel2

(b) Hikey970 Dev. Board.
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Fig. 2: Performance impact measured by FPS while co-

running training tasks with (a) Angrybird (b) Tiktok.

This is also validated by more experiments with the homo-

geneous cores in Nexus 6 device as resource contention on

the same cluster degrades the energy saving percentage (see

more details in Sec. VII).

Observations 2. Co-running might lead to slowdown to the

training tasks depending on the intensity of the foreground

applications. For some lightweight applications such as news

and web browsing, the training task does not exhibit any

slowdown; for intensive applications such as gaming, we

notice about 10-15% slowdown due to resource contention

since a higher priority is given to the foreground applications

by design. However, co-running still provides an overall

energy saving despite of slightly elongated execution time.

Observations 3. Co-running does not have noticeable

slowdown for the foreground applications, as the average FPS

stays steadily around 60 and 30 frames/s shown in Fig. 2.

B. System Model

A device pulls the current model from the parameter

server when it becomes available depending on the network

condition or battery energy. Training is either immediately

scheduled or postponed until an application co-running oppor-

tunity. If the decision is co-running, the power consumption

is P a′
i on the i-th device; otherwise, separate executions of

training and application take P b
i and P a

i respectively1. The

execution time of training is di at the i-th user. For simplicity,

it is assumed that the application would last for the same

time duration of the training task. After the local epoch is

1The power consumption of training is stable as the CPU typically stays
at the maximum frequency during training. For applications, the power
consumption fluctuates due to user interaction and frequency scaling. Thus,
we measure the average power consumption as shown in Table II.
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Fig. 3: Scheduling and gradient staleness in ASync-SGD.

finished, the model is pushed to the server to update the global

parameters and ready to be downloaded by other participants

in the following time slots. We formally define the lag and

gradient gap to quantify gradient staleness.

Definition 1. (Lag) The lag lτ is defined as the number of

updates from other users that have been made to the global

model within the time interval [t, t + τ ]. t is the initial time

when the user receives the model from the server and t +
τ is the time that the user finishes training and applies the

parameters to the global model.

Sync-SGD guarantees the gradient aggregations are aligned

in lock-step so lτ = 0. For ASync-SGD, Fig.3 shows an

example of three users i, j, k and the control decision for i is

co-running at time ta when the application arrives. Users j
and k immediately perform training without waiting for the

applications and finish before t + τ . Therefore, during the

time interval of [t, t+τ ], there are lτ = 2 updates made from

other users j and k to the global model, whereas the model

update at t + τ is computed from a stale version at time

t. Using the metric of lag alone cannot precisely quantify

the difference between the two updates. Thus, we introduce

another definition.

Definition 2. (Gradient Gap) The gradient gap g(t, t+ τ)
can be calculated by the norm difference of the parameters

θt and θt+τ [30], [31],

g(t, t+ τ) = ‖θt+τ − θt‖2 , (2)

We adopt the efficient Linear Weight Prediction [32] to

estimate the global parameter θt+τ in the future time t+ τ ,

θt+τ = θt − η
1− βlτ

1− β
vt. (3)

η is the learning rate. β and vt are the momentum coefficient

and vector defined in Eq. (1). Plugging Eq. (3) into Eq. (2),

we have

g(t, t+ τ) =

∥∥∥∥η 1− βlτ

1− β
vt

∥∥∥∥
2

. (4)

IV. OFFLINE SCHEDULING PROBLEM

In this section, we first study an offline solution assuming

that all application occurrences are known, which serves as

an optimal solution and baseline for the online algorithm

proposed next.

Problem Formulation. Energy optimization aims to

achieve two conflicting goals to maximize the energy saving

and avoid staleness. Given the application arrivals, the goal

is to maximize the sum of energy saving from all the users:

decide whether to co-run training with application for each

user. Denote the number of users by n. For the i-th device,

the energy saving si = P b
i + P a

i − P a′
i if the decision is to

co-run with application (decision variable xi = 1); otherwise

the energy saving is 0 (xi = 1).

P1: max

n∑
i=1

sixi (5)

s.t.
n∑

i=1

gi(ti, ti + τi)xi ≤ Lb, (6)

xi ∈ {0, 1}. (7)

Constraint (6) imposes that the sum of gradient gaps is

bounded by Lb and (7) makes xi 0-1 valued. This can be

considered as a Knapsack Problem [26], which maximizes

the total value of items under a weight capacity and our

problem maximizes the energy saving under the staleness

bound Lb. Since the problem is NP-complete, it can be

efficiently solved by utilizing the optimal sub-structure with

dynamic programming. The equation of the maximal energy

saving Si(y) is,

Si(y) =

⎧⎪⎨
⎪⎩
Si−1(y), 0 < y ≤ gi(ti, ti + τi)

max
{
Si−1(y), Si−1(y − gi(ti, ti + τi)) + si

}
,

gi(ti, ti + τi) ≤ y ≤ Lb.

(8)

A key difference from the original Knapsack solution is that

gi(ti, ti + τi) is computed based on the lag lτi , which in

turn, depends on the decisions of other users - this creates a

looping situation. We know that, in the worst case, the lag lτi
is bounded by n − 1 because the rest of devices could have

all made their updates within τi. To tighten this, we further

reduce this value as described in the next lemma. This is

because given all the beginning time, application arrival and

training duration, for each device, some of the rest devices

should be out of the training interval and do not count towards

the lag. This allows us to obtain a tighter upper bound on lτi
without knowing the control decisions in advance. As long as

this upper bound is within Lb, we have a feasible, sub-optimal

solution.

Lemma 1. Given the beginning time ti, application arrival

time tai and duration of training di for user i, the lag for i is

bounded by,

lτi ≤
n−1∑

j=1

(
1(taj + dj ∈ [ti, ti + di] ∨ [tai , t

a
i + di])

∨ 1(tj + dj ∈ [ti, ti + di] ∨ [tai , t
a
i + di])

)
, (9)

in which ∨ denotes the logical “or” of the two time intervals

and 1(·) is one if the training ends in one of the time intervals.

Proof: It can be proved by considering all possible

decisions for each pair of i and j = {1, · · · , n − 1}. For

i, it has two scheduling possibilities: 1) execute training at

ti and end at ti + di (the interval of [ti, ti + di]); 2) co-

run training with application arrival at tai and end at tai + di
(the interval of [tai , t

a
i + di]). Meanwhile, any other j has the

similar possibilities to end at tj + dj or taj + dj . If any of
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Algorithm 1: Offline Algorithm

1 Input: app. arrival time ti, training execution di ∀i,
zero-valued matrix S of size n× Lb

2 Output: scheduling decisions xi and maximum energy saving.
3 Initialize S0(y) = 0, y ≥ 0.
4 for i = 1 to n do
5 for j = 1 to Lb do
6 Estimate gj(tj , tj + τj) with Eq. (9) and Eq. (4).
7 if y ≤ gi(ti, ti + τi) then
8 Si(y) ← Si−1(y).

9 else
10 Si(y) ←

max
{
Si−1(y), Si−1(y − gi(ti, ti + τi)) + si

}
.

these intervals from i and j has overlaps, the gradient gap is

increased by one and summed over all n− 1 devices.

Based on Lemma 1, the offline solution is summarized in

Algorithm 1 with a time complexity of O(nLb), and will

serve as a baseline for the online algorithm discussed next.

V. ONLINE SCHEDULING

Offline scheduling assumes the future application arrival

as a priori. In this section, we propose an online scheduling

with the Lyapunov framework that only relies on the current

observation. We consider a task queue for the entire system

as defined below.

Definition 3. (Queue Dynamics). The task queue represents

the number of users waiting to be scheduled. The arrival of

users can be considered as a random process A(t). The queue

backlog will increase by A(t) = n if a number of n users are

ready to start training at t. If m users finish their training in

a time slot, the queue backlog is reduced by b(t) = m.

Assume time is equally slotted with the length of td.

The system makes a control decision α(t) at time t. The

energy consumption Pi(t) of the i-th device depends on

how training is scheduled and the current application status

s(t) = {‘app’, ‘no app’}, i.e., Pi(t) = Pi(α(t), s(t)):

Pi(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P a′
i td, α(t) = ‘schedule’, s(t) = ‘app’

P b
i td, α(t) = ‘schedule’, s(t) = ‘no app’

P a
i td, α(t) = ‘idle’, s(t) = ‘app’

P d
i td, α(t) = ‘idle’, s(t) = ‘no app’.

(10)

According to the experimental measurements, P a′
i > P a

i >
P b
i > P d

i . The corresponding service rate for i is2,

bi(t) =

{
1, α(t) = ‘schedule’

0. α(t) = ‘idle’
(11)

and the service rate in the system is b(t) =
n∑

i=0

bi(t). The

gradient gap is,

gi(t, t+ τi) =

⎧⎨
⎩
∥∥∥∥η 1−β

ldi

1−β
vt

∥∥∥∥
2

, α(t) = ‘schedule’

gi(t− 1, t+ τi − 1) + ε. α(t) = ‘idle’
(12)

2To simplify the analysis, we take an approximation here to make the
actual service and deduction of queue length at t+ di to be effective at t.

If the decision is to schedule training, the gap is computed

using Eq. (4) with lag ldi
during the execution time of di;

if the decision is to remain idle, the gap is cumulative from

the previous slot plus a small time-averaged gap increment

ε, which estimates the impact on the gradient gap for each

idling time slot. The sum of gradient gaps is G(t, t + τ) =
n∑

i=0

gi(t, t+ τ).

Problem Formulation. Our goal is to minimize the time-

averaged energy consumption of training tasks in the system

of n users,

P2: lim sup
T→∞

1

T

T∑
t=1

n∑
i=1

E{Pi(t)} (13)

s.t.

lim sup
T→∞

1

T

T∑

t=1

n∑

i=1

gi(t, t+ τ) ≤ Lb (14)

Eq. (14) guarantees that the sum of gradient gaps from all

the participants is bounded in a time averaged sense. P2 can

be transformed into the queue stability problem under the

Lyapunov optimization framework. Given the arrival rate A(t)
and service rate b(t), the queueing dynamics is,

Q(t+ 1) = max
(
Q(t)− b(t), 0

)
+A(t) (15)

with the initial Q(0) = 0. We define a virtual queue H(t) for

constraint (14),

H(t+ 1) = max
(
H(t) +

n∑
i=1

gi(t, t+ τ)− Lb, 0
)

(16)

and the initial H(0) = 0. We concatenate the actual and

virtual queues into Θ(t) = [Q(t),H(t)], define the Lyapunov

function L(Θ(t)) as the queue congestion of the backlogged

training tasks,

L(Θ(t))
Δ
=

1

2
(Q(t)2 +H(t)2), (17)

and the Lyapunov drift function Δ(Θ(t)) as:

Δ(Θ(t))
Δ
= E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (18)

It represents the change in the Lyapunov function in time

slot t representing the scalar volume of queue congestions.

The new optimization problem is to minimize the drift-plus-

penalty:

P3: minΔ(Θ(t)) + V E{P (t)|Θ(t)} (19)

V is the control parameter to balance between energy and

staleness. Following the Lyapunov framework, the key is

to obtain the upper bound of the drift as described in the

following Lemma.

Lemma 2: Given the queue backlogs Q(t), arrival rates

A(t) and service rate b(t) and the gradient gaps, we have the

following upper bound for the drift-plus penalty term,

Δ(Θ(t)) + V E{P (t)|Θ(t)} ≤ B + V E{P (t)|Θ(t)}+
Q(t)E{(A(t)− b(t)|Θ(t)}+H(t)E{G(t, t+ τ)− Lb|Θ(t)}

(20)
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TABLE I: List of important notations of device i.

Notation Definition

P a′
i , P d

i Average power consumption of training/application co-running, and idling.

P b
i , P a

i Average power consumption of separate executions of training and application.
gi(t, t+ τ), G(t, t+ τ) Gradient gap between time t and t+ τ and the sum of gradient gaps from all the devices.
α(t), s(t) Control decision {“schedule”, “idle”}, application status {“app”, “no app”}.

where B = 1
2 (A

2
max + B2

max + G2
max + L2

b) is a positive

constant. The proof can be found in Appendix X.

Our algorithm observes the current queue backlogs of

Q(t), H(t) and application status s(t) to make a decision of

α(t)
Δ
= {‘schedule’, ‘idle’} that minimizes the R.H.S. of the

drift bound Eq. (20), which is equivalent to the objective in

Eq. (19).

min

(
V

n∑
i=1

Pi(t)−Q(t)

n∑
i=1

bi(t) +H(t)

n∑
i=1

gi(t, t+ τi)

)
(21)

This formulation makes online decisions based on the current

observations and does not need a-priori knowledge of the

arrival rates. With the information of application usage, a

centralized implementation can be conducted in O(n) at

the parameter server. However, since application usage are

considered as private and their patterns can be used to

re-identify specific users [28], centralization carries certain

privacy risks.

A. Distributed Implementation

The minimization of Eq. (21) can be achieved in a distribut-

ed manner via appropriate information exchange between the

server and the users. We design distributed implementations

into the Lyapunov framework that can mitigate the privacy

leakage of application usage to the parameter server. In time t,
each user minimizes Eq. (21) from the control decision space

based on status of application usage and queue backlogs, thus

the application usage si(t) is not leaked to the server. In the

last term of Eq. (21), the user computes the gradient gap

gi(ti, ti + τi) according to Eq. (2). If the decision is “sched-

ule”, the number of updates in the time interval of [t, t+ di]
can be supplied by the server with the estimated arrival time

of the running tasks; otherwise, the gap accumulates from the

previous value plus a small increment according to Eq. (12).

Hence, for each user i, the decision making fully depends on

its own status except the lag value supplied from the server,

which reveals little information about application usage com-

pared to the centralized implementation. The procedures are

summarized in Algorithm 2 with a computational complexity

of O(1) at each user and communication overhead of O(n)
at the server.

B. Illustration of Control Decisions

In the objective of Eq. (21), H(t)
n∑

i=1

gi(t, t + τ) can be

viewed as a penalty term when there are backlogs in the

virtual queue. When there is no backlog (Q(t), H(t) = 0), we

only have the first term in Eq. (21) so the control decision

is to always set the device to idle. This matches with the

intuition to wait for better co-running opportunities.

Algorithm 2: Distributed Online Scheduling Algorithm

1 Input: Queue backlogs Q(t) and H(t), control

parameter V , and action space Ω, learning rate η,

momentum vector v.

2 Output: Scheduling decisions ∀i.
3 for i = 1 to n do
4 Send duration di to the server, and receives lag ldi

from the server.

5 Estimate gi(t, t+ τi) with Eq. (4).

6 αi(t) ←
argmin
Pi,bi,gi

V Pi(t)−Q(t)bi(t) +H(t)gi(t, t+ τi).

7 Inform control decision αi(t) to server.

8 Server: Update Q(t), H(t) according to Eqs. (15) and

(16) respectively according to α(t).

No Staleness from the Virtual Queue. There could be

cases that there are queue backlogs in Q(t), but for the virtual

queue H(t), the cumulative gradient gap has not exceeded the

bound Lb, i.e., H(t − 1) +
∑n

i=1 gi(t − 1, t + τ − 1) ≤ Lb.

Hence, H(t)
∑n

i=1 gi(t, t+τ) = 0 and we derive the decision

of,

αi(t) = argmin
αi(t)

{
(V P a′

i t−Q(t), V P a
i t), s(t) = ‘app’

(V P b
i t−Q(t), V P d

i ), s(t) = ‘no app’
(22)

The decision can be made by simply observing Q(t): for

s(t) = ‘app’, the decision is to co-run if Q(t) ≥ V t(P a′
i −

P a
i ); otherwise, the decision is idling. Similarly, for s(t) =

‘no app’, the decision is to execute as a background process

when Q(t) ≥ V t(P b
i − P d

i ) or set to idle otherwise. As a

result, the controller would wait until the queue length reaches

a certain level.

With Gradient Staleness. When H(t)g(t) > 0, the penalty

term H(t)g(t) is active so the control decision accounts for

possible staleness.

αi(t) = argmin
αi(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
V P a′

i t−Q(t) +H(t)
∥∥∥η 1−βlτ

1−β
vt

∥∥∥
2
, V P a

i +

H(t)
(
gi(t− 1, t+ τ − 1) + ε

))
, s(t) = ‘app’(

V P b
i t−Q(t) +H(t)

∥∥∥η 1−βlτ

1−β
vt

∥∥∥
2
, V P d

i +

H(t)
(
gi(t− 1, t+ τ − 1) + ε

))
, s(t) = ‘no app’

(23)

The relevant control decisions can be made by observing

Q(t), H(t) and compute the rest of the values in Eq. (23).
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C. Optimality Analysis

The optimality of the problem is derived in Theorem 1.

Theorem 1. Let L(Θ(t)) defined by Eq. (17) and

L(Θ(0)) = 0. P ∗ is the optimal power consumption. For

constants B, V ≥ 0, the queues of Θ(t) are mean rate

stable and the time-averaged power consumption and queue

backlogs are bounded by:

lim sup
T→∞

1

T

T−1∑
t=0

E{P (t)} ≤ B

V
+ P ∗

(24)

lim sup
T→∞

1

T

T−1∑
t=0

E{Θ(t)} ≤ B

ε1
+

V (P ∗ − P )

ε1
(25)

The proofs are detailed in Appendix X-B. The performance

bounds Eqs. (24), (25) demonstrate an [O(1/V ),O(V )]
energy-staleness trade-off: by arbitrarily increasing V , we can

make B
V → 0 and the time-averaged power consumption close

to the optimal value, whereas the staleness grows linearly with

V .

VI. SYSTEM IMPLEMENTATION

To conduct neural net training on Android, we adopt a Java-

based Deep Learning framework called DL4J [22], which

provides seamless integration with the Android OS. The back-

end neural computations are supported by OpenBLAS cross-

compiled for the ARM platforms. We pre-load the CIFAR10

dataset [33] into the flash storage of the phone and retrieve

in batch size of 20. The Training App is implemented using

the Android JobScheduler framework designed for long-

running operations in the background without interfering with

the foreground applications. Conditions such as networking

connectivity (Wifi/4G), device status (idling or charging)

and execution time window can be specified to offer fine-

grained control. Once the job scheduler is started using

onStart, a new thread is created to initialize the neural

network in the device’s memory. We enable the largeHeap
to give the App 512MB memory to avoid memory errors.

The number of CPU cores designated for background ser-

vices is specified by the vendor, which can be found in

/dev/cpuset/background/cpus. E.g., Pixel2 utilizes

the two little cores and Nexus6P, Hikey970 only run on the

one little core and the rest of the three little cores are reserved

for system background process. Note that the default kernel

(e.g., CPU affinity, priority, frequency scaling) is used and

no root access is required throughout the paper. We set the

number of training threads to 2 or 1 according to the vendor

specifics, because a large value would conversely lead to

potential contentions to keep cache coherence and ultimately

slow down computations.

The Android kernel might kill the background training pro-

cess to save memory and optimize battery lifetime, particular-

ly when the neural network involves intensive computations.

We do not find the service being killed while running LeNet-5,

but introducing more convolutional layers with large filter size

would invoke the automatic background limitation because

those layers are the major resource consumers. In practice,

there also exists a few “diehard” tricks such as escalating

the app priority, service binding, etc [34]. We intend to

incorporate some of these methods in the future, whereas a

fundamental solution to this problem from the Mobile OS is

out of the scope of this paper.
The communication part is handled by the Retrofit Frame-

work from Sqaure [35], which easily packages asynchronous

HTTP requests to the Python-based HTTP server. For Async-

SGD, once a device completes a local epoch, it creates a

Retrofit FileuploadService to upload the local mod-

el of 2.5 MB with meta information (device ID, round

#) to the server. The server replaces the current copy of

the global model upon receiving it. When the device be-

comes available, it downloads the current model using the

FileDownloadService as a starting point for the next

local epoch.

VII. EVALUATION

Testbed/Parameter Settings. The evaluation is conducted

across a dynamic set of mobile devices from different ven-

dors: Nexus 6/6P, HiKey970 Dev. Board and Pixel2.

A. Energy Measurement
First, we measure the energy consumptions of different

control decisions as shown in Table II: training only (1st row

- considering training also as an app), application only (1st

col.) and co-running (2nd col.). To mitigate the chances of

breaking the devices while removing the battery and screen

connectors, we use a combination of software profilers: Trep-

n [23] and Snapdragon Profiler [24] with the Monsoon Power

Monitor [25]. Trepn is an old version for the last generation

of Snapdragon chipsets (Nexus6/6P) and the newer version

of Snapdragon Profiler supports the newer architectures of

Pixel 2. For non-Snapdragon chipset (Hikey970), we directly

power the development board with 12V DC input from the

Monsoon Power Monitor.
We measure the system-wide energy consumption from the

device which includes all the system background threads. To

reduce the variances, we disable all irrelevant applications

that might have processes lingering in the background. We

choose a number of 8 popular applications that users usually

spend considerable time. The percentage of energy saving is

calculated as, 1− Pa′
i ta

P b
i tb+Pa

i ta
(notations from Eq. (10)).

We notice that the newer generations of devices offer

much higher energy saving ratio across all the applications

(30-50%) and a slightly increased execution time due to

contentions of memory bandwidth. However, for the older

chipset such as Nexus 6 with four homogeneous cores, co-

running only offers marginal energy improvements depending

on the application. Some applications even result an energy

surge due to contention of cache resources, which further

leads to CPU throttling and elongated training time. In these

cases, the online controller is expected to avoid co-running.

B. Simulation Evaluation
Evaluation Settings. We set the probability of application

arrival to 0.001 in each time slot, i.e., an average of 1 app
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Nexus6 Nexus6P Hikey970 Pixel2

Apps app co-run time saving(%) app co-run time saving(%) app co-run time saving(%) app co-run time saving(%)

Training 1.8 – 204s – 0.9 – 211s – 7.87 – 213s – 1.35 – 223s –
Map 3.4 3.5 274s 26% 0.5 1.3 225s 3% 8.82 9.42 186s 47% 1.60 2.20 196s 30%
News 1.7 2.2 239s 32% 0.44 1.2 362s -24% 9.17 9.76 210s 43% 1.82 2.40 197s 28%
Etrade 1.4 2.4 236s 17% 0.48 0.96 228s 27% 8.50 9.15 195s 47% 1.72 2.23 206s 30%
Youtube 0.5 1.9 284s -4% 0.53 1.2 220s 14% 9.15 11.45 210s 33% 2.04 2.21 226s 35%
Tiktok 1.6 2.3 296s 18% 1.0 1.1 675s 14% 11.0 11.2 271s 35% 2.37 2.52 212s 34%
Zoom 1.2 2.1 370s 4% 1.4 1.6 340s 18% 7.89 8.53 209s 46% 2.57 3.11 206s 23%
CandyCru 1.3 2.3 997s -39% 0.7 1.3 280s 9% 11.1 11.26 233s 38% 2.89 2.92 199s 34%
Angrybird 2.5 2.8 400s 18% 1.1 1.2 620s 15% 10.1 10.7 200s 42% 2.86 2.88 285s 26%

TABLE II: Averaged energy measurements - battery power (W) and execution time (s) running LeNet-5 of CIFAR10 dataset.
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Fig. 4: Energy consumption and trade-offs (a) Energy consumption vs. V ; (b) Queue length Q(t) vs. V ; (c) Virtual queue

length H(t) vs. V ; (d) Energy-staleness trade-off with different staleness bound Lb.
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Fig. 5: Comparison of convergence speed and gradient staleness (a) trace of gradient gap from Sync-SGD and ASync-SGD and

the proportionality between lag and gradient staleness; (b) convergence speed of different schemes; (c) wall-clock convergence

time to reach different accuracy objectives; (d) trace of gradient gaps from individual users.

arrival for every 1000s. The application is chosen uniformly

randomly from the 8 representative applications with the

running time measured in Table II. We set the number of

users to 25 (equal partition of the CIFAR10 dataset) and

each user randomly picks a device from the testbed. The

total training time is set to 3 hours and each time slot is

1s. We compare the online algorithm against Sync-SGD [2],

offline scheduling (Knapsack Problem) and the fixed policy

of immediate scheduling, which runs the background training

immediately when a device is available regardless of the

application arrivals. We set the look-ahead time window of

Knapsack evaluation to 500s with Lb = 1000, which invokes

the offline algorithm every 500s.

Comparison of Energy Consumption. Fig. 4(a) compares

the energy consumption of different scheduling policies.

Immediate scheduling serves as an upper bound of energy

consumption as it quickly turns on training regardless of

the application arrival. In contrast, with the relaxed staleness

bound Lb = 1000, the Knapsack offline solution acts almost

equivalently to a greedy scheme that is always waiting for

co-running opportunities, thus incurs the minimum energy

consumption. Reducing the value of Lb would elevate the

horizontal line of the offline solution. The online optimization

evolves in the space in between: as V grows, the energy

consumption quickly drops and slowly approaches the offline

solution around 200KJ, with a diminishing marginal gain

when V becomes large. The energy consumption stabilizes

within an approximation factor of 1.14 to the offline solution

and 66% energy savings compared to immediate scheduling

and 63% compared to Sync-SGD [2]. Adjusting the staleness

bound Lb implies different levels of tolerance to staleness.

With a larger Lb, more devices are put into the idling mode

waiting for applications, thus the energy consumption is

lower.
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Fig. 6: Impact of application arrival rate on (a) energy

consumption; (b) testing accuracy with scarce application

arrivals.

Figs. 4(b)(c) show the queue backlogs Q(t) and H(t),
which reflect the opposite of energy consumption in Fig.

4(a). Both Q(t) and H(t) increase linearly after V > 104

and this matches with Theorem 1 of Eq. (25). Fig. 4(d)

further validates the [O(1/V ),O(V )] energy-staleness trade-

offs as the attempt of energy reduction in the systems would

ultimately lead to congestion of the queues (high staleness and

less update). An optimal choice of V calls from the balance

between energy and queue length backlogs – V around the

value of 4000, since further increasing V beyond V > 104

would have marginally reduced energy saving compared to

the increase of queue length.

Gradient Staleness and Convergence. Since the control

decisions further propagate upwards to affect the machine

learning algorithms, the overall performance should be also

measured in terms of how fast the model converges and

the wall-clock time to reach a certain accuracy level. For

ASync-SGD, the speed of convergence is dominated by: 1)

the number of meaningful updates contributed by individual

participants in fixed time intervals; 2) the accumulation and

variance of gradient staleness. Fig. 5(a) depicts the trace of

gradient gaps of Sync-SGD and ASync-SGD when we fix

the online algorithm with V = 4000 and Lb = 500. The

minimum values of Sync-SGD are sampled at the time of

aggregation (model averaging), which follow a monotonically

declining trend. Because of that, the gradient gaps from

the local updates mostly stay in a narrow range and the

variance is small. In contrast, the gradient gap from ASync-

SGD forms an upward trend, especially at the beginning and

the sideway movements in the later iterations lead to more

fluctuations during convergence compared to Sync-SGD. The

lower subplot also demonstrates a positive correlation be-

tween the simple count of updates (lag in Def. 1) and the

gradient gap measured in norm difference between model

parameters. Since the difference between local parameters

tends to increase with more iterations, the same lag value

could have different impact on staleness in different stages of

training. To this end, gradient gap provides a more accurate

measure for staleness.

Fig.5(b) shows the convergence of different approaches.

If the objective for the model is to reach 0.5 accuracy,

the online scheme only lags the immediate scheduling by

1000s, but offers almost 60% energy saving and both schemes

ultimately converge to the same range of accuracy. The offline

and Sync-SGD fall far behind mainly due to insufficient

number of updates from the users. To compare the wall-lock

training time more closely, we record the time for different

schemes to reach 55%, 50%, 45% and 40% testing accuracy

in Fig.5(c), by varying the random seeds to generate different

random permutations of devices and application types. Since

the testing accuracy of Sync-SGD has plateaued around

50%, it never reaches 55% during the 3-hour time frame.

Similar to the previous results, Sync-SGD and offline scheme

both result in the largest convergence time with different

accuracy objectives. Immediate scheduling offers the fastest

training with much higher cost of energy, especially when the

accuracy objectives are lower (0.45, 0.4). The online scheme

is capable of achieving a reasonable trade-off between energy

consumption and training time.

Fig.5(d) shows the trace of gradient gaps for each indi-

vidual user during training. As expected, the variance of the

immediate scheduling is the smallest and the offline scheme

results high variance in gradient staleness, which may lead to

fluctuations of the testing accuracy. The variance of the online

scheme evolves moderately in between as it does not either act

too conservatively to withhold the users or too aggressively

to activate them.

Impact of Application Arrival. Our strategy relies on

the intensity of application usage for energy saving. We

further evaluate the impact of different application arrival

rates varying from 10−4 to 0.2 per time slot, especially

when the applications are scarce. Fig. 6(a) shows the ap-

plication arrival rate vs. energy consumptions. With more

running applications, the general energy consumption follows

an increasing trend for all three schemes. Immediate schedul-

ing is independent of application arrivals and the energy

saving comes from the coincident co-running. In contrast,

the online scheme is able to utilize the application arrival

more wisely as we can see the initial gap from immediate

scheduling is large. As the application rate rises, co-running

quickly saturates and the online scheme has degraded into

the immediate scheme. Because the offline scheme foresees

all the co-running opportunities, it is able to achieve the

lowest energy consumption when applications are scarce but

will aggressively schedule with the applications when the

arrival rate increases. Due to the random arrivals, the energy

consumption has more variance with a larger arrival rate. As

application usage depends on a variety of contextual cues such

as time and location [29], it is highly possible that there is

few application usage. Fig. 6(b) shows the impact on testing

accuracy when applications are scarce. We can see that there

is no noticeable accuracy degradation for the online scheme.

Once the cost of the queue backlogs increases, the online

scheme is able to switch back into the immediate scheme to

clear the queue congestions. Thus, the offline scheme may

offer better energy efficiency for different application rates,

but the control decisions generate a negative feedback on
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the upper level convergence and testing accuracy when the

applications are scarce. The online scheme provides more

flexibility to adapt different application arrivals.

Energy Overhead. The online scheme examines Eq. (21),

which involves lightweight computation on the little cores.

The energy overhead is shown in Table III, which is below

10% in each time slot. To reduce the overhead, we can

adjust the scheduling granularity. E.g., instead of making

a decision in each time slot, we can enlarge the decision

intervals, whereas this might miss co-running opportunities

if the interval is larger than the application execution time.

Due to space limit, we will demonstrate such trade-off in an

extended version of this work.

Nexus 6 Nexus 6P Pixel 2
Power(idle) 0.238 0.486 0.689
Power(comp.) 0.245 0.525 0.736
Overhead (%) 3.0% 7.4% 6.3%

TABLE III: Energy overhead of online optimization (W).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we combine ASync-SGD and application co-

running to minimize energy consumptions of federated tasks

on mobile devices. We motivate this work by real measure-

ments and illustrate the fundamentals of energy saving. Then

we develop the offline and online schemes to explore the

energy-staleness trade-off with low computational overhead.

Our extensive evaluation demonstrates that the online opti-

mization achieves over 60% energy saving compared to the

benchmarks, and only 15% away from the offline solution.

The proposed mechanism can adapt to different diurnal and

nocturnal application usage patterns by taking advantage of

the common temporal activities from the users, while keeping

the devices in low power state during the rest of the time.

Though we only demonstrate the convergence empirically, in

principle, the theoretical convergence is guaranteed given a

bounded delay of gradients [36]. The Lyapunov framework

manages the delay from the virtual queue bounded by the

gradient staleness Lb in Eq. (14). We defer the rigorous

theoretical proofs to the future works.
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X. APPENDIX

A. Proofs of Lemma 2

Applying Eq. (17) to Eq. (18), we have,

Θ(t) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}
=

1

2
E{Θ(t+ 1)2 −Θ(t)2}

=
1

2
E{Q(t+ 1)2 −Q(t)2 +H(t+ 1)2 −H(t)2}

(26)

Since max2{x, 0} ≤ x2, from Eq. (15) and Eq. (16) we have,

Q2(t+ 1) +H2(t+ 1) ≤ Q2(t) + (A(t)− b(t))2 +

2Q(t)(A(t)− b(t)) +H2(t) +G(t)2 + 2H(t)G(t) + L2
b

(27)

From (26),

Θ(t) ≤ B + E{Q(t)(A(t)− b(t))|Q(t)}+ E{H(t)G(t)|H(t)}
(28)

where B = 1
2 (A

2
max+B2

max+G2
max+L2

b). Amax, Bmax and

Gmax are the maximum arrival, service rate and gradient gap

in the system. Thus, Eq. (28) completes the proof of Lemma
2.

B. Proofs of Theorem 1
For the optimal decision α∗(t) that can stabilize the queue,

E{P (α∗(t))} = P ∗. (29)

Since we can adjust the control decisions, there must exist

ε1, ε2 > 0 so the difference between the service and arrival

rates of the actual and virtual queues are larger than ε1, ε2
respectively (considering Lb as the fixed service rate of the

virtual queue H(t)):

E{bi(t)−Ai(t)|Q(t)} > ε1 (30)

E{Lb − gi(t, t+ τ)|H(t)} > ε2 (31)

Plugging Eqs. (30) and (31) into Eq. (20),

Δ(Θ(t))+V E{P (t)|Θ(t)} ≤ B+V P ∗−ε1E{Q(t)}−ε2E{H(t)}
(32)

Taking the summation over t ∈ {0, · · · , T − 1},

T−1∑

t=0

Δ(Θ(t)) +

T−1∑

t=0

V E{P (t)|Θ(t)} ≤ T (B + V P ∗)

−
T−1∑

t=0

(ε1E{Q(t)}+ ε2E{H(t)}) (33)

Plugging Eq. (18) into Eq. (33), and dividing both sides by

T · V ,

E{L(Θ(T − 1))− L(Θ(0))}
TV

+
1

T

T−1∑

t=0

E{P (t)} ≤ B

V

+P ∗ − ε1
TV

E{Q(t)} − ε2
TV

E{H(t)} (34)

Since L(Θ(0)) = 0, when T → ∞, we can simplify Eq. (34)

as,

lim sup
T→∞

1

T

T−1∑
t=0

E{P (t)} ≤ B

V
+ P ∗

(35)

The time averaged queue length can be derived by dividing

εT ,

1

T

T−1∑

t=0

E{Θ(t)} ≤
B + V (P ∗ − 1

T

T−1∑
t=0

E{P (t)})
ε

−
(
T−1∑
t=0

ε1E{Q(t)}+ ε2E{H(t)})
εT

+
E{L(Θ(0))}

εT
(36)
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Taking the limits of T → ∞,

Θ = lim sup
T→∞

1

T

T−1∑
t=0

E{Θ(t)} ≤ B

ε
+

V (P ∗ − P )

ε
(37)
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