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ABSTRACT

This paper presents a Filtered-Feedback-Linearization
(FFL) controller for a non-signalized heterogeneous traffic
network consisting of human-driven and autonomous ve-
hicles at a macroscopic level. The FFL controller requires
limited model information and it is effective for command
following and rejection of unknown-and-unmeasured dis-
turbances. This paper distinguishes between human-
driven and autonomous vehicles in terms of their op-
erational characteristics and controllability. To describe
the traffic network’s behavior, we introduce an extended
heterogeneous METANET model wherein the traffic flow,
density, and velocity dynamics of each vehicle class are
described. To develop traffic control policies, we propose
a filtered-feedback-linearization control approach wherein
the autonomous vehicles and human-driven vehicles are
modeled as controllable agents. FFL controller sends the
optimal suggested velocity of autonomous vehicles and
human-driven vehicles as the controller command to the
traffic system to reach the desired velocity, density, and
average flow rate of each sub-network. Numerical simu-
lation demonstrates the effectiveness of the proposed ap-
proach in managing the traffic flow of a heterogeneous
traffic system.

KEYWORDS: Heterogeneous Traffic Network, Au-
tonomous Vehicles, Traffic Control, Filtered Feedback
Linearization Control, METANET Model

INTRODUCTION

Traffic jams cost US $87 billion in 2018 [1]. Different con-
trol strategies with different traffic flow models have been
developed to manage traffic networks [2,3]. Among these
efforts, connected automated vehicle (CAV) technologies
have received increasing attention recently [2, 3]. Recent

studies have shown the positive impacts of CAVs tech-
nology on fuel consumption, reduced travel time, and im-
proved safety [4, 5]. However, for practical purposes, (i)
no traffic network in the near future will consist entirely
of automated vehicles, and (ii) vehicles (even automated
ones, but especially the human-driven ones) will never be-
have entirely homogeneously. Until then, there exists sig-
nificant uncertainty in the performance of mixed CAV and
human-driven traffic environments [6–8]. Therefore, it is
essential to develop control strategies that take into ac-
count the uncertainty associated with the heterogeneity
in the traffic network and understand the extent to which
these strategies improve the performance of the network.

Traffic control and management problem have been stud-
ied at both macroscopic and microscopic levels [9–11].
At the microscopic level, the problem focuses on con-
troller synthesis for individual vehicles, where each vehi-
cle evaluates its own control solution with available infor-
mation to improve its own performance (such as energy
consumption or travel time) [12, 13]. However, the ego-
tistical nature (only focusing on its own performance) of
this type of controller and availability of only local infor-
mation can deteriorate the overall traffic network’s traffic
flow [14]. Macroscopic controllers, on the other hand, fo-
cus on improving the aggregated traffic behavior (such
as overall traffic flow), but they operate at a lower fre-
quency and cannot evaluate the optimal actions of individ-
ual vehicles [15–18]. To leverage the advantages of both
macro-level and micro-level controllers, hierarchical con-
trol frameworks have been developed, with macroscopic
controllers at the high-level and microscopic controllers at
the low-level [19,20].

This paper is focused on developing a set of macroscopic
traffic control policies for a non-signalized heterogeneous
traffic network. To this end, we model the macroscopic be-
havior of a heterogeneous traffic network by a multi-class
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METANET model. In this model, the density and velocity
of each vehicle class are described in the traffic dynam-
ics. The considered freeway METANET model describes
the traffic system, which is naturally affected by uncer-
tainties since the mainstream inflow, the traffic demands
on the on-ramps, and the flows exiting the off-ramps are
not a priory known.There are various extensions to the
classic METANET model such as Multi-class METANET
Model [21] and Extended METANET model [22]. To man-
age the congestion in a heterogeneous traffic network, a
Filtered Feedback Linearization control is proposed. In
this problem, we assume that we have a hierarchical con-
trol structure in the traffic system. The higher-level con-
troller determines the desired densities of each vehicle
class in each sub-network according to the cost function
of the whole traffic system (Reducing TTT, reducing en-
ergy consumption, increasing the average flow rate, etc.).
At the lower level, the controller determines the suggested
velocity of each vehicle class reach to the desired densi-
ties in the sub-network. We employed Filtered Feedback
linearization (FFL) control to determine the suggested ve-
locity for each class of vehicles so that the desired den-
sity determined in the upper level can be achieved. FFL
is a high-parameter-stabilizing control technique that ad-
dresses both command following and disturbance rejec-
tion for multi-input-multi-output nonlinear systems where
the equilibrium of the zero dynamics is locally asymptoti-
cally stable [23]. A linear-system analysis of FFL is given
in [24], and its application to engineering structures is an-
alyzed in [25]. FFL is mathematically equivalent to low-
pass filtering a standard feedback linearization controller.
However, unlike the standard feedback linearization, the
controller only requires limited model information, specifi-
cally, knowledge of the vector relative degree and knowl-
edge of the dynamic-inversion matrix, and makes the L∞
of the command following error arbitrarily small despite
the presence of unknown disturbances.

The main objective of this research paper is the applica-
bility of filtered feedback linearization control approach in
a heterogeneous traffic network. Heterogeneous traffic
network has various forms of disturbances due the multi-
ple types of vehicles with different characteristics. Also,
it is almost impossible to measure all the disturbances
in the traffic system and have a complete knowledge of
the states of the system. Combination of FFL control ap-
proach and METANET macroscopic traffic model has the
following benefits:

• Unlike the standard feedback linearization, the con-
troller only requires limited model information, specif-
ically, knowledge of the vector relative degree and
knowledge of the dynamic-inversion matrix

• The controller has disturbance rejection for highly un-
certain MIMO nonlinear subsystems that are poten-
tially subject to unknown disturbance.

• METANET model is a second order macroscopic traf-
fic model which help us to simulate all kinds of traffic

conditions (Free-flow, Semi-congested, Congested)
with prescribed characteristics (location, intensity, du-
ration) which allow us to control the velocity of the
traffic network as a feasible way of action in real world
traffic network

The outline of this paper is as follows. Section 2 presents
the model of a heterogeneous traffic network using the
multi-class METANET model. Section 3 presents the ba-
sics of the FFL controller to maximize the mobility of the
traffic network. Section 4 presents numerical results, and
section 5 is the conclusion where we also discuss our fu-
ture plans.

MACROSCOPIC DYNAMICS OF HETEROGENEOUS
TRAFFIC NETWORK

Consider a non-signalized heterogeneous traffic network
wherein the road is shared between the human-driven
vehicles and autonomous vehicles. The road can be
discretized into multiple sub-networks. We character-
ize sub-network i ∈ {1, 2, · · · , n} by its length `i, den-
sity of human-driven and autonomous vehicles (ki,H, ki,A),
space mean speed of each class (vi,H, vi,A), and the to-
tal average flow rate Qi. To determine the fundamen-
tal relation between the average flow(Qi), density(ki) and
space mean speed vi, we adopt a multi-class METANET
model [21]. METANET is a second-order model in which
considers the density and velocity of each vehicle class
as traffic states. The control input in this model is con-
sidered as the suggested velocity for each type of vehi-
cle class. Next, we are going to discuss the multi-class
METANET model which contains the dynamic behavior of
both human-driven and autonomous vehicles in a hetero-
geneous traffic network.

1. HETEROGENEOUS METANET MODEL

The multi-class METANET model is an extension of the
well-known METANET model [26]. In this model, in cell
i ∈ {1, · · · , n}, for each class of vehicles, two set of funda-
mental diagrams is defined that describe the macroscopic
behavior of autonomous and human-driven vehicles in a
homogeneous (fully autonomous or fully human-driven)
traffic network. Fig. 1.b demonstrates two fundamental
diagrams wherein a higher free-flow speed (vf,A ≥ vf,H),
critical density (kc,A ≥ kc,H), capacity (CA ≥ CH) and jam
density (kJ,A ≥ kJ,H) is assumed for autonomous vehi-
cles with respect to human-driven vehicles. In the multi-
class METANET model, based on the fundamental dia-
gram properties of each class of vehicles and their den-
sities within the sub-network, the road is divided into two
sections and it is assumed that a vehicle class constrains
itself within the assigned fraction of the road [27]. There-
fore, the road fractions for different classes of vehicles are
positive values (αi,A > 0, αi,H > 0), and the sum of all
fractions cannot exceed αi,A + αH ≤ 1. To determine αA

and αH, various approaches have been proposed. For in-
stance, in [28], they calculated the road fraction by using
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each class density. In [29], they took another approach in
order to define the road fraction. They assumed an iden-
tical distance gap between different classes of vehicles in
the traffic network to obtain the road fractions. However,
in [30], they defined the road fractions by assuming that
the distance gaps for all types of vehicles are proportional
to the length of the vehicles. There was another method
that was used by [21], to calculate the road fractions in
which they equated the velocities of different classes of
vehicles in the traffic network. In this paper, we also use
a similar approach to calculate the space fractions for ve-
hicles in the congested regime.

In this paper, according to different densities and their rel-
ative behavior in the traffic network, three traffic regimes
are distinguished [21]: free-flow, semi-congested, con-
gested (see Fig.1.a). These regimes are defined be-
low. For all of these regimes, we assume that each vehi-
cle class occupies the road optimally and never occupies
more space than is necessary.

Figure 1: Three traffic regimes in the METANET model
shown in MFD

Free-Flow Regime: The first possible traffic regime is that
both human-driven and autonomous vehicles drive at their
free-flow velocity. To this end, in the free-flow regime, it
is assumed that density of each class of vehicles in the
assigned space is less than or equal to the critical density
of that class. In particular,

ki,H
kc,H

+
ki,A
kc,A

≤ 1 (1)

and the following sufficient and necessary condition is sat-
isfied in free-flow regime:

ki,H
αi,H

≤ kc,H,
ki,A
αi,A

≤ kc,A (2)

Therefore, it follows from equations (1 and (2) that space
fractions of each vehicle class in the free-flow regime are:

αi,H =
ki,Hkc,A

ki,Hkc,A + ki,Akc,H
,αi,A =

ki,Akc,H
ki,Akc,H + ki,Hkc,A

(3)

Semi-Congested Regime: The second possible traffic
regime is semi-congested where the vehicle class with

a smaller free-flow velocity (i.e., human-driven) drive at
the free-flow velocity but the other vehicle class with a
larger free-flow velocity (i.e., autonomous vehicles) expe-
rience congestion and drive at a speed lower than its free-
flow velocity. The important point in the semi-congested
regime is that the velocity of autonomous class vehicles
is still greater than or equal to the free-flow velocity of
human-driven vehicles. This regime can be identified if
the following constraint is satisfied:

ki,H
kc,H

+
ki,A
k∗c,A

≤ 1 (4)

where k∗c,A is the “perceived” critical density of au-
tonomous vehicles and is defined as:

k∗c,A = kc,A

[
−am,Aln

(
vf,H

vf,A

)
+ 1

] 1
am,A

(5)

Considering the optimal road use assumption, the space
fraction of each class of vehicle in semi-congested regime
is determined as:

αi,A =
k∗i,A
kc,A

, αi,H =
ki,H
kc,H

(6)

Congested Regime: The third possible traffic regime is
that both human-driven and autonomous vehicles drive
at a slower speed than the free-flow velocity. In a con-
gested regime, autonomous and human-driven class ve-
hicles both have the same velocity. The constraint of the
congestion regime is the maximum density restriction.

ki,H
kJ,H

+
ki,A
kJ,A

≤ 1 (7)

The space fraction of each class of vehicle in semi-
congested regime is determined as

V
( ki,H
αi,H

)
= V

( ki,A
αi,A

)
, αi,A =

A

B
, αi,H + αi,A = 1

(8)

A =
(

(kc,H − kJ,H)kc,Avf,A

− (kc,A − kJ,A)kc,Hvf,H

)
kAkH

+ (kc,A − kJ,A)kc,HkJ,Hvf,H kA

B = (kc,A − kJ,A)kc,HkJ,Hvf,HkA

+ (kc,H − kJ,H)kc,AkJ,Avf,AkH

The total average flow relationship in a Macroscopic Fun-
damental Diagram (MFD) can be calculated through fol-
lowing equation:

Qi = ki,HV
( ki,H
αi,H

)
+ ki,AV

( ki,A
αi,A

)
(9)

where Qi is the total average flow which depends on the
densities and average velocities of both autonomous and
human-driven vehicles. Fig. 2 shows the average flow
rate of the traffic network for a full spectrum of hetero-
geneity is shown.
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Figure 2: 3D Macroscopic Fundamental Diagram (MFD)
for a full spectrum of heterogeneity. In fully autonomous
traffic network, the maximum average flow rate CA occurs
at kc,A and in fully human-driven traffic network, the max-
imum average flow CH occurs at kc,H.

2. EQUATIONS OF MOTION

Consider a non-signalized heterogeneous traffic network.
For a sub-network i ∈ {1, · · · , n}, let qi,A and qi,H be out-
flow (number of autonomous and human-driven vehicles
leaving the sub-network i to the adjacent sub-network i+1
and di be the uncontrolled traffic demand including the off-
ramps and on-ramps. Also, consider ` as the length of the
segment and γ as the number of the lanes in the segment.
Then, the density of sub-network i is updated according
to the conservation law [31]. Specifically,

ki,A(t+ 1) = ki,A(t) +
T

`iγi
(qi−1,A − qi,A + di,A) (10a)

ki,H(t+ 1) = ki,H(t) +
T

`iγi
(qi−1,H − qi,H + di,H) (10b)

Following the multi-class METANET model, the velocity of
each class of vehicles can be described as

vi,A(t+ 1) = vi,A(t) +
T

`

[
vi,A(t)

(
vi−1,A(t)− vi,A(t)

)
−γA
τA

ki+1,A(t)− ki,A(t)

ki,A(t) + kc,AζA

]
+
T

τA

(
Ui,A(t)− vi,A(t)

)
(11a)

vi,H(t+ 1) = vi,H(t) +
T

`

[
vi,H(t)

(
vi−1,H(t)− vi,H(t)

)
−γH
τH

ki+1,H(t)− ki,H(t)

ki,H(t) + kc,HζH

]
+
T

τH

(
Ui,H(t)− vi,H(t)

)
(11b)

with

Ui,A = (βi,A)vf,Aexp

[
−1

am,A

(
ki,A(t)

αi,Akc,A

)am,A]
(12a)

Ui,H = (βi,H)vf,Hexp

[
−1

am,H

(
ki,H(t)

αi,Hkc,H

)am,H]
(12b)

where βi,A and βi,H can considered as the control
commands adjusting the suggested velocity to the au-
tonomous vehicles and human-driven vehicles. According
to Eqs.12a,12b, when βi,H = βi,A = 1, the traffic follows
the regular MFD model and when βi,H = βi,A = 0, the
controller is commanding vehicles to stop.

Finally, the origin outflow is calculated as [21]:

q0,A(t) = min

[
d0,A(t) +

ω0,A(t)

T
, α1,AC0,AκA

]
(13a)

q0,H(t) = min

[
d0,H(t) +

ω0,H(t)

T
, α1,HC0,HκH

]
(13b)

where κA =

(
kJ,A−

k1,A(t)

α1,A

kJ,A−kc,A

)
, κH =

(
kJ,H−

k1,H(t)

α1,H

kJ,H−kc,H

)
and

C0,A and C0,H are the theoretical maximum capacity of
origin 0 for both types of vehicles. Also, d0,A and d0,H are
the demand of autonomous and human-driven vehicles at
origin 0.

For a traffic network consisting of n sub-network, by com-
bining equations (10a)-(12b), the equations of motion can
be expressed as

ẋ = F(x) + G(x)(u) + d (14)

where x = [x1, · · · , xn]T, d = [d1, · · · , dn]T,
u = [β1,A, β1,H, · · · , βn,A, βn,H], F = [f1, · · · , fn]T,
G = [g1, · · · , gn]T. Here for i ∈ {1, · · · , n},
gi,A = vf,Aexp

[
−1
am,A

(
ki,A(t)
αi,Akc,A

)am,A]
and, gi,H =

vf,Hexp
[
−1
am,H

(
ki,H(t)
αi,Hkc,H

)am,H]
TRAFFIC MANAGEMENT CONTROLLER

This section focuses on the design of a lower level of a
hierarchical traffic management controller to improve the
performance of a heterogeneous traffic network in terms
of mobility. The filtered feedback linearization controller is
utilized in the lower level and the description of its algo-
rithm is given below.

1-FILTERED FEEDBACK LINEARIZATION

In the lower-level control, we employ a filtered feedback
linearization approach to determine the required control
command βi,A and βi,H. We select filtered feedback lin-
earization controller in the lower-level since this controller
only requires limited model information, specifically, the
system’s relative degree and an estimate of the nonlinear
extension of the high-frequency-gain matrix, and does not
require any knowledge of the disturbance in the system
[23–25,32]. Furthermore, it can be shown that FFL is ca-
pable of the L∞ of the command following error arbitrarily
small despite the presence of unknown disturbances [32].
Below, we summarize the FFL control approach.

Considering Yi = [ki,A, ki,H]T, evaluating the second
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derivative of Y yields[
k̈i,A
k̈i,H

]
=

[
Ψi,A(x, φd)
Ψi,H(x, φd)

]
+ Γi(xi)

[
βi,A
βi,H

]
(15)

where Γi(xi) is non-singular for ki−1,A ∈ (0, kJ,A),
ki−1,H ∈ (0, kJ,H), Ui−1,A ∈ (0, vf,A), Ui−1,H ∈ (0, vf,H),
ki,A ∈ (0, kJ,A), ki,H ∈ (0, kJ,H), Ui,A ∈ (0, vf,A), Ui,H ∈
(0, vv,H) and φd = [d, ḋ, d̈]T.

Then, the control commands generated by the standard
feedback linearization approach can be expressed asβ∗i,A

β∗i,H

 = −Γ−1i (X)

[
νi,A + Ψi,A

νi,H + Ψi,H

]
(16)

νi,A = k̈∗i,A + ai,1(k̇∗i,A − k̇i,A) + ai,0(k∗i,A − ki,A) (17a)

νi,H = k̈∗i,H + ai,1(k̇∗i,H − k̇i,H) + ai,0(k∗i,H − ki,H) (17b)

where ai,0 and ai,1 are constants. It follows from Eq. (16)
that β∗i,A, β

∗
i,H require the measurement of the disturbance

d as well as knowledge of Ψi(x, φd) which may not be fea-
sible in practice.

To this end, we determine the implementable control com-
mands βi,A, βi,AH by passing β∗i,A, β

∗
i,H through a low-pass

filter. Specifically, let βi,A, βi,H satisfy

ηz(p)βi,A = ηz(0)β∗i,A (18)

ηz(p)βi,H = ηz(0)β∗i,H (19)

where p = d/dt, and ηz is a real polynomial of order ρ ≥ 1
whose coefficients depend on the real parameter z > 0.
The required conditions and examples of ηz(s) are ad-
dressed in [23]. For example, ηz(s) can be a polynomial
ηz(s) = (s+ z)3.

Substituting Eq. 15 into Eq. (16) and substituting this
result into Eqs. (19)-(19), FFL controller is defined as[

(ηz(p)− ηz(0))βi,A
(ηz(p)− ηz(0))βi,H

]
=

ηz(0)Γ−1i

[
ëi,A + a1ėi,A + a0ei,A
ëi,H + a1ėi,H + a0ei,H

]
(20)

where ei,A = k∗i,A − ki,A and ei,H = k∗i,H − ki,H

The controllers (16) and (20) are mathematically equiv-
alent. However, unlike Eq. (16), the control (20) does
not require measurement of di or Ψi. Properties of the
lower-level closed-loop are addressed by [23]-Lemma 1.
Specifically, it is shown that there exists zs > z0 such that
for z > zs, the control command given by Eq. (20) sta-
bilizes the dynamic system and makes the tracking error
arbitrarily small.

4. SIMULATION RESULTS

In this section, we present a case study to demonstrate
the effectiveness of the proposed approach for improv-
ing the mobility of a heterogeneous traffic network. We
compare the outcomes of the proposed control approach
in two scenarios where the frequency of the low-pass fil-
ter is low and high. In this study, we considered a traf-
fic network with 4 heterogeneous sub-networks consist-
ing human-driven and autonomous vehicles. We used the
I-485 N of Exit 28 traffic flow data which was reported in
Tuesday 22 December 2020 to calibrate the model pa-
rameters and model the origin outflow in our simulation.
The concentration is on eastbound PM peak hour of the
highway which is between 4:30-5:30 PM. For both sce-
narios, the boundary sub-networks which set the demand
and supply of the whole traffic system and the initial states
are the same. I-485 inner highway has 4 lanes with the
speed limit of 70 miles/hr. Since there is not enough infor-
mation on the on-ramp and off-ramp flow rates according
to the NCDOT report, we consider a disturbance to the
total average flow rate of each sub-network to make the
model more realistic di = 250 sin(ω.t) vehhr for i = 1, ..., 4.
The initial states for each sub-network is shown below in
Table 1:

Sub-
network

Density ( veh
km.lane ) Velocity(kmhr )

1 kA = 35, kH = 20 vA = vH = 20
2 kA = 50, kH = 25 vA = vH = 20
3 kA = 75, kH = 10 vA = vH = 30
4 kA = 30, kH = 20 vA = vH = 18
5 kA = kH = 15 vA = 90, vH = 70

Table 1: Initial States Values

The free-flow velocity of autonomous vehicles is consid-
ered as vf,A = 90kmhr , the jam density of the human-
driven vehicles in each sub-network is kJ,H = 100 veh

km.lane ,
the jam density of the autonomous vehicles in each sub-
network is kJ,A = 200 veh

km.lane , the length of each sub-
network is considered as ` = 1 km and there are 4 lanes
γ = 4 in each sub-network. The METANET model param-
eters are shown in below in Table 2:

Model
Parameters

AVs HDVs

am 2.42 1.789

γ 45km
2

hr 60km
2

hr

ζ 14 veh
km.hr 10 veh

km.hr
τ 12s 12s

Table 2: METANET Model Parameters Values

Every 7 minutes, the higher level controller, sends the op-
timal density for both vehicle classes in each sub-network
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to the lower level controller. For the first 7 minutes time
period, the reference density for each sub-network shown
in Table 3. After 7 minutes, the lower level controller, re-
ceives a new set of densities to follow.

Desired Density ( veh
km.lane )

Sub-
network

0− 7mins 7− 14mins

1 k∗A = 28, k∗H = 12 k∗A = 31, k∗H = 19
2 k∗A = 30, k∗H = 20 k∗A = 25, k∗H = 19
3 k∗A = 38, k∗H = 13 k∗A = 30, k∗H = 18
4 k∗A = 24, k∗H = 17 k∗A = 25, k∗H = 14

Table 3: Desired densities of each class of vehicles in
each sub-network during the simulation

The low-pass filter that we considered for the FFL con-
troller is a polynomial as ηz(s) = (s+z)3. In this paper, we
compared the results for two different low-pass frequency
values, z = 1 and z = 100. In Fig.3, the density of each
vehicle class is shown for sub-networks 2 and 3 for both
controller designs.

Figure 3: Density of autonomous and human driven vehi-
cles for sub-networks 2 and 3 and their reference densi-
ties are shown.

As it can be seen in Fig.3, for z = 1, we have an oscillation
near the reference point but for z = 100, the densities
in each sub-network, can merge to the desired densities
smoothly. In Fig.4, the velocities of both vehicle classes
are shown for z = 1 and z = 100:

Figure 4: Velocity of autonomous and human-driven vehi-
cles in sub-networks 2 and 3 are shown for both controller
designs.

Fig.4 shows that with lower low-pass frequency in FFL
controller, the oscillation for velocity of each vehicle class
increases and it makes the traffic system unstable. For
z = 100, the velocities of both autonomous and human-
driven vehicles change smoothly without any oscillation.
Finally, Fig.5 shows the controller command (βi) for each
vehicle class in sub-networks 2 and 3. As it is shown, for
z = 1, the oscillation makes the traffic network unstable
since it has drastic changes in a short time period. How-
ever, for z = 100, the controller command perfectly con-
trols the suggested velocity of each vehicle class so the
sub-network can reach to the desired densities.

5. CONCLUSIONS

This paper focuses on modeling and controlling a non-
signalized heterogeneous traffic network consisting of
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Figure 5: The FFL controller command for both au-
tonomous and human-driven vehicles are shown. βi = 1
is indicating that the traffic flow is following the MFD be-
havior and βi = 0 indicates that the controller is com-
manding the vehicles to stop.

human-driven and autonomous vehicles. In this paper,
the heterogeneity in the operational characteristics is con-
sidered. It is assumed that autonomous vehicles have a
higher free-flow velocity and different model parameters
compared to human-driven vehicles. We considered a
two-level control structure in which the higher level, a de-
centralized control approach determines an optimal den-
sity of human and autonomous vehicles so that the av-
erage flow within a sub-network is maximized. At the
lower level, a filtered feedback linearization controller is
designed to determine the velocity of autonomous and
human-driven vehicles such that the density of the au-
tonomous and human-driven vehicles reaches the values
set by the upper-level controller. In the future, we extend
this case study considering the heterogeneity in the con-
trollability of the two-class of vehicles. In particular, we
consider to what extend the mobility of the traffic network
can be improved if only autonomous vehicles can receive
the commands sent by the higher-level controller. We fur-
ther plan to validate our control approach with more so-
phisticated traffic simulators.
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