
PHYSICAL REVIEW B 106, 144410 (2022)
Editors’ Suggestion

Parametric resonance of spin waves in ferromagnetic nanowires tuned by spin Hall torque
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We present a joint experimental and theoretical study of parametric resonance of spin-wave eigenmodes in
Ni80Fe20/Pt bilayer nanowires. Using electrically detected magnetic resonance, we measure the spectrum of
spin-wave eigenmodes in transversely magnetized nanowires and study parametric excitation of these eigen-
modes by a microwave magnetic field. We also develop an analytical theory of spin-wave eigenmodes and their
parametric excitation in the nanowire geometry that takes into account magnetic dilution at the nanowire edges.
We measure tuning of the parametric resonance threshold by antidamping spin Hall torque from a direct current
for the edge and bulk eigenmodes, which allows us to independently evaluate frequency, damping, and ellipticity
of the modes. We find good agreement between theory and experiment for parametric resonance of the bulk
eigenmodes but significant discrepancies arise for the edge modes. The data reveal that ellipticity of the edge
modes is significantly lower than expected, which can be attributed to strong modification of magnetism at the
nanowire edges. Our work demonstrates that parametric resonance of spin-wave eigenmodes is a sensitive probe
of magnetic properties at edges of thin-film nanomagnets.
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I. INTRODUCTION

Magnetization dynamics in thin-film nanoscale ferromag-
nets is of fundamental and practical importance in the field of
spintronics [1–7]. The spectrum of spin-wave excitations in
such nanomagnets is quantized due to geometric confinement
[8,9], which gives rise to a plethora of interesting nonlin-
ear magnetodynamic effects not found in bulk ferromagnets
[10–16]. However, calculations of the spin-wave spectrum
in such structures are challenging due to the importance of
nonlocal dipolar interactions [17,18] and poor understand-
ing of boundary conditions for dynamic magnetization at
the nanomagnet edges [19–22]. Despite these challenges, a
quantitative description of magnetization dynamics in nano-
magnets is critically needed for design and optimization of
nanoscale spintronic devices [23–26] such as spin-torque
memory (STT-MRAM) [27–29], spin-torque nanooscillators
[30–36], and ultrasensitive spintronic sensors [37]. Operation
of all these practical spintronic devices critically depends on
details of linear and nonlinear [38] magnetization dynamics in
nanomagnets [39].

A significant body of prior experimental [40–54] and
theoretical [55–58] work has been dedicated to studies of
spin waves in nanostructures and their interactions with spin
currents [59–74]. These studies typically focus on the fre-
quencies and spatial profiles of the eigenmodes. At present,
a good quantitative understanding of many types of spin
waves in nanomagnets has been achieved with a notable ex-
ception of the eigenmodes localized near the nanomagnet
edge, the so-called edge modes [75,76]. This is not surprising

because magnetic properties of the edge of a thin magnetic
film can differ from those of the rest of the film [75,77,78],
and also from sample to sample. Many magnetic properties
such as magnetization, exchange interactions, and magnetic
anisotropy can become strongly spatially dependent near the
magnetic film edge [79–81], and details of the magnetic
edge profile are not well known [82]. Measurements of the
edge-mode frequencies alone do not provide sufficient in-
formation to reconstruct the edge-induced modifications of
the film magnetic properties. Therefore, characterization of
the edge eigenmode properties going beyond the mode spec-
trum is needed. The relatively poor understanding of the edge
eigenmodes is a challenging problem of significant practical
importance because lateral dimensions of spintronic nanode-
vices such as STT-MRAM are projected to decrease down to
a few nanometers [28,83], which implies that static and dy-
namic magnetic properties of such devices will be dominated
by the magnetic film edge.

In this paper, we study spin-wave eigenmodes in ferro-
magnetic thin-film nanowires [84–88] focusing on the edge
eigenmodes [89]. The translational symmetry of the nanowire
geometry significantly simplifies theoretical description of
the spin-wave spectrum and allows us to compare our mea-
surements to an analytical theory of nanowire spin-wave
eigenmodes we develop here. In order to understand the eigen-
mode properties beyond the typically measured frequency
and damping, we study parametric excitation of spin waves
and its tuning by antidamping spin-orbit torque [90–113].
Our experiment is a measurement of parametric excitation of
the edge spin-wave eigenmodes in the nanowire geometry.
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Measurements of the parametric resonance threshold and its
tuning by the antidamping spin Hall torque allow us to probe
ellipticity of the edge modes via a comparison of our analyti-
cal theory of the edge-mode parametric resonance to the data.
This information on the properties of the edge modes allows
us to test a popular model of the edge-induced modifications
of thin-film magnetic properties [20]. Our work places con-
straints on the models of magnetic film edge and suggests
a pathway for improving these models. The first detection
of parametric resonance of the edge mode in ferromagnetic
thin-film microstructures was made in Ref. [91] for microdisk
samples. This experiment demonstrated parametric excitation
of the edge mode but the mode ellipticity was not reported.

II. SAMPLES AND MEASUREMENTS

The nanowire devices studied in this work are patterned
from GaAs(substrate)/AlOx(4 nm)/Py(5 nm)/Pt(5 nm) multi-
layers deposited by magnetron sputtering, where Permalloy
(Py) is a Ni80Fe20 alloy. The films are polycrystalline and
show continuous growth, as was confirmed in our previous
work [85]. Multilayer nanowires that are 6 μm long and
190 nm wide are defined via e-beam lithography and Ar
plasma etching. Two Cr(7 nm)/Au(35 nm) leads are attached
to each nanowire with a 1.8-μm gap between the leads, which
defines the active region of the device as shown in Fig. 1(a).

We employ an electrically detected ferromagnetic reso-
nance (FMR) technique, also known as spin-torque FMR
(ST-FMR) [84,114–119], to characterize spin waves in the
nanowire. Figure 1(a) shows the schematics of the ST-FMR
setup, which allows us to measure both direct (linear) and
parametric (nonlinear) excitation of spin waves in the Py
nanowire. In these measurements, we apply an amplitude-
modulated microwave current Iac to the nanowire through the
RF port of a bias tee, where Iac represents the root-mean-
square (rms) amplitude of the microwave current. This current
applies periodic spin Hall torque and Oersted field Hac, both
arising from microwave current in the Pt layer, to drive forced
oscillations of the Py magnetization and thereby excite spin-
wave modes in the Py nanowire.

We then measure voltage V induced in the nanowire at the
modulation frequency fmod using a lock-in amplifier [115].
The measured voltage V has two contributions [120]: (i)
photovoltage signal arising from mixing of the microwave
current Iac and Py resistance oscillations Rac at the microwave
drive frequency f and (ii) photoresistance signal arising from
modulation of the time-averaged sample resistance at fmod due
to excitation of spin waves. Both the photovoltage and the
photoresistance signals are due to anisotropic magnetoresis-
tance (AMR) of the Py layer. As shown in Fig. 1(b), when f

coincides with the resonance frequency of a spin-wave eigen-
mode, a peak is observed in the FMR spectrum V ( f ) or V (H ).
These measurements were made for magnetic field H applied
in the sample plane at the angle θ = 85◦ with respect to the
electric current direction as illustrated in Fig. 1(a). Similar to
the FMR spectra in our previous work [84], we observed two
groups of modes: bulk and edge modes. These modes have
different profiles along the wire width with reduced ampli-
tude near the wire edges for the bulk modes, and enhanced
amplitude for the edge modes. Several closely spaced bulk

FIG. 1. ST-FMR measurement schematic and an ST-FMR spec-
trum. (a) ST-FMR measurement setup and the coordinate system
used in this work. An amplitude-modulated microwave current Iac

from a microwave generator is applied to the Py/Pt nanowire device,
and voltage V induced at the modulation frequency is measured by a
lock-in amplifier as a function of external field H applied in the plane
of the sample (xz plane) at an angle θ with respect to the wire axis. A
direct current Idc can be applied to the nanowire to tune its effective
magnetic damping by spin Hall torque. (b) ST-FMR spectrum of
the nanowire device measured at the microwave drive frequency of
6 GHz, θ = 85◦, Iac = 0.3 mA, and Idc = 2.2 mA.

and edge modes are observed due to quantization induced
by the geometric confinement of the modes along the wire
length to the 1.8-μm active region [84,88]. These ST-FMR
data are reproducible and thus the mode eigenfrequencies can
be reliably determined from the data. Measurements in this
work are performed at the bath temperature T = 4.2 K unless
indicated otherwise.

In order to measure the Gilbert damping parameter of
the nanowire, we apply an external magnetic field along the
nanowire axis [θ = 0◦ in Fig. 1(a)] and measure resonance
field [green dashed line in Fig. 2(a)] and linewidth (half-width
at half-maximum) of the lowest-frequency (quasiuniform)
bulk mode, as shown in Fig. 2(b). The slope of the linewidth
versus frequency in the inset of Fig. 2(b) gives the effective
damping of the quasiuniform (bulk) mode: α = 0.031, a value
exceeding that of a thin Py film, and Py/Pt bilayers reported
in Refs. [121,122]. This relatively high value of the damping
parameter likely arises from two factors: (i) spin pumping
into the proximate Pt layer and (ii) atomic interdiffusion be-
tween Py and adjacent layers induced by heating in the device
nanofabrication process. The measurements in Fig. 2(b) were
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FIG. 2. ST-FMR measurements at θ = 0◦, longitudinal magne-
tization. (a) ST-FMR spectrum of the nanowire device measured
at the microwave drive frequency of 7 GHz. The black line is the
Lorentzian function fit. The green dashed line shows the position
of the resonance field and the length of the blue line indicates
the full width at half-maximum. (b) Resonance frequency of the
quasiuniform spin-wave mode versus magnetic field applied paral-
lel to the nanowire axis at the bath temperature T = 94 K. Inset
shows linewidth of the mode (half-width at half-maximum) versus
frequency. Circles are experimental data while lines are fits described
in the text. Error bars for the experimental data points in (b) are
smaller than the symbol size.

made at Idc = 0, where Idc is direct bias current applied to the
nanowire, and T = 94 K, the temperature the wire reaches
due to Ohmic heating at bath temperature T = 4.2 K and
Idc = 2.2 mA in Fig. 1(a).

To study parametric excitation of spin waves in the
nanowire and tuning of this process by spin Hall current,
we apply a magnetic field H > 450 Oe in the plane of the
sample at the direction perpendicular to the nanowire axis
(θ = 90◦ ± 0.1◦). This field saturates Py magnetization per-
pendicular to the wire axis everywhere except very near the
wire edges where demagnetizing field is enhanced by the edge
magnetic charges [86]. In this configuration, polarization of
spin Hall current from Pt is nearly parallel to magnetization
of Py, and modification of the effective damping of Py by
spin Hall current is maximized [84]. We apply a direct current
Idc to the nanowire in order to tune the effective damping
of spin-wave modes in Py by spin Hall torque arising from
current in the Pt layer. In this paper, we use Idc from 0 to 2.2
mA, which is smaller than the critical current Ic for excitation
of magnetization auto-oscillations by the antidamping spin
Hall torque [85]. For the bulk mode at 10 GHz, Ic = 2.37 mA
and for the edge mode at 10 GHz, Ic = 2.57 mA. We used the

following ranges of currents and fields for the measurements
reported in this paper: Idc from 0 to 2.2 mA, Iac from 0 to 3.1
mA, and H from 0 to 1.6 kOe.

For magnetization nearly saturated in the plane of the
sample perpendicular to the nanowire axis, spin-current polar-
ization and the Oersted field are both parallel to magnetization
and thus both spin torque and Oersted field torque are nearly
zero. Therefore, direct excitation of spin waves by Iac in this
configuration is very inefficient. This, for example, can be
seen in Fig. 4, where the maximum ST-FMR signal from
the directly excited edge mode (0.115 mV) is significantly
smaller than the maximum signal from the parametrically
excited edge mode (0.7 mV). In addition, oscillations of
magnetization at the ac current frequency f give rise to re-
sistance oscillations at 2 f in this configuration due to the
R = R0 + RA cos2 ϕ angular dependence of AMR, with ϕ the
angle between magnetization and electric current. Therefore,
mixing of resistance and current oscillation does not generate
a rectified photovoltage (see Appendix A 1, for details). Thus,
spin waves are both difficult to excite and detect electrically
via application of Iac at the spin-wave resonance frequency for
a magnetic field applied at θ = 90◦.

In contrast, θ = 90◦ is the optimum field direction for para-
metric excitation of spin waves in the nanowire. For efficient
parametric excitation, either the external magnetic field paral-
lel to the equilibrium magnetization direction or the effective
damping of a spin-wave mode (or both) should be modulated
at twice the mode resonance frequency [123]. For θ = 90◦,
both the component of the Oersted field parallel to magneti-
zation and the modulation of the effective damping by spin
Hall current from Pt are maximized. Therefore, application of
Iac at 2 f can efficiently excite parametric resonance of spin
waves in the Py nanowire for θ = 90◦. At the same time,
spin-wave excitations generate resistance oscillations at 2 f ,
which mix with Iac at 2 f to produce a nonzero rectified photo-
voltage. Therefore, the efficiency of parametric excitation and
electrical detection of spin waves is maximized at θ = 90◦.
Parametric excitation is a threshold effect and thus Iac ex-
ceeding a threshold value Ith is required for excitation of spin
waves at zero temperature. At a finite temperature, parametric
drive amplifies the amplitude of thermal spin waves below the
threshold current. Analytical expressions for the dependence
of the direct voltage V on the drive current Iac are derived in
the Appendix A 1, for the Iac � Ith and Iac � Ith limits:

V ∼

{

(2Idc +
√

2Iac)/(Ith − Iac)2, Iac � Ith

(2Idc +
√

2Iac)
√

I2
ac − I2

th, Iac � Ith.
(1)

Spin pumping combined with inverse spin Hall effect in
the Pt layer can also give rise to an additional dc voltage term
[68,121]. However, due to its second order in spin Hall angle
θSH, as well as the strong ellipticity of the oscillation, this
contribution is orders of magnitude smaller than the signal
given by Eq. (1) and is negligible [121].

III. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 3 shows ST-FMR spectra measured as a function
of frequency and magnetic field applied at θ = 90◦, with
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FIG. 3. ST-FMR spectra at θ = 90◦, transverse magnetization.
ST-FMR signal V ( f , H ) measured as a function of ac frequency and
magnetic field applied at θ = 90◦ for Iac = 0.3 mA and Idc = 2.2 mA.
E, B, EP, and BP label directly excited edge mode, directly excited
bulk mode, parametrically driven edge mode, and parametrically
driven bulk mode, respectively. Dotted white lines highlight data at
6and 10 GHz employed for detailed analysis described in the text.

Iac = 0.3 mA and Idc = 2.2 mA. This Idc value is just below
the critical current for the excitation of auto-oscillations of
magnetization Ic, which means that the effective damping is
positive but close to zero. Multiple peaks are observed in the
spectra. A comparison to ST-FMR data from a similar sample
[85] lets us identify the two lowest-frequency peaks as directly
excited edge and bulk spin-wave modes (marked as E and B,
respectively) [20]. The bulk mode amplitude rapidly decreases
with increasing hard-axis magnetic field H , as expected for
a direct mode excitation by an ac drive parallel to magneti-
zation. In contrast, ST-FMR signal amplitude of the directly
excited edge mode is not small (0.02 mV) even for the largest
field of 1.5 kOe used in the measurement. The direct drive can
efficiently excite the edge mode because magnetization at the
edge of the nanowire is not fully saturated along the applied

field due to the high demagnetization field near the wire edges
[20].

Two additional ST-FMR peaks are observed in Fig. 3 at
frequencies close to twice the edge- and bulk-mode frequen-
cies. These peaks marked as EP and BP arise from parametric
excitation of the edge and bulk modes, respectively. Figure 3
reveals that the parametrically excited bulk peak has a higher
amplitude compared to the directly excited bulk peak due to
the high efficiency of parametric excitation for magnetization
parallel to the magnetic field. This trend is not observed for
the edge mode because edge magnetization is not fully aligned
with the applied field direction.

Figure 4(a) illustrates the dependence of ST-FMR spectra
on the amplitude of the drive Iac at fixed dc current, Idc = 1.8
mA, and fixed frequency, 6 GHz. Comparing to Fig. 3, we
identify the peak at 0.5 kOe as the parametrically excited
edge mode, and the peak at 1.1 kOe as the directly excited
edge mode. Figures 4(b) and 4(c) show the magnitude of
the peaks in Fig. 4(a) as a function of Iac. As expected
[11], the magnitude of the ST-FMR peak for the directly
excited edge mode increases quadratically with the amplitude
of the eigenmode, which is proportional to Iac, as shown
in Fig. 4(b):

V ∝ I2
ac. (2)

In contrast, the parametrically excited edge mode shows a
threshold behavior in Iac with rapid growth of the mode am-
plitude above a threshold drive value Ith, as shown Fig. 4(c).
We determine the value of Ith via fitting the data in Fig. 4(c)
to Eq. (1). The best fit in this figure is shown by lines in both
the Iac � Ith and Ith � Iac regimes with the common Ith fitting
parameter.

Figure 4(a) also shows that the linewidth of the ST-FMR
peak increases with increasing amplitude for the parametri-
cally excited mode. The half-width at half-maximum of the
parametrically driven edge peak is 29.5 Oe at the peak ampli-
tude of 25 m� while it reaches 36.0 Oe at the peak amplitude
of 333 m�. This increase happens via peak broadening to-
wards lower resonance field (higher resonance frequency),

FIG. 4. Dependence of ST-FMR spectra on ac current. (a) ST-FMR spectra measured at five values of Iac, f = 6 GHz and Idc = 1.8 mA
(vertically offset for clarity). EP labels the parametrically excited edge mode while E labels the directly excited mode. (b) Directly excited
edge-mode amplitude as a function of Iac and (c) parametrically excited edge-mode amplitude as a function of Iac. Lines are fits to Eqs. (2) and
(1), respectively.
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which indicates that spin waves with shorter wavelength
along the wire are excited at higher drive power. Specifi-
cally, Fig. 4(a) reveals a series of peaks that appear at lower
resonance fields (higher frequencies) with increasing drive
power. These peaks result from confinement of the edge mode
to the active region along the wire length by the Oersted
field [85]. The threshold current for parametric excitation of
these higher-frequency edge modes is higher for higher mode
frequency due to smaller ellipticity of modes with shorter
wavelengths [123]. Indeed, at the highest ac current of ex-
citation in Fig. 4(a) we observe two smaller side peaks at
magnetic fields below the main peak at approximately at 500
Oe. These side peaks arise from spin-wave quantization along
the wire length due to confinement to the La = 1.8 μm active
region. We assume pinning of these modes at the ends of
the active region due to the confining potential of the Oer-
sted field from direct bias current in the Pt layer [84,85].
The pinning boundary conditions at the ends of the active
region give longitudinal wavelengths of the three lowest-
frequency modes of 3.6, 1.8, and 1.2 μm, respectively. The
magnetostatic Damon-Eshbach character of these modes with
wave vectors along the wire gives rise to a linear frequency-
wave-vector dispersion [124]. Given this linear dispersion, we
expect frequency-equidistant mode separation δ f , which is
broadly consistent with the data in Fig. 4(a). Indeed, δ f in
this case may be estimated from the low wave-vector form of
the magnetostatic Damon-Eshbach frequencies of a film, i.e.,
f = G[

√
h(h + 1) + (kb)/2

√
h(h + 1)], with G = 21.7 GHz

and h = H/4πMs, where Ms is saturation magnetization of
our Py film. This gives a frequency separation between the
neighboring length modes of δ f ≈ 0.18 GHz, which cor-
responds to a magnetic field separation between the length
modes of δH ≈ 30 Oe: see Appendix A 2, for details. The
experimentally observed separation of these length modes is
approximately δH ≈ 28 and 41 Oe. Thus, given this quite
close agreement, and the approximate nature of our theoretical
explanation (the formula is valid for an infinite film, the effec-
tive magnetic field is lowered close to the edges of the stripe
due to demagnetizing effects), we may say that the physical
explanation of these different peaks is quantization of modes
along the longitudinal direction.

Figure 5 shows the dependence of ST-FMR signal on Iac

at 10 GHz and H applied at θ = 90◦. Four panels of this
figure show the data taken at four values of Idc. Parametrically
excited bulk- and edge-mode signals are observed near 0.7 and
1 kOe, respectively. This figure clearly illustrates the threshold
character of the parametric spin-wave excitation and shows
the dependence of Ith on the magnetic field.

Figure 5 also reveals the effect of Idc on Ith. Antidamping
spin Hall torque from Idc decreases the effective damping of
the modes with increasing Idc, which leads to a linear decrease
of Ith with Idc. Figure 5 also clearly shows that up to four
bulk modes are excited parametrically. Similar to the case of
the edge modes in Fig. 4(a), multiple bulk modes arise from
spin-wave confinement along the wire length within the active
region of the nanowire as was demonstrated in Refs. [85,88].
The threshold current for parametric excitation increases with
increasing wavelength of the bulk mode along the wire length
primarily due to decrease of the mode ellipticity with increas-
ing wavelength [123].

FIG. 5. Effect of direct bias current on parametric excitation of
bulk and edge modes. ST-FMR signal measured at f = 10 GHz and
four values of Idc : 1.3, 1.5, 1.7, and 2.2 mA as a function of Iac and
H applied at θ = 90◦.

Figures 6(a)–6(c) reveal further details of the dependence
of Ith of the edge and bulk modes on Idc. Figures 6(a) and 6(b)
show the ST-FMR peak amplitude for parametrically excited
bulk and edge modes as a function of Iac for different values of
Idc. We fit each trace to Eq. (1) in order to extract quantitative
values of Ith as a function of Idc. Symbols in Fig. 6(c) show
Ith versus Idc for the lowest-frequency bulk and edge modes
obtained via this fitting procedure. The data in Fig. 6(c) reveal
that Ith(Idc) is a linear function with a negative slope, as ex-
pected due to the linear dependence of the effective damping
on antidamping spin Hall torque.

A linear fit to the data in Fig. 6(c) allows us to precisely
determine the critical current Ic for excitation of auto-
oscillations of magnetization of the bulk and edge modes. This
critical current is obtained as an intercept of the linear fit with
abscissa of the plot. We note that this method of evaluation
of Ic gives a fitting error of approximately 2.5% and thus is
significantly more precise than methods based on fitting of the
microwave power emitted by the mode versus Idc to theoretical
values [125], as is usually done for spin-torque oscillators.
This conventional method lacks precision due to thermally
activated excitation of the mode that smears out the auto-
oscillation threshold and may lead to errors in Ic as high as
15% [11]. Thus, our measurements of parametric excitation of
spin-wave modes demonstrate a precise method for measuring
the threshold current for autooscillatory dynamics driven by
antidamping spin torques.

Extrapolation of the data in Fig. 6(c) to Idc = 0 yields the
values of Ith for the bulk and edge modes in the absence of spin
Hall torque. The measured values of Ith for the bulk and edge
modes allow us to test models of spin-wave eigenmodes in the
nanowire geometry. Indeed, in the parallel pumping geometry
studied here (Hac is parallel to the nanowire magnetization)
[123], Ith is directly proportional to the mode damping and
inversely proportional to the mode ellipticity [126]. Thus, Ith

diverges for vanishing mode ellipticity. In contrast, Ic, which
is also directly proportional to the mode damping, decreases
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FIG. 6. Tuning of parametric excitation by direct current. Parametric resonance peak voltage as a function of Iac measured at 10 GHz for
Idc ranging from 1.3 to 2.2 mA: (a) bulk mode and (b) edge mode. Lines are guides to the eye. (c) Ith as a function of Idc measured for the bulk
mode (circles) and edge mode (triangles). Lines are linear fits to the data.

with decreasing mode ellipticity and remains finite for van-
ishing ellipticity [127,128]. Therefore, measurements of Ith

and Ic for a given mode allow one to simultaneously deter-
mine both the mode ellipticity and the mode damping. This
information puts stringent constraints on spin-wave eigen-
mode models, and thus our measurements serve as sensitive
tests of spin-wave dynamics in the ferromagnetic nanowire
geometry. As we show in subsequent sections, our measure-
ments of Ith and Ic prove that the currently used model of
bulk spin-wave modes provides adequate description of the
experiment while the edge-mode models must be improved
to quantitatively describe the experimentally observed edge
eigenmodes.

IV. THEORETICAL METHODS

In this section, we derive an approximate theory of
spin-wave eigenmodes in the nanowire geometry and calcu-
late the threshold drive values for parametric excitation of
these modes. We consider the nanowire geometry shown in
Fig. 1(a), i.e., vertically stacked Py and Pt wires of rectangular
cross section, each 5 nm = 2b thick and 190 nm = 2c wide. A
Cartesian coordinate system used in our calculations is shown
in Fig. 1(a). An in-plane magnetic field H is applied along the
x̂ direction perpendicular to the nanowire axis, and ac and dc
electric currents are applied in the ẑ direction along the wire
axis.

Our theory takes into account magnetic dilution at the
nanowire edges. In this model first proposed in Ref. [20], the
magnitude of the magnetization near the wire edge depends
on the distance from the edge, |M(x)| = Ms(x). Specifically,
Ms(x) is assumed to grow linearly from zero at the edge to its
maximum value M0 (saturation magnetization) over the edge
dilution length L [85]. The model assumes that the exchange
constant of the ferromagnet is proportional to M2

s (x). Details
of a theoretical treatment of the dilution region within a con-
tinuum model can be found in Ref. [129].

The dilution model was used in Ref. [85] to fit experimen-
tally measured in-plane and out-of-plane saturation fields as
well as the bulk-mode eigenfrequency for the Py/Pt nanowires
studied here. This fitting procedure gave M0 = 608 emu/cm3,
L = 10 nm, and Ks = 0.237 erg/cm2 [85], where Ks de-

scribes interfacial perpendicular magnetic anisotropy in this
system. We did not consider in-plane anisotropy since Py is
an isotropic low anisotropy ferromagnet [130,131] .

We determine the spin-wave dynamics in our nanowire
system via solving the Landau-Lifshitz-Gilbert (LLG)
equation:

dM

dt
= −|γ |M × Heff + |γ |4πJM(M × x̂)

+ α
M

Ms
×

dM

dt
. (3)

The first term in Eq. (3) describes precession of the magne-
tization around an effective magnetic field Heff , the second
term describes spin Hall torque, and the third term describes
magnetic damping parametrized by the Gilbert damping con-
stant α. We assume uniform magnetization over the 5-nm
thickness of Py because it is similar to the Py exchange length.
The effective magnetic field is a sum of several terms: a
dc applied magnetic field (H0x̂), the Oersted field produced
by the electric current in the Pt layer, the demagnetizing
field Hdem(M), the perpendicular anisotropy field, and the
exchange field:

Heff =
[

H0 − H0
Oe −

√
2H ac

Oe cos(ωt )
]

x̂ + Hdem(M)

+
2Ks

M0b
ms(x)myŷ +

D

ms(x)

∂

∂x

(

m2
s (x)

∂m

∂x

)

, (4)

where m = M/Ms(x) is the magnetization normalized to
its local magnitude Ms(x), ms(x) ≡ Ms(x)/M0, i.e., with
these definitions M = M0ms(x)m, |m| = 1. The Oersted field
[−H0

Oe −
√

2H ac
Oe cos(ωt )]x̂ is modeled as uniform over the

Py wire volume and it is generated by an electric current in
Pt: IPt(t ) = Idc

Pt +
√

2Iac
Pt cos(ωt ), where Idc

Pt is direct current
in Pt and Iac

Pt is rms ac current in Pt. Details of the Oersted
field model are discussed in the Appendix (Appendix A 3).
The perpendicular anisotropy constant Ks includes contribu-
tions from both the top and bottom interfaces of the Py film
[85,132]. D = 2A/M0 is the exchange stiffness constant, and
A = 5 × 10−7 erg/cm is the exchange constant [85].
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The magnetization dynamics is described by m(x, t )
through a complex field a(x, t ) and its complex conjugate
a(x, t )∗ via

mx = 1 − aa∗,

my = −(i/2)(a − a∗)
√

2 − aa∗, (5)

mz = (1/2)(a + a∗)
√

2 − aa∗,

a representation that guarantees m2(x, t ) = 1 everywhere. The
Landau-Lifshitz equations of motion, including damping and
spin transfer, take a nearly Hamiltonian form in these vari-
ables:

i
da

dτ
= (1 − iα)

1

ms(x)

δU

δa∗ , (6)

i
da∗

dτ
= −(1 + iα)

1

ms(x)

δU ∗

δa
. (7)

These equations are written in scaled variables U =
E/4πM2

0 = UC + iUSTT and τ = 4πM0|γ |t , where E =
EC + iESTT is the free energy of the system that includes a
conservative real part and an imaginary part that describes the
action of spin-transfer torque.

The conservative part of the free energy EC consists of
a Zeeman term (including the Oersted field), the surface
anisotropy term, the exchange term, and the demagnetiz-
ing energy terms. The scaled energy terms approximated to
quadratic order in the amplitudes a, a∗ are given by the fol-
lowing expressions:

UZ = −hx(τ )
∫

dV ms(x)(1 − aa∗), (8)

UA = −ks

∫

dV m2
s (x)m2

y , (9)

UX � d

∫

dV m2
s (x)∇a · ∇a∗, (10)

UD = −(1/8πM2
0 )

∫

dV HD(M) · M, (11)

USTT = J

∫

dV m2
s (x)aa∗. (12)

In these expressions, hx(τ ) = [H0 − H0
Oe −

√
2H ac

Oe
cos(�τ )]/4πM0, � = ω/4πM0|γ |, ks = Ks/(4πM2

0 b),
and d = l2

ex = D/4πM0 = A/2πM2
0 , where the exchange

length is lex = 4.6 nm. Expressions for the exchange and
dipolar energies expressed via a and a∗ are derived in the
Appendix.

We choose the following boundary conditions at the
nanowire edges:

a|x=±c = 0. (13)

Also, notice that in our dilution model the magnetization
drops to zero at the edges. Then one can show that Eq. (13)

leads to

∂My

∂x

∣

∣

∣

∣

x=±c

=
∂Mz

∂x

∣

∣

∣

∣

x=±c

= 0, (14)

with Mx,y = Ms(x)mx,y.
A solution of the LLG equations for the complex spin-wave

amplitude a(X, τ ) that satisfies these boundary conditions can
be written as

a(X, τ ) =
N

∑

l=1

[al (τ ) cos(klX ) + fl (τ ) sin(qlX )], (15)

where X ≡ x/c, kl = (2l − 1)π/2, and ql = lπ .
Linearizing the equations of motion [Eqs. (6) and (7)] in

the absence of ac currents and using the ansatz (15), we
derive the following equations for the time evolution of the
coefficients al (t ):

i

(

ȧ

ȧ∗

)

= M̃

(

a

a∗

)

, (16)

where the expression for the matrix M̃ is given by Eq. (A35)
in the Appendix. In Eq. (16), a is a vector (a0, . . . , aN )T .
The equations for ( f0, . . . , fN )T are similar. Notice that due
to the symmetry of the system, in the linear approximation the
equations of motion (6) and (7) separate between even and odd
modes, i.e., ȧl depends only on a j’s and a∗

i ’s, and similarly for
ḟl , i.e., it depends only on f j’s and f ∗

i ’s.
We seek solutions of Eq. (16) in the following form:

al (τ ) = cl exp(−i�τ − ντ ) + dl exp(i�τ − ντ ). (17)

Substitution of the ansatz (17) into Eq. (16) leads to the
following eigenvalue problem:

M̃ · v = δ̃v, (18)

where δ̃ = � − iν and v
T = (cT , (d∗)T ). The eigenmodes of

this problem, including damping and spin-transfer torque,
are the right eigenvectors of M̃. A matrix W is constructed
with these eigenvectors as its columns, and defines a change
of variables to the amplitudes bn, b∗

n of the eigenmodes as
follows:

(

a

a∗

)

= W

(

b

b∗

)

. (19)

Thus, we obtain the following diagonal equations of motion
for the amplitudes of each eigenmode:

i

(

ḃ

ḃ∗

)

= D̃

(

b

b∗

)

, (20)

with D̃ = W −1M̃W being a diagonal matrix, whose elements
are the frequencies of the modes with associated imaginary
parts as decay and growth rates, i.e., δ̃n = �n − iνn. At a
critical value of the direct current Ic, the imaginary part of an
eigenvalue may go to zero, signaling transition of the mode
into the regime of auto-oscillations.

For a nonzero ac current generating ac Oersted field and ac
spin-transfer torque, the equations of motion (20) are modified
into

i

(

ḃ

ḃ∗

)

= D̃

(

b

b∗

)

+ Ñac(τ )

(

b

b∗

)

, (21)
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FIG. 7. Measured (solid symbols) and theoretically calculated
(lines) frequencies of the lowest-energy edge (blue) and bulk (red)
eigenmodes. Open symbols show measured drive frequencies for
parametric excitation of the bulk and edge eigenmodes.

where

Ñac(τ ) = W −1

(

(1 − iα)Hac(τ ) 0

0 −(1 + iα)H∗
ac(τ )

)

W,

(22)

Hac(τ ) = −hac(τ )I + iJac(τ )Ã, (23)

hac(τ ) = hac(ei2�pτ + e−i2�pτ )/
√

2, (24)

Jac(τ ) = Jac(ei2�pτ + e−i2�pτ )/
√

2, (25)

where hac(τ ) is the ac Oersted field normalized by 4πMs,
Jac(τ ) the ac component of the spin-transfer coefficient J ,
which is proportional to the current, I is a unitary matrix, Ã a
matrix given by Eq. (A23) of the Appendix. The frequency of
the ac current is written as � = 2�p with application of these
equations to the analysis of parametric spin-wave excitation
in mind.

A. Eigenmodes

The spin-wave eigenmodes and corresponding eigenfre-
quencies of the Py nanowire are solutions of Eq. (18) with the
dissipation and spin-transfer torque terms set to zero. Lines in
Fig. 7 show the lowest-energy edge- and bulk-mode frequen-
cies given by Eq. (18) versus magnetic field applied in the
sample plane perpendicular to the nanowire axis. Note that the
edge dilution model is included in our theory. Solid symbols
in Fig. 7 show the dependence of the lowest-energy bulk and
edge modes measured by ST-FMR technique. Opens symbols
in Fig. 7 show experimentally measured parametric resonance
frequencies of the lowest-energy edge and bulk modes.

Figure 7 reveals good agreement between the measured
and calculated values of eigenfrequencies for the lowest-
frequency bulk mode. The agreement for the edge mode is
substantially worse, indicating that the edge dilution model
does not fully capture magnetic properties of the nanowire at
the edges. Indeed, since the amplitude of the edge mode is
maximized near the wire edge, its frequency is much more

sensitive to the magnetic edge properties than the bulk mode.
Figure 7 shows that improvements to the edge dilution model
used are needed for quantitative description of spin-wave
eigenmodes in thin-film nanomagnetic elements. We also note
that calculations without any edge dilution show much worse
agreement with the experiment for the edge eigenmodes, and
to a much lesser extent for the bulk eigenmodes.

Now, we turn attention to the spatial profiles of the
lowest-energy modes. In the linear approximation, the My, Mz

components of the modes are given by

My(X, τ ) = Ms(X )
√

2 Im(a)

= Ms(X )[CI (X ) cos(�τ ) − SR(X ) sin(�τ )], (26)

Mz(X, τ ) = Ms(X )
√

2 Re(a)

= Ms(X )[CR(X ) cos(�τ ) + SI (X ) sin(�τ )], (27)

where CR,I (X ) and SR,I (X ) represent the real (R) and imagi-
nary (I) parts of

C(X ) =
√

2
N

∑

l=0

(cl + dl ) cos[(2l − 1)πX/2], (28)

S(X ) =
√

2
N

∑

l=0

(cl − dl ) cos[(2l − 1)πX/2]. (29)

Figure 8 shows spatial profiles of the lowest-energy
bulk and edge modes at an applied magnetic field H0 =
642.5 Oe. We find CI (X ) = 0 = SI (X ) for both types of
modes, which means that My(X, τ ) = −Ms(X )SR(X ) sin(�τ )
and Mz(X, τ ) = Ms(X )CR(X ) cos(�τ ), i.e., they represent
counterclockwise elliptic precession for both bulk and edge
modes. Figures 8(a) and 8(b) show the spatial profiles of
the z component of the magnetization [i.e., Ms(X )CR(X )]
of the bulk and edge modes, respectively. As expected, the
bulk mode shows amplitude maximum in the center of the
nanowire (X = 0) while the edge mode has minimum am-
plitude at X = 0. The peak amplitude of the edge mode is
not located exactly at the wire edge due to the dilution. The
small-amplitude waviness is due to the oscillating terms of
the discrete spatial Fourier series. In the case of abrupt spa-
tial variations, as for the edge modes, this effect is more
pronounced. Furthermore, the ellipticity of these oscillations
is defined as [123] ε = 1 − |mmin|2/|mmax|2 (|mmin,max| corre-
sponding to minimum and maximum values at the elliptical
axis), which in our case becomes ε = 1 − |SR(X )|2/|CR(X )|2.
The ellipticity is approximately 0.75 close to the edges of the
stripe and 0.84 in the central part for the bulk mode, while
these values are approximately 0.88 and 0.98, respectively, for
the edge mode, thus the edge mode theoretically shows higher
ellipticity than the bulk mode (these values correspond to the
modes of Fig. 8).

B. Parametric resonance

Here we present a simple model describing parametric
excitation of spin-wave eigenmodes in our nanowire samples
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FIG. 8. Spatial profiles of the dynamic magnetization component amplitude Mz(X ) for the lowest-energy bulk (a) and edge (b) modes
calculated at H0 = 642.5 Oe.

by a microwave current at approximately twice the mode
frequency. In our model, the frequency of the microwave
current is written as � = 2�p, where �p is similar to the
eigenmode frequency �n. In the equations of motion (21),
we focus on a single mode of index n and neglect all non-
resonant terms:

iḃn = δ̃nbn + Nnn∗b∗
ne−i2�pτ/

√
2, (30)

where δ̃n = �n − iνn. A similar equation is written for b∗
n. We

seek a solution of these equations in the following form:

bn � b0
ne−i�pτ−ντ . (31)

Inserting Eq. (31) and its complex conjugate into Eq. (30)
and a similar equation for b∗

n leads to the following set of
homogeneous linear algebraic equations:

(

(�p − �n) − i(ν − νn) −Nnn∗/
√

2

−(Nnn∗ )∗/
√

2 (�p − �n) + i(ν − νn)

)

×
(

b0
n

b0∗
n

)

= 0. (32)

The nontrivial solution of Eq. (32) is found from the zero
determinant condition, i.e.,

|ν − νn| =
√

|Nnn∗ |2/2 − (�p − �n)2. (33)

A steady-state oscillatory solution of Eq. (32), i.e., ν = 0, is
given by the following condition for |Nnn∗ |:

|νn| =
√

|Nnn∗ |2/2 − (�p − �n)2. (34)

Since Nnn∗ is proportional to the ac current Iac, we can
write it as Nnn∗ = IacN̂nn∗ , where N̂nn∗ is a current-independent
coefficient. It is clear that the minimum ac current that
satisfies Eq. (34) is achieved for �p = �n, when |νn| =
|Nnn∗ |/

√
2. This gives us an expression for the threshold

ac current for excitation of parametric resonance for a given
mode:

Ith =
√

2|νn|/|N̂nn∗ |. (35)
The matrix element N̂nn∗ can be obtained from Eq. (22).

The ac current is given by Iac(τ ) = Iac(ei2�pτ + e−i2�pτ )/
√

2,
and Eq. (22) can be rewritten to explicitly factor out
Iac(τ ):

Ñac(τ ) = Iac(τ )N̂ = Iac(τ )[W −1YW ] = Iac(τ )

[

W −1

(

(1 − iα)(−kI + iβÃ) 0

0 (1 + iα)(kI + iβÃ)

)

W

]

, (36)

where we have used the fact that both the ac Oersted field
hac and ac spin-transfer torque described by Jac are propor-
tional to Iac, and have written them as hac = kIac and Jac =
βIac (I is the unit matrix). The coefficient N̂nn∗ determining
the value of Ith is then the element (nn∗) of the matrix N̂ in
Eq. (36).

Thus, the expression of Eq. (35) for the threshold rms ac
current for parametric excitation Ith depends on two quan-
tities, |νn| and |N̂nn∗ |, that exhibit different dependence on
Idc: |νn| dependence on Idc is approximately linear, while
|N̂nn∗ | dependence on Idc is weak. This explains the linear
dependence of Ith on Idc observed experimentally in Fig. 6.

Indeed, using Eq. (A35) from the Appendix for M̃ of
Eq. (16), we can write

M̃ = M + iJ

(

Ã 0

0 Ã

)

� M + iJ1, (37)

where M does not depend on spin torque, and 1 is a unit matrix
(of a double size compared to I). The last approximation
in Eq. (37), that assumes a diagonal form of Ã and that is
valid for zero edge dilution, is a better approximation for the
bulk modes than for the edge modes. Within the latter ap-
proximation, an eigenvector of the matrix M with eigenvalue
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δn = �n − iν0
n is an eigenvector of the matrix M̃ with eigen-

value δ̃n = �n − i(ν0
n − J ). Here ν0

n is the decay constant
of mode n at zero spin-transfer torque; ν0

n is approximately
independent of current (it depends slightly on dc current
through the effective applied magnetic field modified by
the Oersted contribution). The approximate expression δ̃n =
�n − i(ν0

n − J ) validates linear behavior of νn � ν0
n − J on

Idc ∼ J . Furthermore, from Eq. (36) we can show that |N̂nn∗ |
is approximately independent of Idc: the matrix Y depends on
parameters independent of Idc and the eigenvectors that form
the matrix W only weakly depend on Idc.

We note that the matrix Y in Eq. (36) depends on a lin-
ear combination of the parameters defining the efficiencies
of the Oersted field (k) and antidamping spin torque (β):
(∓kI + iβÃ). This means that both the Oersted field and spin
torque contribute to the excitation of parametric resonance on
qualitatively equal footing. However, our theoretical analysis
below reveals that for the materials and geometry considered
in this paper, the contribution of the Oersted field to the
excitation of parametric resonance is dominant over that of
spin Hall torque. For example, if we artificially turn off the
ac Oersted field (k = 0) for the bulk mode at Idc = 0, we
calculate |N̂nn∗| = 0.0002, while if we artificially turn off the
ac spin-transfer term (β = 0), |N̂nn∗| = 0.0040. This implies
via Eq. (35) that the ac Oersted field comprises approximately
95% of the parametric resonance drive.

A qualitative explanation of the dominant role of the Oer-
sted field is given in the Appendix A 8, where we derive
analytical expressions for a simple case of the uniform mode
of precession in the limit of infinite Py/Pt bilayer. This exam-
ple allows us to qualitatively understand why the ac Oersted
field is the dominant parametric drive for the more general
case of the Py/Pt bilayer nanowire. The matrix Y in Eq. (36)
can be separated into a term proportional to k and a term
proportional to β. In this case, the dominant contribution to
the term proportional to β can be estimated by taking α = 0
(the low damping limit α � 1) and Ã = I (zero edge dilution,
as there are no edges for the infinite bilayer). Under these ap-
proximations, the term proportional to β becomes iβW −1W =
iβ1. When this purely imaginary and uniform diagonal matrix
is used in the equation of motion (21), it does not generate any
coupling between b and b*: this implies infinite threshold or
no parametric excitation under the purely spin-torque drive
in this approximation. Another consequence of the theoretical
model that points in the direction of explaining the prepon-
derance of the Oersted field in parametric resonance in this
experiment is that without dilution the spin-transfer torque
term does not produce a coupling between bn and b∗

n for all
modes. The latter happens because the expression for the
imaginary energy associated to spin transfer of Eq. (12) is
proportional to

∑

l ala
∗
l , and this “diagonal” property persists

in terms of the variables bn, b∗
n, meaning that spin transfer does

not couple bn with b∗
n, i.e., it does not contribute to parametric

resonance excitation.

V. DISCUSSION

In this section we compare the experimental results to our
theoretical predictions. In particular, we analyze the exper-
imentally measured linear dependence of Ith on Idc for the

lowest-frequency bulk and edge modes shown in Fig. 6(c).
Since both Ith and Ic are linear in the mode damping constant
α, the slope of Ith versus Idc is independent of α and primarily
characterizes ellipticity of the mode. Indeed, at a fixed-mode
frequency, Ith decreases with increasing mode ellipticity [126]
while Ic increases with increasing mode ellipticity [127,128],
which makes the slope of the Ith(Idc) function a sensitive probe
of the mode ellipticity. We use this probe to test the theoretical
description of the bulk and edge spin-wave eigenmodes.

We fit our theory to the experimentally measured intercept
points of the Ith(Idc) function with the abscissa and ordinate:
Ith(0) ≡ I0

th and Ith(Ic) = 0. The absolute value of the slope of
Ith(Idc) is then given by I0

th/Ic. The fit is done via numerically
solving Eqs. (18), (35), and (36) with two fitting parameters:
the mode damping α and the spin Hall torque efficiency
parameter β. In this numerical solution we use the constant
k = 0.003 24 mA−1 characterizing the Oersted field strength
(see Appendix A 3, for the derivation of k). The fit is done for
the applied magnetic field value H0 appropriate for the mode
frequency of 10 GHz in Fig. 6(c). The measured values of H0

at 10 GHz are shown in Fig. 3: H0 = 642.5 Oe for the bulk
mode and H0 = 930 Oe for the edge mode.

We first fit our theory to the measured values of Ic =
2.37 mA and I0

th = 4.57 mA for the bulk mode (the slope
I0
th/Ic = 1.93). This fitting procedure gives α = 0.0353 and
β = 0.0050 mA−1. This value of α is close to α = 0.031
directly measured by ST-FMR using the data in Fig. 2(b). The
value of β corresponds to the spin Hall angle θSH = 0.045,
which is consistent with previously reported values in similar
devices [133] (see Appendix A 9). The agreement between α

and β obtained from the fit and their measured and expected
values validates our theoretical model of the bulk spin-wave
modes and their excitation by the parametric drive.

Using the same value of the damping parameter as for
the bulk mode, i.e., α = 0.0353, we fit our theory to the
experimentally measured value of Ic = 2.57 mA for the edge
mode using β as a single fitting parameter, which gives
β = 0.0043 mA−1. Using these values of α and β, we then
apply our theory to calculate the expected values of I0

th =
4.21 mA and the slope I0

th/Ic = 1.64. A comparison to the data
in Fig. 6(c) shows that these theoretically predicted values
are significantly smaller than those observed experimentally:
I0
th = 5.9 mA and I0

th/Ic = 2.3. This discrepancy between the-
ory and experiment cannot be explained by a difference in α

between the bulk and the edge modes because the slope I0
th/Ic

is independent of α. Our analysis thus shows that ellipticity of
the edge mode predicted by the theory is approximately 40%
higher than that inferred from the experimental data.

Our experimental observation of the lower than expected
edge-mode ellipticity points to deficiencies of the edge di-
lution model we use. While the model is a significant
improvement over the spatially uniform magnetization model,
it does not fully capture the edge magnetization dynamics. We
thus conclude that further improvements of the edge dilution
model are needed to adequately describe magnetization at
the edges of thin-film nanomagnetic structures. We note that
this problem is of significant technological relevance because
spin-transfer torque memory (STT-MRAM) cells are pro-
jected to scale down to lateral dimensions below 10 nm in the
near future [28], which implies that its switching properties
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will be dominated by the state and dynamics of magnetization
at the element edges. The majority of the free-layer volume
of the 10-nm STT-MRAM will be affected by the modified
magnetic properties at the free-layer edge and thus strong
effects of the edge modification are expected.

It is important to understand whether the discrepancy be-
tween theory and experiment is a result of mathematical
approximations employed in the model or has its roots in the
physical properties of the magnetic material at the magnetic
film edge. For example, can the observed discrepancy be a
result of the boundary conditions for dynamic magnetization
chosen in the model? In the model, we use the boundary
conditions given by Eq. (13) so that the dynamic field a(x, t )
is zero at the edges, which leads to free boundary condi-
tions for My and Mz [Eq. (14)]. To understand the impact
of these boundary conditions, we repeated the calculations
assuming that the dynamic field a(x, t ) has zero derivative
at the edges. These calculations show negligible impact on
I0
th/Ic for the bulk mode, and the change in I0

th/Ic for the edge
mode is much too small to explain the discrepancy between
theory and experiment. The smallness of the impact of the
boundary conditions for a(x, t ) on the simulation results is
reasonable because the edge dilution model used imposes the
magnetization to be zero exactly at the edge, and thus the
boundary condition for the field a(x, t ) has little impact on
the magnetization dynamics.

We also note that complete saturation of magnetization
in a transversely magnetized nanowire of a rectangular cross
section is not achievable at any field due to spatially inho-
mogeneous character of the demagnetizing field near the wire
edges. This incomplete saturation can increase both I0

th and
Ic and its impact on the conclusions of this paper should
be discussed. Indeed, both I0

th and Ic vary approximately as
cos(δ)−1, where δ is an average deviation angle of magneti-
zation from the x axis over the mode volume. This implies
that the ratio I0

th/Ic, sensitive to the mode ellipticity, is nearly
independent on the degree of magnetization saturation. We
thus conclude that the incomplete saturation of magnetization
at the wire edges has minimal impact on I0

th/Ic, our probe of
the edge-mode ellipticity.

The unexpectedly low ellipticity of the edge mode seen in
the experiment is likely to have a physical origin. For example,
it can be explained by magnetic anisotropy at the wire edges.
Two types of edge magnetic anisotropy can result in decreased
ellipticity of the edge mode. First, the perpendicular magnetic
anisotropy Ks at the edge can be enhanced due to Py oxidation
at the wire edges [81] or may be a result of intermixing of
Py and Pt induced by ion milling in the nanowire fabrication
process. This type of anisotropy would indeed decrease the
edge-mode ellipticity but it would also decrease the mode
frequency, bringing it farther away from that seen in the ex-
periment.

Alternatively, a surface magnetic anisotropy with an easy
axis perpendicular to the nanowire edge [along the x axis in
Fig. 1(a)] [132] can reduce the edge-mode ellipticity. Indeed,
a positive x-axis uniaxial anisotropy increases the frequency
of magnetization precession around the x axis. Furthermore,
a pure uniaxial anisotropy collinear with the magnetization
precession axis promotes circular precession and thereby de-
creases the mode ellipticity. Therefore, such anisotropy can

both reduce the mode ellipticity and increase the mode fre-
quency in agreement with our experimental data. This type of
anisotropy can only be nonzero in a modified edge dilution
model where magnetization is not reduced to zero at the wire
edge.

Another possible explanation of the observed reduced
edge-mode ellipticity is nanowire edge roughness. It has been
previously shown [19] that edge roughness significantly re-
duces the edge saturation field due to dipolar interactions via
the so-called lateral magnetic anisotropy [19], and thus edge
roughness is expected to increase the edge-mode frequency.
Dipolar interactions arising from edge roughness are also ex-
pected to decrease the edge-mode ellipticity and thus the edge
roughness model can potentially explain all our data. There-
fore, development of a mathematical model of edge-mode
dynamics in the presence of edge roughness is a promising
future direction of research.

We believe that definitive understanding of magnetic prop-
erties at the edge of magnetic thin-film elements requires
direct imaging of structural and magnetic properties of the
edge with atomic resolution, which presents a significant tech-
nical challenge. Until such full quantitative characterization
is achieved, our results on ellipticity of the edge mode via
studies of parametric resonance controlled by antidamping
spin Hall torque can serve as a test for future improved models
of magnetic edge modification [134,135]. The results of our
work compared to prior studies of parametric resonance in
magnetic nanostructures [91,98,99,125,126,136,137] can be
summarized as (i) measurement and quantitative theoretical
understanding of parametric resonance of the edge mode in
the nanowire geometry, (ii) development of analytical the-
ory of parametric resonance of spin waves in ferromagnetic
nanowires, and (iii) probing ellipticity of the edge modes via
comparison of our theory to our experimental measurements
of the edge-mode parametric excitation.

VI. CONCLUSIONS

In summary, we have demonstrated parametric excitation
of bulk and edge spin-wave modes in transversely magnetized
Pt/Py bilayer nanowires by a microwave current. The thresh-
old current for the parametric excitation is tunable by direct
current bias via the antidamping spin Hall torque, and analysis
of the threshold current dependence on spin Hall torque allows
us to probe ellipticity of the spin-wave modes.

We have developed an analytical theory of the spin-wave
mode spectrum in the nanowire geometry and parametric
excitation of these spin waves by microwave current. Our
theory takes into account a model describing dilution of mag-
netization of Py near the wide edges. Comparison between
this theory and experiment shows that our theory provides
accurate quantitative description of the bulk spin-wave mode
properties, including their frequency and ellipticity.

In contrast, the theory significantly underestimates the fre-
quency of the edge spin-wave modes and overestimates their
ellipticity. This suggests that the edge dilution model used
here does not completely capture the magnetic properties of
the edge and further refinements of the model are needed to
achieve a quantitative description of magnetization dynam-
ics at edges of thin magnetic elements. We have identified
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inclusion of edge roughness effects as a promising direction
for future improvements of the model describing magnetiza-
tion dynamics at edges of thin magnetic elements. Indeed,
edge roughness is expected to increase the edge-mode fre-
quency and decrease its ellipticity via the lateral magnetic
anisotropy [19], bringing both of these quantities closer to the
experimentally observed values. Further quantitative studies
are needed to test if lateral magnetic anisotropy completely
describes magnetization dynamics at the nanowire edges.
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APPENDIX

1. ST-FMR signal

The direct voltage V across the sample subjected to a
microwave and a direct current consists of three terms:

V = IdcRdc + Idc�Rac + Umix. (A1)

The first term proportional to Idc is independent of magnetiza-
tion dynamics and is simply given by the equilibrium sample
resistance Rdc. The second term is the photoresistance contri-
bution [120], which is proportional to Idc and time-averaged
change in sample resistance �Rac induced by magnetization
precession. The third term called photovoltage [120] is the
rectified voltage arising from mixing of resistance oscillations
and microwave current. The direct voltage V can be calcu-
lated as the time-averaged 〈. . . 〉 total voltage: V = 〈U (t )〉 =
〈R(t )I (t )〉, where U (t ), R(t ), and I (t ) = Idc +

√
2Iac cos(ωt )

are the time-dependent voltage, resistance, and current.
Here we derive the direct voltage signal in the config-

uration of a Py nanowire for both direct excitation and
parametric excitation following the approach outlined in
Ref. [120]. The time-dependent resistance is given by R(t ) =
R0 + RA cos2 φ(t ), where RA is the magnitude of AMR, φ(t ) is
the instantaneous angle between M and the current direction
ẑ, as shown in Fig. 9:

cos φ(t ) = cos α(t ) cos β(t ), (A2)

where α(t ) = θ + α1 cos(ωt − ψ ), is the angle between the
projection of magnetization onto the xz plane and z axis and

FIG. 9. Elliptical magnetization precession cone around in-plane
magnetic field H applied at angle θ with respect to the wire axis
(z axis). The precession cone is characterized by the major and minor
axis cone angles α1 and β1.

β(t ) = −β1 sin(ωt − ψ ) is the tilt angle of magnetization out
of the xz plane, as illustrated in Fig. 9. In these expressions, ψ
is the phase shift between the microwave drive and magnetiza-
tion oscillations, α1 is the in-plane magnetization oscillation
amplitude, while β1 is the out-of-plane oscillation amplitude.
Using these expressions in Eq. (A2), we expand cos2 φ(t ) to
second order in α1 and β1 [120]:

cos2 φ(t ) = cos2 θ − α1 sin 2θ cos(ωt − ψ )

− α2
1 cos 2θ cos2(ωt − ψ )

− β2
1 cos2 θ sin2(ωt − ψ ). (A3)

For direct (linear) excitation of a spin-wave eigenmode by
a microwave current at the eigenmode frequency ω, the time-
dependent voltage across the sample Ulin(t ) is

Ulin(t ) = [R0 + RA cos2 φ(t )][Idc +
√

2Iac cos(ωt )].

(A4)

Using Eq. (A3) in this latter expression and calculating the
time average of Ulin(t ), we obtain the direct voltage Vlin across
the sample:

Vlin = Idc(R0 + RA cos2 θ )

−
1

2
IdcRA

(

α2
1 cos 2θ + β2

1 cos2 θ
)

−
√

2

2
IacRAα1 sin 2θ cos(ψ ), (A5)

where the first term Idc(R0 + RA cos2 θ ) is the equilib-
rium direct voltage independent of spin-wave excitation,
the second term − 1

2 IdcRA(α2
1 cos 2θ + β2

1 cos2 θ ) is the pho-
toresistance term proportional to Idc, and the last term
−

√
2

2 IacRAα1 sin 2θ cos(ψ ) is the photovoltage term propor-
tional to Iac.

For parametric excitation of a spin-wave eigenmode, we
use a microwave current at twice the eigenmode frequency:
I (t ) = Idc +

√
2Iac cos(2ωt ). Therefore, the time-dependent

voltage across the sample Upar(t ) is

Upar(t ) = [R0 + RA cos2 φ(t )][Idc +
√

2Iac cos(2ωt )].
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Using Eq. (A3) in this expression and calculating the time
average of Upar(t ), we obtain the direct voltage Vpar across the
sample:

Vpar = Idc(R0 + RA cos2 θ )

−
1

2
IdcRA

(

α2
1 cos 2θ + β2

1 cos2 θ
)

−
√

2

4
IacRA

(

α2
1 cos 2θ + β2

1 cos2 θ
)

cos(2ψ ). (A6)

In the experimental configuration used in this work θ = π/2,
and thus Vlin and Vpar can be further simplified:

Vlin = IdcR0 +
1

2
IdcRAα2

1, (A7)

Vpar = IdcR0 +
1

2
IdcRAα2

1 +
√

2

4
IacRAα2

1 cos(2ψ ). (A8)

For our device geometry, the phase shift ψ ≈ 0. Therefore, we
can simplify Eq. (A8) by setting ψ = 0.

We can further use results of Ref. [126], where expressions
for current-driven parametric resonance amplitude ∝ α1 and
power ∝ α2

1 were derived in the limits of the microwave drive
amplitude (Iac) well below and well above the threshold drive
for parametric excitation (Ith):

α2
1 =

⎧

⎨

⎩

A/(Iac − Ith )2, Iac � Ith

B

√

I2
ac − I2

th, Iac � Ith

(A9)

where A and B are constants. In Eq. (A9), the amplitude of
precession below Ith is not zero due to thermally assisted
excitation of the spin-wave eigenmode [126].

Using Eq. (A9) in (A8), we calculate the expression for
direct voltage arising from parametric excitation of a spin-
wave eigenmode:

Vpar ∼

⎧

⎨

⎩

(

2Idc +
√

2Iac
)

/(Ith − Iac)2, Iac � Ith

(

2Idc +
√

2Iac
)

√

I2
ac − I2

th, Iac � Ith.
(A10)

2. Longitudinal modes

Here we estimate the differences in frequencies, and asso-
ciated differences in applied magnetic field for measurements
at constant frequency, of edge modes which would have
different longitudinal wavelengths, in reference to the exper-
imental results of Fig. 4(a). These estimates are based on the
differences in frequencies of magnetostatic Damon-Eshbach
surface modes [124] of ferromagnetic films of thickness 2b,
whose direction of propagation is perpendicular to the applied
magnetic field (as is the case of our Py stripe). In our nota-
tion, the frequencies of the Damon-Eshbach surface modes
in the limit of small longitudinal wave vector k are given by
(ω = 2π f ):

f � G[
√

h(h + 1) + kb/2
√

h(h + 1)], (A11)

with h = H0/4πMs representing the applied magnetic field [in
our following estimates we take H0 = 500 Oe, corresponding
to Fig. 4(a)], and G = (|γPy|/2π )4πMs = 21.7 GHz [85]. As
discussed in the main text, due to pinning at the edges of
the active region, the smallest wave vectors correspond to

k j = 2π/[3.6, 1.8, 1.2] μm−1, j = 1, 2, 3. The correspond-
ing frequencies are [except for the constant term G

√
h(h + 1)]

f1 = 0.18 GHz, f2 = 0.36 GHz, and f3 = 0.54 GHz. Thus,
the differences in frequencies of these longitudinal modes are
f2 − f1 = 0.18 GHz = f3 − f2, at a fixed applied magnetic
field. Approximating the slope of the experimental frequency
vs magnetic field of Fig. 3 as � f /�H � 3 GHz/500 Oe, then
the associated magnetic field differences between these modes
(at fixed frequency as in Fig. 4) are H1 − H2 � 30 Oe �
H2 − H3.

3. Oersted field calculation

If I is the total current applied to the Py/Pt bilayer, then the
current flowing in the Pt layer IPt can be calculated using the
parallel resistance model: 1/R = 1/RPt + 1/RPy, which gives

IPt = I/(1 + RPt/RPy). (A12)

Using the measured resistivity of Pt and Py films [84]:
ρPt = 21.9 μ� cm and ρPy = 65.2 μ� cm, we estimate RPt �
RPy/3, i.e., IPt � (3/4)I . The Oersted field in Py is generated
by the current in Pt (the current in Py produces magnetic fields
in Py that have null average over the Py layer thickness).
We approximate the Oersted field applied to Py as due to
an infinite sheet of current corresponding to the net current
flowing through the Pt layer thickness in our experiment. In
this approximation, Ampere’s law (MKS units) gives

HOe = jPt�/2 = IPt/(2w) A m−1, (A13)

with � the thickness of Pt and w the width of the
nanowire [in Gaussian units HOe = 2π IPt/(103

w) Oe,
with w = 2c]. Then, the Oersted field due to Pt in Py is
given by HOe = IPt/(2w) = IPt(A)/(2 × 190 nm) = 2.63 ×
103IPt(mA) A m−1 = 2.63 × 103(4π/103)IPt(mA) Oe = 33
IPt(mA) Oe. This leads to hOe = HOe/4πMs = k̃IPt = kI , thus
k = 33(3/4)/(4πMs) = 3.24 × 10−3 mA−1.

4. Magnetization dynamics

The following terms contribute to the linear magnetization
dynamics of Eq. (6):

1

ms(x)

δUZ

δa∗ = hx(τ )a(x), (A14)

1

ms(x)

δUA

δa∗ = −ksms(x)[a(x) − a∗(x)], (A15)

1

ms(x)

δUX

δa∗ = −
d

ms(x)
∇ ·

[

m2
s (x)∇a(x)

]

, (A16)

1

ms(x)

δUD

δa∗ = −
∫ 1

−1
dX ′ms(X

′)[a(X ′) − a∗(X ′)]

× ln

(

|X − X ′|
√

(X − X ′)2 + (2p)2

)

/

4π p

− HV (X )a(x), (A17)

1

ms(x)

δUSTT

δa∗ = Jms(x)a(x), (A18)
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with p = b/c, and 〈HD(Ms(x)x̂)〉 = −4πM0HV (x)x̂ (〈. . . 〉
means average over the thickness).

Now, the coefficients of the expansion (15) for the dy-
namic variable a(X, τ ), that satisfy the boundary condition
a(X, τ ) = 0, at the edges are given by

al (τ ) =
2

V

∫

dV cos[(2l − 1)πX/2]a(X, τ ),

fl (τ ) =
2

V

∫

dV sin(lπX )a(X, τ ). (A19)

According to Eqs. (6), (15), and (A19), one has the fol-
lowing equations of motion for the time evolution of the
coefficients al (τ ), bl (τ ):

i
dal

dτ
=

2

V
(1 − iα)

∫

dV
cos[(2l − 1)πX/2]

ms(X )

δU

δa∗ ,

(A20)

i
dfl

dτ
=

2

V
(1 − iα)

∫

dV
sin(lπX )

ms(X )

δU

δa∗ . (A21)

Due to symmetry considerations the previous equations sepa-
rate, i.e., ȧl depends only on a j’s and a∗

i ’s, and similarly for
ḟl , i.e., it depends only on f j’s and f ∗

i ’s.

Conservative equations of motion

In the conservative case Eq. (A20) for ȧl becomes

iȧl = hx(τ )al − ks

∑

n

Ãln(an − a∗
n ) +

d

c2

∑

n

Blnan

−
∑

n

Cln

4π p
(an − a∗

n ) −
∑

n

Dlnan, (A22)

with

Ãln =
∫ 1

−1
dX ms(X ) cos(klX ) cos(knX ), (A23)

Bln = kn

∫ 1

−1
dX

cos(klX )

ms(X )

d

dX

[

m2
s (X ) sin(knX )

]

, (A24)

Cln =
∫ 1

−1
dX

∫ 1

−1
dX ′ms(X

′) cos(klX ) cos(knX ′)

× ln

(

|X − X ′|
√

(X − X ′)2 + (2p)2

)

, (A25)

Dln =
∫ 1

−1
dX HV (X ) cos(klX ) cos(knX ), (A26)

with kl = (2l − 1)π/2, and similarly for kn.
Expressions for these coefficients are given in Sec. A 7

of this Appendix for the case in which dilution is assumed
to occur linearly at a scale L from each of the edges of the
sample.

If one looks for solutions of Eq. (A22) of the type

al (τ ) = cl exp(−i�τ ) + dl exp(i�τ ), (A27)

i.e.,

a∗
l (τ ) = d∗

l exp(−i�τ ) + c∗
l exp(i�τ ), (A28)

then the equations of motion (A22) lead to the eigenvalue
problem Mv = �v (assuming hx independent of time), with
the eigenvector v

T = (c, d∗) = (cn, d∗
n ) (shorthand notation

for an extended vector), and the matrix M given as

M =
(

R S

−S∗ −R∗

)

=
(

R S

−S −R

)

, (A29)

with

Rln = hxδln − ksÃln +
d

c2
Bln − Dln −

Cln

4π p
, (A30)

Sln = ksÃln +
Cln

4π p
. (A31)

5. Linear dynamics including spin-transfer torque

and damping, dc current

In the presence of damping and spin-transfer torque the
equations of motion (A20) take the following form (U =
UC + iUSTT is imaginary in this case):

iȧl = (1 − iα)
∑

n

[(Rln + iJÃln)an + Slna∗
n], (A32)

with Ãln, Rln, Sln the matrices given in Eqs. (A23), (A30), and
(A31). Searching for solutions of the type

al (τ ) = cl exp(−i�τ − ντ ) + dl exp(i�τ − ντ ), (A33)

i.e.,

a∗
l (τ ) = d∗

l exp(−i�τ − ντ ) + c∗
l exp(i�τ − ντ ), (A34)

the equations of motion (A32) and their complex conjugates
become the eigenvalue problem M̃v = δ̃v, with

M̃ =
(

(1 − iα)R̃ (1 − iα)S

−(1 + iα)S∗ −(1 + iα)R̃∗

)

, (A35)

with R̃ = R + iJÃ, δ̃ = � − iν, and v
T = (cT , (d∗)T ). The

eigenmodes of this problem that include damping and spin-
transfer torque may be found by finding the right eigenvectors
of M̃. These eigenvectors will be the columns of a matrix W

that defines a change of variables to the amplitudes of the
eigenmodes bl , b∗

l as follows:

(

a

a∗

)

= W

(

b

b∗

)

. (A36)

The equations of motion (A32) (and their complex conju-
gates) may be written as

i

(

ȧ

ȧ∗

)

= M̃

(

a

a∗

)

. (A37)
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Multiplying this equation on the left by W −1 (the left
eigenvectors of M̃) one gets the diagonal equation of motion
for the amplitudes of the eigenmodes:

i

(

ḃ

ḃ∗

)

= D̃

(

b

b∗

)

, (A38)

with D̃ = W −1M̃W a diagonal matrix, whose elements are the
frequencies of the modes with associated imaginary parts as
decay or growth rates.

6. Dipolar energy of a transversely magnetized stripe

The scaled dipolar energy is given by

UD = −
1

8πM2
0

∫

dV HD(M) · M

= −
1

8πM2
0

∫

dV 〈HD(M)〉 · M, (A39)

where 〈. . . 〉 represents average over the thickness: the second
equality follows since in our model the magnetization does not

vary over the thickness. Now HD(Mz ẑ) = 0 since Mz ẑ does
not have surface or volume charges associated. According to
Ref. [86] (p = b/c),

〈HD(Myŷ)〉y(X )

= −
1

p

∫ 1

−1
dX ′My(X ′) ln{1 + [2p/(X − X ′)]2}, (A40)

with X ≡ x/c. Also,

〈HD(Mxx̂)〉 = 〈HD(Ms(X )x̂)〉 − 〈HD(Ms(X )aa∗x̂)〉, (A41)

with 〈HD(Ms(X )x̂)〉(X ) ≡ −4πM0HV (X )x̂, and only due to
magnetic volume charges (it is assumed that at the edges of
the stripe the magnetization goes to zero).

Using the reciprocity theorem [
∫

V
m1 · HD(m2) =

∫

V
m2 ·

HD(m1) for any two magnetization configurations], and using
the nonzero components of the average demagnetizing field,
one obtains the following expression for the demagnetizing
energy:

UD = −
V

8π p

∫ 1

−1
dX

∫ 1

−1
dX ′ms(X )ms(X

′)my(X )my(X ′) ln

(

|X − X ′|
√

(X − X ′)2 + (2p)2

)

−
V

2

∫ 1

−1
dX HV (X )ms(X )aa∗ −

1

8π

∫

dV ms(X )〈H x
D(ms(X )aa∗x̂)〉aa∗. (A42)

Using that my = −(i/2)(a − a∗)
√

2 − aa∗, to quadratic order in a, a∗ the previous expression for the demagnetizing energy
is approximated as

U
(2)
D =

V

16π p

∫ 1

−1
dX

∫ 1

−1
dX ′ms(X )ms(X

′)[a(X ) − a∗(X )][a(X ′) − a∗(X ′)] ln

(

|X − X ′|
√

(X − X ′)2 + (2p)2

)

−
V

2

∫ 1

−1
dX HV (X )ms(X )a(X )a∗(X ), (A43)

meaning that

δU
(2)
D

δa∗ = −
ms(X )

4π p

∫ 1

−1
dX ′ms(X

′)[a(X ′) − a∗(X ′)] ln

(

|X − X ′|
√

(X − X ′)2 + (2p)2

)

− HV (X )ms(X )a(X ). (A44)

Going back to HV (x), to simplify the analysis we take first only the right edge region, and its contribution to HV (x)x̂ would
be given by [origin taken at the right edge (r), and L is taken as the length of dilution]

H r
V (x) = −

1

4πM0b

∫ 0

−L

dx′
(

−
∂Ms(x′)

∂x′

) ∫ b

−b

dy

∫ b

−b

dy′ (x − x′)

(y − y′)2 + (x − x′)2
. (A45)

The volume magnetic charge density at the right edge would be ( − M ′
s(x)) = ν, with ν = M0/L a constant, then

H r
V (X ) = −

cν

4πM0

∫ L/c

0
dX ′

∫ 1

−1
dY

∫ 1

−1
dY ′ (X + X ′)/p

(Y − Y ′)2 + [(X + X ′)/p]2

= −
bν

8πM0

∫ 1

−1
dY

∫ 1

−1
dY ′ ln{(Y − Y ′)2 + [(X + X ′)/p]2}L/c

0 . (A46)

Introducing q = L/b, and with the change of variables V = Y − Y ′ and U = Y + Y ′, one obtains

H r
V (X ) = −

1

4πq

∫ 2

0
dV (2 − V )[ln(V 2 + [L/c + X )/p]2) − ln[V 2 + (X/p)2]] (A47)

and
∫ 2

0
dV (2 − V ) ln(V 2 + w

2) = w
2 ln |w| − 6 + (4 − w

2) ln
√

4 + w
2 + 4w tan−1(2/w). (A48)
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Putting all this together in the experimental geometry, with an origin at the center of the stripe:

−4πqHV (X ) = [q + (X − 1)/p]2 ln |q + (X − 1)/p| +
[

4 −
(

q +
(X − 1)

p

)2]

ln

√

4 +
(

q +
(X − 1)

p

)2

+ 4[q + (X − 1)/p] tan−1

(

2

q + (X − 1)/p

)

− [(X − 1)/p]2 ln |(X − 1)/p|

− {4 − [(X − 1)/p]2} ln
√

4 + [(X − 1)/p]2 − 4[(X − 1)/p] tan−1

(

2p

(X − 1)

)

+ [q − (X + 1)/p]2 ln |q − (X + 1)/p| +
[

4 −
(

q −
(X + 1)

p

)2]

ln

√

4 +
(

q −
(X + 1)

p

)2

+ 4[q − (X + 1)/p] tan−1

(

2

q − (X + 1)/p

)

− [(X + 1)/p]2 ln |(X + 1)/p|

− {4 − [(X + 1)/p]2} ln
√

4 + [(X + 1)/p]2 − 4[(X + 1)/p] tan−1

(

2p

(X + 1)

)

. (A49)

7. Coefficients of equations of motion

In this section we present in more detail the determination of the coefficients (A23)–(A26) appearing in the equations of
motion (A22). Taking that the region of dilution occurs within a distance L from each edge, and that it corresponds to a linear
growth of the material from the edge, we define r = (c − L)/c. Also kl = (2l − 1)π/2 and similarly for kn. Then,

Ãln =
∫ 1

−1
dX ms(X ) cos(klX ) cos(knX ) =

1

(1 − r)

{

cos[(kl + kn)r] − cos(kl + kn)

(kl + kn)2
+

cos[(kl − kn)r] − cos(kl − kn)

(kl − kn)2

}

,

(A50)

Ãnn =
1

4

{

2(1 + r) +
1

(1 − r)k2
n

[cos(2knr) − cos(2kn)]

}

, (A51)

Bln = kn

∫ 1

−1
dX

cos(klX )

ms(X )

d

dX
[m2

s (X ) sin(knX )]

= k2
nAln −

2kn

(1 − r)

{

cos[(kl + kn)r] − cos(kl + kn)

(kl + kn)
−

cos[(kl − kn)r] − cos(kl − kn)

(kl − kn)

}

, (A52)

Bnn = Annk2
n +

cos(2kn) − cos(2knr)

(1 − r)
, (A53)

Cln =
∫ 1

−1
dX

∫ 1

−1
dX ′ms(X

′) cos(klX ) cos(knX ′) ln

(

|X − X ′|
√

(X − X ′)2 + (2p)2

)

= 2
∫ 1

−1
dX

∫ 1

0
dX ′ms(X

′) cos(klX ) cos(knX ′) ln

(

|X − X ′|
√

(X − X ′)2 + (2p)2

)

=
∫

dV

∫

dUms[(U − V )/2] ln

(

|V |
√

V 2 + (2p)2

)

{cos(klU/2) cos(knU/2) cos(klV/2) cos(knV/2)

+ cos(klU/2) sin(knU/2) cos(klV/2) sin(knV/2) − sin(klU/2) cos(knU/2) sin(klV/2) cos(knV/2)

− sin(klU/2) sin(knU/2) sin(klV/2) sin(knV/2)}, (A54)

where

U = X + X ′, V = X − X ′,

X = (U + V )/2, X ′ = (U − V )/2,
(A55)

ms(X
′) =

{

1, 0 � X ′ = U−V
2 � r

1−X ′

1−r
= 2+V −U

2(1−r) , r � X ′ � 1.
(A56)
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Also,

2
∫ 1

−1
dX

∫ 1

0
dX ′ =

∫ −1−r

−2
dV

∫ V +2

−V −2
dU +

∫ 0

−1−r

dV

∫ V +2

V +2r

dU +
∫ 1−r

0
dV

∫ −V +2

V +2r

dU +
∫ −1

−1−r

dV

∫ V +2r

−V −2
dU

+
∫ 1−r

−1
dV

∫ V +2r

V

dU +
∫ 1

1−r

dV

∫ −V +2

V

dU, (A57)

which has been separated according to the regions where ms(X ′) is not equal to one (first three), or equal to one (second one).
Also,

∫

dU cos(lπU/2) cos(nπU/2) =
sin[(kl + kn)U/2]

(kl + kn)
+

sin[(kl − kn)U/2]

(kl − kn)
,

∫

dU sin(klU/2) cos(knU/2) = −
cos[(kl + kn)U/2]

(kl + kn)
−

cos[(kl − kn)U/2]

(kl − kn)
,

∫

dU sin(klU/2) sin(knU/2) = −
sin[(kl + kn)U/2]

(kl + kn)
+

sin[(kl − kn)U/2]

(kl − kn)
,

∫

dU U cos(klU/2) cos(knU/2) = U

{

sin[(kl + kn)U/2]

(kl + kn)
+

sin[(kl − kn)U/2]

(kl − kn)

}

+ 2
cos[(kl + kn)U/2]

(kl + kn)2
+ 2

cos[(kl − kn)U/2]

(kl − kn)2
,

∫

dU U sin(klU/2) cos(knU/2) = −U

{

cos[(kl + kn)U/2)

(kl + kn)
+

cos[(kl − kn)U/2]

(kl − kn)

}

+ 2
sin[(kl + kn)U/2]

(kl + kn)2
+ 2

sin[(kl − kn)U/2]

(kl − kn)2
,

∫

dU U sin(klU/2) sin(knU/2) = U

{

−
sin[(kl + kn)U/2]

(kl + kn)
+

sin[(kl − kn)U/2]

(kl − kn)

}

− 2
cos[(kl + kn)U/2]

(kl + kn)2
+ 2

cos[(kl − kn)U/2]

(kl − kn)2
. (A58)

From these equations (A58) one deduces
∫

dU {cos(klU/2) cos(knU/2) cos(klV/2) cos(knV/2) + cos(klU/2) sin(knU/2) cos(klV/2) sin(knV/2)

− sin(klU/2) cos(knU/2) sin(klV/2) cos(knV/2) − sin(klU/2) sin(knU/2) sin(klV/2) sin(knV/2)},
= sin[(kl + kn)U/2] cos[(kl − kn)V/2]/(kl + kn) + sin[(kl − kn)U/2] cos[(kl + kn)V/2]/(kl − kn)

+ cos[(kl + kn)U/2] sin[(kl − kn)V/2]/(kl + kn) + cos[(kl − kn)U/2] sin[(kl + kn)V/2]/(kl − kn)

= sin[(kl + kn)U/2 + (kl − kn)V/2]/(kl + kn) + sin[(kl − kn)U/2 + (kl + kn)V/2]/(kl − kn)

≡ au(U,V, kl, kn). (A59)

Also, for kl = kn = k,

au(U,V, k, k) ≡ aue(U,V, k) =
U

2
cos(kV ) +

sin(kU )

2k
. (A60)

Similarly,
∫

dU U {cos(klU/2) cos(knU/2) cos(klV/2) cos(knV/2) + cos(klU/2) sin(knU/2) cos(klV/2) sin(knV/2)

− sin(klU/2) cos(knU/2) sin(klV/2) cos(knV/2) − sin(klU/2) sin(knU/2) sin(klV/2) sin(knV/2)}

= Uau(U,V, kl, kn) + 2 cos[(kl + kn)U/2] cos[(kl − kn)V/2]/(kl + kn)2

+ 2 cos[(kl − kn)U/2] cos[(kl + kn)V/2]/(kl − kn)2 − 2 sin[(kl + kn)U/2] sin[(kl − kn)V/2]/(kl + kn)2

− 2 sin[(kl − kn)U/2] sin[(kl + kn)V/2]/(kl − kn)2

= Uau(U,V, kl, kn) + 2 cos[(kl + kn)U/2 + (kl − kn)V/2]/(kl + kn)2 + 2 cos[(kl − kn)U/2

+ (kl + kn)V/2]/(kl − kn)2

≡ bu(U,V, kl, kn), (A61)
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and for kl = kn = k,

bu(U,V, k, k) ≡ bue(U,V, k) =
U 2

4
cos(kV ) +

cos(kU )

2k2
+

U

2k
sin(kU ). (A62)

Now, we define

cd (U,V, kl, kn) ≡ ln

(

|V |
√

V 2 + (2p)2

)

au(U,V, kl, kn),

(A63)

cn(U,V, kl, kn) ≡
1

2(1 − r)
ln

(

|V |
√

V 2 + (2p)2

)

[(2 + V )au(U,V, kl, kn) − bu(U,V, kl, kn)]. (A64)

Then,

Cln =
nnnl

2

{

∫ −1

−1−r

dV cd (U,V, kl, kn)|V +2r
−V −2 +

∫ 1−r

−1
dV cd (U,V, kl, kn)|V +2r

V +
∫ 1

1−r

dV cd (U,V, kl, kn)|−V +2
V

+
∫ −1−r

−2
dV cn(U,V, kl, kn)|V +2

−V −2 +
∫ 0

−1−r

dV cn(U,V, kl, kn)|V +2
V +2r +

∫ 1−r

0
dV cn(U,V, kl, kn)|−V +2

V +2r

}

. (A65)

8. Uniform mode, extended stripe, or film limit

In order to get analytic results in a simpler case, we develop the case of parametric resonance of a uniform mode in an
extended film (effects of the edges of the stripe neglected).

The matrix M̃ in this case is the following (no ac current, J0 comes from the dc current spin-transfer torque, hx includes a dc
Oersted field, no anisotropy):

M̃ =

(

(1 − iα)(hx + 1
2 + iJ0) −(1 − iα)/2

(1 + iα)/2 −(1 + iα)(hx + 1
2 − iJ0)

)

. (A66)

The change of variables to the amplitudes b0, b∗
0 of the uniform eigenmode is as follows:

(

a0

a∗
0

)

=
(

λ −μ

−μ∗ λ∗

)(

b0

b∗
0

)

= W

(

b0

b∗
0

)

. (A67)

The eigenvalues of M̃ are given by

γ± � i[J0 − α(hx + 1/2)] ±
√

(hx + 1 + αJ0)(hx + αJ0), (A68)

i.e., one identifies the critical value of J0 as Jc
0 = α(hx + 1

2 ), since the equation of motion for b0, b∗
0 is

i

(

ḃ0

ḃ∗
0

)

=
(

γ+ 0

0 γ−

)(

b0

b∗
0

)

= D

(

b0

b∗
0

)

, (A69)

thus, b0 = b0
0e−iγ+τ = b0

0e−i�0τ−ν0τ , with �0 =
√

(hx + 1 + αJ0)(hx + αJ0), ν0 = Jc
0 − J0, and b∗

0 = b0∗
0 e−iγ−τ . The eigenvectors

of M̃ may be calculated [they are the columns of the matrix W in Eq. (A67)], and using the normalization |λ|2 − |μ|2 = 1, they
lead to

μ =
1

(1 + iα)

√

A − �0

2�0
, λ = −

√

A + �0

2�0
, (A70)

with A = hx + 1
2 . In this case W −1 is given by

W −1 =
(

λ∗ μ

μ∗ λ

)

. (A71)

The equation of motion with an ac current takes the form

i

(

ḃ0

ḃ∗
0

)

= D

(

b0

b∗
0

)

+ W −1

(

f (τ ) 0

0 − f ∗(τ )

)

W

(

b0

b∗
0

)

(A72)
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with f (τ ) = cos(2�pτ ) f0, and f0 = (1 − iα)(−hac + iJac)
√

2. And

W −1

(

f0 0

0 − f ∗
0

)

W =
(

(|λ|2 f0 + f ∗
0 |μ|2) −λ∗μ( f0 + f ∗

0 )

λμ∗( f0 + f ∗
0 ) −(|λ|2 f ∗

0 + f0|μ|2)

)

. (A73)

Considering only the resonant terms of the previous first equation, this equation becomes

iḃ0 = (�0 − iν0)b0 − λ∗μ( f0 + f ∗
0 )e−i2�pτ b∗

0/2, (A74)

with −λ∗μ( f0 + f ∗
0 ) � −hac/

√
2�0. Thus, looking for solutions of the type b0 = b0

0 exp(−i�pτ − ντ ), b∗
0 = b0∗

0 exp(i�pτ −
ντ ), one obtains the condition

(

(�p − �0) − i(ν − ν0) hac/2
√

2�0

hac/2
√

2�0 (�p − �0) + i(ν − ν0)

)

(

b0
0

b0∗
0

)

= 0. (A75)

Thus, N00∗ = hac/2�0 = IacN̂00∗, i.e., N̂00∗ is proportional to the Oersted field in this model (proportional to the real part of f0

that does not depend on β). Imposing that the determinant of the previous equation to be zero leads to the condition

(ν − ν0)2 = h2
ac/(2

√
2�0)2 − (�p − �0)2. (A76)

Thus, the lowest ac current for which a uniform auto-oscillation occurs at a given dc current, corresponds to ν = 0, �p = �0,
and leads to the threshold ac current condition

|hth| = 2
√

2�0ν0 ↔ |Ith| =
√

2ν0

|N̂00∗|
= 2

√
2�0ν0/k, (A77)

which is the equivalent threshold condition as in Eq. (35) for a general mode (n).

9. Spin Hall angle

In our notation the prefactor magnitude of the spin Hall torque is given by |γ |4πJ [see Eq. (3)]. We used J = βI , with I the
current through the bilayer. According to Ref. [121], in our units

J =
h̄

2edPy4πM2
s

IPt

dPtw
θH = βI, (A78)

with e the charge of the electron, dPy,Pt the thicknesses of Py and Pt, w the width of the wire, and IPt � (3/4)I . The latter
expression allows to derive the spin Hall angle θH from β.

[1] A. Hoffmann and S. D. Bader, Opportunities at the Frontiers
of Spintronics, Phys. Rev. Appl. 4, 047001(2015).

[2] V. E. Demidov, S. Urazhdin, G. de Loubens, O. Klein, V. Cros,
A. Anane, and S. O. Demokritov, Magnetization oscillations
and waves driven by pure spin currents, Phys. Rep. 673, 1
(2017).

[3] Y. Zhao, Q. Song, S. H. Yang, T. Su, W. Yuan, S. S. Parkin, J.
Shi, and W. Han, Experimental investigation of temperature-
dependent gilbert damping in permalloy thin films, Sci. Rep.
6, 22890 (2016).

[4] H. G. Bauer, P. Majchrak, T. Kachel, C. H. Back, and G.
Woltersdorf, Nonlinear spin-wave excitations at low magnetic
bias fields, Nat. Commun. 6, 8274 (2015).

[5] F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach,
E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph,
D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. P. Heremans,
T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov,
S. J. May, A. K. Petford-Long, J. M. Rondinelli et al.,
Interface-induced phenomena in magnetism, Rev. Mod. Phys.
89, 025006 (2017).

[6] D. Sander, S. O. Valenzuela, D. Makarov, C. H. Marrows, E. E.
Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P.

Pirro, B. Hillebrands, A. D. Kent, T. Jungwirth, O. Gutfleisch,
C. G. Kim, and A. Berger, The 2017 magnetism roadmap,
J. Phys. D: Appl. Phys. 50, 363001 (2017).

[7] V. Sluka, T. Schneider, R. A. Gallardo, A. Kakay, M. Weigand,
T. Warnatz, R. Mattheis, A. Roldan-Molina, P. Landeros,
V. Tiberkevich, A. Slavin, G. Schütz, A. Erbe, A. Deac, J.
Lindner, J. Raabe, J. Fassbender, and S. Wintz, Emission and
propagation of 1D and 2D spin waves with nanoscale wave-
lengths in anisotropic spin textures, Nat. Nanotechnol. 14, 328
(2019).

[8] J. Jorzick, S. O. Demokritov, B. Hillebrands, M. Bailleul,
C. Fermon, K. Y. Guslienko, A. N. Slavin, D. V. Berkov,
and N. L. Gorn, Spin Wave Wells in Nonellipsoidal Microm-
eter Size Magnetic Elements, Phys. Rev. Lett. 88, 047204
(2002).

[9] C. Bayer, J. Jorzick, B. Hillebrands, S. O. Demokritov, R.
Kouba, R. Bozinoski, A. N. Slavin, K. Y. Guslienko, D. V.
Berkov, N. L. Gorn, and M. P. Kostylev, Spin-wave excitations
in finite rectangular elements of Ni80Fe20, Phys. Rev. B 72,
064427 (2005).

[10] Y. Kobljanskyj, G. Melkov, K. Guslienko, V. Novosad, S. D.
Bader, M. Kostylev, and A. Slavin, Nano-structured magnetic

144410-19



LIU YANG et al. PHYSICAL REVIEW B 106, 144410 (2022)

metamaterial with enhanced nonlinear properties, Sci. Rep. 2,
478 (2012).

[11] A. Slavin and V. Tiberkevich, Nonlinear auto-oscillator the-
ory of microwave generation by spin-polarized current, IEEE
Trans. Magn. 45, 1875 (2009).

[12] B. A. Ivanov and I. A. Yastremskı̆, Nonlinear oscillations of
the magnetization in small cylindrical ferromagnetic particles,
Low Temp. Phys. 27, 552 (2001).

[13] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D.
Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima,
H. Kubota, S. Yuasa, M. D. Stiles, and J. Grollier, Neuromor-
phic computing with nanoscale spintronic oscillators, Nature
(London) 547, 428 (2017).

[14] R. Lebrun, N. Locatelli, S. Tsunegi, J. Grollier, V. Cros, F.
Abreu Araujo, H. Kubota, K. Yakushiji, A. Fukushima, and
S. Yuasa, Nonlinear Behavior and Mode Coupling in Spin-
Transfer Nano-Oscillators, Phys. Rev. Appl. 2, 061001(R)
(2014).

[15] Z. Haghshenasfard, H. T. Nguyen, and M. G. Cottam, Suhl
instabilities for spin waves in ferromagnetic nanostripes and
ultrathin films, J. Magn. Magn. Mater. 426, 380 (2017).

[16] D. Mancilla-Almonacid and R. E. Arias, Instabilities of spin
torque driven auto-oscillations of a ferromagnetic disk magne-
tized in plane, Phys. Rev. B 93, 224416 (2016).

[17] K. Y. Guslienko, S. O. Demokritov, B. Hillebrands, and A. N.
Slavin, Effective dipolar boundary conditions for dynamic
magnetization in thin magnetic stripes, Phys. Rev. B 66,
132402 (2002).

[18] R. Arias and D. L. Mills, Magnetostatic modes in ferromag-
netic nanowires. II. A method for cross sections with very
large aspect ratio, Phys. Rev. B 72, 104418 (2005).

[19] R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, and M. E.
Welland, Lateral interface anisotropy in nanomagnets, J. Appl.
Phys. 87, 7067 (2000).

[20] R. D. McMichael and B. B. Maranville, Edge saturation fields
and dynamic edge modes in ideal and nonideal magnetic film
edges, Phys. Rev. B 74, 024424 (2006).

[21] H. Puszkarski, M. Krawczyk, and H. T. Diep, Dipolar surface
pinning and spin-wave modes vs. lateral surface dimensions in
thin films, Surf. Sci. 602, 2197 (2008).

[22] R. Adur, C. Du, S. A. Manuilov, H. Wang, F. Yang, D. V.
Pelekhov, and P. C. Hammel, The magnetic particle in a box:
Analytic and micromagnetic analysis of probe-localized spin
wave modes, J. Appl. Phys. 117, 17E108 (2015).

[23] B. Fang, M. Carpentieri, S. Louis, V. Tiberkevich, A. Slavin,
I. N. Krivorotov, R. Tomasello, A. Giordano, H. Jiang, J. Cai,
Y. Fan, Z. Zhang, B. Zhang, J. A. Katine, K. L. Wang, P. K.
Amiri, G. Finocchio, and Z. Zeng, Experimental Demonstra-
tion of Spintronic Broadband Microwave Detectors and Their
Capability for Powering Nanodevices, Phys. Rev. Appl. 11,
014022 (2019).

[24] S. Tsunegi, T. Taniguchi, K. Nakajima, S. Miwa, K. Yakushiji,
A. Fukushima, S. Yuasa, and H. Kubota, Physical reservoir
computing based on spin torque oscillator with forced syn-
chronization, Appl. Phys. Lett. 114, 164101 (2019).

[25] B. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P.
Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov,
J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A. V.
Chumak, A. Hirohata, S. Mangin, S. O. Valenzuela, M. C.
Onbasli, M. d’Aquino et al., Opportunities and challenges for

spintronics in the microelectronics industry, Nat. Electron. 3,
446 (2020).

[26] G. Talmelli, T. Devolder, N. Träger, J. Förster, S. Wintz, M.
Weigand, H. Stoll, M. Heyns, G. Schütz, I. P. Radu, J. Gräfe, F.
Ciubotaru, and C. Adelmann, Reconfigurable submicrometer
spin-wave majority gate with electrical transducers, Sci. Adv.
6, eabb4042 (2020).

[27] R. Dorrance, J. G. Alzate, S. S. Cherepov, P. Upadhyaya,
I. N. Krivorotov, J. A. Katine, J. Langer, K. L. Wang, P. K.
Amiri, and D. Markovic, Diode-MTJ Crossbar Memory Cell
Using Voltage-Induced Unipolar Switching for High-Density
MRAM, Electr. Dev. Lett. 34, 753 (2013).

[28] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N.
Piramanayagam, Spintronics based random access memory: A
review, Mater. Today 20, 530 (2017).

[29] M. Gajek, J. J. Nowak, J. Z. Sun, P. L. Trouilloud, E. J.
O’Sullivan, D. W. Abraham, M. C. Gaidis, G. Hu, S. Brown,
Y. Zhu, R. P. Robertazzi, W. J. Gallagher, and D. C. Worledge,
Spin torque switching of 20 nm magnetic tunnel junctions
with perpendicular anisotropy, Appl. Phys. Lett. 100, 132408
(2012).

[30] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J.
Schoelkopf, R. A. Buhrman, and D. C. Ralph, Microwave os-
cillations of a nanomagnet driven by a spin-polarized current,
Nature (London) 425, 380 (2003).

[31] W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J.
Silva, Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20

Point Contacts, Phys. Rev. Lett. 92, 027201 (2004).
[32] N. Locatelli, V. Cros, and J. Grollier, Spin-torque building

blocks, Nat. Mater. 13, 11 (2014).
[33] D. Houssameddine, U. Ebels, B. Delaët, B. Rodmacq, I.

Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J. P. Michel,
L. Prejbeanu-Buda, M. C. Cyrille, O. Redon, and B. Dieny,
Spin-torque oscillator using a perpendicular polarizer and a
planar free layer, Nat. Mater. 6, 447 (2007).

[34] T. Hache, Y. Li, T. Weinhold, B. Scheumann, F. J. T.
Goncalves, O. Hellwig, J. Fassbender, and H. Schultheiss,
Bipolar spin Hall nano-oscillators, Appl. Phys. Lett. 116,
192405 (2020).

[35] M. Tarequzzaman, T. Böhnert, M. Decker, J. D. Costa,
J. Borme, B. Lacoste, E. Paz, A. S. Jenkins, S. Serrano-
Guisan, C. H. Back, R. Ferreira, and P. P. Freitas, Spin
torque nano-oscillator driven by combined spin injection
from tunneling and spin Hall current, Commun. Phys. 2, 20
(2019).

[36] M. Koo, M. R. Pufall, Y. Shim, A. B. Kos, G. Csaba, W. Porod,
W. H. Rippard, and K. Roy, Distance Computation Based on
Coupled Spin-Torque Oscillators: Application to Image Pro-
cessing, Phys. Rev. Appl. 14, 034001 (2020).

[37] Y. Fuji, Y. Higashi, S. Kaji, K. Masunishi, T. Nagata, A.
Yuzawa, K. Okamoto, S. Baba, T. Ono, and M. Hara, Highly
sensitive spintronic strain-gauge sensor and Spin-MEMS mi-
crophone, Jpn. J. Appl. Phys. 58, SD0802 (2019).

[38] Y. Li, V. V. Naletov, O. Klein, J. L. Prieto, M. Munoz, V.
Cros, P. Bortolotti, A. Anane, C. Serpico, and G. de Loubens,
Nutation Spectroscopy of a Nanomagnet Driven into Deeply
Nonlinear Ferromagnetic Resonance, Phys. Rev. X 9, 041036
(2019).

[39] A. Barman, G. Gubbiotti, S. Ladak, A. O. Adeyeye, M.
Krawczyk, J. Grafe, C. Adelmann, S. Cotofana, A. Naeemi,

144410-20



PARAMETRIC RESONANCE OF SPIN WAVES IN … PHYSICAL REVIEW B 106, 144410 (2022)

V. I. Vasyuchka, B. Hillebrands, S. A. Nikitov, H. Yu, D.
Grundler, A. V. Sadovnikov, A. A. Grachev, S. E. Sheshukova,
J. Y. Duquesne, M. Marangolo, G. Csaba et al., The 2021
magnonics roadmap, J. Phys.: Condens. Matter 33, 413001
(2021).

[40] M. P. Kostylev, G. Gubbiotti, J.-G. Hu, G. Carlotti, T. Ono, and
R. L. Stamps, Dipole-exchange propagating spin-wave modes
in metallic ferromagnetic stripes, Phys. Rev. B 76, 054422
(2007).

[41] P. S. Keatley, P. Gangmei, M. Dvornik, R. J. Hicken, J.
Grollier, C. Ulysse, J. R. Childress, and J. A. Katine, Bottom
up magnonics: Magnetization dynamics of individual nano-
magnets, Top. Appl. Phys. 125, 17 (2013).

[42] N. K. Almulhem, M. E. Stebliy, A. Nogaret, J. C. Portal,
H. E. Beere, and D. A. Ritchie, Photovoltage detection of
Damon-Eshbach and dipolar edge spin waves of nanomagnets
with two-dimensional electron gas system, Jpn. J. Appl. Phys.
57, 09TF01 (2018).

[43] K. Baberschke, Why are spin wave excitations all important
in nanoscale magnetism?, Phys. Status Solidi B 245, 174
(2008).

[44] O. V. Dobrovolskiy, S. A. Bunyaev, N. R. Vovk, D. Navas, P.
Gruszecki, M. Krawczyk, R. Sachser, M. Huth, A. V. Chumak,
K. Y. Guslienko, and G. N. Kakazei, Spin-wave spectroscopy
of individual ferromagnetic nanodisks, Nanoscale 12, 21207
(2020).

[45] A. Banholzer, R. Narkowicz, C. Hassel, R. Meckenstock, S.
Stienen, O. Posth, D. Suter, M. Farle, and J. Lindner, Vi-
sualization of spin dynamics in single nanosized magnetic
elements, Nanotechnology 22, 295713 (2011).

[46] G. Gubbiotti, G. Carlotti, T. Okuno, T. Shinjo, F. Nizzoli, and
R. Zivieri, Brillouin light scattering investigation of dynamic
spin modes confined in cylindrical Permalloy dots, Phys. Rev.
B 68, 184409 (2003).

[47] K. L. Livesey, J. Ding, N. R. Anderson, R. E. Camley, A. O.
Adeyeye, M. P. Kostylev, and S. Samarin, Resonant frequen-
cies of a binary magnetic nanowire, Phys. Rev. B 87, 064424
(2013).

[48] H. Yu, O. d. A. Kelly, V. Cros, R. Bernard, P. Bortolotti, A.
Anane, F. Brandl, F. Heimbach, and D. Grundler, Approach-
ing soft X-ray wavelengths in nanomagnet-based microwave
technology, Nat. Commun. 7, 11255 (2016).

[49] Z. Zhang, M. Vogel, J. Holanda, J. Ding, M. B. Jungfleisch,
Y. Li, J. E. Pearson, R. Divan, W. Zhang, A. Hoffmann, Y.
Nie, and V. Novosad, Controlled interconversion of quantized
spin wave modes via local magnetic fields, Phys. Rev. B 100,
014429 (2019).

[50] C. M. Purser, V. P. Bhallamudi, F. Guo, M. R. Page, Q.
Guo, G. D. Fuchs, and P. C. Hammel, Spinwave detection
by nitrogen-vacancy centers in diamond as a function of
probe– sample separation, Appl. Phys. Lett. 116, 202401
(2020).

[51] K. Schultheiss, N. Sato, P. Matthies, L. Körber, K. Wagner,
T. Hula, O. Gladii, J. E. Pearson, A. Hoffmann, M. Helm,
J. Fassbender, and H. Schultheiss, Time Refraction of Spin
Waves, Phys. Rev. Lett. 126, 137201 (2021).

[52] Z. Zhou, M. Trassin, Y. Gao, Y. Gao, D. Qiu, K. Ashraf, T.
Nan, X. Yang, S. R. Bowden, D. T. Pierce, M. D. Stiles, J.
Unguris, M. Liu, B. M. Howe, G. J. Brown, S. Salahuddin,
R. Ramesh, and N. X. Sun, Probing electric field control of

magnetism using ferromagnetic resonance, Nat. Commun. 6,
6082 (2015).

[53] C. Liu, J. Chen, T. Liu, F. Heimbach, H. Yu, Y. Xiao, J. Hu,
M. Liu, H. Chang, T. Stueckler, S. Tu, Y. Zhang, Y. Zhang, P.
Gao, Z. Liao, D. Yu, K. Xia, N. Lei, W. Zhao, and M. Wu,
Long-distance propagation of short-wavelength spin waves,
Nat. Commun. 9, 738 (2018).

[54] I. Barsukov, H. K. Lee, A. A. Jara, Y.-J. Chen, A. M.
Gonçalves, C. Sha, J. A. Katine, R. E. Arias, B. A. Ivanov,
and I. N. Krivorotov, Giant nonlinear damping in nanoscale
ferromagnets, Sci. Adv. 5, eaav6943 (2019).

[55] R. Brandt, F. Ganss, R. Rückriem, T. Senn, C. Brombacher,
P. Krone, M. Albrecht, and H. Schmidt, Three-dimensional
shape dependence of spin-wave modes in single FePt nano-
magnets, Phys. Rev. B 86, 094426 (2012).

[56] R. D. McMichael and M. D. Stiles, Magnetic normal modes of
nanoelements, J. Appl. Phys. 97, 10J901 (2005).

[57] D. Mancilla-Almonacid and R. E. Arias, Spin-wave modes in
ferromagnetic nanodisks, their excitation via alternating cur-
rents and fields, and auto-oscillations, Phys. Rev. B 95, 214424
(2017).

[58] S. Mamica, J. C. Lévy, and M. Krawczyk, Effects of the com-
petition between the exchange and dipolar interactions in the
spin-wave spectrum of two-dimensional circularly magnetized
nanodots, J. Phys. D: Appl. Phys. 47, 015003 (2014).

[59] J. C. Slonczewski, Current-driven excitation of magnetic mul-
tilayers, J. Magn. Magn. Mater. 159, L1 (1996).

[60] L. Berger, Emission of spin waves by a magnetic multilayer
traversed by a current, Phys. Rev. B 54, 9353 (1996).

[61] J. E. Hirsch, Spin Hall Effect, Phys. Rev. Lett. 83, 1834 (1999).
[62] S. Zhang, Spin Hall Effect in the Presence of Spin Diffusion,

Phys. Rev. Lett. 85, 393 (2000).
[63] G. Finocchio, I. N. Krivorotov, L. Torres, R. A. Buhrman,

D. C. Ralph, and B. Azzerboni, Magnetization reversal driven
by spin-polarized current in exchange-biased nanoscale spin
valves, Phys. Rev. B 76, 174408 (2007).

[64] K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S.
Maekawa, and E. Saitoh, Electric Manipulation of Spin Relax-
ation Using the Spin Hall Effect, Phys. Rev. Lett. 101, 036601
(2008).

[65] R. K. Dumas, E. Iacocca, S. Bonetti, S. R. Sani, S. M.
Mohseni, A. Eklund, J. Persson, O. Heinonen, and J. Akerman,
Spin-Wave-Mode Coexistence on the Nanoscale: A Con-
sequence of the Oersted-Field-Induced Asymmetric Energy
Landscape, Phys. Rev. Lett. 110, 257202 (2013).

[66] X. Fan, J. Wu, Y. Chen, M. J. Jerry, H. Zhang, and J. Q. Xiao,
Observation of the nonlocal spin-orbital effective field, Nat.
Commun. 4, 1799 (2013).

[67] A. Hoffmann, Spin Hall effects in metals, IEEE Trans. Magn.
49, 5172 (2013).

[68] L. Bai, P. Hyde, Y. S. Gui, C. M. Hu, V. Vlaminck, J. E.
Pearson, S. D. Bader, and A. Hoffmann, Universal Method
for Separating Spin Pumping from Spin Rectification Voltage
of Ferromagnetic Resonance, Phys. Rev. Lett. 111, 217602
(2013).

[69] E. Padron-Hernandez, A. Azevedo, and S. M. Rezende, Am-
plification of Spin Waves by Thermal Spin-Transfer Torque,
Phys. Rev. Lett. 107, 197203 (2011).

[70] K. Ganzhorn, S. Klingler, T. Wimmer, S. Geprägs, R. Gross,
H. Huebl, and S. T. B. Goennenwein, Magnon-based logic in

144410-21



LIU YANG et al. PHYSICAL REVIEW B 106, 144410 (2022)

a multi-terminal YIG/Pt nanostructure, Appl. Phys. Lett. 109,
022405 (2016).

[71] E. Iacocca, T.-M. Liu, A. H. Reid, Z. Fu, S. Ruta, P. W.
Granitzka, E. Jal, S. Bonetti, A. X. Gray, C. E. Graves, R.
Kukreja, Z. Chen, D. J. Higley, T. Chase, L. Le Guyader,
K. Hirsch, H. Ohldag, W. F. Schlotter, G. L. Dakovski, G.
Coslovich et al., Spin-current-mediated rapid magnon local-
isation and coalescence after ultrafast optical pumping of
ferrimagnetic alloys, Nat. Commun. 10, 1756 (2019).

[72] Y. Wang, D. Zhu, Y. Yang, K. Lee, R. Mishra, G. Go, S.-H. Oh,
D.-H. Kim, K. Cai, E. Liu, S. D. Pollard, S. Shi, J. Lee, K. L.
Teo, Y. Wu, K.-J. Lee, and H. Yang, Magnetization switching
by magnon-mediated spin torque through an antiferromagnetic
insulator, Science 366, 1125 (2019).

[73] J. Gückelhorn, T. Wimmer, S. Geprägs, H. Huebl, R. Gross,
and M. Althammer, Quantitative comparison of magnon
transport experiments in three-terminal YIG/Pt nanostructures
acquired via dc and ac detection techniques, Appl. Phys. Lett.
117, 182401 (2020).

[74] E. A. Montoya, S. Perna, Y.-J. Chen, J. A. Katine, M.
d’Aquino, C. Serpico, and I. N. Krivorotov, Magnetization
reversal driven by low dimensional chaos in a nanoscale ferro-
magnet, Nat. Commun. 10, 543 (2019).

[75] H. T. Nembach, R. D. Mcmichael, M. L. Schneider, J. M.
Shaw, and T. J. Silva, Comparison of measured and simulated
spin-wave mode spectra of magnetic nanostructures, Appl.
Phys. Lett. 118, 012408 (2021).

[76] F. Guo, L. M. Belova, and R. D. McMichael, Spectroscopy and
Imaging of Edge Modes in Permalloy Nanodisks, Phys. Rev.
Lett. 110, 017601 (2013).

[77] H. T. Nembach, J. M. Shaw, T. J. Silva, W. L. Johnson,
S. A. Kim, R. D. McMichael, and P. Kabos, Effects of shape
distortions and imperfections on mode frequencies and col-
lective linewidths in nanomagnets, Phys. Rev. B 83, 094427
(2011).

[78] B. B. Maranville, R. D. McMichael, and D. W. Abraham,
Variation of thin film edge magnetic properties with patterning
process conditions in Ni80Fe20 stripes, Appl. Phys. Lett. 90,
232504 (2007).

[79] B. A. Belyaev, A. V. Izotov, G. V. Skomorokhov, and P. N.
Solovev, Experimental study of the magnetic characteristics
of nanocrystalline thin films: The role of edge effects, Mater.
Res. Express 6, 116105 (2019).

[80] H. J. Chia, F. Guo, L. M. Belova, and R. D. McMichael,
Two-dimensional spectroscopic imaging of individual ferro-
magnetic nanostripes, Phys. Rev. B 86, 184406 (2012).

[81] M. Zhu and R. D. McMichael, Modification of edge mode
dynamics by oxidation in Ni80Fe20 thin film edges, J. Appl.
Phys. 107, 103908 (2010).

[82] B. B. Maranville, R. D. McMichael, S. A. Kim, W. L. Johnson,
C. A. Ross, and J. Y. Cheng, Characterization of magnetic
properties at edges by edge-mode dynamics, J. Appl. Phys.
99, 08C703 (2006).

[83] J. A. Katine and E. E. Fullerton, Device implications of
spin-transfer torques, J. Magn. Magn. Mater. 320, 1217
(2008).

[84] Z. Duan, C. T. Boone, X. Cheng, I. N. Krivorotov, N. Reckers,
S. Stienen, M. Farle, and J. Lindner, Spin-wave modes in
permalloy/platinum wires and tuning of the mode damping by
spin Hall current, Phys. Rev. B 90, 024427 (2014).

[85] Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner,
V. E. Demidov, S. O. Demokritov, and I. N. Krivorotov,
Nanowire spin torque oscillator driven by spin orbit torques,
Nat. Commun. 5, 5616 (2014).

[86] Z. Duan, I. N. Krivorotov, R. E. Arias, N. Reckers, S. Stienen,
and J. Lindner, Spin wave eigenmodes in transversely magne-
tized thin film ferromagnetic wires, Phys. Rev. B 92, 104424
(2015).

[87] L. Yang, R. Verba, V. Tiberkevich, T. Schneider, A. Smith, Z.
Duan, B. Youngblood, K. Lenz, J. Lindner, A. N. Slavin, and
I. N. Krivorotov, Reduction of phase noise in nanowire spin
orbit torque oscillators, Sci. Rep. 5, 16942 (2015).

[88] A. Smith, K. Sobotkiewich, A. Khan, E. A. Montoya, L. Yang,
Z. Duan, T. Schneider, K. Lenz, J. Lindner, K. An, X. Li, and
I. N. Krivorotov, Dimensional crossover in spin Hall oscilla-
tors, Phys. Rev. B 102, 054422 (2020).

[89] J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, and
P. A. Crowell, Spatially Resolved Dynamics of Localized
Spin-Wave Modes in Ferromagnetic Wires, Phys. Rev. Lett.
89, 277201 (2002).

[90] I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl,
S. Pizzini, J. Vogel, and P. Gambardella, Current-driven spin
torque induced by the Rashba effect in a ferromagnetic metal
layer, Nat. Mater. 9, 230 (2010).

[91] H. Ulrichs, V. E. Demidov, S. O. Demokritov, and S.
Urazhdin, Parametric excitation of eigenmodes in microscopic
magnetic dots, Phys. Rev. B 84, 094401 (2011).

[92] V. E. Demidov, S. Urazhdin, E. R. J. Edwards, and S. O.
Demokritov, Wide-range control of ferromagnetic resonance
by spin Hall effect, Appl. Phys. Lett. 99, 172501 (2011).

[93] O. Rousseau and M. Viret, Interaction between ferromagnetic
resonance and spin currents in nanostructures, Phys. Rev. B
85, 144413 (2012).

[94] C. Wang, H. Seinige, and M. Tsoi, Current-driven parametric
resonance in magnetic multilayers, J. Phys. D: Appl. Phys. 46,
285001 (2013).

[95] C. Hahn, G. de Loubens, M. Viret, O. Klein, V. V. Naletov, and
J. Ben Youssef, Detection of Microwave Spin Pumping Using
the Inverse Spin Hall Effect, Phys. Rev. Lett. 111, 217204
(2013).

[96] T. Brächer, P. Pirro, B. Obry, B. Leven, A. A. Serga, and
B. Hillebrands, Mode selective parametric excitation of spin
waves in a Ni81Fe19 microstripe, Appl. Phys. Lett. 99, 162501
(2011).

[97] F. Guo, L. M. Belova, and R. D. McMichael, Parametric pump-
ing of precession modes in ferromagnetic nanodisks, Phys.
Rev. B 89, 104422 (2014).

[98] S. Urazhdin, V. Tiberkevich, and A. Slavin, Parametric Exci-
tation of a Magnetic Nanocontact by a Microwave Field, Phys.
Rev. Lett. 105, 237204 (2010).

[99] E. R. J. Edwards, H. Ulrichs, V. E. Demidov, S. O.
Demokritov, and S. Urazhdin, Parametric excitation of mag-
netization oscillations controlled by pure spin current, Phys.
Rev. B 86, 134420 (2012).

[100] E. M. Epshtein and P. E. Zilberman, Parametric instability of
a magnetic junction under modulated spin-polarized current,
J. Magn. Magn. Mater. 324, 880 (2012).

[101] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y.
Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, and
P. Gambardella, Symmetry and magnitude of spin-orbit

144410-22



PARAMETRIC RESONANCE OF SPIN WAVES IN … PHYSICAL REVIEW B 106, 144410 (2022)

torques in ferromagnetic heterostructures, Nat. Nanotechnol.
8, 587 (2013).

[102] G. Geranton, B. Zimmermann, N. H. Long, P. Mavropoulos, S.
Blügel, F. Freimuth, and Y. Mokrousov, Spin-orbit torques and
spin accumulation in FePt/Pt and Co/Cu thin films from first
principles: The role of impurities, Phys. Rev. B 93, 224420
(2016).

[103] P. Laczkowski, Y. Fu, H. Yang, J.-C. Rojas-Sanchez, P. Noel,
V. T. Pham, G. Zahnd, C. Deranlot, S. Collin, C. Bouard,
P. Warin, V. Maurel, M. Chshiev, A. Marty, J.-P. Attane, A.
Fert, H. Jaffres, L. Vila, and J.-M. George, Large enhancement
of the spin Hall effect in Au by side-jump scattering on Ta
impurities, Phys. Rev. B 96, 140405(R) (2017).

[104] J. Ryu, C. O. Avci, S. Karube, M. Kohda, G. S. D. Beach,
and J. Nitta, Crystal orientation dependence of spin-orbit
torques in Co/Pt bilayers, Appl. Phys. Lett. 114, 142402
(2019).

[105] A. Manchon, J. Zelezný, I. M. Miron, T. Jungwirth, J. Sinova,
A. Thiaville, K. Garello, and P. Gambardella, Current-induced
spin-orbit torques in ferromagnetic and antiferromagnetic sys-
tems, Rev. Mod. Phys. 91, 035004 (2019).

[106] W. Wang, T. Wang, V. P. Amin, Y. Wang, A. Radhakrishnan,
A. Davidson, S. R. Allen, T. J. Silva, H. Ohldag, D. Balzar,
B. L. Zink, P. M. Haney, J. Q. Xiao, D. G. Cahill, V. O. Lorenz,
and X. Fan, Anomalous spin– orbit torques in magnetic single-
layer films, Nat. Nanotechnol. 14, 819 (2019).

[107] K. D. Belashchenko, A. A. Kovalev, and M. van Schilfgaarde,
Interfacial contributions to spin-orbit torque and magnetoresis-
tance in ferromagnet/heavy-metal bilayers, Phys. Rev. B 101,
020407(R) (2020).

[108] C. Safranski, J. Z. Sun, J.-W. Xu, and A. D. Kent, Planar Hall
Driven Torque in a Ferromagnet/Nonmagnet/Ferromagnet
System, Phys. Rev. Lett. 124, 197204 (2020).

[109] Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu,
K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori,
A. Hoffmann, J. Akerman, K. Roy, J.-P. Wang, S.-H. Yang, K.
Garello, and W. Zhang, Roadmap of spin orbit torques, IEEE
Trans. Magn. 57, 1 (2021).

[110] A. Kumar, R. Sharma, K. I. Ali Khan, C. Murapaka, G. J.
Lim, W. S. Lew, S. Chaudhary, and P. K. Muduli, Large
damping-like spin-orbit torque and improved device perfor-
mance utilizing mixed-phase Ta, ACS Appl. Electron. Mater.
3, 3139 (2021).

[111] M. Filianina, J.-P. Hanke, K. Lee, D.-S. Han, S. Jaiswal, A.
Rajan, G. Jakob, Y. Mokrousov, and M. Kläui, Electric-field
control of spin-orbit torques in perpendicularly magnetized
W/CoFeB/MgO films, Phys. Rev. Lett. 124, 217701 (2020).

[112] M. Bapna, B. Parks, S. D. Oberdick, H. Almasi, W. Wang,
and S. A. Majetich, Spin-Orbit-Torque Switching in 20-nm
Perpendicular Magnetic Tunnel Junctions, Phys. Rev. Appl.
10, 024013 (2018).

[113] C. Safranski, E. A. Montoya, and I. N. Krivorotov, Spin– orbit
torque driven by a planar Hall current, Nat. Nanotechnol. 14,
27 (2019).

[114] A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H.
Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe,
and S. Yuasa, Spin-torque diode effect in magnetic tunnel
junctions, Nature (London) 438, 339 (2005).

[115] J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov,
R. A. Buhrman, and D. C. Ralph, Spin-Transfer-Driven Ferro-

magnetic Resonance of Individual Nanomagnets, Phys. Rev.
Lett. 96, 227601 (2006).

[116] N. Biziere, E. Mure, and J.-P. Ansermet, Microwave spin-
torque excitation in a template-synthesized nanomagnet, Phys.
Rev. B 79, 012404 (2009).

[117] A. Ganguly, K. Kondou, H. Sukegawa, S. Mitani, S. Kasai, Y.
Niimi, Y. Otani, and A. Barman, Thickness dependence of spin
torque ferromagnetic resonance in Co75Fe25/Pt bilayer films,
Appl. Phys. Lett. 104, 072405 (2014).

[118] A. M. Gonçalves, I. Barsukov, Y.-J. Chen, L. Yang, J. A.
Katine, and I. N. Krivorotov, Spin torque ferromagnetic res-
onance with magnetic field modulation, Appl. Phys. Lett. 103,
172406 (2013).

[119] X. Cheng, J. A. Katine, G. E. Rowlands, and I. N. Krivorotov,
Nonlinear ferromagnetic resonance induced by spin torque in
nanoscale magnetic tunnel junctions, Appl. Phys. Lett. 103,
082402 (2013).

[120] N. Mecking, Y. S. Gui, and C. M. Hu, Microwave photovoltage
and photoresistance effects in ferromagnetic microstrips, Phys.
Rev. B 76, 224430 (2007).

[121] L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Spin-
Torque Ferromagnetic Resonance Induced by the Spin Hall
Effect, Phys. Rev. Lett. 106, 036601 (2011).

[122] S. Martín-Rio, A. Pomar, L. Balcells, B. Bozzo, C. Frontera,
and B. Martínez, Temperature dependence of spin pumping
and inverse spin hall effect in permalloy/pt bilayers, J. Magn.
Magn. Mater. 500, 166319 (2020).

[123] A. G. Gurevich and G. A. Melkov, Magnetization Oscillations

and Waves (CRC Press, Boca Raton, FL, 1996)
[124] J. R. Eshbach and R. W. Damon, Surface magnetostatic modes

and surface spin waves, Phys. Rev. 118, 1208 (1960).
[125] P. Dürrenfeld, E. Iacocca, J. Åkerman, and P. K. Muduli,

Parametric excitation in a magnetic tunnel junction-based spin
torque oscillator, Appl. Phys. Lett. 104, 052410 (2014).

[126] Y. J. Chen, H. K. Lee, R. Verba, J. A. Katine, I. Barsukov, V.
Tiberkevich, J. Q. Xiao, A. N. Slavin, and I. N. Krivorotov,
Parametric resonance of magnetization excited by electric
field, Nano Lett. 17, 572 (2017).

[127] J. Grollier, V. Cros, H. Jaffrès, A. Hamzic, J. M. George, G.
Faini, J. B. Youssef, H. Le Gall, and A. Fert, Field dependence
of magnetization reversal by spin transfer, Phys. Rev. B 67,
174402 (2003).

[128] P. Khalili Amiri, Z. M. Zeng, J. Langer, H. Zhao, G. Rowlands,
Y. J. Chen, I. N. Krivorotov, J. P. Wang, H. W. Jiang, J. A.
Katine, Y. Huai, K. Galatsis, and K. L. Wang, Switching
current reduction using perpendicular anisotropy in CoFeB-
MgO magnetic tunnel junctions, Appl. Phys. Lett. 98, 112507
(2011).

[129] V. V. Kruglyak, O. Y. Gorobets, Y. I. Gorobets, and A. N.
Kuchko, Magnetization boundary conditions at a ferromag-
netic interface of finite thickness, J. Phys.: Condens. Matter
26, 406001 (2014).

[130] L. F. Yin, D. H. Wei, N. Lei, L. H. Zhou, C. S. Tian,
G. S. Dong, X. F. Jin, L. P. Guo, Q. J. Jia, and R. Q. Wu,
Magnetocrystalline Anisotropy in Permalloy Revisited, Phys.
Rev. Lett. 97, 067203 (2006).

[131] M. Pardavi-Horvath, C. Ross, and R. McMichael, Shape
effects in the ferromagnetic resonance of nanosize rect-
angular permalloy arrays, IEEE Trans. Magn. 41, 3601
(2005).

144410-23



LIU YANG et al. PHYSICAL REVIEW B 106, 144410 (2022)

[132] J. O. Rantschler, P. J. Chen, A. S. Arrott, R. D. McMichael,
W. F. Egelhoff, and B. B. Maranville, Surface anisotropy of
permalloy in NM/NiFe/NM multilayers, J. Appl. Phys. 97,
10J113 (2005).

[133] E. Sagasta, Y. Omori, M. Isasa, M. Gradhand, L. E. Hueso,
Y. Niimi, Y. C. Otani, and F. Casanova, Tuning the spin Hall
effect of Pt from the moderately dirty to the superclean regime,
Phys. Rev. B 94, 060412(R) (2016).

[134] M. Shinozaki, T. Dohi, J. Igarashi, J. Llandro, S. Fukami,
H. Sato, and H. Ohno, Probing edge condition of nanoscale
CoFeB/MgO magnetic tunnel junctions by spin-wave reso-
nance, Appl. Phys. Lett. 117, 202404 (2020).

[135] L. Herrera Diez, F. Ummelen, V. Jeudy, G. Durin, L. Lopez-
Diaz, R. Diaz-Pardo, A. Casiraghi, G. Agnus, D. Bouville,
J. Langer, B. Ocker, R. Lavrijsen, H. J. M. Swagten, and D.
Ravelosona, Magnetic domain wall curvature induced by wire
edge pinning, Appl. Phys. Lett. 117, 062406 (2020).

[136] B. Heinz, M. Mohseni, A. Lentfert, R. Verba, M. Schneider, B.
Lagel, K. Levchenko, T. Bracher, C. Dubs, A. V. Chumak, and
P. Pirro, Parametric generation of spin waves in nano-scaled
magnonic conduits, Phys. Rev. B 105, 144424 (2022).

[137] S. Hwang, S. Yoon, D. Seo, S. H. Han, and B. K. Cho, Para-
metric excitation and mode control using an Oersted field in a
NiFe nanowire, Sci. Rep. 11, 14207 (2021).

144410-24


