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We consider the 3D incompressible Euler equations in vorticity 
form in the following fundamental domain for the octahedral 
symmetry group: {(x1, x2, x3) : 0 < x3 < x2 < x1}. In this 
domain, we prove local well-posedness for Cα vorticities not 
necessarily vanishing on the boundary with any 0 < α < 1, 
and establish finite-time singularity formation within the same 
class for smooth and compactly supported initial data. The 
solutions can be extended to all of R3 via a sequence of 
reflections, and therefore we obtain finite-time singularity 
formation for the 3D Euler equations in R3 with bounded 
and piecewise smooth vorticities.
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1. Introduction

In this paper, we consider solutions of the 3D incompressible Euler equations in R3

which are invariant under a specific group of rotations and reflections. In terms of the 
velocity u : R × R3 → R3, the 3D Euler equations have the following form:{

∂tu + u · ∇u = −∇p,

∇ · u = 0.
(1.1)

We shall use the vorticity form of the above, which is obtained by defining ∇ × u = ω:{
∂tω + u · ∇ω = [∇u]ω,

u = ∇ × (−Δ)−1ω.
(1.2)

In the latter formulation, we need to impose that the initial vorticity is divergence-free. 
The Euler equations (in either form) respect rotation and reflection symmetries, which 
means that if the vorticity is invariant under such a symmetry, then the same property 
holds for the solution as well.

1.1. Octahedral symmetry

We recall that the octahedral symmetry group of R3, which will be denoted by O, is 
generated by the following three rotations:
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Fig. 1. Extended octahedral symmetry group dividing S2 into 48 pieces.

⎧⎪⎪⎨⎪⎪⎩
P1(x1, x2, x3) := (x1, −x3, x2)
P2(x1, x2, x3) := (x3, x2, −x1)
P3(x1, x2, x3) := (−x2, x1, x3).

This group is isomorphic to the symmetry group of 4 elements. We shall consider a 
extended symmetry group Õ, which is generated by {Pi, Ri}3

i=1 where

⎧⎪⎪⎨⎪⎪⎩
R1(x1, x2, x3) := (−x1, x2, x3)
R2(x1, x2, x3) := (x1, −x2, x3)
R3(x1, x2, x3) := (x1, x2, −x3).

Note that Õ has 48 elements. We shall fix the following fundamental domains for O and 
Õ:

U = {(x1, x2, x3) ∈ R3 : x1, x2 > x3 > 0}, Ũ = {(x1, x2, x3) ∈ R3 : x1 > x2 > x3 > 0}.

(1.3)

The latter domain Ũ is obtained by cutting the positive octant (R+)3 into six identical 
pieces. Note that the intersection Ũ ∩ S2 is a spherical triangle with vertices having 
angles π

2 , π3 , and π
4 . Here, S2 is the unit sphere. We shall denote these vertices by a2, 

a3, and a4, respectively. Explicitly, we have a2 = ( 1√
2 , 1√

2 , 0), a3 = ( 1√
3 , 1√

3 , 1√
3), and 

a4 = (1, 0, 0); see Fig. 2.
In the following definition, we make precise the notion of rotation and reflection in-

variance for a vector valued function. In the following, we shall only consider reflections 
across a hyperplane of R3 containing the origin 0.
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Fig. 2. The region Ũ ∩ {|x| < 1}. The intersection Ũ ∩ {|x| = 1} is given by a spherical triangle with vertices 
( 1√

2 , 1√
2 , 0), ( 1√

3 , 1√
3 , 1√

3 ), and (1, 0, 0).

Definition 1.1. We say that a vector-valued function f = (f1, f2, f3)T : R3 → R3 is 
(rotationally) symmetric with respect to a rotation O of R3 if f(Ox) = O(f(x)) for any 
x ∈ R3. On the other hand, we say f is even (odd, resp.) symmetric with respect to the 
reflection across a hyperplane R if f(Rx) = R(f(x)) (f(Rx) = −R(f(x)), resp) for any 
x ∈ R3.

Next, we say that for a group of rotations G, f is even (odd, resp.) symmetric with 
respect to G if f is symmetric with respect to all rotations in G and even (odd, resp.) 
symmetric with respect to all reflections in G.

As it is well-known, the incompressible Euler equations respect rotation and reflection 
symmetries. We state this property specifically for O and Õ:

Proposition 1.2. Assume that ω0 is (odd, resp.) symmetric with respect to O (Õ, resp.) 
and belongs to a well-posedness class1 to the 3D Euler equations. Then, the unique local-
in-time solution ω(t, ·) stays symmetric with respect to O (Õ, resp.).

Proof. Take any rotation matrix O, and note that the relation

O−1K(Ox)O = K(x)

1 This means that at least for some non-empty time interval, the solution exists uniquely in the given 
class.
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holds for all x ∈ R3. This implies that u = K∗ω is symmetric with respect to O whenever 
ω is. Next, given a vector f symmetric with respect to O, the gradient matrix ∇f is 
symmetric in the sense that

O−1∇f(Ox)O = ∇f(x)

holds for all O ∈ O. In turn, this implies that when ω is symmetric, both u · ∇ω and 
ω · ∇u are symmetric as well. This shows that the 3D Euler equations respect rotational 
symmetries. In particular, symmetry breaking can only occur from non-uniqueness.

A similar argument shows that the odd symmetry with respect to a reflection propa-
gates in time. Note that if ω(t, ·) is odd symmetric then u(t, ·) is even symmetric. This 
finishes the proof. �

Given a vector valued function f defined on Ũ , we define f̃ : R3 → R3 to be the unique 
extension of f which is odd symmetric with respect to Õ. Note that strictly speaking f̃
is in general not well-defined on the whole of R3, but the set of such points belongs to 
a finite union of hyperplanes which has measure zero. In this paper, we shall consider 
the system (1.2) in the domain Ũ ⊂ R3. Note that given a divergence-free vector field 
ω : Ũ → R3, one can extend it as a function ω̃ : R3 → R3 using reflections. Then, the 
corresponding velocity on Ũ has the representation

u(x) = 1
4π

∫
R3

x − y

|x − y|3 × ω̃(y)dy

(which is simply the convolution against the kernel for ∇ × (−Δ)−1 in R3). It is not 
difficult to see that this velocity satisfies the slip boundary condition u · n = 0 on ∂Ũ

with the unit normal vector n, which is the natural boundary condition for the Euler 
equations. Moreover, u satisfies ∇ · u = 0 and ∇ × u = ω in Ũ . With this reflection 
principle in mind, we shall view Euler solutions defined in Ũ also as solutions in R3.

It seems that the set of symmetries Õ coincides with those used in the so-called “high 
symmetry flows” of Kida [34], although Kida consider symmetric solutions in T 3 rather 
than in R3. We note that these high symmetry flows were numerically investigated in 
[4,41–43] as a candidate for obtaining finite-time singularity formation. See [40] for some 
theoretical results in this direction.

In this work, we view this group of symmetries as a generalization to 3D of certain 
symmetry groups for 2D flows. In two dimensions, the vorticity is a scalar, and one can 
consider the following symmetry groups for the vorticity:

(1) The group O2D generated by P : v �→ v⊥ (rotation by π
2 ): then the vorticity satisfies 

ω(x) = ω(x⊥) for all x ∈ R2,
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(2) The group R2D generated by reflections R1 and R2: this imposes odd symmetry with 
respect to x1, x2 axes (“odd-odd”) on the vorticity, i.e., ω(x1, x2) = −ω(−x1, x2) =
−ω(x1, −x2) for all x = (x1, x2) ∈ R2.

(3) The group Õ2D generated by P , R1, and R2.

We may take the fundamental domains U2D = (R+)2 for groups O2D and R2D and 
Ũ2D = {(x1, x2) : 0 < x1 < x2} for Õ2D. Note that one can already note some similarity 
between the group O and O2D, and also between Õ and Õ2D.

Recently, solutions to the 2D vorticity equation with symmetries of the above form 
were intensively studied, mainly towards the goal of achieving double exponential growth 
rate of the vorticity gradient ([38,45,24,30,29,18,27,44]). This problem of exhibiting dou-
ble exponential growth is sometimes regarded as the 2D version of the blow-up problem 
in 3D, since double exponential growth rate for the vorticity gradient is the best known 
upper bound for smooth solutions to the 2D Euler equations. The groundbreaking work 
of Kiselev and Severak [38] showed that the double exponential growth can be indeed 
achieved when the domain has physical boundary. In this work, the most important 
points were the odd-odd symmetry (item (2) in the above) and the vorticity not vanish-
ing on the boundary. These points together provided certain stability on the solutions, 
which allowed the vorticities to sustain their growth for all times. Then it became a nat-
ural question to ask what happens for solutions satisfying different types of symmetries, 
for instance the ones given by groups O2D and Õ2D. In these cases, it turns out that the 
stability becomes so strong (in a sense that can be made precise; see [24,30,29]) that the 
double exponential rate of growth is unachievable, at least “exactly” at the origin.

Indeed, the attempt to establish blow-up by considering solutions satisfying a group 
of symmetries is classical. If the symmetry group is continuous (rather than discrete), 
then it reduces the dimension of the system; in the context of the 3D Euler equations, 
one may assume that the solution is invariant under all rotations with respect to some 
fixed axis, which results in a 2D system commonly referred to as the axisymmetric 
3D Euler equations. Very recently it was shown that blow-up for this axisymmetric 
system is possible, for Cα vorticity with 0 < α small [17]. Another continuous group 
of symmetry one can put for the 3D Euler equations goes by the name of “stagnation 
point similitude” ansatz, and a well-known work of Constantin [16] established blow-
up in this case. We note that, however, in this ansatz the vorticity grows linearly at 
spatial infinity,2 and it is unclear whether the blow-up will persist upon “cutting off” the 
vorticity at infinity. In principle, one can try to reduce the dimension even further, by 
looking at a one-dimensional subdomain which is left invariant by the Euler flow. In the 
case of axisymmetry, one can formally consider the 1D system defined on the symmetry 
axis, which is unfortunately not closed by itself (see [8,10,9]). Still, in the work of Chae 
[8], a very interesting result is proved which states that as long as the pressure has a 
positive second derivative on the symmetry axis, blow-up is bound to occur in finite 

2 So far no local well-posedness result is known for vorticities growing linearly at infinity.
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time. Alternatively, one can take the axisymmetric domain to be a bounded cylinder 
and consider the reduced system on a vertical line contained in the boundary of the 
cylinder. While the system cannot be closed by itself again in this case, some formal 
models have appeared to describe the dynamics on this line and finite-time blow up has 
been established ([39,28,15,14]). In the same spirit, even when one is concerned with 
solutions satisfying a discrete set of symmetries, one can consider lower-dimensional 
equations posed on invariant subdomains for the corresponding symmetry group. This 
has been considered in [12,11] and some conditions which guarantees finite time blow-up 
were obtained, which has a similar flavor with [8].

In view of these, the goal of this paper is to investigate the blow-up problem (and more 
generally growth of solutions with time) in 3D using vorticities which are symmetric with 
respect to either O and Õ. Then, the Euler equations can be reduced to the fundamental 
domains U and Ũ and in principle, one can consider vorticities which do not vanish on the 
boundary ∂U and ∂Ũ . In such domains, local well-posedness in classical function spaces is 
not trivial at all, since the boundary is not smooth but just Lipschitz continuous. Once it 
is achieved, the question of finite time singularity formation is legitimate, and we answer 
it in the affirmative in the case of Õ and Ũ . The initial data can be C∞ in Ũ uniformly up 
to the boundary and compactly supported, with finite kinetic energy. Roughly speaking, 
this demonstrates that although the symmetry group Õ provides a strong stability on 
the solution (analogously to the 2D case), it can still yield finite time blow-up. This is 
a clear manifestation of the following general principle, seemingly counter-intuitive: the 
more drastic growth one wants to prove, the more stability is required on the solution 
(see [37,35,36]).

In the process of achieving the blow-up result mentioned above, we find that the anal-
ogy between the groups Õ and Õ2D goes further than one would naively expect. This 
shall be demonstrated by the statements and proofs of various singular integral trans-
form estimates in 3D, where the heart of the matter lies in a few explicit computations 
involving some special functions in 2D, including the so-called Bahouri-Chemin solution 
[1].

1.2. Main results

Let us first explicitly write down our convention for the Hölder norms: for 0 < α < 1
and an open set V ⊂ Rd, we define

‖f‖Cα
∗ (V ) = sup

x�=x′,x,x′∈V

|f(x) − f(x′)|
|x − x′|α , ‖f‖Cα(V ) = ‖f‖L∞(V ) + ‖f‖Cα

∗ (V ).

We recall the scale-invariant Hölder norms introduced in [24]3:

3 Note that if 0 ∈ V̄ (which will be the case for our applications here) and |x′|αf(x′) → 0 as x′ → 0 then 
from the definition of C̊α, we have ‖f‖L∞(V ) ≤ ‖f‖C̊α(V ).
∗
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‖f‖C̊α
∗ (V ) = sup

x�=x′,x,x′∈V

||x|αf(x) − |x′|αf(x′)|
|x − x′|α , ‖f‖C̊α(V ) = ‖f‖L∞(V ) + ‖f‖C̊α

∗ (V ).

Finally, ‖f‖Cα∩C̊α(V ) = ‖f‖Cα(V ) + ‖f‖C̊α(V ). The merits in introducing the space C̊α

will be explained shortly after stating our main results. In the following, we shall just fix 
some 0 < α < 1; its specific choice will not make any essential difference for the results 
in this paper, although the constants in the inequalities would depend in α. To begin 
with, we state the local well-posedness theorem in C̊α(R3) and in Cα ∩ C̊α(R3) for the 
vorticity symmetric with respect to O. The proof was outlined in the thesis of the second 
author [31].

Theorem 1.3 (cf. [31, Theorem 3.4.7]). Let ω0 ∈ C̊α(R3) (resp. ω0 ∈ Cα ∩ C̊α(R3)) be 
a divergence-free vector field and symmetric with respect to O. Then, there is a T =
T (‖ω0‖C̊α) > 0 (T = T (‖ω0‖Cα∩C̊α) > 0, resp.) and a unique O-symmetric solution 
ω ∈ C0([0, T ); C̊α(R3)) (ω ∈ C0([0, T ); Cα∩C̊α(R3)), resp.) to the 3D vorticity equations 
with initial data ω0.

This result applies to initial vorticities which are odd symmetric with respect to the 
extended group Õ, since Õ ⊃ O and we have shown already in the above that uniqueness 
implies propagation of odd symmetry with respect to Õ. Now note that the boundary 
of the fundamental domain Ũ consists of a finite union of infinite sectors. If ω0 ∈ C̊α(Ũ)
is normal to the boundary planes, then ω0 extends to ω̃0 which is odd symmetric with 
respect to Õ and belongs to C̊α(R3). Therefore, as a simple corollary of the above, we 
obtain the following:

Corollary 1.4. Let ω0 ∈ C̊α(Ũ) (resp. ω0 ∈ Cα ∩ C̊α(Ũ)) be divergence-free and 
further satisfy ω0 ‖ n on ∂Ũ where n is the unit normal vector. Then, there is 
a T = T (‖ω0‖C̊α) > 0 (T = T (‖ω0‖Cα∩C̊α) > 0, resp.) and a unique solution 
ω ∈ C0([0, T ); C̊α(Ũ)) (ω ∈ C0([0, T ); Cα ∩ C̊α(Ũ)), resp.) to the 3D vorticity equa-
tions with initial data ω0.

We now present our first main result in this paper, which is a local well-posedness 
result which is a strict extension to Theorem 1.3 and Corollary 1.4:

Theorem A (Local well-posedness). Let ω0 ∈ Cα ∩ C̊α(Ũ) be divergence-free and further 
satisfies that ω1

0 + ω2
0 vanishes on {(x1, x2, x3) : x1 = x2 ≥ 0, x3 = 0}. Then, there exists 

T > 0 and a unique solution ω ∈ C([0, T ); Cα ∩ C̊α(Ũ)) to the 3D Euler equations, 
satisfying that ω1(t) + ω2(t) vanishes on {(x1, x2, x3) : x1 = x2 ≥ 0, x3 = 0} for any 
0 ≤ t < T .

Note that Theorem A is an extension of Corollary 1.4 since the vorticity does not 
need to be normal to the boundary planes of Ũ ; the only condition we are imposing for 
local well-posedness is the vanishing condition for ω1

0 + ω2
0 on the ray {(x1, x2, x3) : x1 =
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x2 ≥ 0, x3 = 0}. In the course of the proof, we shall see that this condition is essential: 
otherwise the equation is illposed.

Within the class of solutions constructed in Theorem A, we establish finite time singu-
larity formation. The initial data can be C∞–smooth within Ũ and compactly supported.

Theorem B (Finite-time singularity formation). There exists a set of smooth and com-
pactly supported initial data satisfying the assumptions of Theorem A whose unique 
local solutions blow-up in finite time: more specifically, given ω0 in the set, there ex-
ists 0 < T ∗ < +∞ such that the solution ω(t) satisfies

lim inf
t→T ∗

‖ω(t)‖L∞(Ũ) = +∞.

Either one of the following conditions on the initial data ω0 = (ω1
0 , ω2

0 , ω3
0) is sufficient 

for finite time blow-up:

1. (−ω1
0 + ω2

0)(0) �= 2ω3
0(0) and (−ω1

0 + ω2
0)(0)ω3

0(0) �= 0, or
2. (−ω1

0 + ω2
0)(0) = 2ω3

0(0) > 0.

Remark 1.5. We give a few remarks regarding the statements of Theorems A and B.

• Let us emphasize that the use of spaces C̊α is mainly to allow for more general local 
well-posedness theory, see below for a discussion on the norm C̊α. One can completely 
avoid using these norms and instead work with vorticities which are either compactly 
supported or belonging to Lp for some finite p > 1.

• In Theorem A, the condition ω0 ‖ n on ∂Ũ is now replaced with a much weaker 
condition that ω1

0 + ω2
0 vanishes on {(x1, x2, x3) : x1 = x2 ≥ 0, x3 = 0}. (The latter 

is implied by the former.) This vanishing condition is not artificial; one can see from 
the slip boundary condition that this condition is necessary for the corresponding 
velocity to be at least C1 regular in Ũ . Indeed, assume that u0 ∈ C1, and recall 
that we have on the plane {x1 = x2} the boundary condition u1

0 = u2
0. Similarly, on 

{x3 = 0}, we have u3
0 = 0. Then,

∂3u1
0 = ∂3u2

0, ∂1u3
0 = ∂2u3

0 = 0

on {(x1, x2, x3) : x1 = x2 ≥ 0, x3 = 0}. It follows that

ω1
0 = ∂2u3

0 − ∂3u2
0 = −∂3u1

0 = −ω2
0

and hence ω1
0 + ω2

0 = 0.
• One may extend the solutions provided by Theorem A to R3 and obtain ω ∈

L∞([0, T ); L∞(R3)) which can be considered as a 3D vortex patch. In 2D, a global 
well-posedness result for vortex patches with corner singularity has been established 
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in [20] under the assumption that the vorticity is m-fold rotationally symmetric for 
some m ≥ 3. Hence Theorem A can be considered as an extension of this result to 
the 3D case, although in the current setting the patch boundary near the origin is 
fixed in time by reflection symmetries. Moreover, Theorem B can be viewed as a 
finite-time blow up result for singular vortex patches defined in all of R3.

• Under more restrictive vanishing assumptions on the initial vorticity, one can prop-
agate higher regularity in space up to the blow-up time. The proof for C1,α propa-
gation of the vorticity is sketched in Proposition 3.2.

Remark 1.6. We note that the local well-posedness and singularity formation can be 
stated and proved on the compact domain Ũ ∩ T 3, where T 3 = [−1, 1)3.

1.3. Ideas of the proof

The goal of this section is to explain the key ideas involved in the proofs. Before doing 
so, we would like to briefly mention some merits of the scale-invariant Hölder space C̊α. 
Note that, as far as one is concerned with vorticities decaying at infinity, C̊α is larger 
than the classical Hölder space, and it goes without saying that obtaining a local well-
posedness result in a larger space is more difficult. The second point is that the space 
C̊α encodes a decay condition for the vorticity which is natural with respect to the Euler 
equations, even if one is only concerned with Cα vorticities: note that for |x| � 1 and 
|x − x′| � 1, we have from the definition that

|f(x) − f(x′)|
|x − x′|α � |x|−α.

Usually, the decay on the vorticity is imposed by requiring ω to belong to some finite 
Lp-space or to have compact support. Although this can be done in the present context, 
we find it much more elegant to use the space Cα ∩ C̊α to close the a priori estimates for 
local well-posedness. For a more technical point, it turns out that the heart of the matter 
in proving Hölder estimates for ∇2(−Δ)−1 in Ũ is to prove ∇2(−ΔŨ )−1(1Ũ ) ∈ C̊α

∗ , see 
Lemma 5.2 below for details.

(1) Local well-posedness (Theorem A)

The main ingredient in the local well-posedness is simply the Cα-estimate for the 
double Riesz transforms {Rij}1≤i,j≤3 in Ũ . We emphasize that the transform Rij defined 
in the following sense: given a vector-valued function f in Ũ , we first extend f to the 
whole of R3 as an odd function, denoted as f̃ , with respect to Õ and set Rijf :=
(∂xj

∂xj
(−Δ)−1f̃)|Ũ . Taking f to be the vorticity defined in Ũ , the corresponding velocity 

gradient is given by a linear combination of the double Riesz transforms defined in this 
way (see the Appendix for the explicit formulas).

As we mentioned earlier, rather than directly showing the Cα-bound, we prove instead 
a Cα ∩ C̊α-estimate, which then gives as an immediate consequence the Cα-bound for 
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double Riesz transforms for Cα
c -functions. As a general rule, given a function f ∈ Cα ∩

C̊α(Ũ) and a singular integral transform T , the L∞ and C̊α bounds of Tf will follow 
from the C̊α bound of f , while the Cα

∗ estimate follows from the Cα
∗ bound of f .

We apply a number of reductions to obtain the desired Cα ∩ C̊α-estimate. First, if f is 
a constant vector-valued function inside Ũ , explicit computations show that double Riesz 
transforms are well-defined as long as f satisfies the vanishing condition in Theorem A, 
and that they are again given by constant vector-valued functions. This allows us to 
assume that, without loss of generality, f vanishes at the origin. Next, since ∂Ũ is smooth 
away from three half-lines denoted by �a2, �a3, and �a4, it suffices to consider regularity of 
Tf close to these half-lines. Moreover, with a radially-homogeneous partition of unity, we 
may assume that the support of f is “adjacent” to one of the half-lines, say �aj . Then Tf

is possibly singular only near �aj , as a simple consequence of the “symmetry reduction” 
Lemma 5.13. To prove regularity of Tf up to �aj , we make an orthogonal change of 
coordinates so that �aj is parallel the new x3-axis. In this new coordinates system, any 
double Riesz transform involving ∂x3 satisfies the Cα-bound; roughly speaking, this is 
because locally ∂Ũ is parallel to �aj . More precisely, this is due to the intrinsic property 
of double Riesz transforms that the integral of the kernel over any hemisphere vanishes. 
It still remains to treat the Riesz transforms R11, R22, and R12: for these we apply 
again Lemma 5.13 and reduce the statements to 2D Hölder estimates. The necessary 2D 
bounds are collected and proved in 5.1. The most tricky part is to obtain estimates near 
�a2, which creates a corner with angle π

2 . Applying the aforementioned 2D reduction near 
�a2, the vanishing condition in Theorem A naturally comes into play, since we are now 
concerned with functions defined on the positive quadrant Q = (R+)2. It is well-known 
that ([26]) even for f ∈ C∞

c (Q), ∇2(−ΔQ)−1f /∈ L∞(Q). We restore the L∞-bound 
under the vanishing condition of f at the origin, which corresponds to the vanishing 
condition of the parallel component vorticity along the whole half-line �a2. To the best of 
our knowledge, it was an open problem to decide what are the conditions for f ∈ C∞

c (Q)
guaranteeing Hölder regularity of ∇2(−ΔQ)−1f . Our 2D result shows that this is the 
case if and only if f vanishes at the corner of Q.

Given the a priori estimates, the arguments for existence and uniqueness are not
completely straightforward, since the vorticity does not necessarily decay at infinity. For 
decaying vorticities, uniqueness follows immediately in our setting since the velocity has 
finite energy and bounded in the Lipschitz norm. To deal with this issue with decay, we 
adapt an argument from our previous work [23] on the 2D Boussinesq system which is 
based on proving stability of the quantity ‖|x|−1u(t, x)‖L∞

x
. The existence statement is 

proved by a careful iteration scheme which ensures the crucial vanishing condition for 
the sequence of vorticities.

(2) Finite-time singularity formation (Theorem B)

The starting point of the blow-up proof is to find explicit solutions which blow up in 
finite time. They are given by constant vector functions that satisfy a system of ODEs 
obtained from the 3D Euler equations. It turns out that the solutions to the ODE system 
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generically blow up. The existence of such solutions governed by an ODE system in the 
case of the 2D Boussinesq system was obtained in [23] in corner domains with angles 
less than or equal to π

4 . Then using a cut-off argument introduced in [23] we can localize 
the blow-up solution.

1.4. Other blow-up results for the 3D Euler equations

Let us comment on other blow-up results for the 3D incompressible Euler equations. 
We restrict ourselves to blow-up results concerning Lipschitz and finite-energy velocities. 
In our previous work [22], we have proved finite-time singularity formation for the 3D 
axisymmetric Euler equations in corner domains which can be arbitrarily close to the 
flat cylinder. The philosophy in [22] is similar to the present work, although here we 
can deal with data which is smooth in a corner domain and extends to R3 as a globally 
Lipschitz function.

In the recent works [17], [19], and [13], finite-time singularity formation was achieved 
with C1,α velocities in axisymmetric setting. The domain is simply R3 for [17], [19] and 
R3

+ for [13]. The approach taken in these works is “orthogonal” to the present work; the 
authors take advantage of small α > 0 and the “unbounded” (in the limit α → 0) term 
in the double Riesz transforms to achieve singularity formation. Such unbounded terms 
do not appear at all in our context, which is precisely the role of rotational symmetries 
we impose (see Section 2 for more details on this).

Organization of the paper
In Section 2, we obtain an expansion of the velocity in terms of the vorticity. In 

particular, we show sharp estimates on the velocity for vorticity uniformly bounded and 
symmetric with respect to O. All the results automatically apply to bounded vorticities 
defined in Ũ . Using these results together with sharp Cα–estimates for the double Riesz 
transforms for functions defined in Ũ , we establish Theorems A and B in Sections 3
and 4, respectively. Finally in Section 5, we prove Cα–estimates for the double Riesz 
transforms in domains with corners. We first consider the estimates for the 2D case, 
since then the 3D estimates can be viewed as a natural extension. Section 6 discusses a 
natural related open problem.

Notations
For convenience of the reader, we shall collect the notations and definitions that will 

be used throughout the paper.

• Reflection across the plane {xi = 0}: Ri.
• Counterclockwise rotation by angle π

2 fixing the xi-axis: Pi.
• Symmetry groups and fundamental domains: Recall that the pair (O, U) is generated 

by {Pi}1≤i≤3 and (Õ, Ũ) by {Pi, Ri}1≤i≤3.
• The origin of Rn will be denoted by 0. Moreover, given an open set A ⊂ Rn, the 

indicator function on A is defined by 1A.
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We shall now define the extension rules for a function defined in a fundamental domain 
of a symmetry group.

Definition 1.7 (Extension rules in the vector-valued case). Assume that we are given a 
group G of isometries of Rn fixing 0, which divides Rn into finitely many fundamental 
domains. Let U = UG be one of the fundamental domains, and f : U → Rn be a given 
vector-valued function. We define f̃G : Rn → Rn as follows: for any y ∈ Rn, there is a 
unique element g ∈ G satisfying y = gx for some x ∈ U . Then we set f̃G(y) = g(f(x)). 
Strictly speaking, f̃G is not well-defined on ∂U and its images by g ∈ G, but this will not 
cause any trouble in this work. We define the extension of the identity IdU as follows: 
Ĩd

G
(y) is the matrix-valued function which equals g ∈ G on the fundamental domain 

g(U).

Definition 1.8 (Extension rules in the scalar case). In the same setting as above, if f :
U → R is a scalar-valued function, then we simply define f̃G(y) = (−1)sgn(g)f(g−1y), 
where we take the − sign if and only if the group element g is orientation reversing (i.e. 
a reflection). In particular, the extension of the indicator function 1U will be simply 
1̃G =

∑
g∈G(−1)sgn(g)1g(U).

We shall be mainly concerned with (G, U) = (Õ, Ũ) in the 3D case and (Õ2D, Ũ2D)
in the 2D case. We shall omit the superscript G and subscript U when the pair (G, U) is 
understood from the context.

2. An expansion for the velocity

The goal of this section is to present an expansion for the velocity in terms of the 
vorticity in 3D which can be viewed as a generalization of “Key Lemma” appeared in [38,
20]. Using the expansion, we deduce that for a bounded vorticity which is symmetric with 
respect to O, the Biot-Savart law is well-defined pointwise without any decay assumptions 
on the vorticity.

2.1. Two-dimensional case

Recall that in two dimensions, we have the following decomposition of the velocity 
vector:

Lemma 2.1. Assume that ω ∈ L∞
c (R2). Then, the corresponding velocity u = (u1, u2) :=

∇⊥Δ−1ω satisfies the estimate

|u1(x1, x2) − Is − x1IIs(|x|) + x2IIc(|x|)| ≤ C|x|‖ω‖L∞ ,

|u2(x1, x2) + Ic + x2IIs(|x|) + x1IIc(|x|)| ≤ C|x|‖ω‖L∞ ,
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with some absolute constant C > 0 independent on the size of the support of ω. Here, 
writing ω in polar coordinates,

Is = 1
2π

∞∫
0

2π∫
0

sin(θ)ω(r, θ)dθdr, Ic = 1
2π

∞∫
0

2π∫
0

cos(θ)ω(r, θ)dθdr,

and

IIs(r) = 1
2π

∞∫
r

2π∫
0

sin(2θ)ω(s, θ)
s

dθds, IIc(r) = 1
2π

∞∫
r

2π∫
0

cos(2θ)ω(s, θ)
s

dθds.

This appeared in [20] but earlier results can be traced back to [18,38,30,45]. The idea 
of the proof is very simple: from the explicit representation formula

u(x) = 1
2π

∫
R2

(x − y)⊥

|x − y|2 ω(y)dy,

one sees that the kernel is integrable in the region |y| � |x| with integral estimate of the 
form C|x|‖ω‖L∞ . Therefore it suffices to consider the region |y| � |x|, where |x −y| ≈ |y|. 
Then one may subtract expressions of the form p(y)/|y|n where p is some homogeneous 
polynomial from the kernel until the new kernel decays like |y|−3 for fixed x. Then 
integrating this fast decaying kernel gives a bound of C|x|‖ω‖L∞, while the subtracted 
expressions evaluate to quantities like Is,c, IIs,c defined in the above. We shall utilize the 
exact same strategy in the proof of the 3D version below.

Before we proceed to the three-dimensional case, we consider the simplifications of the 
above expansion obtained by assuming symmetry conditions on ω, which is preserved by 
the 2D Euler equations.

Corollary 2.2. Under the same assumptions as in Lemma 2.1, suppose in addition that

1. the vorticity is odd with respect to both axes; or
2. the vorticity is 4-fold rotationally symmetric; that is, ω(x) = ω(x⊥) for all x ∈ R2.

Then, the bounds simplify into∣∣∣∣u(x)+
(

−x1
x2

)
IIs(|x|)

∣∣∣∣ ≤ C|x|‖ω‖L∞ (2.1)

and

|u(x)| ≤ C|x|‖ω‖L∞ , (2.2)

respectively.
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The estimate (2.1) clearly shows that for vorticity which is bounded and odd-odd, 
the velocity can be log-Lipschitz near the origin, which is responsible for both double 
exponential growth of the vorticity gradient [38] and ill-posedness of the Euler equations 
at critical regularity [5,6,21,25,32,33]. On the other hand, such a logarithmic divergence 
is removed at the origin once one imposes an appropriate symmetry assumption on the 
vorticity, as in (2.2).

2.2. Three-dimensional case

We now state and prove a corresponding result for the 3D velocity, which is given by 
the following Biot–Savart law:

u(x) = 1
4π

∫
R3

∇x ×
(
|x − y|−1ω(y)

)
dy. (2.3)

We first define auxiliary integral operators

Ij [f ] := 1
4π

∫
R3

yj

|y|3 f(y)dy, (2.4)

II(1)
j [f ](r) := 1

4π

∫
|y|≥2r

y2
j+1 − y2

j−1

|y|5 f(y)dy, (2.5)

and

II(2)
j [f ](r) := 1

4π

∫
|y|≥2r

yj+1yj−1

|y|5 f(y)dy. (2.6)

Here j ∈ {1, 2, 3} and the indices are defined modulo 3; that is, y4 := y1 and y0 := y3.

Lemma 2.3. Assume that ω = (ω1, ω2, ω3) with ωi ∈ L∞
c (R3) for i = 1, 2, 3. Then the 

velocity given by (2.3) satisfies the estimate

ui(x) = Bi(x) + Ii+1[ωi−1] − Ii−1[ωi+1]

− xi+1II(1)
i−1[ωi−1](|x|) + xi+1II(1)

i [ωi−1](|x|) + xi−1II(1)
i [ωi+1](|x|)

− xi−1II(1)
i+1[ωi+1](|x|) + 3xiII(2)

i−1[ωi−1](|x|) + 3xi−1II(2)
i [ωi−1](|x|)

− 3xi+1II(2)
i [ωi+1](|x|) − 3xiII(2)

i+1[ωi+1](|x|)

(2.7)

where

|Bi(x)| ≤ C|x| (‖ωi+1‖L∞ + ‖ωi−1‖L∞) (2.8)
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with some absolute constant C > 0 independent on the size of the support of ω.

Proof. It suffices to prove the estimates for i = 1, since then other cases can be ob-
tained by shifting the indices. We begin with the following explicit formula for the first 
component of velocity:

u1(x) = − 1
4π

∫
R3

(x2 − y2)ω3 − (x3 − y3)ω2

|x − y|3 dy, (2.9)

and it suffices to consider the term∫
R3

x2 − y2

|x − y|3 ω3(y)dy (2.10)

since the corresponding estimate for the other term can be obtained by simply relabeling 
the indices. Next, note that∣∣∣∣∣∣∣

∫
|x−y|≤2|x|

x2 − y2

|x − y|3 ω3(y)dy

∣∣∣∣∣∣∣ ≤ ‖ω3‖L∞

∫
|x−y|≤2|x|

1
|x − y|2 dy ≤ C‖ω3‖L∞ |x|

with an absolute constant C > 0 so that for the purpose of establishing (2.7), one only 
needs to deal with the region where |x − y| � |x|. (Hence, |x − y| ≈ |y| holds.) We first 
write (2.10) as

∫
R3

[
x2 − y2

|x − y|3 + y2

|y|3
]

ω3(y)dy −
∫
R3

y2

|y|3 ω3(y)dy

and combining the terms in the large brackets, we obtain

1
|x − y|3|y|3

[
(x2 − y2)(y2

1 + y2
2 + y2

3)|y| + y2((x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2)

×|x − y|
]

= 1
|x − y|3|y|3

[
−y2|y|2(|y| − |x − y|) + x2|y|3 + y2|x|2|x − y| − 2y2x · y|x − y|

]
= 1

|x − y|3|y|3
[
−y2|y|2 2x · y − |x|2

|y| + |x − y| + x2|y|3 + y2|x|2|x − y| − 2y2x · y|x − y|
]

= 1
|x − y|3|y|3

[
−2y2|y|2

|y| + |x − y|x · y + x2|y|3 − 2y2|x − y|x · y

+|x|2
(

y2|y|2 + y2|x − y|
)]

(2.11)
|y| + |x − y|
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To the above expression, we add and subtract the following quantity

1
|y|3|x − y|3

[
−2y2(x · y)3|y|

2 + |y|x2|y|2
]

. (2.12)

Subtracting (2.12) from (2.11) gives

1
|x − y|3|y|3

[
−2y2(x · y)

(
|y|2

|y| + |x − y| − |y|
2 + |x − y| − |y|

)]
+ |x|2

|x − y|3|y|3
[

y2|y|2
|y| + |x − y| + y2|x − y|

]
.

(2.13)

Denoting (2.13) as A, note that∣∣∣∣∣∣∣
∫

|x−y|≥2|x|

A(x, y)ω3(y)dy

∣∣∣∣∣∣∣ ≤ C|x|2‖ω3‖L∞

∫
|x−y|≥2|x|

1
|y|4 dy ≤ C|x|‖ω3‖L∞

since we have a pointwise estimate

|A(x, y)| ≤ C|x|2|y|−4

in the region {|x − y| ≥ 2|x|} for some absolute constant C > 0. Similarly, one may 
replace the integral∫

|x−y|≥2|x|

1
|y|3|x − y|3

[
−2y2(x · y)3|y|

2 + |y|x2|y|2
]

ω3(y)dy

with ∫
|x−y|≥2|x|

1
|y|6

[
−2y2(x · y)3|y|

2 + |y|x2|y|2
]

ω3(y)dy

at the cost of introducing an error of size C|x|‖ω3‖L∞ with some absolute constant 
C > 0. Hence we have shown that∣∣∣∣∣∣∣
∫
R3

x2 − y2

|x − y|3 ω3(y)dy +
∫
R3

y2

|y|3 ω3(y)dy −
∫

|x−y|≥2|x|

1
|y|5

(
−3y2(x · y) + |y|2x2

)
ω3(y)dy

∣∣∣∣∣∣∣
≤ C|x|‖ω3‖L∞ .

Finally, we have by symmetry that
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∫
|y|≥2|x|

1
|y|5

(
x2(y2

1 − y2
2) + x2(y2

3 − y2
2) − 3x1y1y2 − 3x3y2y3

)
ω3(y)dy = 0.

This finishes the proof. �
Corollary 2.4. Assume that ω ∈ (L∞

c (R3))3 is symmetric with respect to O. Then, the 
corresponding velocity satisfies the estimate

|u(x)| ≤ C|x|‖ω‖L∞ . (2.14)

Similarly, for ω ∈ (L∞(R3))3 and symmetric with respect to O but not necessarily com-
pactly supported, the following principal value integral

u(x) := lim
R→+∞

1
4π

∫
|y|≤R

∇x ×
(
|x − y|−1ω(y)

)
dy

is pointwise well-defined and satisfies the estimate (2.14).

Proof. We only consider the component u1. To prove the estimate, it suffices to show 
that the auxiliary integrals involved in (2.7) vanish altogether. For this we show that 
for each fixed radius, the corresponding “angular integration” vanishes. Below dσ will 
denote the Lebesgue measure on the sphere ∂B0(R).

We begin with noting that from P 2
2 ω(x) = ω(P 2

2 x), we obtain that ω2(x) =
ω2(−x1, x2, −x3). This implies that∫

∂B0(R)

y3

|y|3 ω2(y)dσ(y) = 0

for any R > 0. Moreover,∫
∂B0(R)

y1y2

|y|5 ω2(y)dσ(y) =
∫

∂B0(R)

y3y2

|y|5 ω2(y)dσ(y) = 0.

Then, P2ω(x) = ω(P2x) gives ω2(x) = ω2(−x3, x2, x1). This establishes∫
∂B0(R)

y1y3

|y|5 ω2(y)dσ(y) = 0.

Finally, from P 2
1 ω(x) = ω(P 2

1 x), we have ω2(x) = −ω2(x1, −x2, −x3). This allows us to 
show that∫

y2
1

|y|5 ω2(y)dσ(y) =
∫

y2
2

|y|5 ω2(y)dσ(y) =
∫

y2
3

|y|5 ω2(y)dσ(y) = 0.
∂B0(R) ∂B0(R) ∂B0(R)
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Similarly, it can be shown that ∫
∂B0(R)

y2

|y|3 ω3(y)dσ(y) = 0

and ∫
∂B0(R)

p(y)
|y|5 ω3(y)dσ(y) = 0

where p(·) is any second order homogeneous polynomial. �
The following result shows that u defined by the above principal value is the “correct” 

velocity field associated with ω.

Proposition 2.5. Assume that ω ∈ (L∞(R3))3 is symmetric with respect to O and 
divergence-free (in the weak sense). Then, for any 1 ≤ p < ∞, there exists a unique 
u ∈ (W 1,p

loc (R3))3 satisfying

• u is symmetric with respect to O,
• ∇ × u = ω,
• ∇ · u = 0,
• |u(x)| ≤ C‖ω‖L∞ |x| for all x ∈ R3 with some constant C > 0.

Proof. Existence is provided by the above lemma. For uniqueness one can repeat the 
proof given in [24] for the 2D Euler equations. We omit the details. �

In light of the above proposition, given any ω ∈ (L∞(Ũ))3, we may first extend ω
to ω̃ ∈ (L∞(R3))3 and the corresponding velocity u ∈ (W 1,p

loc (Ũ))3 is well-defined as the 
(principal value of the) Biot-Savart integral against ω̃. The difficult part is to prove that, 
under suitable additional assumptions on ω, we have u ∈ W 1,∞

loc (among other things), 
and this is the content of the next section.

3. Local well-posedness

3.1. A priori estimates

Let us begin by stating the key proposition for local regularity, which is the sharp 
Hölder estimate in the fundamental domain:

Proposition 3.1. Assume that the vector f = (f1, f2, f3) ∈ (Cα ∩ C̊α(Ũ))3 satisfies the
following properties:
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• f(0) = 0;
• f1 + f2 = 0 on {x3 = 0, x1 = x2} ∩ Ũ .

Then, for any 1 ≤ i, j, k ≤ 3, we have

‖(Rijf)k‖Cα∩C̊α(Ũ) ≤ C

( 3∑
�=1

‖f �‖Cα∩C̊α(Ũ)

)

with an absolute constant C > 0.

The proof of the above proposition is rather involved and is deferred to Section 5.2
below. We are now in a position to complete the proof of Theorem A, using Proposi-
tion 3.1.

Now let ω ∈ C̊α ∩ Cα(Ũ) be a divergence-free vector satisfying ω1 + ω2 = 0 along 
{(z, z, 0) : z > 0}. We have that the same holds for the difference

ω − ω(0),

and since this function is vanishing at the origin, the estimates from the previous section 
give that the corresponding velocity gradient belongs to C̊α ∩ Cα(Ũ). Moreover, ω(0) is 
of the form (4.5) for some choice of λ and μ, and the explicit computations in Section 4.2
show that the corresponding velocity gradient is again some constant function in Ũ , 
depending on λ and μ. Therefore, we conclude that

‖∇u‖C̊α∩Cα(Ũ) � ‖ω‖C̊α∩Cα(Ũ)

where u is the velocity corresponding to ω. Now assume that there is a solution ω in 
some time interval to

∂tω + u · ∇ω = ∇uω,

where ω1 + ω2 = 0 along {(z, z, 0) : z > 0} for all t. Using the above bound for ∇u, it is 
straightforward to derive the estimate

d

dt
‖ω(t)‖C̊α∩Cα(Ũ) � ‖ω(t)‖2

C̊α∩Cα(Ũ).

For instance, one can follow the proof of a priori estimates given in [23,22]. In particular, 
there exists some T0 > 0 depending only on ‖ω0‖C̊α∩Cα(Ũ) such that

‖ω(t)‖C̊α∩Cα(Ũ) ≤ 2‖ω0‖C̊α∩Cα(Ũ), t ∈ [0, T0].
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3.2. Existence and uniqueness

Under the assumptions of Theorem A, we need to prove existence and uniqueness of a 
solution ω ∈ C([0, T ); Cα ∩ C̊α(Ũ)) for some T > 0. We divide the proof into uniqueness 
and existence.

Proof of uniqueness. Let ω0 satisfy the assumptions of Theorem A, and let us assume 
that there exist some T > 0 and two solutions ω, ω̃ ∈ C([0, T ); Cα ∩ C̊α(Ũ)) both 
satisfying ω(t = 0) = ω̃(t = 0) = ω0. Moreover, ω1(t) + ω2(t) and ω̃1(t) + ω̃2(t) vanish 
on {(x1, x2, x3) : x1 = x2 ≥ 0, x3 = 0} for any 0 ≤ t < T . Denoting the corresponding 
velocities by u, ̃u, we have from the a priori estimate that

‖∇u(t)‖Cα∩C̊α(Ũ) ≤ C‖ω(t)‖Cα∩C̊α(Ũ), ‖∇ũ(t)‖Cα∩C̊α(Ũ) ≤ C‖ω̃(t)‖Cα∩C̊α(Ũ).

In particular, we have for 0 < t < T0 (where T0 is given in 3.1)

‖∇u(t)‖L∞(R3) + ‖∇ũ(t)‖L∞(R3) ≤ C‖ω0‖Cα∩C̊α(Ũ).

From now on, we shall view the solutions as defined on R3. Let us repeat the argument 
that appeared in our previous work for the Boussinesq system [23, Theorem 1]. Denoting 
the difference by v := u − ũ on [0, T0] and returning to the velocity formulation of 3D 
Euler, we write

∂tv + u · ∇v + v · ∇ũ + ∇π = 0, (3.1)

where π := p − p̃. Here, p and p̃ are the pressure corresponding to u and ũ, respectively. 
We shall use the following key estimate from [23]:

‖|x|−1∇π(x)‖L∞ ≤ C

[
(‖∇u‖L∞ + ‖∇ũ‖L∞) ‖|x|−1v(x)‖L∞

×
(

1 + ln
(

‖∇ṽ‖L∞

‖|x|−1v(x)‖L∞

))] (3.2)

Assuming (3.2), we can finish the proof of uniqueness as follows. Dividing both sides of 
(3.1) by |x| and composing with the flow generated by u, we have

d

dt
‖|x|−1v(x)‖L∞ ≤ C (‖∇u‖L∞ + ‖∇ũ‖L∞) ‖|x|−1v(x)‖L∞ + ‖|x|−1∇p(x)‖L∞

≤ C‖|x|−1v(x)‖L∞(1 + ln( C

‖|x|−1v(x)‖L∞
)),

with C > 0 now depending on supt∈[0,T0](‖∇u‖L∞ + ‖∇ũ‖L∞), which is bounded 
in terms of the initial data. The previous inequality is sufficient to guarantee that 
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‖|x|−1v(x)‖L∞ = 0 on [0, T0] as ‖|x|−1v0(x)‖L∞ = 0. Repeating the same argument 
starting at t = T0, one can show that u = ũ all the way up to time T > 0.

Let us now comment on the proof of (3.2). We have

−Δπ =
∑
i,j

(∂iuj∂jui − ∂iũj∂j ũi) =
∑
i,j

(∂ivj∂jui − ∂iũj∂jvi)

Since u and ũ are divergence-free, we can also rewrite the above as

∇π = ∇(−Δ)−1
∑

i

(∂i

∑
j

(vj∂jui − ũj∂jvi)),

and we observe that the vector W = (Wi)1≤i≤3 defined by

Wi =
∑

j

(vj∂jui − ũj∂jvi)

is symmetric (as a vector field) with respect to O. Then we have

∇π

|x| = 1
|x|∇(−Δ)−1∇ · W

and since the singular integral operator ∇(−Δ)−1∇· has a kernel of the form p(x)|x|−5

where p is a (vector valued) homogeneous polynomial of order 2, there is a gain of decay 
when integrated against W . From this observation, it is straightforward to obtain the 
estimate (3.2), following the argument of [23]. �
Proof of existence. Let ω0 satisfy the assumptions of Theorem A, with (ω1

0+ω2
0)(z, z, 0) =

0. The a priori estimate shows that the corresponding velocity gradient ∇u0 belongs to 
Cα ∩ C̊α(Ũ). We define ω(0)(t), u(0)(t) to be ω0 and u0 for 0 ≤ t < T where T > 0 is to 
be determined below. Given (ω(n), u(n)) satisfying (ω(n),1 +ω(n),2)(z, z, 0) = 0, we define 
inductively ω(n+1) as follows:

∂tω
(n+1),1 + u(n) · ∇ω(n+1),1 = ∂1u(n),1ω(n+1),1 + ∂2u(n),1ω(n+1),2 + ∂3u(n+1),1ω(n),3

∂tω
(n+1),2 + u(n) · ∇ω(n+1),2 = ∂1u(n),2ω(n+1),1 + ∂2u(n),2ω(n+1),2 + ∂3u(n+1),2ω(n),3

∂tω
(n+1),3 + u(n) · ∇ω(n+1),3 = ∂1u(n),3ω(n+1),1 + ∂2u(n),3ω(n+1),2 + ∂3u(n+1),3ω(n),3,

with initial data ω(n+1)
0 = ω0. We verify that, on (z, z, 0), we have:

[∂t + u(n) · ∇](ω(n+1),1 + ω(n+1),2) = (∂1u(n),1 + ∂1u(n),2)(ω(n+1),1 + ω(n+1),2)

+ (−ω(n),3 + ∂2u(n),2 − ∂1u(n),1)ω(n+1),2

+ ω(n),3(ω(n+1),2 − ω(n+1),1 + ∂1u(n),3 + ∂2u(n),3)

= (∂ u(n),1 + ∂ u(n),2)(ω(n+1),1 + ω(n+1),2) − ω(n),3(ω(n+1),1 + ω(n+1),2),
1 1
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which implies that along the line {(z, z, 0)}, (ω(n+1),1 + ω(n+1),2) = 0 if it holds at t = 0. 
At the last step we have used the identities

∂1u(k),3 = ∂2u(k),3 = 0,

∂1u(k),1 + ∂2u(k),1 = ∂1u(k),2 + ∂2u(k),2

for k = n, n + 1, which are consequences of the slip boundary conditions

u(k),3(x1, x2, 0) = 0, u(k),1(z, z, x3) = u(k),2(z, z, x3).

Using the a priori estimates, one can show that for the same T0 > 0 from 3.1, we have

sup
t∈[0,T0]

(
‖ω(n)(t)‖Cα∩C̊α + ‖∇u(n)(t)‖Cα∩C̊α

)
� ‖ω0‖Cα∩C̊α

uniformly in n. Passing to a sub-sequential limit, one obtains a pair (ω(t), ∇u(t)) bounded 
in L∞([0, T0]; Cα ∩ C̊α). We have that ω(n) → ω and ∇u(n) → ∇u in L∞

t C0
x. From this 

it is easy to see that the pair (ω, ∇u) is a solution to the Euler equations with initial 
data ω0. �
3.3. Propagation of higher regularity

Given the local well-posedness in Cα of the vorticity, it is not difficult to propagate 
higher Hölder regularity inside the domain Ũ . Of course, it is necessary to impose suitable 
vanishing conditions on the derivatives for the initial vorticity. In this section, we sketch 
the propagation of C1,α regularity for the vorticity for any 0 < α < 1. Formally we state 
it as follows:

Proposition 3.2. In addition to the assumptions of Theorem A, suppose that ∇ω0 ∈
Cα ∩ C̊α(Ũ) and

∇(ω1
0 + ω2

0) = 0

on �a2 and either

• ω1
0 − ω2

0 = 0 and (∂1 + ∂2)(ω1
0 − ω2

0) = 0 or
• ω3

0 = 0 and (∂1 + ∂2)ω3
0 = 0

holds on �a2. Then, the unique Cα solution defined on [0, T ∗) with initial data ω0 remains 
in C1,α for all t < T ∗.
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Remark 3.3. One can consider initial data of the form⎧⎪⎪⎨⎪⎪⎩
ω1

0(x1, x2, x3) = −λ0χ(x1 + x2),

ω2
0(x1, x2, x3) = λ0χ(x1 + x2),

ω3
0(x1, x2, x3) = μ0χ(x1 + x2)

(3.3)

for some constants λ0, μ0 ∈ R and a cut-off function χ which satisfies χ(z) = 1 for |z| ≤ 1
and χ(z) = 0 for z ≥ 2. Note that this ω0 is divergence-free and compactly supported in 
Ũ . Further taking either λ0 = 0 or μ0 = 0, this initial data satisfies all the assumptions 
of Proposition 3.2. Moreover, note from (4.4) that finite-time singularity formation is 
still possible, by taking either λ0 = 0, μ0 < 0 or λ0 < 0, μ0 = 0.

The condition ∇(ω1 + ω2) = 0 propagates itself, which is the content of the following 
lemma:

Lemma 3.4. Assume that ∇(ω1
0 + ω2

0) = 0 on �a2. Then, ∇(ω1(t) + ω2(t)) = 0 on �a2 as 
long as ω remains a C1,α-solution in Ũ .

In the remainder of this section, it will be convenient to rotate the coordinates system: 
define

y1 := 1√
2

(x1 + x2), y2 := 1√
2

(−x1 + x2), y3 := x3.

We shall write the components of u and ω with respect to this coordinate system as well. 
Then, the boundary conditions on �a2 take the form

∂k
2 ∂j

1u3 = 0, ∂k
1 ∂j

3u2 = 0 (3.4)

for arbitrary integers k, j ≥ 0. Using these, on �a2, we note that

∂k
1 ∂2u1 = ∂k+1

1 u2 − ∂k
1 ω3 = −∂k

1 ω3, ∂j
1∂3u1 = ∂j

1ω2 + ∂j+1
1 u3 = ∂j

1ω2 (3.5)

for any integers k, j ≥ 0. We shall assume that in some time interval, the solution (ω, u)
belongs to C1,α ×C2,α, which can be justified after showing propagation of the vanishing 
conditions in Proposition 3.2.

Proof of Lemma 3.4. We compute

∂t∂1ω1 + u · ∇∂1ω1 = ∂11u1ω1 + ∂1u1∂1ω1 + ∂12u1ω2 + ∂2u1∂1ω2 + ∂13u1ω3

+ ∂3u1∂1ω3 − ∂1u1∂1ω1 − ∂1u2∂2ω1 − ∂1u3∂3ω1

Restricting on �a2, we have ω1 = 0 and applying (3.4), (3.5) gives that
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∂t∂1ω1 + u · ∇∂1ω1 = −∂1ω3ω2 − ω3∂1ω2 + ∂1ω2ω3 + ω2∂1ω3 = 0.

This shows that the condition ∂1ω1 = 0 propagates in time. Next, we compute

∂t∂3ω1 + u · ∇∂3ω1 = ∂31u1ω1 + ∂1u1∂3ω1 + ∂32u1ω2 + ∂2u1∂3ω2 + ∂33u1ω3

+ ∂3u1∂3ω3 − ∂3u1∂1ω1 − ∂3u2∂2ω1 − ∂3u3∂3ω1.

We simplify the right hand side, restricting the equation on �a2. First, recalling ω1 =
∂1ω1 = 0, we cancel a few terms, and rewrite the right hand side as follows:

(∂1u1 − ∂3u3)∂3ω1 + ∂3ω2∂2u1 + ∂3ω3∂3u1 + ω2∂23u1 + ω3∂33u1 − ∂3u2∂2ω1.

The last term vanishes from (3.4). Rewriting the remaining four terms using (3.5),

∂3ω2∂2u1 + ∂3ω3∂3u1 + ω2∂23u1 + ω3∂33u1 = ω2(∂3ω3 + ∂2ω2) = −ω2∂1ω1 = 0.

Hence,

∂t∂3ω1 + u · ∇∂3ω1 = (∂1u1 − ∂3u3)∂3ω1,

which shows that ∂3ω1 = 0 propagates as well. Propagation of ∂2ω1 = 0 can be proved in 
the same way, noting that the conditions (3.4) and (3.5) are symmetric in y2 and y3. �
Proof of Proposition 3.2. All that there is to show is the Cα-bound for the Riesz trans-
forms Rij∇ω. It suffices to consider components of ∇ω which extends as an odd function 
of both y3 and y2, around �a2. Note that ω1, ω2, and ω3 are respectively odd-odd, 
even-odd, and odd-even in y2 and y3. Hence, for the Cα-estimate of Rij∇ω, it suf-
fices to propagate the vanishing conditions for ∂1ω1, ∂2ω2, and ∂3ω3, along �a2. From the 
divergence-free condition, it suffices to consider the first two.

Lemma 3.4 takes care of ∂1ω1, so let us now turn to ∂2ω2:

∂t∂2ω2 + u · ∇∂2ω2 = ∂2ω1∂1u2 + ω1∂12u2 + ∂2ω2∂2u2 + ω2∂22u2 + ∂2ω3∂3u2

+ ω3∂23u2 − ∂2u1∂1ω2 − ∂2u2∂2ω2 − ∂2u3∂3ω2

= ∂2ω1∂1u2 + ω1∂12u2 + ω2∂22u2 + ∂2ω3∂3u2 + ω3∂23u2

− ∂2u1∂1ω2 − ∂2u3∂3ω2

= ω2∂22u2 + ω3∂23u2 − ∂2u1∂1ω2

where we have used (3.4) and ω1 = 0 to get the last equality. We now note that

ω3∂23u2 − ∂2u1∂1ω2 = ω3∂2(∂2u3 − ω1) + ω3∂1ω2 = ω3∂1ω2
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and

ω2∂22u2 = −ω2∂21u1 − ω2∂23u3 = ω2∂1ω3 − ω2∂3ω1 = ω2∂1ω3.

Hence, for the propagation of ∂2ω2 = 0, it suffices to have

ω2∂1ω3 + ω3∂1ω2 = 0.

This is precisely the reason why we need the additional assumption that either

ω2 = 0, ∂1ω2 = 0 or ω3 = 0, ∂1ω3 = 0

along �a2.
It still remains to show that the additional assumptions themselves propagate in time. 

We only consider the case of ω2 = 0, ∂1ω2 = 0. From

∂tω
2 + u · ∇ω2 = ω · ∇u2

and (3.4), it is immediate to see the propagation of ω2 = 0. Next,

∂t∂1ω2 + u · ∇∂1ω2 = ∂1ω · ∇u2 + ω · ∇∂1u2 − ∂1u · ∇ω2.

From (3.4), ∂1ω·∇u2 = ∂1ω2∂2u2 on �a2, and ω·∇∂1u2 = ω2∂12u2 = 0. Lastly, ∂1u ·∇ω2 =
∂1u1∂1ω2. Hence

∂t∂1ω2 + u · ∇∂1ω2 = (∂1u1 + ∂2u2)∂1ω2

and the propagation of ∂1ω2 = 0 is proved.
From the propagation of vanishing conditions for ∂iω

i, one can establish that 
‖Rij∇ω‖Cα(Ũ) � ‖∇ω‖Cα(Ũ). With this it is not difficult to show that the unique Cα

solution ω in [0, T ∗) actually belongs to C1,α. �
4. Finite time singularity formation

In this section, we conclude the proof of finite-time singularity formation. The proof 
consists of finding explicit homogeneous solutions which blows up in finite time and 
cutting those at spatial infinity.
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4.1. Explicit blow-up solutions

We consider constant vorticity defined in Ũ of the form

ω0 = λ0

(−1
1
0

)
+ μ0

(0
0
1

)
, (4.1)

for some λ0, μ0 ∈ R. The corresponding velocity with non-penetration boundary condi-
tions on ∂Ω is explicitly given by

u0(x1, x2, x3) = 1
3

((−λ0 + 2μ0) x1 − 3μ0x2 + 3λ0x3
(−λ0 − μ0) x2 + 3λ0x3

(2λ0 − μ0) x3

)
. (4.2)

Taking the gradient, we obtain

∇u0 = 1
3

(−λ0 + 2μ0 −3μ0 3λ0
0 −λ0 − μ0 3λ0
0 0 2λ0 − μ0

)
. (4.3)

Next, one may compute the following product:

ω0 · ∇u0 = [∇u0]ω0 = 1
3

⎛⎝ λ2
0 − 2λ0μ0

−λ2
0 + 2λ0μ0

2λ0μ0 − μ2
0

⎞⎠ .

From the above, one sees that the unique solution to the 3D Euler equations with initial 
vorticity of the form (4.1) has the same form for all times–writing the solution as

ω(t) = λ(t)
(−1

1
0

)
+ μ(t)

(0
0
1

)
,

one obtains the following ODE system of two variables:

⎧⎪⎨⎪⎩
λ̇ = 2

3λμ − 1
3λ2,

μ̇ = 2
3λμ − 1

3μ2.

(4.4)

We prove blow-up for the above ODE system assuming either one of the following con-
ditions:

1. λ �= μ and λμ �= 0, or
2. λ = μ > 0.
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These are exactly the sufficient conditions stated in Theorem B. First, assuming λ0 = μ0, 
it is obvious that the ODE system blows up in finite time if and only if the initial data 
is strictly positive. Now, since the system is symmetric in λ and μ, we may assume that 
λ0 > μ0 if λ0 �= μ0. We then write down the equation for λ − μ:

d

dt
(λ − μ) = −1

3(λ − μ)(λ + μ).

In particular, λ − μ remains strictly positive. Now,

d

dt
μ = μ

3 (2(λ − μ) + μ).

If in addition we had μ0 > 0, then μ > 0 and the above ODE clearly blows up as 
2(λ − μ) + μ > μ. Now we may assume μ0 < 0 and there are two cases: (i) λ0 > 0 and 
(ii) λ0 < 0. In the former, we have that λ is monotonically decreasing in time since

d

dt
λ = λ

3 (2μ − λ)

and 2μ − λ < 0. Then, returning to the equation for μ, it is clear that μ → −∞ in finite 
time. Finally in the latter case, we have 0 > λ0 > μ0 and in this case it is not hard to 
see that λ − μ → +∞ in finite time since both λ and μ remain negative.

4.2. A cut-off argument

We shall prove that for initial vorticity which is of the form (4.1) only near the origin, 
finite time blow-up occurs, as long as the solution to the ODE system (4.4) blows up. 
To this end, take an explicit solution

ωSI(t) = λ(t)
(−1

1
0

)
+ μ(t)

(0
0
1

)
(4.5)

for which we have finite time blow-up at time T ∗ > 0: limt→T ∗(|μ(t)| + |λ(t)|) = +∞. 
We denote the corresponding velocity as

uSI(t) = 1
3

(−λ(t) + 2μ(t) −3μ(t) 3λ(t)
0 −λ(t) − μ(t) 3λ(t)
0 0 2λ(t) − μ(t)

)(
x1
x2
x3

)
(4.6)

on 0 ≤ t < T ∗. We now take initial data of the form

ω0 = ωSI
0 + ω̃0

on Ũ , where ω0 satisfies the assumptions of Theorem A. This in particular implies that 
ω̃0 ∈ Cα ∩ C̊α and that ω̃1

0 + ω̃2
0 vanishes on {(x1, x2, x3) : x1 = x2 ≥ 0, x3 = 0}. We 
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may further assume that ω̃0(0) = 0. One may even take ω̃0 ∈ C∞ identically zero on 
|x| ≤ 1 and equal to −ωSI

0 on |x| ≥ 2, so that ω0 belongs to C∞
c with support contained 

in Ũ ∩ {|x| ≤ 1}. Such an initial datum ω̃0 certainly exists, as one can simply use ω0 as 
in (3.3).

We shall now assume towards a contradiction that the unique local solution (ω(t), u(t))
(given by Theorem A) with initial data ω0 is global in time. Then, we may set

M := sup
0≤t≤T ∗

(‖ω(t)‖Cα + ‖∇u(t)‖Cα).

We now define ω̃(t) := ω(t) − ωSI(t) and ũ(t) := u(t) − uSI(t). These functions are 
well-defined for any 0 < t < T ∗, and we see from

∂tω + u · ∇ω = [∇u]ω

and

∂tω
SI + uSI · ∇ωSI = [∇uSI ]ωSI

that ω̃ must satisfy the following equation:

∂tω̃ + u · ∇ω̃ = [∇u]ω̃ + [∇ũ]ωSI − ũ · ∇ωSI = [∇u]ω̃ + [∇ũ]ωSI .

The latter identity follows since ∇ωSI ≡ 0. Let us propagate that ω̃ ∈ Cα ∩ C̊α and 
ω̃(t, 0) = 0, on 0 ≤ t < T ∗. We rewrite the equation along the flow Φ generated by u: 
∂tΦ(t, x) = u(t, Φ(t, x)), Φ(0, x) = x. This gives

d

dt
(ω̃(t) ◦ Φ(t)) = [∇u ◦ Φ]ω̃ ◦ Φ + [∇ũ ◦ Φ]ωSI ◦ Φ. (4.7)

At this point, we claim that

∇ũ(t, 0) = 0 and ω̃(t, 0) = 0 (4.8)

for any 0 ≤ t < T ∗. The key step is to observe the Taylor expansion of ũ(t, ·) and imposing 
the boundary condition as well as the vanishing curl condition at the origin. The first 
order Taylor expansion is justified since we know from the contradiction hypothesis that 
ũ(t, ·) ∈ C1,α for 0 ≤ t < T ∗. To prove (4.8), we write(

ũ1
ũ2
ũ3

)
=
(

ax1 + bx2 + cx3
dx1 + ex2 + fx3

gx1 + hx2 + (−a − e)x3

)
+ o(|x|)

where ∂x3 ũ3(0) = −a − e follows from the divergence-free condition. From the slip 
boundary conditions at {x3 = 0}, {x1 = x2}, and {x2 = x3}, we respectively obtain that 
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g = h = 0 and a + b = d + e, c = f and d = 0, c + f = −a − e. Then the matrix simplifies 
into (

ax1 + bx2 − (3a + 2b)x3
(a + b)x2 − (3a + 2b)x3

−(2a + b)x3

)
.

Finally, recalling that the corresponding vorticity vector is given by( 3a + 2b
−3a − 2b

−b

)
,

we obtain that

|∇ũ(t, 0)| ≤ C|ω̃(t, 0)|. (4.9)

In particular, when the curl vanishes (i.e. a = b = 0), we have that |ũ(t, x)| = O(|x|1+α). 
Now observing that Φ(t, 0) = 0 and evaluating the equation (4.7) at x = 0, we have 
using (4.9) that ∣∣∣∣ d

dt
ω̃(t, 0)

∣∣∣∣ ≤ C|∇ũ(t, 0)||ω̃(t, 0)| ≤ C|ω̃(t, 0)|2,

which gives (4.8) on 0 ≤ t < T ∗.
Next, returning to (4.7), we may estimate

d

dt
‖ω̃ ◦ Φ‖Cα ≤ ‖∇u ◦ Φ‖Cα‖ω̃ ◦ Φ‖L∞ + ‖∇u ◦ Φ‖L∞‖ω̃ ◦ Φ‖Cα

+ ‖∇ũ ◦ Φ‖Cα‖ωSI ◦ Φ‖L∞ + ‖∇ũ ◦ Φ‖L∞‖ωSI ◦ Φ‖Cα .

Using regularity of the flow sup0≤t≤T ∗ ‖∇Φ‖Cα ≤ CM and ‖∇ũ‖Cα ≤ C‖ω̃‖Cα , we 
deduce that

d

dt
‖ω̃‖Cα ≤ (M + ‖ωSI‖L∞([0,T ];Cα))‖ω̃‖Cα

for any T < T ∗. Hence, it follows that

‖ω̃(T )‖Cα ≤ C = C(M, T, ‖ω̃0‖Cα).

Using the above with ω̃(T, 0) = 0, |ω̃(T, x)| ≤ C|x|α and in particular by taking |x|
sufficiently small, we obtain that

‖ω(T )‖L∞ ≥ ‖ωSI(T )‖L∞

for any T < T ∗. Taking T → T ∗, we have from the choice of ωSI that ‖ωSI(T )‖L∞ →
+∞, which is a contradiction. The proof of Theorem B is now complete. �



T.M. Elgindi, I.-J. Jeong / Advances in Mathematics 393 (2021) 108091 31
5. Hölder estimates under octahedral symmetry

5.1. Two-dimensional case

5.1.1. Main lemmas
We shall state a few sharp Hölder estimates for the double Riesz transformations for 

functions defined on R2. The proofs are carried out later in 5.1.3, after performing some 
illuminating computations in 5.1.2. We shall define the following sector domains in 2D 
using polar coordinates:

Ωm := {(r, θ) : 0 < θ <
π

m
}.

We are particularly interested in the cases m = 2, 3, and 4. Given f ∈ L∞(Ωm), we shall 
define Rijf to be ∂xi

∂xj
(−ΔD)−1f where ΔD is the Dirichlet Laplacian. Let us present 

three simple lemmas which establish Cα estimates for Rij on Ωm. The first result is well 
known and a standard reference is the book of Grisvard [26] (see also [23,22]).

Lemma 5.1. Let f ∈ Cα(Ωm) with m = 3, 4. Then we have for any 1 ≤ i, j ≤ 2,

‖Rijf‖L∞(Ωm) ≤ C‖f‖L∞(R2) log(10 +
‖f‖C̊α(Ωm)

‖f‖L∞(R2)
),

and

‖Rijf‖C̊α
∗ (Ωm) ≤ C‖f‖C̊α

∗ (Ωm), ‖Rijf‖Cα
∗ (Ωm) ≤ C‖f‖Cα

∗ (Ωm).

In particular, we have

‖Rijf‖Cα∩C̊α(Ωm) ≤ C‖f‖Cα∩C̊α(Ωm)

and if in addition f is supported in {|x| < R},

‖Rijf‖Cα(Ωm) ≤ C(R)‖f‖Cα
c (Ωm).

On the other hand, in the quadrant case Ω2, it has been well known that one cannot 
even get C0 estimate:

‖Rijf‖C0(Ω2) � C‖f‖Cα
c (Ω2).

Indeed, using the definition of the Dirichlet Laplacian and assuming that Rijf ∈ C0, we 
have that by differentiating in x2 in the equation
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∂x2(−ΔD)−1f(0, x2) = 0

shows

∂x2∂x2(−ΔD)−1f(0, x2) = 0.

Similarly, differentiating in x1 in

∂x1(−ΔD)−1f(x1, 0) = 0

gives

∂x1∂x1(−ΔD)−1f(x1, 0) = 0.

Then, since Δ = ∂x1∂x1 + ∂x2∂x2 , we conclude that

R11f, R22f ∈ C0 =⇒ f(0, 0) = 0.

Our next lemma shows that the vanishing condition at the origin is the only obstruction 
for the sharp Cα estimate.

Lemma 5.2. Let f ∈ Cα
c (Ω2) with f(0, 0) = 0 and f = 0 in {r > R} for some R > 0. 

Then we have for any 1 ≤ i, j ≤ 2,

‖Rijf‖Cα(Ω2) ≤ C(R)‖f‖Cα(Ω2)

where C(R) > 0 is a constant depending on the radius of the support of f .

The final lemma concerns functions which are odd in R2 and Cα when restricted to 
the sectors. For convenience we shall define

Ωi
m = {(r, θ) : (i − 1) π

m
< θ < i

π

m
}, m ≥ 3, 1 ≤ i ≤ 2m.

We have in particular that Ωm = Ω1
m.

Lemma 5.3. Let f ∈ L∞(R2) satisfy f(x) = −f(−x) for all x ∈ R2. Furthermore, assume 
that f ∈ Cα ∩ C̊α(Ωi

m) for some m ≥ 3 and all 1 ≤ i ≤ 2m. Then for all 1 ≤ i, j ≤ 2
and Rij = ∂xi

∂xj
(−ΔR2)−1, we have

‖Rijf‖L∞(Ωm) ≤ C‖f‖L∞(R2) log(10 +
‖f‖C̊α(Ωm)

∞ 2
),
‖f‖L (R )
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‖Rijf‖C̊α
∗ (Ωm) ≤ C

∑
1≤i≤m

‖f‖C̊α
∗ (Ωi

m), ‖Rijf‖Cα
∗ (Ωm) ≤ C

∑
1≤i≤m

‖f‖Cα
∗ (Ωi

m).

In particular, we have

‖Rijf‖Cα∩C̊α(Ωm) ≤ C
∑

1≤i≤m

‖f‖Cα∩C̊α(Ωi
m).

Remark 5.4. Without the odd symmetry, the L∞ bound fails. A simple example is pro-
vided by the indicator function 1Ω4 with a radial cut-off. Explicit computations (cf. 
[3,20,7]) show that the double Riesz transforms have logarithmic singularity at the ori-
gin. The above lemma shows that the situation becomes completely different when one 
considers the odd symmetrization, which is simply 1Ω1

4
− 1Ω5

4
.

5.1.2. A few explicit computations
The following explicit computation will clarify when we can expect Hölder estimates 

for the double Riesz transforms for functions defined in Ω2. Given a function f on Ω2, 
we denote f̃ to be its odd-odd extension onto all of R2: that is, f̃ ≡ f on Ω2 and 
f̃(x1, −x2) = −f̃(x1, x2) = f̃(−x1, x2) for all x1, x2 ∈ R.4

Example 5.5. We take the following function on Ω2 in polar coordinates:

f(x) = rαχ(r) sin(mθ)

for some 0 ≤ α ≤ 1 and m ≥ 2 even. Here χ is a smooth cutoff function satisfying 
χ(r) = 1 for r ≤ 1 and 0 for r ≥ 2. Once we make the ansatz

Δ−1
Ω2

f = ψ(r) sin(mθ),

(note that this satisfies the Dirichlet boundary condition on ∂Ω2) then from

Δ = 1
r2 ∂θθ + ∂rr + 1

r
∂r,

we obtain an ordinary differential equation for ψ:

ψ′′ + 1
r

ψ′ − m2

r2 ψ = rαχ(r).

Together with boundary conditions ψ(0) = ψ′(0) = 0, the solution is unique. We consider 
the region r ≤ 1 and it is easy to see that

ψ(r) = 1
(2 + α)2 − m2 r2+α (5.1)

4 Strictly speaking f̃ is not well-defined on the axes but this will not cause any issues.
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is the solution whenever the denominator is nonzero. In the special case when m = 2
and α = 0, the solution is instead given by

ψ(r) = 1
4r2 ln r. (5.2)

Note that this expression can be obtained by fixing some 0 < r ≤ 1 in (5.1) with m = 2
and taking the limit α → 0+. Hence, we see that while the function sin(2θ)χ(r) belongs 
to C̊α(Ω2) with any 0 < α ≤ 1,

G(x) := ∂12Δ−1
Ω2

(sin(2θ)χ(r)) /∈ L∞
loc(Ω2).

On the other hand, one can see that since

G = 1
4 ln |x| − 1

2
x2

1x2
2

|x|4 + F̃ (5.3)

with F̃ ∈ C1(Ω2), G has a scale-invariant Hölder regularity in the sense that

sup
x�=0,|x|≤|x′|

|x|α |G(x) − G(x′)|
|x − x′|α < +∞ (5.4)

for all 0 < α ≤ 1. In the case α = 1 this is trivial from |r∇(ln r)| � 1. Similarly, we see 
that up to a bounded and smooth term denoted by F̃11,

∂11Δ−1
Ω2

(sin(2θ)χ(r)) = x1x2

|x|2
(

2 + x2
2 − x2

1
|x|2

)
+ F̃11.

A similar computation can be done for ∂11 replaced with ∂22 as well. In particular, 
∂11Δ−1

Ω2
(sin(2θ)χ(r)) and ∂22Δ−1

Ω2
(sin(2θ)χ(r)) has the same scale-invariant Hölder reg-

ularity as in (5.4). This property will be fundamental in what follows.

We are now ready to perform explicit computations for the Bahouri–Chemin solution, 
which is directly relevant for the estimate in Lemma 5.2.

Lemma 5.6 (Estimates for the Bahouri–Chemin solution). Consider the function

g(x1, x2) = χ(|x|)sgn(x1x2),

where χ(|x|) is a smooth cutoff function satisfying χ = 1 on |x| ≤ 1 and χ = 0 on |x| ≥ 2. 
Then, the function h defined by

h(x) := g(x) − 2χ(|x|)x1x2

|x|2

satisfies
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‖Rijh‖C̊1(Ω2) � 1.

Moreover, for any 0 < α < 1,

‖Rij(|x|αg)‖Cα
loc(Ω2) �α 1.

Proof. We note that

sgn(x1x2) =
∑
k≥0

1
(2k + 1) sin(2(2k + 1)θ),

and therefore

h(x) = χ(|x|) ·
∑
k≥1

1
(2k + 1) sin(2(2k + 1)θ) =: χ(|x|)A(θ).

For m ≥ 3, we explicitly have that

(−Δ)−1
R2 (sin(mθ)) = r2

m2 − 4 sin(mθ).

We compute that

∂x1∂x2(−Δ)−1(sin(mθ)) = cm2

m2 − 4 (cos((m + 2)θ) − cos(mθ)) + O( 1
m

).

From the above it is not difficult to see that, recalling the definition of A,

(
∂x1∂x2(−Δ)−1A

)
(θ) ∈ C1([0, π/2]),

and therefore we deduce that h ∈ C̊1(Ω2).
To prove the second statement, we may only consider the region r ≤ 1/2, and note 

that

Δ−1(|x|αg) =
∑
k≥0

1
2k + 1

sin(2(2k + 1)θ)
(2 + α)2 − 4(2k + 1)2 r2+α.

Then,

∂θθ

r2 Δ−1(|x|αg) = −
∑
k≥0

1
2k + 1

4(2k + 1)2

(2 + α)2 − 4(2k + 1)2 sin(2(2k + 1)θ)rα

= |x|αg −
∑
k≥0

1
2k + 1

(2 + α)2

(2 + α)2 − 4(2k + 1)2 sin(2(2k + 1)θ)rα.

From the last expression it is clear that
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∥∥∥∥∂θθ

r2 Δ−1(|x|αg)
∥∥∥∥

Cα(Ω2∩{|x|≤1/2})
�α 1.

Other second order derivatives can be treated in a similar way. �
Combining the previous lemma with the example above, we conclude the following:

Corollary 5.7. We have

‖Rij(χ(|x|)sgn(x1x2)) − c ln |x|‖C̊1(Ω2) � 1,

where c = 1
4 for R12 and c = 0 for R11 and R22.

We now consider the simplest functions which satisfy the assumptions of Lemma 5.3, 
namely piecewise constant functions. We explicitly show that their double Riesz trans-
forms are given again by piecewise constants, which must be if Lemma 5.3 were valid.

Example 5.8. We now consider the following functions on R2:

1̃R4 :=
8∑

i=1
(−1)i−11Ωi

4
,

1̃Ω4 := 1Ω1
4

− 1Ω5
4
.

Using the definition of the principal value integral, one can explicitly compute that for 
1 ≤ i, j ≤ 2, Rij 1̃R4 is given by piecewise constant functions depicted in Fig. 4. The 
same holds for Rij1̃Ω4 , which is depicted in Fig. 5. In both cases, one can verify that 
R11 + R22 = −Id. To illustrate how one can obtain these facts, we consider the case R12

applied to 1̃Ω4 , evaluated at x = (x1, x2) with 0 < x2 < x1. By definition, we have

R121̃Ω4(x) = 1
π

lim
R→∞

[ ∫
Ω1

4∩[0,R]2

(x1 − y1)(x2 − y2)
|x − y|4 dy

−
∫

Ω5
4∩[−R,0]2

(x1 − y1)(x2 − y2)
|x − y|4 dy

]
.

We evaluate the first integral as follows:
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Fig. 3. The functions 1̃R4 and 1̃Ω4 (left, right).

Fig. 4. The operators R11, R22, R12 acting on 1̃R4 (from left to right).

∫
Ω1

4∩[0,R]2

(x1 − y1)(x2 − y2)
|x − y|4 dy

= 1
2

∫
0≤y1≤R

x1 − y1

(x1 − y1)2 + (x2 − y2)2 − x1 − y1

(x1 − y1)2 + x2
2

dy1

= 1
8

(
2 arctan(x1 + x2

x1 − x2
) − 2 arctan(x1 + x2 − 2R

x1 − x2
) − ln(x2

1 + x2
2)

+2 ln(x2
2 + (x1 − R)2) − ln(x2

1 + x2
2 − 2x1R − 2x2R + 2R2)

)
.

Similarly evaluating the second integral and subtracting, we obtain that

R121̃Ω4(x) = 1
8π

lim
R→∞

[
−2 arctan(x1 + x2 − 2R

x1 − x2
) + 2 arctan(x1 + x2 + 2R

x1 − x2
)

+ 2 ln(x2
2 + (x1 − R)2) − 2 ln(x2

2 + (x1 + R)2)

− ln(x2
1 + x2

2 − 2x1R − 2x2R + 2R2) + ln(x2
1 + x2

2 + 2x1R + 2x2R + 2R2)
]
.

Then it is clear that the logarithmic terms cancel each other, and the limit is exactly 1
4 , 

independent of x1, x2 as long as 0 < x2 < x1.
One may perform similar computations for functions corresponding to any m ≥ 3. We 

omit the details.
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Fig. 5. The operators R11, R22, R12 acting on 1̃Ω4 (from left to right).

Lemma 5.9 (L∞-estimate for C̊α functions). Let f ∈ C̊α(Ω2) and assume further that f
satisfies the following cancellation properties:∫

{|y|≥ε}∩Ω2

y1y2

|y|4 f(y)dy =
∫

{|y|≥ε}∩Ω2

y2
1 − y2

2
|y|4 f(y)dy = 0 (5.5)

for all ε > 0. Then, we have the logarithmic bound

‖Rijf‖L∞ ≤ C‖f‖L∞

(
1 + log

(
1 +

‖f‖C̊α

‖f‖L∞

))
. (5.6)

Remark 5.10. The cancellation property in (5.5) is essential for the L∞-bound, as one 
can see from the explicit computation for the Bahouri-Chemin function. (This is not 
necessary for the C̊α

∗ -estimate.) On the other hand, it is not necessary for the function 
to have compact support.

Proof. We need to consider the integrals (defined by the principal value)∫
R2

(x1 − y1)(x2 − y2)
|x − y|4 f̃(y)dy,

∫
R2

(x1 − y1)2 − (x2 − y2)2

|x − y|4 f̃(y)dy,

where x ∈ Ω2. Let us treat the first integral. Consider regions (i) {|x − y| ≤ l|x|}, (ii) 
{l|x| < |x − y|} ∩ {2|x| < |y|}, and (iii) {2|x| < |y|}. Here l ≤ 1/2 is a number to be 
specified below. We first treat the regions (ii) and (iii): regarding (ii), we note that the 
domain is contained in the set {l|x| < |x − y| ≤ 3|x|}, so that∣∣∣∣∣∣

∫ (x1 − y1)(x2 − y2)
|x − y|4 f̃(y)dy

∣∣∣∣∣∣ ≤
∫

l|x|<|x−y|≤3|x|

∣∣∣∣ (x1 − y1)(x2 − y2)
|x − y|4 f̃(y)

∣∣∣∣ dy

≤ C‖f‖L∞

∫
l|x|<|x−y|≤3|x|

1
|x − y|2 dy ≤ C‖f‖L∞ ln 3

l
.

Then, for (iii), we may re-write the integral as
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∫
|y|>2|x|

[
(x1 − y1)(x2 − y2)

|x − y|4 − y1y2

|y|4
]

f̃(y)dy,

and then the kernel in large brackets decays as |y|−3 as |y| → +∞. Hence, we may bound 
the above by C‖f‖L∞ . Lastly, in region (i), we rewrite the integral as∫

|x−y|≤l|x|

(x1 − y1)(x2 − y2)
|x − y|4 (f(y) − f(x)1̃(y)) ∼ dy

+ f(x)
∫

|x−y|≤l|x|

(x1 − y1)(x2 − y2)
|x − y|4 1̃(y)dy.

From

|(f(y) − f(x)1̃(y))| ≤ C|x − y|α
|x|α ‖f‖C̊α ,

we bound∣∣∣∣∣∣∣
∫

|x−y|≤l|x|

(x1 − y1)(x2 − y2)
|x − y|4 (f(y) − f(x)1̃(y))dy

∣∣∣∣∣∣∣ ≤ C‖f‖C̊α

1
|x|α

∫
|x−y|≤l|x|

|x − y|α−2dy

≤ Clα‖f‖C̊α .

On the other hand, explicit computations show that the integral∫
|x−y|≤l|x|

(x1 − y1)(x2 − y2)
|x − y|4 1̃(y)dy

is uniformly bounded in x. To see this, after a rescaling of variables y = |x|z, the integral 
equals ∫

|v−z|≤l

(v1 − z1)(v2 − z2)
|v − z|4 1̃(z)dz,

where v := x/|x|. The integral vanishes when v1 > l, since then 1̃ ≡ 1 in the domain 
of integration. Assuming that v1 < l, using polar coordinates centered at v, we further 
rewrite it as

l∫
v1

π∫
−π

sin(2θ)
r

(
1[−(π−θr),π−θr] − 1[−π,−(π−θr)] − 1[π−θr,π]

)
dθdr

where cos(θr) = v1/r. This integral actually vanishes. At this point, we also note that
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∫
|x−y|≤l|x|

(x1 − y1)2 − (x2 − y2)2

|x − y|4 1̃(y)dy

=
l∫

v1

π∫
−π

cos(2θ)
r

(
1[−(π−θr),π−θr] − 1[−π,−(π−θr)] − 1[π−θr,π]

)
dθdr

= c

l∫
v1

1
r

sin(θr) cos(θr)dr,

and since cos(θr) = v1/r, the last expression is bounded by

≤ C

l∫
v1

v1

r2 dr ≤ Cv1

(
1
v1

− 1
l

)
≤ C.

This simple estimate will be referred to as a “half-moon” computation in what follows. 
(This is just a simple case of the so-called “Geometric Lemma” in [2].) Collecting the 
bounds, we have∣∣∣∣∣∣

∫
R2

(x1 − y1)(x2 − y2)
|x − y|4 f̃(y)dy

∣∣∣∣∣∣ ≤ Clα‖f‖C̊α + C‖f‖L∞ ln 3
l
.

Optimizing in l gives the desired logarithmic bound (5.6). The same arguments carry 
over to deal with the other expression∫

R2

(x1 − y1)2 − (x2 − y2)2

|x − y|4 f̃(y)dy.

The proof is complete. �
5.1.3. Proof of the lemmas

In this section, we complete the proof of the lemmas stated in 5.1.1. We omit the proof 
of Lemma 5.1, which is covered in [26,23]. Alternatively, one can follow the arguments 
given for the proof of Lemma 5.3 below, which is somewhat more involved.

Proof of Lemma 5.2. We consider the kernel

K(x, y) = (x1 − y1)(x2 − y2)
|x − y|4

for R12 as well as its symmetrized version

K̃(x, y) := K(x, y) − K(x, ŷ) + K(x, −y) − K(x, −ŷ),
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where ŷ := (y1, −y2). (The proof for R11 and R22 will be completely analogous.) Then, 
we first need to estimate

A(x) :=
∫

Ω2

K̃(x, y)f(y)dy

in L∞. By rescaling, we may assume without loss of generality that R = 1; i.e. f(y)
vanishes for |y| ≥ 1. Moreover, in the above, we may insert a smooth cut-off χ(y) ≥ 0
which satisfy χ(y) = 1 for |y| = 1. Then, we write

A(x) =
∫

{|y|≤1}∩Ω2

K̃(x, y)(f(y) − f(x))χ(y)dy + f(x)
∫

{|y|≤1}∩Ω2

K̃(x, y)χ(y)dy

=:I(x) + J(x),

and we bound

|I(x)| =

∣∣∣∣∣∣∣
∫

{|y|≤1}∩Ω2

K̃(x, y)(f(y) − f(x))χ(y)dy

∣∣∣∣∣∣∣ ≤ ‖f‖Cα
∗

∫
{|y|≤1}∩Ω2

|K̃(x, y)||x − y|αdy

≤ C‖f‖Cα
∗

∫
{|y|≤1}∩Ω2

dy

|x − y|2−α

≤ C‖f‖Cα
∗

∫
{|y|≤1}∩Ω2

dy

|y|2−α
≤ C‖f‖Cα

∗

as well as

|J(x)| =

∣∣∣∣∣∣∣f(x)
∫

{|y|≤1}∩Ω2

K̃(x, y)χ(y)dy

∣∣∣∣∣∣∣ ≤ C|f(x)|(1 + | ln |x||) ≤ C(‖f‖Cα
∗ + ‖f‖L∞),

where we have used that |f(x)| ≤ min{‖f‖Cα
∗ |x|α1|x|≤1, ‖f‖L∞}.

We now consider the difference A(x) − A(x′), for some x �= x′ ∈ Ω2. We may assume 
that |x| ≤ |x′|. We use the fact that (recall Corollary 5.7)∫

{|y|≤1}∩Ω2

K̃(x, y)χ(y)dy = c ln |x| + F (x) (5.7)

where F is bounded and belongs to C̊α(Ω2). Take the region

D := {|y| ≤ 1 : |y − x′| ≤ 2|x − x′|}.
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Then, write

I(x) − I(x′) =

⎡⎣ ∫
D∩Ω2

+
∫

Dc∩Ω2

⎤⎦ K̃(x, y)(f(y) − f(x))dy

−

⎡⎣ ∫
D∩Ω2

+
∫

Dc∩Ω2

⎤⎦ K̃(x′, y)(f(y) − f(x′))dy

=

⎡⎣ ∫
D∩Ω2

K̃(x, y)(f(y) − f(x))dy

⎤⎦−

⎡⎣ ∫
D∩Ω2

K̃(x′, y)(f(y) − f(x′))dy

⎤⎦
+

⎡⎣ ∫
Dc∩Ω2

K̃(x′, y)(f(x′) − f(x))dy

⎤⎦
+

⎡⎣ ∫
Dc∩Ω2

(K̃(x, y) − K̃(x′, y))(f(y) − f(x))dy

⎤⎦
=: (1) + (2) + (3) + (4).

We first bound the terms (1), (2), and (4). Note that

|(2)| ≤ C‖f‖Cα
∗

∫
|y−x′|≤2|x−x′|

|y − x′|α−2dy ≤ C‖f‖Cα
∗ |x − x′|α

and the term (1) can be treated in a parallel manner. Then,

|(4)| ≤ C‖f‖Cα
∗

∫
Dc∩Ω2

|∇K̃(x∗, y)||x − x′||y − x|αdy

where x∗ is some point lying on the line segment connecting x and x′. Note that we have

|∇K̃(x∗, y)| ≤ C

|x − y|3 , y ∈ Dc.

Then we conclude that

|(4)| ≤ C‖f‖Cα
∗ |x − x′|

∫
|x−y|≥|x−x′|

|y − x|α−3dy ≤ C‖f‖Cα
∗ |x − x′|α.

Finally, we combine the remaining terms as follows:
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(3) + J(x) − J(x′) = −

⎡⎣f(x)
∫

Ω2

(K̃(x′, y) − K̃(x, y))χ(y)dy

⎤⎦
+ (f(x) − f(x′))

∫
D∩Ω2

K̃(x′, y)χ(y)dy

= −f(x)(F (x′) − F (x)) − cf(x) ln |x′|
|x|

+ (f(x) − f(x′))
∫

D∩Ω2

K̃(x′, y)χ(y)dy

where F is as in (5.7). Note that∣∣∣∣−f(x)(F (x′) − F (x))
|x − x′|α

∣∣∣∣ ≤ C‖f‖Cα

since F belongs to C̊α and |f(x)| ≤ ‖f‖Cα |x|α ≤ ‖f‖Cα |x′|α. Next,

1
|x − x′|α

∣∣∣∣f(x) ln |x′|
|x|

∣∣∣∣ ≤ |f(x)|
|x − x′|α ln

(
1 + |x′| − |x|

|x|

)
≤ C

|f(x)|
|x − x′|α

|x′ − x|α
|x|α

≤ C‖f‖Cα .

It only remains to obtain a uniform bound for the following integral:

|f(x) − f(x′)|
|x − x′|α

∣∣∣∣∣∣
∫

D∩Ω2

K̃(x′, y)χ(y)dy

∣∣∣∣∣∣ ≤ ‖f‖Cα

∣∣∣∣∣∣
∫

D∩Ω2

K̃(x′, y)χ(y)dy

∣∣∣∣∣∣ .
We expand K̃(x′, y) = K(x′, y) −K(x′, ŷ) +K(x′, −y) −K(x′, −ŷ) and bound each term 
separately. The main contribution comes from K(x′, y):∣∣∣∣∣∣

∫
D∩Ω2

K(x′, y)χ(y)dy

∣∣∣∣∣∣ ≤
∫

|x′−y|≤l|x′|

|K(x′, y)|dy

where l = 2|x − x′|/|x′|. We could have assumed that |x − x′| ≤ |x′|/2 so that l ≤ 1. 
The fact that this expression is uniformly bounded in x′ and 0 < l ≤ 1 follows from 
“half-moon” computations contained in the proof of Lemma 5.9. The other terms in K̃
can be treated similarly. �
Proof of Lemma 5.3. We only consider the case m = 4, argument for the case m = 3
being completely parallel. Without loss of generality, we can assume that the function f
is supported only on Ω1

4 ∪ Ω5
4. We define 1̃Ω4 := 1Ω1

4
− 1Ω5

4
. We consider only the case of 

R12 with kernel K(x, y).
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(i) L∞ bound

We fix some 0 �= x ∈ Ω1
4 and consider

∫
R2

K(x − y)f(y)dy =

⎡⎢⎣ ∫
{|x−y|<�|x|}

+
∫
B

+
∫

{|y|>10|x|}

⎤⎥⎦K(x − y)f(y)dy = I + II + III,

where 0 < 
 ≤ 1
2 will be optimized later and B = R2\({|x − y| < 
|x|} ∪ {|y| > 10|x|}). 

First, we write

I =
∫

{|x−y|<�|x|}∩Ω1
4

K(x − y)(f(y) − f(x))dy + f(x)
∫

{|x−y|<�|x|}∩Ω1
4

K(x − y)dy.

Then, we observe that in the domain of integration, |f(y) − f(x)| ≤ ‖f‖C̊α(Ω1
4)|x|−α|x −

y|α. The fact that the second term is uniformly bounded follows from “half-moon” com-
putation again. Hence,

|I| ≤ ‖f‖C̊α(Ω1
4)|x|−α

∫
{|x−y|<�|x|}

|x − y|α−2dy + C‖f‖L∞ ≤ C
(

‖f‖L∞ + 
α‖f‖C̊α(Ω1
4)

)
.

Next, it is clear that

|II| ≤ C‖f‖L∞ ln 20



.

Lastly, we note that from the odd symmetry of f ,∫
{|y|>10|x|}

y1y2

|y|4 f(y)dy = 0

in the sense of principal value integration. Therefore we estimate

|III| ≤ C

∣∣∣∣∣∣∣
∫

{|y|>10|x|}

[
(x1 − y1)(x2 − y2)

|x − y|4 − y1y2

|y|4
]

f(y)dy

∣∣∣∣∣∣∣
≤ C‖f‖L∞ |x|

∫
{|y|>10|x|}

|y|−3dy ≤ C‖f‖L∞ .

Optimizing in 
 finishes the proof.

(ii) Cα
∗ bound
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We now take x �= x′ ∈ Ω1
4, write 1̃(y) := 1̃Ω4(y) for simplicity, and estimate the difference

R12f(x) − R12f(x′) =
∫

Ω1
4∪Ω5

4

K(x − y)f(y)dy −
∫

Ω1
4∪Ω5

4

K(x′ − y)f(y)dy.

We shall write 
∫

=
∫

Ω1
4∪Ω5

4
from now on and rewrite the above as

∫
K(x − y)(f(y) − f(x)1̃(y))dy −

∫
K(x′ − y)(f(y) − f(x′)1̃(y))dy

+ f(x)
∫

K(x − y)1̃(y)dy − f(x′)
∫

K(x′ − y)1̃(y)dy.

Recall from the explicit computations in 5.1.2 that∫
K(x − y)1̃(y)dy =

∫
K(x′ − y)1̃(y)dy = 1

4

and hence∣∣∣∣f(x)
∫

K(x − y)1̃(y)dy − f(x′)
∫

K(x′ − y)1̃(y)dy.

∣∣∣∣ ≤ C|f(x) − f(x′)|

≤ C|x − x′|α‖f‖Cα
∗ (Ω4).

We now turn to the first two terms and split the integral into {|x − y| > 10|x − x′|} and 
{|x − y| ≤ 10|x − x′|} for both integrals. In the latter regions, we simply estimate∣∣∣∣∣∣∣

∫
{|x−y|≤10|x−x′|}

K(x − y)(f(y) − f(x)1̃(y))dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

{|x−y|≤10|x−x′|}

K(x′ − y)(f(y) − f(x′)1̃(y))dy

∣∣∣∣∣∣∣
≤ C‖f‖Cα

∗ (Ω4)

∫
{|x−y|≤10|x−x′|}

|x − y|α−2dy ≤ C‖f‖Cα
∗ (Ω4)|x − x′|α.

Here, we have used the pointwise bound

∣∣f(y) − f(x)1̃(y)
∣∣ ≤ |x − y|α‖f‖Cα

∗ (Ω4)

(and with x replaced by x′) which follows from the definition of 1̃ and the odd symmetry 
of f . Then, we just combine the remaining terms to obtain
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∫
{|x−y|>10|x−x′|}

(K(x − y) − K(x′ − y))(f(y) − f(x′)1̃(y))dy

−
∫

{|x−y|>10|x−x′|}

K(x − y)(f(x) − f(x′))1̃(y)dy.

Estimating the second term is straightforward, and for the first term, we use the mean 
value theorem as well as the decay of ∇K to obtain

|K(x − y) − K(x′ − y)| ≤ |∇K(x∗ − y)||x − x′| ≤ C
|x − x′|
|x − y|3

(where x∗ is some point lying on the line segment defined by x, x′) and then∣∣∣∣∣∣∣
∫

{|x−y|>10|x−x′|}

(K(x − y) − K(x′ − y))(f(y) − f(x′)1̃(y))dy

∣∣∣∣∣∣∣
≤ C‖f‖Cα

∗ (Ω4)|x − x′|
∫

{|x−y|>10|x−x′|}

|x − y|α−3dy ≤ C‖f‖Cα
∗ (Ω4)|x − x′|α.

Collecting the bounds, we obtain that

|R12f(x) − R12f(x′)|
|x − x′|α ≤ C‖f‖Cα

∗ (Ω4).

The same proof carries over to the case when x �= x′ ∈ Ωi
4 for any i > 1.

We omit the proof of the C̊α
∗ bound, which is a straightforward adaptation of the Cα

∗
bound. �
5.2. Three-dimensional case

Equipped with the two-dimensional Hölder estimates for the double Riesz transforms, 
we now move on to the corresponding 3D estimates which are directly responsible for 
the local regularity result. The goal of this section is to establish Proposition 3.1, which 
is restated here for the reader’s convenience:

Proposition 5.11. Let f = (f1, f2, f3) ∈ (Cα ∩ C̊α(Ũ))3 satisfy f(0) = 0 with f1 + f2

vanishing on {x3 = 0, x1 = x2} ∩ Ũ . Then, we have

‖(Rijf)k‖Cα∩C̊α(Ũ) ≤ C

( 3∑
�=1

‖f �‖Cα∩C̊α(Ũ)

)

for any 1 ≤ i, j, k ≤ 3.
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It is important to clarify the definition of Rij , which is defined on the vector f (not 
on individual components fk). Recalling the extension rule for the vorticity in Defi-
nition 5.14, we first extend f to all of R3 and then apply ∂xi

∂xj
(−Δ)−1

R3 , whose k-th 
component is what we define as (Rijf)k.

We note that the functions f � may not be compactly supported. Moreover, it suffices 
to assume that f vanishes at the origin thanks to the explicit computations given in 
Subsection 4.1. Next, the Cα is trivial in Ũ away from the half-lines generated by a2 =
( 1√

2 , 1√
2 , 0), a3 = ( 1√

3 , 1√
3 , 1√

3), and a4 = (1, 0, 0) since otherwise the boundary of Ũ is 
C∞-smooth. Let us denote those half-lines by �ad for d = 2, 3, 4.

Hence it suffices to obtain Hölder estimates close to those half-lines. To this end we 
consider a partition of unity {χad

}d=2,3,4 on Ũ :∑
d=2,3,4

χad
≡ 1,

χad
is supported in some cone containing �ad and away from half-lines generated by the 

others. We may take χad
as radially 0-homogeneous functions and impose regularity 

C̊1(R3). We shall prove Proposition 3.1 with f replaced by χad
f for d = 2, 3, 4. This is 

sufficient as we have

‖χad
f‖Cα∩C̊α(Ũ) ≤ C‖f‖Cα∩C̊α(Ũ)

as well as

‖f‖Cα∩C̊α(Ũ) ≤
∑

d

‖χad
f‖Cα∩C̊α(Ũ).

The first inequality uses the product rule in C̊α as well as the special product rule

‖gf‖Cα ≤ C‖g‖C̊α‖f‖Cα , f(0) = 0.

In this section, we shall use the term “f is supported near �ad” to mean that f = χad
f . 

An alternative way to define this notion is as follows: for any x ∈ Ũ ∩supp(f), d(x, �ad) ≤
c mink �=d{d(x, �ak)} for some universal c > 0.

Next, we make a simple observation on the invariance of double Riesz transforms 
under rotations: if x, x′ are two coordinate systems related by a rotation matrix M such 
that x′ = Mx, then we have that each double Riesz transform Rij defined in the x-
coordinates is expressed by a linear combination of Riesz transforms Ri′j′ defined in 
the x′-coordinates (with coefficients depending only on the elements of M). This follows 
since (−Δ)−1 is rotation invariant and one can explicitly represent ∂xi

∂xj
as a linear 

combination of second order derivatives in the x′-coordinates. Therefore, we have that if 
for some function f and norm ‖ · ‖X , if ‖Rijf‖X ≤ A for all i, j then the same property 
holds with double Riesz transforms in the x′-coordinates with A possibly replaced with 
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CA where C > 0 is an absolute constant (since the matrix norm of a rotation satisfies 
‖M‖ � 1).

Restricting the function near the singular half-lines has an additional simplifying 
consequence, which we explain in detail in the context of two dimensions. Recall from the 
introduction that the analogous domain to Ũ in 2D is given by Ω1

4 = {(r, θ) : 0 < θ < π
4 }. 

Given g ∈ L∞(Ω1
4), the natural extension g̃ is obtained by keep reflecting g along the 

boundaries of Ωi
4. That is,

g̃(x) = g̃(x⊥), g̃(x1, x2) = −g̃(x1, −x2).

Similarly to what we have done in the above, using 0-homogeneous cutoff functions, we 
can decompose g = g1 + g2 where g1 and g2 are respectively supported near the half-line 
{r > 0, θ = 0} and {r > 0, θ = π

4 }. Then, we further decompose the extensions g̃1 and 
g̃2 by

g̃1 = g̃m
1 + g̃r

1, g̃2 = g̃m
2 + g̃r

2

where g̃m
1 = g̃1 ·1{(r,θ):− π

4 <θ< π
4 } and g̃m

2 = g̃2 ·1{(r,θ):0<θ< π
2 }. That is, g̃m

� is the part of g̃�

restricted to fundamental domains adjacent to the support of g�. We have the following 
support separation property:

x ∈ Ω1
4 =⇒ d(x, supp(g̃r

1)) � |x|,

where d(x, A) = infy∈A |x − y| with A ⊂ R2. The superscripts m and r refer to “main” 
and “remainder”, respectively; the following proposition tells us why we can regard g̃r

�

as a remainder term in g̃�.

Proposition 5.12. Let g ∈ Cα ∩ C̊α(Ω1
4) satisfy g(0) = 0. Then we have

‖Rij g̃r
� ‖C̊α

∗ (Ω1
4) ≤ C‖g�‖C̊α

∗ (Ω1
4), ‖Rij g̃r

� ‖Cα
∗ (Ω1

4) ≤ C‖g�‖Cα
∗ (Ω1

4)

for any 1 ≤ i, j, 
 ≤ 2.

The symmetry reduction lemma will be an immediate consequence of the following 
general estimate in Rn. The statements as well as the proofs will be referred in later 
sections frequently.

Lemma 5.13 (Symmetry reduction lemma). In Rn, let T be the convolution operator 
against a kernel K satisfying

|K(z)| ≤ C|z|−n, |∇K(z)| ≤ C|z|−n−1



T.M. Elgindi, I.-J. Jeong / Advances in Mathematics 393 (2021) 108091 49
and h : Rn → R satisfy

|h(x)| ≤ A|x|α, ∀x ∈ Rn

for some constant A > 0. Finally, let Ω ⊂ Rn be a convex cone5 satisfying the following 
support separation property:

x ∈ Ω =⇒ d(x, supp(h)) ≥ c|x|

where c > 0 is some universal constant. Then, we have that

‖T [h]‖Cα
∗ (Ω) ≤ CA, ‖T [h]‖C̊α

∗ (Ω) ≤ C.

Furthermore, if supp(h) ⊂ B0(R), then

‖T [h]‖L∞(Ω) ≤ C(R)(1 + A).

Proof. Take some x �= x′ ∈ Ω and let us estimate∫
Rn

K(x − y)h(y)dy −
∫
Rn

K(x′ − y)h(y)dy,

We may assume, without loss of generality, that |x′| ≤ |x|. We consider two cases: (i) 
|x′| > 1

10 |x − x′| and (ii) |x′| ≤ 1
10 |x − x′|.

In the case (i), we have that |x′| > 1
2 |x|. We then directly estimate∣∣∣∣∣∣

∫
Rn

K(x − y)h(y)dy −
∫
Rn

K(x′ − y)h(y)dy

∣∣∣∣∣∣ ≤ A|x − x′|
∫

supp(h)

|∇K(x∗ − y)||y|αdy,

where x∗ = λx + (1 − λ)x′ for some 0 ≤ λ = λ(y) ≤ 1. We have that |x∗| ≈ |x′| ≈ |x|. 
Moreover, from the support separation property, |x∗ − y| � |x| for y ∈ supp(h). Hence, 
we bound the above by

≤ CA|x − x′|

⎡⎢⎣ ∫
supp(h)∩{|y|≤10|x′|}

|x∗ − y|−n−1|y|αdy +
∫

{|y|>10|x′|}

|x∗ − y|−n−1|y|αdy

⎤⎥⎦
≤ CA|x − x′|

[
|x′|n|x|−n−1|x′|α + |x′|α−1] ≤ CA|x − x′|α.

We now treat the case (ii). Then we consider the integral

5 This means that if x ∈ Ω, then λx ∈ Ω for all λ > 0.
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∫
{|x′−y|<10|x−x′|}

K(x′ − y)h(y)dy

=

⎡⎢⎣ ∫
{|x′−y|<10|x−x′|}∩{|y|≤2|x′|}

+
∫

{|x′−y|<10|x−x′|}∩{|y|>2|x′|}

⎤⎥⎦K(x′ − y)h(y)dy.

The first term is bounded in absolute value by

CA|x′|n|x′|−n|x′|α ≤ CA|x − x′|α

where we have used the support separation property to deduce |K(x′−y)| ≤ C|x′−y|−n ≤
C|x′|−n. On the other hand, in the second region we have |x′ − y| ≥ c|y| and then the 
integral in absolute value is bounded by

CA

∫
2|x′|<|y|<20|x′−x|

|y|α−ndy ≤ CA|x − x′|α.

Similarly, one can estimate∣∣∣∣∣∣∣
∫

{|x′−y|<10|x−x′|}

K(x − y)h(y)dy

∣∣∣∣∣∣∣ ≤ CA|x − x′|α.

In the region {|x′ − y| ≥ 10|x − x′|}, we combine the integrals to bound

A|x − x′|
∫

{|x′−y|≥10|x−x′|}∩supp(h)

|∇K(x∗ − y)||y|αdy.

We then observe for y ∈ supp(h) and satisfying {|x′ −y| < 10|x −x′|}, |x∗ −y| ≥ 1
2 |x′ −y|. 

Then, we bound the above simply by

≤ CA|x − x′|
∫

{|x′−y|≥10|x−x′|}

|x′ − y|−n−1(|x′ − y|α + |x′|α)dy

≤ CA|x − x′|
(
|x − x′|α−1 + |x′|α|x − x′|−1) ≤ CA|x − x′|α

since |x′| ≤ C|x − x′|. The proof of the Cα
∗ -estimate is complete.

We omit the proof of C̊α
∗ and L∞ bounds, which can be done in a similar way. �

Proof of Proposition 5.12. To deduce Proposition 5.12 from Lemma 5.13, one just needs 
to observe that Ω = Ω1

4 and the singular integral kernel for Rij satisfies the assumptions 
of Lemma 5.13 and g(0) = 0, g� ∈ Cα

∗ imply |g̃r
� (x)| ≤ C‖g�‖Cα |x|α. �
∗
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Definition 5.14. In the following, given f ∈ (Cα ∩ C̊α(Ũ))3, we denote f̃m to be the 
extension (governed by the reflection rule of Õ) of f restricted to fundamental domains 
adjacent to the support of f . As usual, f̃ is the full extension of f onto R3. We accordingly 
define the adjacent extension of 1Ũ to be 1̃m. Note that the definition of 1̃m depends on 
the support of f .

5.2.1. Estimates near �a2
In this section, we consider f defined near �a2 and away from �a3, �a4. With a ro-

tation in R3, we consider the new orthogonal coordinate system with basis {e1 =
( 1√

2 , − 1√
2 , 0), e2 = (0, 0, 1), e3 = (− 1√

2 , − 1√
2 , 0)}. We shall write x = (x1, x2, x3) as 

well as f = (f1, f2, f3) with respect to this new system. Then, the assumption in Propo-
sition 3.1 translates to that f3 is vanishing on {x2 = x1 = 0}. For 1 ≤ k ≤ 3, we define 
f̃k,m ∈ (L∞(R3))3 to be the adjacent extension of fkek into R3 as in Definition 5.14. To 
avoid confusion, we explicitly write out the extension rules:

f̃3,m(x1, x2, x3) := f3(x1, x2, x3)1{x1,x2>0} − f3(−x1, x2, x3)1{x1<0,x2>0}

− f3(x1, −x2, x3)1{x1>0,x2<0} + f3(−x1, −x2, x3)1{x1,x2<0},

f̃2,m(x1, x2, x3) := f2(x1, x2, x3)1{x1,x2>0} − f2(−x1, x2, x3)1{x1<0,x2>0}

+ f2(x1, −x2, x3)1{x1>0,x2<0} − f2(−x1, −x2, x3)1{x1,x2<0},

f̃1,m(x1, x2, x3) := f1(x1, x2, x3)1{x1,x2>0} + f1(−x1, x2, x3)1{x1<0,x2>0}

− f1(x1, −x2, x3)1{x1>0,x2<0} − f1(−x1, −x2, x3)1{x1,x2<0}.

That is, f̃3,m, f̃2,m, and f̃1,m are respectively odd-odd, odd-even, even-odd in (x1, x2). 
The same is true for the full extensions f̃3, f̃2, and f̃1. To establish Proposition 3.1 near 
�a2, we need to prove

Lemma 5.15. Under the same assumptions as in Proposition 3.1, for any 1 ≤ i, j, k ≤ 3, 
we have with Rij = ∂xi

∂xj
(−ΔR3)−1,

‖Rij f̃k‖Cα∩C̊α(Ũ) ≤ C‖fk‖Cα∩C̊α(Ũ).

Remark 5.16. As an immediate consequence of Lemma 5.13, it is sufficient to estimate 
Rij f̃k only near �a2.

Proof in the case k = 3. We consider f̃ := f̃k which is vanishing on {x2 = x1 = 0} from 
the assumption. Note that f̃ is odd in both x1 and x2. With slight abuse of notation, 
we shall write xh := (x1, x2) = (x1, x2, 0) and yh := (y1, y2) = (y1, y2, 0) given x =
(x1, x2, x3) and y = (y1, y2, y3) (h stands for “horizontal”). We also write |x − y|h :=
|xh − yh|.

(i) L∞ bound
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We fix some x ∈ Ũ and consider

∫
R3

K(x − y)f̃(y)dy =

⎡⎢⎢⎣ ∫
{|x−y|< |x|

2 }

+
∫

{|x−y|≥ |x|
2 ,|y|≤10|x|}

+
∫

{|y|>10|x|}

⎤⎥⎥⎦K(x − y)f̃(y)dy

= I + II + III

where K is the kernel for Rij with some 1 ≤ i, j ≤ 3. We note that

K(z) = pij(z)
|z|5 ,

where pij(·) is a homogeneous polynomial of degree 2. Now recall from Section 2 that 
the integral of f̃ against any second order polynomial on spheres centered at the origin 
vanishes. Hence,

|III| =

∣∣∣∣∣∣∣
∫

{|y|>10|x|}

[K(x − y) − K(y)]f̃(y)dy

∣∣∣∣∣∣∣ ≤ C‖f‖L∞ |x|
∫

{|y|>10|x|}

|y|−4dy ≤ C‖f‖L∞ .

In the second region, one use simply that |K(z)| ≤ C|z|−3:

II ≤ ‖f̃‖L∞

∫
{|x−y|≥ |x|

2 ,|y|≤10|x|}

|x − y|−3dy ≤ C‖f‖L∞ .

It only remains to bound the local region; we rewrite

I =
∫

{|x−y|< |x|
2 }

K(x − y)(f̃(y) − f(x)1̃m(y))dy + f(x)
∫

{|x−y|< |x|
2 }

K(x − y)1̃m(y)dy

The point is that in the region {|x − y| < |x|
2 },

|f̃(y) − f(x)1̃m(y)| ≤ |x − y|α‖f‖Cα
∗ .

Hence, the first term is bounded in absolute value by∣∣∣∣∣∣∣∣
∫

{|x−y|< |x|
2 }

K(x − y)(f̃(y) − f(x)1̃m(y))dy

∣∣∣∣∣∣∣∣ ≤ C‖f‖C̊α
∗

.

To treat the second term, we note that up to a bounded term, we may consider (with 
change of variables yh = |xh|zh)
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∣∣∣∣∣∣∣∣
∫

{|x−y|h<
|x|h+|x3|

2 }

K2(xh − yh)1̃m(yh)dyh

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫

{| xh
|xh| −zh|< 1

2 (1+ |x3|
|xh| )}

K2( xh

|xh| − zh)1̃m(zh)dzh

∣∣∣∣∣∣∣∣
≤ C ln

(
1 + |x3|

|xh|

)
but then, using the vanishing condition, we may rewrite f(x) = f(x) − f(0, 0, x3) to 
estimate

C|f(x)| ln
(

1 + |x3|
|xh|

)
= C|f(x) − f(0, 0, x3)| ln

(
1 + |x3|

|xh|

)
≤ C|xh|α|x|−α ln

(
1 + |x3|

|xh|

)
‖f‖C̊α

∗
≤ C‖f‖C̊α

∗

since |xh| ≤ C|x3| in Ũ . Collecting the bounds,

|I| + |II| + |III| ≤ C(‖f‖C̊α
∗

+ ‖f‖L∞).

(ii) Cα
∗ bound

To show Cα
∗ , it suffices to consider f̃m rather than f̃ , appealing to the symmetry reduc-

tion Lemma 5.13. We note that f̃m is scalar-valued, and supported near the half-line 
�a2. Then, from this support property of f̃m, we may identify 1̃m(y) with sgn(y1y2) since 
1̃m(y) enters the proof only through the expression f̃m(y) − 1̃m(y)f(x). From now on, 
for simplicity we shall even drop the superscript m. Moreover, it suffices to show Cα

∗ -
estimate in each coordinate. We first consider variations in xh. Then, proving Cα

∗ in xh

reduces to a 2D computation.
To see this, take x �= x′ ∈ Ũ with x3 = x′

3 and rewrite∫
R3

K(x − y)f̃(y)dy −
∫
R3

K(x′ − y)f̃(y)dy

=
∫
R3

K(x − y)(f̃(y) − 1̃(y)f(x))dy −
∫
R3

K(x′ − y)(f̃(y) − 1̃(y)f(x′))dy

+ f(x)
∫
R3

K(x − y)1̃(y)dy − f(x′)
∫
R3

K(x′ − y)1̃(y)dy.

Splitting the integration into {|x − y| ≤ 10|x − x′|} and its complement, we further 
rewrite
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=
∫

{|x−y|≤10|x−x′|}

K(x − y)(f̃(y) − 1̃(y)f(x))dy

−
∫

{|x−y|≤10|x−x′|}

K(x′ − y)(f̃(y) − 1̃(y)f(x′))dy

+
∫

{|x−y|>10|x−x′|}

(K(x − y) − K(x′ − y)) (f̃(y) − 1̃(y)f(x))

−
∫

{|x−y|≤10|x−x′|}

(f(x) − f(x′))K(x′ − y)1̃(y)dy

+ f(x)
∫
R3

K(x − y)1̃(y)dy − f(x′)
∫
R3

K(x′ − y)1̃(y)dy.

The first three terms are straightforward to estimate by C‖f‖Cα
∗ (Ũ)|x −x′|α, simply using 

the pointwise estimates

|f̃(y) − 1̃(y)f(x)| ≤ C‖f‖Cα
∗ (Ũ)|x − y|α, |K(z)| ≤ C|z|−3, |∇K(z)| ≤ C|z|−4.

Combining last three terms gives

f(x)
∫
R3

[K(x′ − y) − K(x − y)] 1̃(y)dy − (f(x′) − f(x))
∫

{|x−y|≤10|x−x′|}

K(x′ − y)1̃(y)dy.

Then, we can integrate the first expression in y3, and rewrite using the vanishing condi-
tion f(x) = f(x) − f(0, 0, x3):

(f(x) − f(0, 0, x3))
∫
R2

[K2(x′
h − yh) − K2(xh − yh)] sgn(y1y2)dyh

The fact that this is bounded by C‖f‖Cα
∗ (Ũ)|xh − x′

h|α follows exactly the proof of 
Lemma 5.2, when K is the kernel for either R11, R12, or R22. Under the same assumptions 
for K, it is not difficult to show directly that (analogous to the “half-moon” computa-
tions) ∫

{|x−y|≤10|x−x′|}

K(x′ − y)1̃(y)dy (5.8)

is uniformly bounded in x, x′. (Alternatively, one can replace dy with χ(yh)dy, the 
integration domain {|x −y| ≤ 10|x −x′|} to {|x −y|h ≤ 10|x −x′|} and reduce to a 2D com-
putation as well.) It remains to treat the cases of R13, R23 (since Id = −R11 −R22 −R33) 
but in this case, the expressions
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∫
R3

K(x − y)1̃(y)dy,

∫
R3

K(x′ − y)1̃(y)dy

vanish in the first place since the kernels are odd in y3 (after a shift by x3) and 1̃(y) is 
independent of y3. It is easy to show that (5.8) is bounded in this case as well; we omit 
the details.

We now consider variations in x3; take two points x, x′ with xh = x′
h and x3 �= x′

3, 
and rewrite the difference as (using the y3-invariance of 1̃(y))∫

R3

K(x − y)(f̃(y) − 1̃(y)f(x))dy −
∫
R3

K(x − y)(f̃(y) − 1̃(y)f(x))dy.

Then, we proceed similarly as in the above: divide the integrals into regions {|x − y| ≤
10|x3 − x′

3|} and its complement. Inspecting the terms, it is not difficult to see that it 
suffices to obtain the bound∣∣∣∣∣∣∣(f(x) − f(x′))

∫
|x−y|≤10|x3−x′

3|

K(x − y)1̃(y)dy

∣∣∣∣∣∣∣ ≤ C‖f‖Cα(Ũ)|x − x′|α.

The proof is similar to that of showing (5.8) is bounded. We omit the details. �
Proof in the cases k = 1, 2. We mainly emphasize the modifications from the proof 
above; note that now we do not have any vanishing condition.

(i) L∞ bound

We take f̃ := f̃k (k = 1, 2), 1̃ := 1̃k and follow the proof above; take x ∈ Ũ and 
decompose

∫
R3

K(x − y)f̃(y)dy =

⎡⎢⎢⎣ ∫
{|x−y|< |x|

2 }

+
∫

{|x−y|≥ |x|
2 ,|y|≤10|x|}

+
∫

{|y|>10|x|}

⎤⎥⎥⎦K(x − y)f̃(y)dy

= I + II + III.

The expressions |II| and |III| can be bounded exactly the same way as before. On the 
other hand, in the local region, we note that∫

{|x−y|< |x|
2 }

K(x − y)1̃(y)dy

is now uniformly bounded in x ∈ supp(f), where K is the kernel for any Rij with 
1 ≤ i, j ≤ 3. This gives
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∣∣∣∣∣∣∣∣f(x)
∫

{|x−y|< |x|
2 }

K(x − y)1̃(y)dy

∣∣∣∣∣∣∣∣ ≤ C‖f‖L∞ .

Next, ∣∣∣∣∣∣∣∣
∫

{|x−y|< |x|
2 }

K(x − y)(f̃(y) − f(x)1̃(y))dy

∣∣∣∣∣∣∣∣ ≤ C‖f‖C̊α(Ũ),

simply using that

|f̃(y) − f(x)1̃(y)| ≤ C|x|−α‖f‖C̊α(Ũ)

for y ∈ {|x − y| < |x|
2 }. The proof is complete.

(ii) Cα
∗ bound

As in the case of k = 3 above, for the purpose of estimating Cα
∗ and C̊α

∗ , we appeal to 

Lemma 5.13 and consider f̃ := f̃k,m and write 1̃(y) := 1̃k,m(y) which can be identified 
with sgn(yk).

Again, following the proof above, we start by rewriting∫
R3

K(x − y)f̃(y)dy −
∫
R3

K(x′ − y)f̃(y)dy

=
∫

{|x−y|≤10|x−x′|}

K(x − y)(f̃(y) − 1̃(y)f(x))dy

−
∫

{|x−y|≤10|x−x′|}

K(x′ − y)(f̃(y) − 1̃(y)f(x′))dy

+
∫

{|x−y|>10|x−x′|}

(K(x − y) − K(x′ − y)) (f̃(y) − 1̃(y)f(x))dy

+ f(x)
∫
R3

[K(x′ − y) − K(x − y)] 1̃(y)dy

− (f(x′) − f(x))
∫

{|x−y|≤10|x−x′|}

K(x′ − y)1̃(y)dy.

As usual, it is straightforward to treat the first three terms, and the last term can be 
handled with a uniform bound on the integral
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∣∣∣∣∣∣∣
∫

{|x−y|≤10|x−x′|}

K(x′ − y)1̃(y)dy

∣∣∣∣∣∣∣ ≤ C.

Lastly, ∫
R3

[K(x′ − y) − K(x − y)] 1̃(y)dy = 0

simply because ∫
R3

K(x′ − y)1̃(y)dy =
∫
R3

K(x − y)1̃(y)dy

recalling that 1̃(y) = sgn(yk). Indeed, when K is the kernel for R13 and R23, this is 
obvious from the x3-invariance, and when K is the kernel for R11, R12, and R22, we can 
reduce to the corresponding equality from the 2D case (see Example 5.8 and observe 
that one can write 1̃ as a linear combination of 1̃Ω4 defined there and its 2D rotations). 
We omit the proof of the C̊α

∗ -estimate, which is a straightforward adaptation of this 
argument. �
5.2.2. Estimates near �a3 and �a4

In this section, we consider the remaining cases of f supported near �a3 and �a4 (and 
away from other half-lines). Most part of the arguments is parallel to the case of �a2, and 
somewhat simpler. In the �a4 case, we redefine the coordinate system by orthogonal basis

{e1 = (0, 1, 0), e2 = (0, 0, 1), e3 = (1, 0, 0)}.

Note that as in the case of �a2, the radial direction is defined to be the new x3-axis. 
Moreover, �a4 is adjacent to 8 fundamental domains for Õ (including Ũ itself), which 
gives rise to the adjacent extension f̃m. Again, for the convenience of the reader, we 
explicitly write them out in components: using the notation f = (f1, f2, f3) (in the new 
coordinates system), we first have

f̃3,m(x) = g3(x) + g3(x⊥
h , x3) + g3(−xh, x3) + g3(−x⊥

h , x3),

g3(x) = f3(x)1{x1>x2>0} − f3(x2, x1, x3)1{x2>x1>0}. (5.9)

Next,

f̃1,m(x) = (g1(x) − g1(−xh, x3))e1 + (g1(x⊥
h , x3) − g1(−x⊥

h , x3))e2,

g1(x) = f1(x)1{x1>x2>0} − f1(x1, −x2, x3)1{x1>−x2>0} (5.10)
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and

f̃2,m(x) = (g2(x) − g2(−xh, x3))e2 + (g2(x⊥
h , x3) − g2(−x⊥

h , x3))e1,

g2(x) = f2(x)1{x1>x2>0} + f2(x1, −x2, x3)1{x1>−x2>0}. (5.11)

Important observation is that, freezing the x3-coordinate, f̃3,m is a scalar-valued function 
which is 4-fold symmetric in xh, and f̃k,m is odd in xh for k = 1, 2. This allows one to 
essentially reduce the Hölder estimates to 2D computations, Lemma 5.1 and Lemma 5.3, 
respectively.

We mention briefly the case of �a3. In this case the coordinate system is defined by

{e1 = (− 1√
6

, − 1√
6

,
2√
6

), e2 = (− 1√
2

,
1√
2

, 0), e3 = ( 1√
3

,
1√
3

,
1√
3

)}.

We suppress from writing out the formulas for f̃k,m near �a3. However, the only essential 
feature that will be used in the proof is that, upon fixing x3, f̃3,m is 3-fold rotationally 
symmetric in xh, and f̃k,m is odd in xh for k = 1, 2.

We now state the main result of this section.

Lemma 5.17. Assume that f ∈ Cα ∩ C̊α(Ũ) is supported near �a4. Then, for any 1 ≤
i, j, k ≤ 3, we have that

‖Rij f̃k‖Cα∩C̊α(Ũ) ≤
∑

1≤�≤3

C‖f �‖Cα∩C̊α(Ũ).

The same estimate holds for f supported near �a3.

We shall only consider the case of �a4, the �a3 case being strictly analogous.

Proof. (i) L∞ bound

We first consider f̃3 and follow the steps of the proof of Lemma 5.15 with some x ∈ Ũ . 
To treat the region {|x − y| < |x|

2 }, we need to define 1̃ appropriately. We simply take

1̃3(y) := 1̃R4(yh)

where 1̃R4 is defined in Fig. 3. Again, the point is that we have

|f̃3(y) − 1̃3(y)f3(x)| ≤ C‖f3‖C̊α
∗ (Ũ)|x|−α|x − y|α

whenever y ∈ {|x − y| < |x|
2 }. This establishes the bound

‖Rij f̃3‖L∞(Ũ) ≤ C‖f3‖C̊α(Ũ).
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To treat the cases k = 1, 2, we again note that it only remains to treat the integral

∫
{|x−y|< |x|

2 }

K(x − y)f̃k(y)dy.

In this region, we have f̃k(y) = f̃k,m(y) (replacing |x|
2 by |x|

10 if necessary) and we 
may treat separately g̃k := gk(x) − gk(−xh, x3) and f̃k,m − g̃k, where gk is defined in 
(5.10), (5.11). We just show how to treat g̃k: in this case, we have that

∫
{|x−y|< |x|

2 }

K(x − y)g̃k(y)dy =
∫

{|x−y|< |x|
2 }∩{0<|y2|<y1}

K(x − y)g̃k(y)dy

=
∫

{|x−y|< |x|
2 }∩{0<|y2|<y1}

K(x − y)(g̃k(y) − fk(x)1̃k(y))dy

+
∫

{|x−y|< |x|
2 }∩{0<|y2|<y1}

K(x − y)1̃k(y)dy

Here, 1̃1(y) := 1̃R4(yh) and 1̃2(y) = 1R3(y). Similarly as in the above, these definitions 
guarantee that

|f̃k(y) − 1̃k(y)fk(x)| ≤ C‖fk‖C̊α
∗ (Ũ)|x|−α|x − y|α

as long as y ∈ {|x − y| < |x|
2 } ∩ {0 < |y2| < y1}. This establishes the bound

∑
k=1,2

‖Rij f̃k‖L∞(Ũ) ≤
∑

k=1,2

C‖fk‖C̊α(Ũ).

(ii) Cα
∗ bound

To obtain the Cα
∗ bound, it suffices to consider f̃k,m rather than f̃k, with an application 

of the symmetry reduction Lemma 5.13. The proof of Cα
∗ estimate is again parallel to 

the case of �a2 treated in the previous section; variations in the x3 direction is handled 
using x3-invariance of 1̃k (defined in (i) above), and variations in xh can be reduced 
to obtaining 2D Cα

∗ estimates which correspond exactly to Lemma 5.1 (k = 3) and 
Lemma 5.3 (k = 1, 2).

The proof of C̊α
∗ -bound is parallel to that of Cα

∗ bound. We again omit the details. �
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6. Open problem: singularity formation for C̊α(R3)

We would like to conclude the paper by describing an interesting open problem, which 
could be considered as an improvement over the singularity formation result in the 
current paper.

To begin with, recall that from the local well-posedness result in the C̊α space given in 
Theorem 1.3, one gains access to scale-invariant dynamics in R3; i.e. vorticity satisfying

ω(t, λx) = ω(t, x)

for any λ > 0 and x ∈ R3. Indeed, the 3D Euler equations enjoy the following scaling 
symmetry: if ω(t, ·) is a solution, then

ωλ(t, x) := ω(t, λx)

is again a solution for any λ > 0. In particular, if one has an initial vorticity ω0 which is 
scale-invariant in the sense defined above, then upon having uniqueness, it is guaranteed 
that the solution is automatically scale-invariant. Note that a scale-invariant vorticity 
belongs to C̊α(R3) if it is smooth in the “angular” directions; namely, if ω(x) = h(x/|x|)
with some function h defined on the unit sphere S2, then we have ‖ω‖C̊α(R3) ≈ ‖h‖Cα(S2). 
In this case, the 3D Euler equations reduce to a two-dimensional equation for h defined 
on the unit sphere, under the rotational symmetry assumption with respect to O; the 
equation takes the form

∂th + v · ∇h = h · ∇v (6.1)

on S2, where v(t, ·) is defined on R3 by v(t, x) = ∇ × (−ΔR3)−1(h(t, x
|x| )). Note that v

is 1-homogeneous in |x|. Upon a concrete choice of coordinate system on S2 (e.g. the 
standard spherical coordinates), one can write down a relation between v and h expressed 
in that coordinate system. It will be interesting to see whether the system (6.1) admits 
solutions blowing up in finite time: this would give singularity formation in the class 
ω ∈ L∞ ∩ C∞

c \{R3}.
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Appendix A. Singular integral formulas for the velocity gradient

In this section, we demonstrate explicitly that the velocity gradient in 3D can be ex-
pressed in terms of a linear combination of the vorticity and its double Riesz transforms. 
We have

∇u(x) = ∇K ∗ ω(x) + 1
3

( 0 −ω3(x) ω2(x)
ω3(x) 0 −ω1(x)

−ω2(x) ω1(x) 0

)
. (A.1)

Explicitly writing it out,

∂1u1(x) = 1
4π

∫
R3

−3y1y3

|y|5 ω2(x − y) + 3y1y2

|y|5 ω3(x − y)dy

∂1u2(x) = 1
3ω3(x) + 1

4π

∫
R3

(y2
2 − y2

1) + (y2
3 − y2

1)
|y|5 ω3(x − y) + 3y1y3

|y|5 ω1(x − y)dy

∂1u3(x) = −1
3ω2(x) + 1

4π

∫
R3

−3y1y2

|y|5 ω1(x − y) − (y2
2 − y2

1) + (y2
3 − y2

1)
|y|5 ω2(x − y)dy,

(A.2)

∂2u1(x) = −1
3ω3(x) + 1

4π

∫
R3

−3y2y3

|y|5 ω2(x − y) − (y2
1 − y2

2) + (y2
3 − y2

2)
|y|5 ω3(x − y)dy

∂2u2(x) = 1
4π

∫
R3

−3y1y2

|y|5 ω3(x − y) + 3y2y3

|y|5 ω1(x − y)dy

∂2u3(x) = 1
3ω1(x) + 1

4π

∫
R3

(y2
1 − y2

2) + (y2
3 − y2

2)
|y|5 ω1(x − y) + 3y1y2

|y|5 ω2(x − y)dy,

(A.3)

6 https://commons .wikimedia .org /wiki /File :Octahedral _reflection _domains .png.
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∂3u1(x) = 1
3ω2(x) + 1

4π

∫
R3

(y2
1 − y2

3) + (y2
2 − y2

3)
|y|5 ω2(x − y) + 3y2y3

|y|5 ω3(x − y)dy

∂3u2(x) = −1
3ω1(x) + 1

4π

∫
R3

3y1y3

|y|5 ω3(x − y) − (y2
1 − y2

3) + (y2
2 − y2

3)
|y|5 ω1(x − y)dy

∂3u3(x) = 1
4π

∫
R3

−3y2y3

|y|5 ω1(x − y) + 3y1y3

|y|5 ω2(x − y)dy.

(A.4)
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