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ARTICLE INFO ABSTRACT

Keywords: Research on student understanding of eigentheory in linear algebra has expanded recently, yet

Procedural knowledge few studies address student understanding of the Characteristic Equation. In this study, we ex-

C'onceptual knowledge plore quantum physics students’ conceptual and procedural knowledge of deriving and using the

E{neaislgEbra Characteristic Equation. We developed the Conceptual and Procedural Knowledge framework for
igentheory

classifying the quality of students’ conceptual and procedural knowledge of both deriving and
using the Characteristic Equation along a continuum. Most students exhibited deeper conceptual
and procedural knowledge of using the Characteristic Equation than of deriving the
Characteristic Equation. Furthermore, most students demonstrated deeper procedural knowledge
than conceptual knowledge of deriving the Characteristic Equation. Most students demonstrated
conceptual knowledge that was as deep or deeper than their procedural knowledge of using the
Characteristic Equation. Examples of student work are provided, including descriptions of stu-
dent work exhibiting rich knowledge of the characteristic equation. Implications for instruction
and future research are discussed.

1. Introduction

Considering recent demands for enhanced student understanding of concepts in science, technology, engineering, and mathe-
matics (STEM) fields, education researchers are tasked with exploring how students make sense of mathematical concepts in in-
terdisciplinary settings. Indeed, the National Research Council (2012) charged that the U.S. must improve undergraduate STEM
education, specifically recommending investigations into student learning of cross-cutting concepts in STEM courses. It further stated
that these interdisciplinary studies “could help to increase the coherence of students’ learning experience across disciplines ... and
could facilitate an understanding of how to promote the transfer of knowledge from one setting to another” (p. 202). Our research
contributes towards this need for basic research by investigating students’ reasoning about and use of mathematics within upper-
division physics, particularly focusing on quantum physics students’ understanding of concepts related to eigentheory from linear
algebra.

At a broad level, linear algebra is a key course in the undergraduate education of students across the STEM-related majors.
According to the 2015 CBMS Survey of Undergraduate Programs (Blair, Kirkman, & Maxwell, 2018), approximately 55,000 students
were enrolled in introductory linear algebra in the Fall 2015 term, up from 46,000 in 2010; in addition, the majority of these students
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took the course in the mathematics department of a PhD-granting institution. Although this enrollment total is fifth highest for
introductory-level mainstream mathematics courses (behind calculus courses and Differential Equations), it is more than triple that of
advanced level courses such as Introduction to Proof (pp. 213-215). This implies that linear algebra is a central course in under-
graduate STEM students’ required mathematical education and that it is one of the last mathematics courses that non-mathematics
STEM majors encounter in their undergraduate education. As such, it provides a fertile area for investigation whose results regarding
the teaching and learning of linear algebra have the potential to impact not only the field of mathematics education but various
discipline-based educational research fields as well.

We use the term eigentheory to encompass topics related to eigenvalues, eigenvectors, and eigenspaces. We choose to focus on
eigentheory because it is a conceptually complex idea that builds from and relies upon student understanding of multiple key ideas in
mathematics, and its application is widespread in mathematics and beyond. Students encounter the topic in a wide spectrum of
mathematics courses—such as introductory and advanced linear algebra, differential equations, probability, graph theory, crypto-
graphy—as well as courses in chemistry, physics, economics, and engineering. For instance, within mathematics, the applications of
eigentheory include stochastic processes, predator-prey models, and connectivity of graphs and digraphs. One example in quantum
physics contexts is the energy eigenvalue equation HIE,) = E, |E,). In this equation, the eigenvalues E, of the Hamiltonian H are the
allowed energies of the quantum system, and the eigenstates |E,) of H are the energy eigenstates of that system (McIntyre, Manogue,
& Tate, 2012, p. 68). We believe it is essential for researchers to examine student understanding of eigentheory due to its inter-
disciplinary nature.

The ubiquity of eigentheory across different fields situates our work, which is part of a larger research project that investigates
students’ understanding, symbolization, and interpretation of eigentheory and related key ideas from linear algebra in quantum
physics (NSF- DUE-1452889). In this paper, we specifically focus on quantum physics students’ conceptual and procedural knowledge
of deriving and using the characteristic equation (CE), which is used to calculate eigenvalues of a matrix (see Section 2). We believe
this work is relevant to the mathematics education research field because it provides insight into how university students reason
about content that they not only learn in a mathematics course but also are expected to use in a physics course after they have
completed their mathematics coursework. Understanding more about students’ procedural and conceptual knowledge of the CE can
inform and improve instruction in linear algebra classrooms.

Students are often comfortable with using the CE to find eigenvalues, yet some researchers posit that conceptually understanding
why the CE is valid or how it connects to related concepts can be complicated for some students (e.g., Bouhjar, Andrews-Larson,
Haider, & Zandieh, 2018; Thomas & Stewart, 2011). Bouhjar et al. (2018) found:

There is a disconnect between students’ understanding of standard procedures for finding eigenvalues and the formal definition of
an eigenvector and eigenvalue, and... students are more able to execute the standard procedure than draw on conceptual un-
derstandings aligned with the formal definition. (p. 213)

This documented disconnect between students’ understanding of the procedural use of the CE and the conceptual derivation of the
CE from the eigenvector definition motivated us to explore students’ conceptual and procedural knowledge of the CE. We address
the following research question: How do quantum physics students reason with and about the CE?'

Through our exploration of students’ understanding of the CE, we developed what we call the Conceptual and Procedural
Knowledge framework for characterizing the quality and type of students’ knowledge of the CE. Through the Conceptual and
Procedural Knowledge framework, we offer a theoretical contribution by providing nuanced characterizations of different qualities of
conceptual and procedural knowledge of the CE. This framework also offers the distinction of students’ knowledge of deriving the CE
and using the CE. These classifications of the quality of students’ conceptual and procedural knowledge of deriving and using the CE
provide insight into how students reason about these different aspects of the CE.

2. Mathematics background

We review some linear algebra content in this section to provide the reader with some context of the mathematical terms used
throughout this paper. An eigenvector of an n X n matrix A is defined as a nonzero vector X such that AX = AX for some scalar 2, called
an eigenvalue. A central tool often used to calculate the eigenvalues of an n X n matrix A is the characteristic equation of A, defined as
det(A — AI) = 0, for an n X n identity matrix Iand scalar A. The determinant of A — AI gives the characteristic polynomial of A, a
degree-n polynomial in terms of A. The roots of this polynomial are the eigenvalues of A. In addition to symbolically representing a
procedure, the CE is conceptually related to what Lay (2003) refers to as the Invertible Matrix Theorem (IMT). The IMT relates a
multitude of concepts in linear algebra through the notion of equivalence (see Fig. 1 for one version; even more statements could be
included): if one statement is true (or not true) for an n X n matrix, then all the other statements are also true (or not true). One can
derive the CE from the eigenequation AX = AX by subtracting AX from both sides (AX — AX = 3), introducing the identity matrix to
get the homogeneous equation (4 — AI)X = 8, and reasoning about the equivalence of the statements in the IMT. For example, one can
recognize that for the equation (A — AI)X = 0 to yield more than just the trivial solution for X (as eigenvectors cannot be the zero
vector), the matrix A — AI must not be invertible. This implies that the determinant of A — AI must be zero.

! This paper builds from and is an extension of a conference presentation given at the 2019 Conference on Research in Undergraduate Mathematics
Education (Serbin et al., 2019).
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The Invertible Matrix Theorem
Let A be a square n x n matrix. Then the following statements are
equivalent. That is, for a given A4, the statements are either all true or
all false.
a. A is an invertible matrix.
b. A is row equivalent to the n x n identity matrix.
c. A has n pivot positions.
d. The equation AX = 0 has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation ¥ ~ AX is one-to-one.
g. The equation AX = b has at least one solution for each b in R™.
h. The columns of A span R™.
i. The linear transformation X + AX maps R™ onto R™.
j. There is an n x n matrix C such that CA = I.
k. There is an n x n matrix D such that AD = I.
1. A is an invertible matrix.

m. Col A = R™.
n.Nul 4 = {0}.
o.Det A # 0.

p- The number 0 is not an eigenvalue of A.
q. A is nonsingular.

Fig. 1. The Invertible Matrix Theorem (constructed from Lay, 2003).

3. Literature review

Various research studies (e.g., Bouhjar et al., 2018; Caglayan, 2015; Gol Tabaghi & Sinclair, 2013; Plaxco, Zandieh, & Wawro,
2018; Salgado & Trigueros, 2015; Thomas & Stewart, 2011) have explored student understanding of eigenvalues, eigenvectors, and
related concepts, yet we have not found any that specifically focus on characterizing students’ understanding and use of the CE.
Thomas and Stewart (2011) focused on how students interpreted AX = AX, finding many students were comfortable with the
procedural algebraic manipulations of matrices and vectors, as in Tall’s (2004) symbolic world, but the students did not hold em-
bodied ideas regarding eigenvalues and eigenvectors. They asserted that students’ fluency in symbolic manipulations should be
paired with understanding what the symbols represent. In particular, they argued the importance of understanding the result of the
product on both sides of the equation AX = AX is the same vector, although both sides of the equation represent different processes
(matrix multiplication and scalar multiplication). Thomas and Stewart (2011) also highlighted the importance of understanding why
the identity matrix is used in transitioning from AX = AX to (4 — AD)X = 3, which many students in their study did not clearly
articulate.

Other studies demonstrated students’ rich understanding of connections between concepts related to eigenvalues and eigenvectors
(e.g., Larson, Rasmussen, & Zandieh, 2008; Salgado & Trigueros, 2015). Larson et al. (2008) highlighted one student’s ability to make
connections between the linearly dependent column vectors and the zero determinant of a matrix by reasoning about the determinant
graphically as the area of the parallelogram formed by two column vectors. This student reasoned that because the determinant of a
matrix with linearly dependent column vectors must be zero, the area of the parallelogram formed by the column vectors of the
matrix is zero, implying that linearly dependent vectors lie along the same line. These concepts are related to the CE of a matrix A
because the column vectors of the matrix A — Al are assumed to be linearly dependent and the determinant of A — Al is assumed to
be zero in order to determine the eigenvalues 1 of A. More directly related to student understanding of the CE, Salgado and Trigueros
(2015) described the reasoning of a group of three students who derived the CE without prior instruction by reasoning about the
equivalence of statements in the IMT. In particular, this group of students determined that their model equation (A — AI)X = 0 had
multiple solutions, so the matrix A — AI had no inverse matrix, implying the determinant of A — AI should be zero. These students
demonstrated the conceptual understanding needed to reinvent the CE on their own. The IOLA curriculum (Wawro, Zandieh,
Rasmussen, & Andrews-Larson, 2013) utilizes the notion of guided reinvention (Freudenthal, 1991) in the classroom to facilitate
students’ interpretation of “stretch factors and stretch directions” of linear transformations in terms of eigenvectors and eigenvalues
and to develop ways to determine them. Similar to Salgado and Trigueros (2015), this derivation relies on students making con-
nections to other linear algebra concepts. Plaxco et al. (2018) analyzed student reasoning about the eigenequation as the class
engaged in the IOLA curriculum. Of particular relevance here, the authors showed examples of student work and suggested associated
instructor moves that could be leveraged in the classroom towards the guided reinvention (Freudenthal, 1991) of the CE.

Other studies have focused on individual and class wide student understanding of the IMT (Payton, 2019; Wawro, 2014; Wawro,
2015), which can be used to derive the CE. Wawro (2014) described the progression of a linear algebra class’s reasoning about the
IMT over time. The class reasoned about connections between statements of the IMT by discussing the equivalence of the statements
by definition or making if-then deductions to prove the equivalence of the statements. Wawro (2015) exemplified a student who
made logical implication connections between statements in the IMT by reasoning about solutions to matrix equations. The student
used the equivalence of the existence of a solution X to the matrix equation AX = b for every vector b inR" and the uniqueness of
the trivial solution to the equation AX = 0 to connect the IMT statements of the columns of A spanning R" and the columns of A
forming a linearly independent set. This student also used reasoning about the aforementioned matrix equations to explain the
equivalence of the IMT statements of the matrix A having a trivial null space and A not having the eigenvalue zero. Payton (2019)
described how some students reasoned about the IMT by using their understanding of free and basic variables to make chains of
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logical implications between statements in the IMT.

Most relevant to our current study, Bouhjar et al. (2018) characterized students’ responses to an open-ended written question that
asked if 2 was an eigenvalue of a given 2 X 2 matrix. The authors claimed students who reasoned about the determinant to solve the
problem used a more procedural approach, and students who reasoned about the matrix A — AI without computing the determinant
to solve the problem used a more conceptual approach (Hiebert & Lefevre, 1986). However, the authors described their difficulty in
determining whether students’ written work demonstrated any associated conceptual knowledge of the CE:

It was often unclear from the responses of students who used the standard procedure [seeing if det(A — 2I) = 0] whether they
understood links among the equation used in defining eigenvectors, the solution set of (4 — AI)X = 6), and the equivalencies in
the invertible matrix theorem that lead to use of the determinant as a tool for determining when the solution is non-trivial.
(Bouhjar et al., 2018, p. 212)

Furthermore, because many students simply used the CE to calculate the eigenvalues of the given matrix A directly with no
additional explanation, the authors were unable to explore those students’ conceptual understanding of the derivation of the CE.
Bouhjar et al. (2018) claimed more work is needed to distinguish whether a student using the CE to find eigenvalues just uses the
procedure by rote or actually has deep conceptual understanding of why the CE works. Our analysis of students’ interview
responses about the derivation and use of the CE contributes toward this need by characterizing, along a continuum, students’
conceptual and procedural knowledge in this context.

4. Theoretical background

Conceptual Knowledge (hereafter CK) and Procedural Knowledge (hereafter PK) are qualitative constructs commonly used by
mathematics education researchers to classify students’ mathematical knowledge. These constructs were originally introduced by
Hiebert and Lefevre in 1986. They defined conceptual knowledge as “knowledge that is rich in relationships...a connected web of
knowledge, a network in which the linking relationships are as prominent as the discrete pieces of information” (p. 3-4). They
described PK as “familiarity with the individual symbols of the system and with the syntactic conventions for acceptable config-
urations of symbols” (p. 7), which consist of “rules or procedures for solving mathematical problems” (p. 7). Star (2005) argued that
Hiebert and Lefevre (1986) original definitions of CK as richly connected knowledge and PK as knowledge of conventions or rules for
manipulating symbols conflate students’ type of knowledge with quality of knowledge, as if PK could never be as rich in connections as
CK. Star further argued that holding CK is not necessarily better than PK; instead, both types of knowledge are essential for proficient
understanding of mathematics.

To resolve this potential conflation between type and quality of knowledge, Star (2005) proposed classifying knowledge according to
both quality (either deep or superficial) and type (either procedural or conceptual). He defined deep PK as “knowledge of procedures
that is associated with comprehension, flexibility, and critical judgment” (p. 408) and superficial PK is knowledge of procedures that is
not richly connected. According to Baroody, Feil and Johnson (2007), a student demonstrates deep PK by demonstrating flexibility or
explaining how steps are interrelated to achieve a goal, and superficial PK is associated to a routine. Star (2005) characterized deep CK
as richly connected knowledge of concepts and superficial CK as knowledge of concepts that is not richly connected. Deep PK and CK are
characterized by a high degree of organization, abstractness, and accuracy (Baroody et al., 2007); finally, CK is related to PK because it
helps students evaluate the best procedure in a specific situation, increases flexibility in solving problems, allows for the generalization
of a procedure in novel problems, and enables one to check if the solution of a problem is reasonable (Crooks & Alibali, 2014).

Furthermore, Crooks and Alibali (2014) stipulated two overarching facets of CK in mathematics: general principle knowledge and
knowledge of principles underlying procedures. General principle knowledge involves understanding general principles as fundamental laws
or regularities in a particular domain. This type of CK corresponds to rules, definitions, and aspects of domain structure, in general, which
are not associated with specific procedures; it also incorporates knowledge of symbols. Knowledge of principles underlying procedures cap-
tures understanding the “why” of solving problems; it includes understanding why specific procedures work, as well as understanding the
purpose of each step in a procedure. This type of knowledge is related to knowledge of connections because it involves understanding the
“connections among the steps in a procedure and between individual steps and their conceptual underpinnings” (p. 367).

We sought to operationalize Star (2005) characterizations of superficial and deep CK and PK as a way to classify students’
knowledge quality. Classifying students’ knowledge quality as deep or superficial can seem quite extreme, however, given that not all
students exhibit strictly deep or superficial CK and PK. Therefore, in this paper, we include a moderate knowledge quality as a way to
classify the knowledge of students who demonstrate deeper knowledge than students with superficial CK and PK, yet less deep
knowledge than those with deep CK or PK. We based our interpretation of moderate CK and PK on Baroody et al. (2007) hypothesized
model in which students’ knowledge quality transitions from superficial CK and PK to deep CK and PK through intermediate levels of
relatively shallow and relatively deep knowledge. Although we are not modeling a progression of the quality of CK and PK as Baroody
et al. (2007) proposed, their intermediate levels of relatively shallow and relatively deep knowledge informed our characterization of
moderate CK and PK. We included only one intermediate level between deep and superficial because it gave us the desired level of
nuance in the categories to distinguish knowledge quality.

Informed and inspired by Star’s (2005) conceptualizations of deep and superficial CK and PK, Baroody’s et al. (2007) intermediate
levels of knowledge, and Crooks and Alibali’s (2014) notions of general principle knowledge and knowledge of principles underlying
procedures, we developed a framework for characterizing aspects of superficial, moderate, and deep CK and PK of the characteristic
equation, as described in the Methods section.
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5. Methods
5.1. Data collection

The data for this study consist of video, transcript, and written work from individual semi-structured interviews (Bernard, 1988),
drawn on a voluntary basis, with 17 students enrolled in a quantum mechanics course. Nine of the students were from a junior-level
course at a large public research university in the northwest United States (school A), and the other eight were in a senior-level course
at a medium public research university in the northeast United States (school B). All students are pseudonymed with “A#” or “B#,”
with the numeric identifier assigned by the lead researcher to identify the interview participants from the roster of all students
enrolled in the courses. The interviews occurred during the first week of the course. These interviews were part of a larger research
program, in which we endeavor to investigate how students reason about and symbolize concepts related to eigentheory in quantum
physics. Interview questions aimed to elicit student understanding of several linear algebra concepts (e.g., normalization, basis, inner
products and orthogonality, eigentheory), which the students would use throughout their quantum mechanics course.

For this paper, we focus on students’ attempts to recall, derive, and/or use the CE within their response to one particular interview

x x x],,
y y] = Z[y]? After

follow-ups inquiring whether they had a geometric or graphical way to think about the equation and how they would think about the
4 2
13
asked to determine the values of x and y that would make the equation true. Finally, students were asked to find the eigenvalues and

eigenvectors of, if they had not already done so. Note that the interview question was designed so the terms “eigenvector” and
“eigenvalue” were not used until the end; however, many students immediately recognized the first matrix equation as an eigen-
equation and often brought up eigentheory terminology on their own. As students derived the CE from the eigenequation, they
sometimes brought up concepts from the IMT. Given the semi-structured nature of the interview, some students were asked follow-up
questions pertaining to why the determinant of A — AI should be zero. The protocol never explicitly asked students about the
connections between the CE and linear algebra concepts in the IMT but rather asked students to explain their various responses
throughout their work on the problem.

question. Students were first asked, “Consider a 2 X 2 matrix A and a vector [ ] How do you think about A[

equal sign in this context, students were asked how they would think about the equation if A = [ ] The participants were then

5.2. Development of the conceptual and procedural knowledge framework

As we considered the student work exhibited in the interview data, we recognized most students used the CE successfully to find
eigenvalues, yet most students struggled with explaining the derivation of the CE. Student understanding of deriving the CE and using
the CE seemed to be distinct units of analysis. This led us to examine the quality of students’ conceptual and procedural knowledge
across both deriving the CE and using the CE. Thus, we have four categories of analysis regarding student knowledge of the CE that
comprise our framework (see Fig. 2).

Our first step in developing the framework was creating a conceptual analysis (Thompson, 2008) of the ways in which students
might understand the derivation and use of the CE. We elaborated on our conceptual analysis by using evidence from students’ work
in the interview data. We considered the Star (2005) definitions of deep and superficial conceptual and procedural knowledge, and

N/A Superficial Moderate Deep
Procedural  |Does not attempt to  |Incorrectly writes the CE|Attempts to write CE Accurately manipulates
Knowledge of |write the CE (e.g, A— Al =0)and [and make connections |symbols among AX = A%,
Deriving the CE does not attempt to between AX = A%, (A — |[(A — AI)X = 0, and
explain the symbolic ~ |AI)X = 0, and det(A — Al) = 0 to derive
derivation of the CE det(A—AI) = 0,but |the CE, and writes the CE
uses symbols incorrectly [correctly
Conceptual  |Does not attempt to  [States they do not know |Gives explanation of Accurately explains how
Knowledge of |explain how the CE is [where the CE comes thow CE is derived from |CE is derived from
Deriving the CE |derived from or gives irrelevant [(4 — AI)X = 0 that is (A — AIX = 0, while
explanation of how the [relevant to the IMT, yet |referencing connections to
CE is derived incorrect the IMT
Procedural  |Does not use the CE  |Correctly uses the CE  |Correctly uses the CE  [Correctly uses the CE
Knowledge of |procedure to find procedure to find iprocedure to find procedure to find
Using the CE |eigenvalues eigenvalues, without eigenvalues, while eigenvalues, while
lexhibiting fluency in exhibiting either fluency |exhibiting both fluency in
algebraic manipulations [in algebraic lalgebraic manipulations
or rigor in the imanipulations or rigor in jand rigor in the
calculations ithe calculations calculations
Conceptual |Does not recognize  |[Recognizes eigenvalues |[Recognizes eigenvalues [Recognizes eigenvalues
Knowledge of |eigenvalues are the  [are the results of using  [are the results of using [are the results of using the
Using the CE |results of using the  |the CE but does not use |the CE and makes only [CE and correctly makes
CE and does not use |or discuss the resulting |one connection between [two or more connections
or discuss the eigenvalues in the ithe eigenvalues resulting |between the eigenvalues
resulting eigenvalues |context of other from the CE and other |resulting from the CE and
in the context of other [eigentheory concepts eigentheory concepts;  |other eigentheory
eigentheory concepts (OR makes two or more [concepts.
connections with at least
one being incorrect

Fig. 2. Conceptual and Procedural Knowledge (CPK) framework for the CE.
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we discussed how those knowledge qualities were demonstrated by the students in the context of the eigenvalue interview task.
Through our discussion of students’ work on the interview task, we refined our conceptual analysis and developed lists of char-
acteristics of student work demonstrating superficial, moderate, and deep PK and CK for both deriving and using the CE. We also
included “N/A” for instances in which the student work did not involve the CE.

After creating these preliminary characterizations of each knowledge type and quality, we worked as a team to operationalize
them as a framework for coding student data. This involved an iterative process of using the knowledge characterizations to classify
the level of knowledge demonstrated in student work and revising the knowledge characterizations. We used these lists of char-
acteristics of knowledge types to collaboratively classify students’ work. In doing so, we used the constant comparison method
(Strauss & Corbin, 1998) to compare students’ work and determine if responses that were classified the same way were actually
indicative of the same knowledge type. We found instances in which the categories were too vague to distinguish students’ type of
knowledge demonstrated, so we refined the lists to make the descriptions of each knowledge type more detailed for the sake of
practicality in using the framework to code student work. We then organized the lists into general characterizations of knowledge
that could be demonstrated on the interview task with respect to deriving or using the CE. The result is what we refer to as the
Conceptual and Procedural Knowledge (hereafter CPK) Framework, presented in Figure 2. In the remainder of this section, we describe
each row of the framework and provide characteristics of student responses demonstrating each of the qualities of PK of deriving the
CE, CK of deriving the CE, PK of using the CE, and CK of using the CE.

5.2.1. Procedural knowledge of deriving the characteristic equation

In the CPK framework, PK of deriving the CE relates to demonstrating an understanding of how the CE is derived symbolically by
moving from the eigenequation AX = AXto the homogeneous equation (A — AI )7 =0 to det(A — AI) = 0. Deep PK is demonstrated
by accurately performing symbolic steps of a procedure and showing how they are interrelated; thus, deep PK of deriving the CE is
characterized by the student accurately manipulating symbols, such as AX = /17, A-A )7 = T)), and det (A — AI) = 0, to derive the
CE and write it correctly. Moderate PK of deriving the CE is characterized by an attempt to make connections between AX = Ax,
A-A )7 = 6), and det (A — AI) = 0, but with some incorrect symbolic manipulations. This action demonstrates knowledge that is
not as rich in connections as deep PK. Superficial PK of deriving the CE is demonstrated by incorrectly writing the CE and not
attempting to explain the symbolic derivation of the CE. Students who do not attempt to write the CE have their responses coded as
N/A because their PK of deriving the CE is unobservable.

5.2.2. Conceptual knowledge of deriving the characteristic equation

Exhibiting CK of deriving the CE involves explaining how the CE is derived conceptually. Deep CK is rich in connections, so in the
CPK framework, deep CK of deriving the CE is characterized by accurately explaining how the CE is derived from the equation
(A—-ADX = 0 while referencing connections to concepts from the IMT to explain why the determinant of A — AI must be zero.
These connections might include the singularity of the matrix — AI, the linear dependence of the column vectors of A — AI, or the
infinite number of solutions to the homogeneous equation (4 — AI)X = 0. Note that we did not expect students to explicitly re-
ference the IMT by name; rather, we use the IMT as a way to collectively reference all ideas students may bring up as related to the CE
in some way. Students exhibiting moderate CK give explanations of how the CE is derived conceptually that are relevant to the IMT,
yet incorrect. This attempt to make a connection to concepts in the IMT demonstrates knowledge that is deeper than superficial CK
yet less connected than deep CK. Superficial CK is not rich in connections, so in the CPK framework, superficial CK of deriving the CE
is characterized by the students acknowledging they have no idea where the CE comes from or giving incorrect or irrelevant ex-
planations. Students who do not attempt to give an explanation have their responses coded as N/A because their CK of deriving the
CE is unobservable.

5.2.3. Procedural knowledge of using the characteristic equation

Demonstrating PK of using the CE is associated with understanding that the CE is an appropriate procedure to use to find
eigenvalues, as well as demonstrating fluency and rigor in employing the CE. Star (2005) claimed deep PK is associated with
“comprehension, flexibility, and critical judgment” (p. 408). Flexibility and critical judgment are concerned with knowing various
procedures one could use to approach a problem and choosing the most efficient one to employ. These characteristics of deep PK are
unobservable in the context of using the CE, since there is only one way to use the CE to find eigenvalues. Therefore, rather than
focusing on flexibility and critical judgment as indicators of deep PK, we focus on students’ comprehension of the procedure, as
evidenced by their fluency and rigor demonstrated while performing the procedure. Demonstrating fluency while using the CE to find
eigenvalues involves efficiently and accurately performing the algebraic manipulations of the procedure. Exhibiting rigor in per-
forming this procedure involves accurate manipulation of symbols through using precise notation. Thus, the CPK framework as-
sociates deep PK of using the CE with correctly using the determinant procedure to find the eigenvalues while exhibiting fluency in
algebraic manipulations and rigor in using proper notation. Students with moderate PK of using the CE exhibit less fluency and rigor
than students with deep PK by correctly finding eigenvalues but exhibiting either fluency or rigor in their written work. Superficial PK
of using the CE is characterized by correctly finding the eigenvalues, yet doing so without demonstrating rigor in notation and fluency
in symbolic manipulations. Students who do not use the CE procedure have their responses coded as N/A because their PK of using
the CE is unobservable.
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5.2.4. Conceptual knowledge of using the characteristic equation

Exhibiting CK of using the CE entails demonstrating an understanding that the solutions of the CE are eigenvalues and making
connections to other aspects of eigentheory. Deep, moderate, and superficial CK of using the CE are all characterized by recognizing
that eigenvalues are the results of using the CE. Deep CK is richly connected, so deep CK of using the CE also entails correctly making
two or more connections between the eigenvalues resulting from the CE and other eigentheory concepts.” Examples of such con-
nections include using eigenvalues (2 and 5 in our given question) in either of the equations AX = AX or (A — AI)X = 0 to find
eigenvectors, giving a graphical interpretation of scaling an eigenvector by the corresponding eigenvalue of 2 or 5, or verifying that 2

is the same eigenvalue as the one originally given in the problem statement A [;] = 2[;] Students with moderate conceptual

understanding of using the CE make only one connection (correct or incorrect) between the eigenvalues resulting from using the CE
and other eigentheory concepts, or they make two or more connections with at least one being incorrect. An example of an incorrect
connection is a student using the eigenvalue 2 in an incorrect equation, such as (A — AI )7 = /17, to find eigenvectors. The correctness
of the connection depends on the correctness of the first statement made while connecting the concepts. For instance, using the
resulting eigenvalues in AX = AxX to find eigenvectors would be considered a correct connection, regardless of whether the student
correctly found the eigenvectors, since the first statement of AX = AX is correct. Students with superficial CK do not use or discuss
the resulting eigenvalues in the context of other eigentheory concepts. Students who do not recognize the results of the CE procedure
as eigenvalues and do attempt to use the eigenvalues in related contexts have their responses coded as N/A because their CK of using
the CE is unobservable.

5.3. Data analysis

To begin our analysis, we wrote detailed descriptions for each student of their work on the aforementioned interview task,
focusing on their reasoning about the CE. These descriptions contained evidence from the transcripts and images of students’ written
work. We considered the students’ written work and transcripts of their verbal explanations as evidence of their understanding of the
CE, so we analyzed these as we classified the students’ knowledge quality demonstrated on the task. After we finalized the CPK
framework, we used the CPK framework to code each student’s response to the eigenvalue task as demonstrating either N/A, su-
perficial, moderate, or deep conceptual and procedural knowledge of deriving and using the CE. Each member of the research team,
including the five authors and a mathematics graduate student, coded each participant’s response. We met to compare our resulting
characterizations and resolve any differing views regarding our codes of each student. The research team demonstrated high inter-
rater reliability in our coding, given that we had over 80 % agreement on 90 % of our codes. We resolved differing views by having
each author explain their rationale for their code choice. We discussed whether the evidence in the data supported their char-
acterization, and we voted on which code best characterized the student’s knowledge as evident in the data. After reaching consensus
and finalizing our characterizations of the students’ responses, we looked for trends by comparing the depth of students’ CK within
the dimensions of deriving and using the CE and by comparing the depth of their PK within the dimensions of deriving and using the
CE. We then compared the depth of students’ CK and PK of deriving the CE and the depth of their CK and PK of using the CE. We note
that the latter comparisons for relative depth were observed according to two different categorical measures, one for CK and one for
PK. It is possible that the differences in levels of students’ CK and PK we found would not appear in a different coding scheme of the
same knowledge.

6. Results

Responses of three of the 17 participating students were coded as N/A in all four categories, and one was coded as N/A in all but
one category; thus, we focus our Results section on analyzing the remaining 13 students. Our four-part theoretical framework allowed
us to unpack different aspects of students’ understanding of the CE. Our analysis is summarized in Table 1, which conveys how we
characterized each student’s knowledge that was demonstrated during the task. The total number of these students exhibiting N/A,
superficial, moderate, and deep knowledge in each of the four categories is also provided in Table 1. In this section, we first share
descriptions of student work exhibiting superficial, moderate, and deep knowledge qualities within each category of the CPK fra-
mework. We then highlight three students who demonstrated high sophistication in all categories. Finally, we share notable results
from our analyses in the remainder of this section; overall, based on our rubrics, we found that PK of deriving the CE appears to be
generally stronger than CK of deriving the CE among the students, their CK of using the CE seems stronger than their PK of using the
CE, and students’ PK and CK of using the CE tends to be stronger than their PK and CK of deriving the CE.

2We chose two or more connections made by a student as an indicator of deep CK based on natural thresholds in the data. Students were not
explicitly asked to make connections to other eigentheory concepts, so very few of the students in our study exhibited more than two connections.
We decided that a student who correctly made at least two connections between eigentheory concepts exhibited richly connected knowledge of
eigentheory. We chose one connection correctly made by a student as an indicator of moderate CK because this demonstrated less richly connected
knowledge than a student exhibiting deep CK. We acknowledge that these thresholds of one and two connections might differ in an interview setting
where students are explicitly prompted to make connections.
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Transcripts and Images of Student Work Demonstrating

Koty Qurality | - i Students’ Procedural Derivation of the CE

Superficial A32 “There’s another equation that I'm missing that
I remember... where it’s actually a lot easier, N N9 -
where I’ll have, I’ll be subtracting, uh, actual L MR
values... Il like have a form where it’s like
A—Ilike, it’ll be a, a quadratic equation, where
it’s like /12 minus, like, A, you know, 2, or, like
you know, minus A4.”

Moderate A30 “Um, well, when you take the determinant of A
... T know I can just subtract this — I essentially 42
subtracted this portion [pointing to the right side 22 - o
. X X }.l <
of the equation A [y] =2 [y]and took, uh, and l, - .

took the determinant of A... 4 minus the
eigenvector [pointing to A], 2, 1, and then 3
minus the eigenvector, and I set the determinant
equal to 0, and then you can find the
determinant, and you get, like, a quadratic
equation with the eigenvector... [pointing to A].
And you can find the eigenvalue.”

Deep BS “So, 4x plus... 2y is equal to some Ax and then | ;.| ¢ A [)(] =Mx]
we have- Let's see now. 1x plus 3y is equal to b] b
Ay. Then again, I move the lambdas over and I Uy J”:h’ e Xx

get new equations. So, like 4 minus Ax and 4 - i .
these 2 equals 0 and then I get 1x plus, oh Kt3y= Ay
excuse me, um 3 minus 1, 3 minus A, [ mean, y @ —A\X +3y= 0]
equals 0... and now I’ll plug that in for matrix A‘

Alike this new matrix, I think it’s A minus A/ or :{l ol \x +(3-Ny=0
something like that. And so, AI, where I is equal )\I i

to the identity matrix... now I have A minus A/ T\ -
equals 0 ... the determinant of that has to equal M{Aw XIB: 0 (- NG-D-2=2
0.

Fig. 3. Evidence of Students’ Procedural Knowledge of Deriving the CE.

6.1. Descriptions of student work exemplifying each category of the CPK framework

Below we give examples of student work that were characterized according to each category of the CPK Framework. We exemplify
students’ work demonstrating superficial, moderate, and deep CK and PK of deriving and using the CE. The examples are re-
presentative of the other students’ work in that they are similar to the work of students classified with the same category of the CPK
framework. The examples were chosen based on how well they illustrated each category of the CPK framework. Our intentionality in
demonstrating a wide variety of students in our examples also influenced our example choice.

6.1.1. Procedural knowledge of deriving the characteristic equation

The quality of PK for deriving the CE is characterized by the ability to correctly write the CE and make different connections
between the eigenequation AX = Ax , homogeneous equation (A — AI)X = 3, and the CE, which reveals an understanding of how
the CE is derived symbolically. In Fig. 3, we illustrate each level of quality from this knowledge category with examples of student
work from our data. Three students’ responses were coded as demonstrating superficial PK of deriving the CE. For example, we coded
A32’s response as superficial because A32, when asked to find the eigenvectors and eigenvalues of matrix A, first recalled the
homogeneous equation (4 — AI)X = 0 but got a bit stuck on how to proceed. The interviewer attempted to assist him by telling him
one of the lambda values was 2; A32 then attempted to write the characteristic polynomial, but he never did so correctly. When asked
by the interviewer, “Okay, and you’re not quite sure where that comes from?” A32 responded, “I forgot the, I forgot the equation,
yeah.” A majority of the students in our study (8 of 13) demonstrated moderate PK of deriving the CE. In particular, A30 exhibited
moderate PK because he wrote the CE correctly, but he made no attempt to make connections with the homogeneous equation. He

seemed to attempt to explain where the CE comes from when he explained that he (mentally) subtracted the right side of the
X
y
homogeneous equation to derive the CE. Only two students showed deep PK of deriving the CE. For instance, B5 demonstrated deep
PK because he both wrote the CE correctly and he established a connection between the system of equations and the CE while

manipulating the symbols accurately (see Fig. 3).

equation, pointing to A [ ] = 2[;] (see Fig. 3). However, A30 did not explicitly manipulate symbols in the eigenequation and the
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Knowledge Transcripts Demonstrating Students’ Conceptual Derivation of the CE

Quality Student

Superficial B4 “I guess it would have to do with, it [det(A — AI)] has to be equal to 0... for the
polynomial set up to be able to factor.”

B6 “Because of something in linear algebra that says it needs to be this way that I
wish I could remember.”

B11 “I have no idea why, or I do, I just don't remember... I, like I, [ remember
learning why that is the thing that I do, but like when I- if I ever encounter a
problem where I need eigenvalues, like, this [points to CE] is the first thing that
comes to mind and not like where that comes from.”

Moderate All “I know an invertible matrix is one that’s - that has a non-zero determinant, but if
you want this to have a zero determinant, then [pause].”

B5 “So, if we want the matrix to be invertible, um, then we want the determinant to
equal 0, so we can solve for A that way.”

Deep A8 “If this resulting matrix is, um, nonsingular, then it has a unique solution, then its

only — the only X that satisfies this [points to (4 — AI)X = 6] is zero. So, we’re
looking for weird cases where this is not true. So, you’re looking for cases where
the determinant of A minus that is equal to 0. [Writes out det(4 — AI) = 0]. So,
that means a singular matrix, so it’s gonna give you non — it’s gonna give you an
infinite number of solutions for this case.”

Fig. 4. Evidence of students’ CK of deriving the CE.

6.1.2. Conceptual knowledge of deriving the characteristic equation

The students in our study gave various explanations of how the CE is derived conceptually (see Fig. 4 for examples). Most (10 out
of 13) students in our study exhibited superficial CK of deriving the CE. Several students claimed they did not know where the CE
comes from or why the determinant of A — AI should be zero (e.g., B11). Some students claimed the CE is true because of something
they learned in class or “something in linear algebra that says it needs to be this way” (B6). Another student, B4, posited that the
determinant of A — AI should be zero for the characteristic polynomial to factor nicely. These explanations seemed irrelevant, so we
coded these students as exhibiting superficial CK of deriving the CE. Two students, A11 and B5, demonstrated moderate CK of
deriving the CE because both referenced invertibility and its relationship to the determinant. These students’ explanations of the
derivation of the CE were relevant to the equivalent statements in the IMT (see Fig. 1), yet they were either incomplete or incorrect.
For instance, A11 mentioned invertibility and that A — AI should have a zero determinant, but he did not explain why the matrix
A — AI should not be invertible. B5S also mentioned invertibility, but his explanation incorrectly implied that A — AI should be
invertible. Only one student, A8, exhibited deep CK of deriving the CE by giving an accurate explanation of why the determinant of
A — AI should be zero. A8 made connections between the equivalent IMT statements of A — AI being nonsingular and the homo-
geneous equation (A — ADX = 0 having a unique trivial solution. He reasoned that (4 — AI X = 0 should not have a unique
solution, implying that A — AI is singular, and the determinant of A — AI is zero.® Here, A8 demonstrated deep CK of the CE by
reasoning about connections between statements in the IMT and relating them to the homogeneous equation and the CE.

6.1.3. Procedural knowledge of using the characteristic equation

In documenting students’ PK of using the CE, we were looking for evidence of students writing the CE, or part of it, and per-
forming some algebraic operations to find the eigenvalues. We categorized the quality of this knowledge by determining their fluency
and rigor demonstrated along with the different steps of the procedure, starting with computing the determinant of the matrix of
A — I, setting the resulting characteristic polynomial equal to 0 to write the CE, factoring the characteristic polynomial, and finding
the roots of the equation as the eigenvalues. Two students did not use the CE to find eigenvalues on the interview task, so they were
coded as N/A. Of the remaining eleven students, only one student’s response demonstrated superficial PK of using the CE. As shown in
Fig. 5, B2 did not set the polynomial equal to zero, and he required the help of the interviewer for finding A — 2 and 1 — 5 as the
factors of the characteristic polynomial. B2’s response showed both a lack of fluency and rigor. Five students demonstrated moderate
PK of using the CE on the interview task. For instance, A13 first made a mistake in an algebraic calculation, which demonstrated a
lack of fluency. Some students seemed to perform algebraic calculations in their mind, but they made mistakes with neglecting to set
some factors equal to zero, which influenced the quality of their demonstrated procedural knowledge. Five students’ responses
exhibited deep PK of using the CE. In particular, B5 navigated fluently along with the steps of the procedure, while being careful
about setting the polynomial equal to zero at each step.

3 These equivalent statements are respectively the negations of the statements d., q., and o. of the IMT in Fig. 1 for the matrix A-AI instead of the
matrix A.

10
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Transcripts and Images of Work Demonstrating

Lonoviledze Quelivy | - Siien Students’ Procedural Use of the CE

Superficial B2 Interviewer: “I can help you factor, if you want. Is (A- I2)=0
that what you're trying to work on? (B2: yeah.) Try
Sand2" (5300
B2: “I was thinking 5 and 2. And I don't know why. (4—Z>(3’Z) .2
Yeah. Sorry, I was making it way harder in my
head... I knew it was 5 and 2 and then I was like Z‘.-]Z 410 - (1‘7/)(7'7)
‘How did I do that one?’ I forgot it was just the 2 .2
multiplying it. I was thinking maybe I was going to 1 ke

need to throw in some imaginaries.”

Moderate Al3 “So, that’s 12 minus 72 plus A2 plus 2 equals zero. (H- M—\;: 0
[Writes A2 + 74 + 14 = 0 while he talks] So, I’d
have A2 minus 72 plus 14 equals 0. And I’d want to 4 ; - [A ,ﬂ = EM; o
solve this for A. Let’s see if I can factor. I'm ' ° A
l];ztrrlkz’le at factoring. Just saying right off the (A2 +0Xi\ = h-72¢ P
1 -Ti=0
Interviewer 2: “I think it’s a minus 2 at the end 1
there. That might make it easier to factor.” ( ~5Yﬂ-,)\ =0
A13: “Oh! Yeah, I think you’re right. [Tries to
draw a minus sign over the +2 he had written in the é‘: 2
determinant calculation and in other places].
Deep B5 “So, okay, so I go through this and I’lI do it out. A2 “-NGD -2

minus 74 plus 12 minus 2 so you have A? minus 74 5 SES
plus 10. 5 times 2 is 10, 5 plus 2 is 7 or negative 5 X=pe
minus 2 is 7. So, I'll say A minus 5 and this is all - X>-7) ¥10=0
this all has to be equal to 0 based on that equation.

BN . . - - 3)=0
So, yes in fact 2 does solve this equation.” O):_ 2\%’ 9\53

Fig. 5. Evidence of students’ PK of using the CE.

6.1.4. Conceptual knowledge of using the characteristic equation

We classified students’ CK of using the CE by considering the number and validity of connections they made between the ei-
genvalues resulting from the CE and other eigentheory concepts. Examples of making these connections include referencing the
equations AX = Ax and (4 — ADX = 6), explaining a graphical interpretation of the eigenvalue, or recognizing that an eigenvalue
resulting from the CE was the same eigenvalue in the eigenequation from the task prompt. One student did not recognize that
eigenvalues resulted from the CE and did not make connections from the CE to other eigentheory concepts, so he was coded as N/A.
Only one of the remaining 12 students, B11, demonstrated superficial CK of using the CE in his response to the eigenvalue task.
Superficial CK is characterized by making no connections, as we see with B11’s response. He used the CE to find eigenvalues, but then
admitted a lack of knowledge (see Fig. 6) and did not go further.

Three students exhibited moderate CK of using the CE. Moderate CK is characterized by making either a single valid connection with
no others attempted, or attempting multiple connections with at least one that is not valid. The second fits both of our examples of
students’ responses demonstrating moderate CK of using the CE (see Fig. 6). B4 made a connection back to the eigenvalue in the
eigenequation in the task prompt, but then he worked with the equation AI — A = 0 in order to find eigenvectors, rather than
A — A)X = 0. He later admitted that he was not sure of the source of this and did not go further. In this case, B4 incorrectly made a
connection between the result of solving the CE and the homogeneous equation by trying to use an incorrect equation AI — A = 0 to find
eigenvectors. In A30’s response, again a connection was made back to the eigenvalues in the eigenequation from the previous part of the
problem. Moving forward from this, A30 was asked how he would find the eigenvectors, and started by considering the matrix (A — 2I)
and attempting row reduction. However, after doing the row reduction, A30 did not produce any vector or other interpretation of the
result. A30 incorrectly made a connection between the result of solving the CE and the eigenvector associated with the eigenvalue 2.

A majority of the students (8 of 12) exhibited deep CK of using the CE. Deep CK in this category is characterized by making multiple valid
connections and no incorrect ones. A particular example of a student demonstrating deep CK is B6, who made two connections to eigentheory
concepts in her response to the interview task (see Fig. 6). B6 made a connection to the eigenequation in previous part of the problem by
recognizing that the eigenvalue she found was the same as the eigenvalue 2 in the eigenequation from the task prompt. She also made a
connection to the definition of eigenvector. Making these connections was indicative of richly connected CK of using the CE.

6.2. Students demonstrating high sophistication across knowledge types
In this subsection, we highlight the mathematical reasoning of students who demonstrated relatively high sophistication in

11
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Knowledge Transcripts Demonstrating Students’ Conceptual Use of the CE
s Student
Quality
Superficial Bl11 “And I did that because [4-second pause] I have no idea why, or I do, I just don’t
remember.”
Moderate B4 “So, I have 2 eigenvalues, one of 2 and one of 5. Um...So we have verified that I do

have an eigenvalue of positive 2 [referencing the previous part of the task].”
“Well it’s for an eigen system it has to be equal to 0... at least, if I remember my, how
that, how that’s, how that method works.”

“I got one of them right because it equals 2, and that’s what eigenvalue’s here [points
A30 | back to original matrix equation in question prompt] in the original question.”

X
“I kind of, I kind of forgot this step... If I multiply by [writes a vector [,y]to the right of

the [(1) (1)] matrix] it’s supposed to equal 2 times [;] Is that what it was? I’m not

really sure after this.”

Deep B6 “Yep. 2 is definitely one of them.”
“So, eigenvectors are vectors that when operated on by a matrix 4, ... That you get
the same vector back multiplied by a scalar quantity.”

Fig. 6. Evidence of students’ CK of using the CE.

deriving and using the CE. This sophistication was determined by our classification of the quality of these students’ demonstrated
knowledge as deep or moderate across all four categories of the CPK Framework. Our analysis of student work illuminated that three
students (A8, Al1, and B5) demonstrated sophisticated conceptual and procedural knowledge of the CE. In particular, two students
(A8 and B5) demonstrated deep knowledge in three of the four categories and moderate in a fourth, and another student (A11)
showed deep knowledge in two categories and moderate in the other two (see Table 1). This exemplifies our finding that some
students do indeed exhibit strong conceptual and procedural knowledge of the CE. The mathematical knowledge demonstrated by
these three students serves as an example of the powerful ways of reasoning that are possible for students as they make sense of the
CE and related mathematical concepts.

A8 and B5 both demonstrated deep PK of deriving the CE, and A1l showed moderate PK of deriving the CE. A8 manipulated
AX = X cleanly into (4 — ADX = T)), and wrote the CE correctly (see Fig. 7). A11 also manipulated the symbols in the eigenequation
and the homogeneous equation, but he made a notational error in writing the vector v on the wrong side of the matrix A — AI in the
equation vV (A4 — AI) = 0 (see Fig. 7). Thus, A11’s response demonstrated moderate PK of deriving the CE. Rather than manipulating the
eigenequation and homogeneous equation in symbolic form, B5 reasoned about those equations by translating between the matrix

equation [i’ g] [;] =1 B] and a system of equations with 4x + 2y = Ax and 1x + 3y = Ay (see Fig. 7). B5 subtracted Ax from both

sides of the first equation, subtracted Ay from both sides of the second equation, and combined like terms to write the equations
(4 — )x +2y=0and1x + (3 — 1)y = 0. B5 seemed to recognize the coefficients of x and y in these equations as the entries of the
matrix A — AI. He first wrote A — AI = 0, but he quickly corrected his work and wrote det (A — AI) = 0. Here, B5 demonstrated deep PK
of deriving the CE by making connections between different representations of the eigenequation, the homogeneous equation, and the
CE. Overall, these three students demonstrated sophisticated responses in procedurally deriving the CE.

These three students also demonstrated strong CK in their explanations of the derivation of the CE. A8 demonstrated deep CK of
deriving the CE, and All and B5 demonstrated moderate CK of deriving the CE. While A8 transitioned between writing the
homogeneous equation and writing the CE, he correctly stated there is a nonzero solution for x when the matrix A — Al is singular
and the determinant of A — AI is zero, connecting the CE to the IMT (see Fig. 7). As B5 first wrote the CE, he claimed, “That’s just
what I was taught.” However, when the interviewer later asked B5 about what he meant by this, he explained that the determinant of
the matrix A — AI had to be zero for it to be invertible. Even though B5’s explanation is incorrect, his response still seemed relevant to
the IMT, so his response demonstrated moderate CK of deriving the CE. Now, as A11 wrote the CE, he first claimed, “I don’t know why
that is.” Later in the interview, the interviewer asked A11 why the determinant of A — AI should be zero, and A11 explained, “I know
an invertible matrix is one that’s — that has a non-zero determinant, but if you want this to have a zero determinant, then [pause].”
Here, A11 referenced the connection between the invertibility and determinant of a matrix, but his explanation of how this related to
the CE was incomplete. Thus, A11’s response demonstrated moderate CK of deriving the CE. A8, Al1, and B5 all demonstrated high
sophistication in their CK of deriving the CE, given that they were the only students in our study who exhibited moderate or deep CK
of deriving the CE in their responses to the interview task.

These students also demonstrated strong PK in using the CE to find eigenvalues of a matrix. A11 and B5 both demonstrated deep
PK of using the CE, and A8 exhibited moderate PK of using the CE. A1l correctly and fluently calculated the determinant of the
matrix A — AI and solved the CE for the eigenvalues 2 and 5 (see Fig. 7). B5 found the determinant of A — AI by using the coefficients
of x and y from the system of equations (4 — 1)x + 2y = 0 and 1x + (3 — 1)y = 0 as the entries of the matrix A — AI. B5 correctly and
fluently simplified the CE into 22 — 74 4+ 10 = 0 and solved the CE to find the eigenvalues of 2 and 5. Both A11 and B5 demonstrated
notational rigor in being careful to set the characteristic polynomial equal to 0 at each step of the calculation. When using the CE, A8

12
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Student Procedural Derivation of the CE Procedural Use of the CE

A8 e
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Fig. 7. Written work of students with high sophistication.

correctly calculated the eigenvalues with no apparent difficulty. However, his notation was somewhat improper, manipulating the
polynomial in the CE by itself rather than as an equation (see Fig. 7). For this reason, we coded this as showing moderate PK, partially
due to this omission being associated with other common student errors in factoring. These students’ responses exhibited advanced
PK of using the CE.

A8, Al1, and B5 all demonstrated deep CK of using the CE by making connections to other concepts in eigentheory. These three
students all seemed to understand the solutions of the CE are eigenvalues that can be used to find eigenvectors of A, and they all

y
the previous part of the interview task. A8, All, and B5 all used an eigenvalue they found using the CE to find a corresponding

eigenvector, but they did so in slightly different ways. After finding the eigenvalues, A8 found an eigenvector corresponding to the
eigenvalue 2 by using the homogeneous equation (4 — AI)X = 0 and row reducing the associated augmented matrix. A11 used the

acknowledged that the eigenvalue 2, found by using the CE, was the same as the eigenvalue in the eigenequation A [x] =2 [);] from

eigenvalue 2 to find the values of x and y that satisfy the matrix representation of the eigenequation A [;] = 2[;] B5 used the

eigenvalue 2 in one of the equations in his written system of equations, (4 — 1)x + 2y = 0, to find a corresponding eigenvector. Both
A8 and A11 also gave a geometric or graphical interpretation of eigenvalues scaling or stretching eigenvectors that are all along the
same line. A8, Al1, and B5 all exhibited deep CK of using the CE by collectively making connections between the eigenvalues found
by using the CE, the eigenequation, the homogeneous equation, eigenvectors, and a graphical interpretation of eigenvalues, eigen-
vectors, and eigenspaces.

We present these portraits of students demonstrating high sophistication as exemplars of richly connected knowledge of ei-
gentheory concepts. We illustrated how these three students demonstrated moderate or deep CK of both deriving and using the CE.
These students exhibited a strong understanding of how the CE is derived by reasoning or attempting to reason with the equivalent
statements in the IMT that are used to justify why the determinant of A — AI is zero. The students further exhibited deep under-
standing of the connections between the CE and other concepts in eigentheory, such as the eigenequation or eigenvectors. These
portraits of observed deep knowledge of the CE are notable given that conceptually understanding the connections between the CE
and other concepts can be complicated for students (e.g., Bouhjar et al., 2018; Thomas & Stewart, 2011).

Students’ deep knowledge is characterized by a high degree of organization and accuracy (Baroody et al., 2007). These three
students demonstrated a high level of organization through their strong knowledge of connections between the symbolic forms of the
eigenequation, homogeneous equation, and the CE. Their richly connected PK seems well-organized in the sense that the students
made connections between the steps of the procedural derivation of the CE and referenced them in a logical order. This connectedness
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and logical coherence of their knowledge is indicative of a high degree of organization. These students also exhibited accuracy in
their symbolic manipulations, as evidenced by their use of notational rigor in using the CE to find eigenvalues of a matrix. Overall, the
strong knowledge of deriving and using the CE demonstrated by these three students serves as an example of the powerful ways of
reasoning that are possible for students as they make sense of the CE and related mathematical concepts.

6.3. Comparisons of depth of students’ knowledge types

In this section, we compare the depth of the different types of students’ knowledge of the CE to illustrate various themes we found
in the data. These comparisons provide insight into the differences between the nature of students’ CK and PK of deriving and using
the CE. We first draw a comparison between the depth of students’ CK of deriving the CE and the depth of students’ CK of using the
CE. This is a comparison of the characterizations from the second and fourth row of the CPK framework in Fig. 2. Second, we compare
the depth of students’ PK of deriving the CE and the depth of students’ PK of using the CE. This is a comparison of the character-
izations from the first and third row of the CPK framework in Fig. 2. Third, we draw a comparison between the depth of students’ CK
of deriving the CE and the depth of students’ PK of deriving the CE. This is a comparison of the characterizations from the first and
second row of the CPK framework in Fig. 2. Finally, we draw a comparison between the depth of students’ PK of using the CE and the
depth of students’ CK of using the CE. This is a comparison of the characterizations from the third and fourth row of the CPK
framework in Fig. 2.

6.3.1. Comparison of students’ conceptual knowledge of deriving versus using the characteristic equation

Our analysis suggested that the students in our study were better at using the CE than deriving the CE conceptually. Overall,
according to our rubrics, students’ CK of using the CE seemed stronger than their CK of deriving the CE, seen as 10 out of 13 students
exhibited superficial CK of deriving the CE, but only 1 out of 13 students exhibited superficial CK of using the CE (see Table 1). Also,
only 1 of 13 students exhibited deep CK of deriving the CE, but 8 out of 13 exhibited deep CK of using the CE. Furthermore, most
students (10 of 13) individually exhibited stronger CK of using the CE than of deriving the CE (see Table 1). Each student individually
had CK of using the CE that was as deep or deeper than their CK of deriving the CE. This shows a majority of the students made
connections between the CE and another concept of eigentheory, but most students did not make connections to concepts in the IMT
related to the derivation of the CE.

B3 exemplified this trend of exhibiting deeper CK of using the CE than of deriving the CE. In particular, when asked to find the
eigenvalues and eigenvectors of A, B3 first wrote an appropriate homogeneous equation (Fig. 8a), crossed out the “= 0,” and said it

was the determinant of that which equaled zero (Fig. 8b). He then explained he could cross out the [;] “because you're dividing it

out,” claiming the vectors in the eigenequation AV = AV cancel (see Fig. 8c). In doing so, B3 demonstrated superficial CK of deriving
the CE because his explanation was inaccurate and did not reference the IMT. However, once B3 found 2 and 5 as the eigenvalues of

y y y y
find other eigenvectors. Even though B3 did not seem to figure out a conceptual derivation of the CE, he recognized the CE solutions

as eigenvalues and made connections between those and the eigenequation to find eigenvectors. This exemplar illustrates our result
that our students connected the CE with eigentheory concepts, but most students did not seem to know why the CE is true.

Linking Crooks and Alibali (2014) facets of CK to the theoretical underpinnings of our CPK framework, general principle
knowledge of the CE is characterized by recognizing the CE as the tool that is used to find eigenvalues, while knowledge underlying
the procedure of the CE is characterized by understanding the derivation of the CE as a procedure that can be used to find eigen-
values. According to the CPK framework, demonstrating either superficial, moderate, or deep CK of using the CE involves recognizing
that eigenvalues are the results of using the CE. Thus, general principle knowledge is related to CK of using the CE. A majority of the
students (12 of 13) in our study demonstrated general principle knowledge in their responses, seen as only one student’s response was
coded as N/A for not demonstrating CK of using the CE (see Table 1). Furthermore, the knowledge of principles underlying the
procedure of the CE is associated with understanding how the CE is derived from the homogeneous equation by making connections
to the IMT. This knowledge underlying procedures is related to CK of deriving the CE. Most students (10 of 13) did not provide an
explanation of the conceptual connections between the homogeneous equation and the CE, so they did not demonstrate strong
knowledge of principles underlying the procedure of the CE.

A, he mentioned “you could have given me 5,” in reference to the original A [x] = 2[x] equation, and he used A [x] = S[X] to

6.3.2. Comparison of students’ procedural knowledge of deriving versus using the characteristic equation

Students in our study were generally better at procedurally using the CE than deriving the CE. There were more students (5 of 13)
who exhibited deep PK of using the CE than those (2 of 13) who exhibited deep PK of deriving the CE (see Table 1). Students in our
study seemed to have stronger PK of using the CE than of deriving the CE, seen as 10 students each exhibited PK of using the CE that

RSV AR AN
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Fig. 8. B3’s written work for his derivation of the CE.
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Fig. 9. A24’s written work for his derivation and use of the CE.

was as deep or deeper than their PK of deriving the CE (see Table 1). Most students wrote the CE correctly (or only made small
mistakes writing it) but did not accurately make connections between equations such as AX =X, (A - DX = 6), and
det (A — AI) = 0. However, nearly all students had little to no difficulty in using the CE to find eigenvalues. A24 exemplified this trend
because he demonstrated deep PK of using the CE and moderate PK of deriving the CE. A24’s symbolic manipulations (see Fig. 9a)
revealed he wrote the CE correctly, but he did not make any attempt to connect to other equations for deriving the CE. Nevertheless,
he fluently and rigorously used the CE to find eigenvalues (see Fig. 9b).

6.3.3. Comparison of students’ procedural knowledge and conceptual knowledge of deriving the CE

All students demonstrated PK of deriving the CE that was as deep or deeper than their CK of deriving the CE (see Table 1). In some
ways, this is not surprising as many students (10 of the 13) did not make any connection to the IMT in their explanation of deriving
the CE, demonstrating superficial CK of deriving the CE, but most (10 of the 13) wrote the CE correctly and/or made connections to
AX =X or (A — ADX = 6, demonstrating moderate or deep PK of deriving the CE (see Table 1). A13’s response illustrates this
trend by demonstrating deeper PK than CK of deriving the CE. A13 demonstrated moderate PK of deriving the CE by attempting to
make connections between the CE and the homogeneous equation, but he did not write the CE correctly. A13 demonstrated su-
perficial CK of deriving the CE because he did not give an explanation of the derivation of the CE that was relevant to the IMT. He
claimed, “I remember this equation ‘cause I remember it from the Math 305 class... Um, I don’t really remember going through a
proof of why this is the way it is. Why this equation works. Um, I think it’s, I think that’s what it is.”

6.3.4. Comparison of students’ procedural knowledge and conceptual knowledge of using the CE

A majority of students (11 of the 13) demonstrated CK of using the CE that was as deep or deeper than their PK of using the CE
(see Table 1). This means the students demonstrated an ability to make connections to other eigentheory concepts that was somewhat
stronger than their ability to fluently and rigorously use the CE to find eigenvalues. Looking back at A8 as a particular example, recall
that he fluently used the CE to find eigenvalues and connected them back to both the homogeneous equation and the equation given
in the initial problem statement, demonstrating deep CK for using the CE. However, he did not rigorously write “ = 0” after each step
in the calculations, demonstrating moderate PK for using the CE. Here, A8 exemplified the trend we found of students exhibiting
deeper CK than PK of using the CE.

We recognize this trend between PK and CK in using the CE is largely a result of the choices we made on characterizing “deep
knowledge” within each dimension. In particular, we note that categorizing students who do not rigorously write “= 0” as having
moderate PK in using the CE (such as A8), and categorizing students who correctly connected the found eigenvalues to other
eigentheory elements as having deep CK of using the CE, regardless of their abilities to find eigenvectors or explain what eigenvalues
mean, are subjective decisions. However, we believe that our analysis highlights that many students do know how to find the values
of A that make det(A — AI) = 0 true, despite work that appears non-rigorous; furthermore, the analysis suggests that students un-
derstand how this process produces the eigenvalues, which are essential to all other aspects of eigentheory.

7. Discussion

In this study, we investigated how quantum physics students reasoned with and about the characteristic equation. We developed
the CPK framework to characterize the quality and type of students’ knowledge of both using and deriving the CE. When performing
the interview task, the students first procedurally derived the CE by algebraically manipulating symbols from the eigenequation
AX =X, to the homogeneous equation (A4 — AI X = 6), to the CE det(A — AI) = 0. Students exhibited CK of deriving the CE by
explaining how the CE is derived from the homogeneous equation via making connections to the statements in the IMT. The students
then calculated the eigenvalues of the matrix A by finding the roots of the CE, demonstrating PK of using the CE. The students
demonstrated CK of using the CE by acknowledging that the solutions of the CE are eigenvalues and by making connections to other
topics in eigentheory. Using the framework to classify students’ knowledge demonstrated in their responses allowed us to gain insight
into how students reasoned about the CE. Overall, we found that students’ PK of deriving the CE seemed to be generally stronger than
their CK of deriving the CE, their CK of using the CE seemed stronger than their PK of using the CE, and students’ PK and CK of using
the CE seemed to be stronger than their PK and CK of deriving the CE. Most students experienced little to no difficulty in using the CE
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to find eigenvalues and make connections to other eigentheory concepts. These students seem to exhibit strong general principle
knowledge (Crooks & Alibali, 2014) of the CE by recognizing the CE as the procedure used to find eigenvalues. However, as students
derived the CE from the eigenequation, most did not provide relevant conceptual explanations about how the CE is derived from the
homogeneous equation. Only one student (A8) demonstrated a deep understanding of the conceptual derivation of the CE by rea-
soning about equivalent statements in the IMT. Several students claimed they did not know why the determinant of A — AI should be
zero. These students’ knowledge of principles underlying procedures (Crooks & Alibali, 2014) seemed to need further development to
allow them to better understand how the CE is derived conceptually.

Perhaps a reason why students demonstrated deeper CK of using the CE than of deriving the CE is that the quantum physics
students might not perceive knowledge of the derivation of the CE as particularly useful, or they might not have seen a need to discuss
the conceptual derivation of the CE when they use it in the interview. Another reason could be that instructors might focus on the
determinant procedure as a tool to find eigenvalues without focusing on the conceptual derivation of the CE, which might reduce the
opportunity for the students to develop a deeper understanding of the derivation. Regardless, this result of quantum physics students
demonstrating deeper CK of using the CE than of deriving the CE raises questions that warrant consideration by instructors and
education researchers, such as if it is necessarily problematic for quantum physics students to not have deep CK of deriving the CE - to
what extent is deep CK reasonable for STEM students in interdisciplinary fields versus those in mathematical fields? Physics education
researchers (e.g., Christensen & Thompson, 2012; Wilcox, Caballero, Rehn, & Pollock, 2013) have suggested that students’ difficulties
with conceptually understanding mathematics can undermine their understanding of related physics concepts and their attempts to
solve physics problems. Thus, we argue that it is useful for physics students to have deep conceptual understanding of the mathe-
matical concepts that underlie the tools they use, and particularly, it is useful for physics students to have deep CK of the CE.

There are some limitations to this study’s methods and findings. One such limitation is that the interview task only involved using
the CE to find eigenvalues of a 2 x 2 matrix. For instance, if the matrix had a larger size, the students might have experienced more
difficulty in using the CE to find eigenvalues. Thus, administering more challenging tasks to students during the interview might
influence the quality of knowledge demonstrated in the students’ responses. This could have influenced results regarding students’
depth of PK of using the CE. As Crooks and Alibali (2014) argued, analyzing students’ responses to additional tasks would provide
more insight into students’ CK and PK, possibly allowing for fuller and more nuanced characterizations. Furthermore, the participants
in this study were all physics majors who had encountered eigentheory in a linear algebra, differential equations, or mathematical
methods for physics course, so the findings from this study might not be generalizable to other student populations. Lastly, using
empirical data from only quantum physics students’ work to inform our development of the CPK framework for the CE might have
had an impact on the knowledge characterizations we proposed within the framework. Using data from interviews with different
STEM students might yield different characterizations of students’ CK and PK of deriving and using the CE.

8. Conclusions and implications

This study offers a theoretical contribution through delineating the quality of CK and PK. In particular, the categories of N/A and
Moderate provide additional nuance in classifying the quality of students’ CK and PK. This elaboration of Star (2005) character-
izations of deep and superficial CK and PK can be useful for exploring the nature of students’ mathematical knowledge. We also offer
a theoretical contribution in leveraging Crooks and Alibali (2014) two facets of CK (i.e., general principle knowledge and knowledge
of principles underlying procedures) to facilitate our elaboration of Star’s (2005) characterization of both CK and PK. We considered
knowledge of principles underlying procedures to be related to both PK and CK of deriving the CE. While PK of the CE is characterized
by an understanding of how the CE is derived symbolically through making connections between the eigenequation and the
homogeneous equation, knowledge of principles underlying procedures supports students’ understanding of why such connections
make sense in the symbolic derivation. Thus, students’ PK of deriving the CE could be strengthened by knowledge of principles
underlying procedures. Although we did not focus our analysis on such a relationship between PK and knowledge of principles
underlying procedures, it served as a starting point for elaborating both Star’s (2005) characterization of and relationships between
students’ CK and PK. In the CPK framework for the CE, we also offer the distinction of student understanding of deriving and using the
CE to provide more insight into how students reason about these different aspects of the CE. We believe that the general structure of
the CPK framework would be a useful tool for researchers aiming to investigate and understand reasoning regarding topics other than
the one presented here. It could be used to characterize students’ understanding of how a concept or procedure is used and derived by
utilizing the framework’s general classifications of superficial, moderate, and deep conceptual and procedural knowledge. The CPK
framework can be generalized for investigating student understanding of topics in linear algebra and other areas of mathematics, but
we note that the characteristics of student work listed in each cell of the framework would change based on the mathematical content
and the nature of the tasks that students perform.

Analyzing interview data allowed us to capture student understanding of deriving the CE, which was not apparent in the written
task data in Bouhjar et al. (2018) study. Hence, we answered Bouhjar et al.’s call to distinguish whether a student employing the CE to
find eigenvalues might only know how to use the procedure or also understands why the CE is an appropriate and valid procedural
tool for that situation. The CPK framework seems most useful for analyzing student interview data because this setting allows
interviewers to prompt students to both perform procedures and explain their thinking about concepts. This can yield data de-
monstrating students’ CK and PK of deriving and using mathematical concepts and procedures. To use the CPK framework with
written data, the written tasks would need to elicit evidence of students’ reasoning about both the derivation and use of the
mathematical topic.

Our study contributes to the research base on students’ understanding of concepts and procedures related to eigentheory. This
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study focused on students’ knowledge of the CE, which the students used to find eigenvalues of a 2 X 2 matrix. Future research can
investigate the nature of students’ knowledge of using the CE to finding eigenvalues of larger sized matrices or matrices with complex
eigenvalues. This may present additional challenges for students, given the added complexity of finding the roots of a higher degree
polynomial or one that cannot be factored over the real numbers. This could yield additional insight into how students’ reason with
and about the CE.

We conclude by offering some teaching suggestions that could support instructors in fostering students’ deep CK and PK of the CE.
To support students’ development of deep CK of deriving the CE, instructors could intentionally aim to enhance students’ under-
standing of the IMT by giving students opportunities in the context of small group work or class discussion to reason about the
equivalence of the statements in the IMT through making logical implications (e.g., Payton, 2019; Wawro, 2014). Instructors could
also give students opportunities to reinvent the CE themselves (see Plaxco et al., 2018; Salgado & Trigueros, 2015 for examples of
class activities). Instructors could also help students make explicit connections between the IMT and the CE while explaining the
derivation of the CE. This could involve explaining that the determinant of the matrix A — AI should be zero for there to be an infinite
number of eigenvector solutions to the homogeneous equation (A — AI)X = 0. Instructors should also use precision in demonstrating
the symbolic derivation of the CE from the eigenequation AX = AX to help students learn how to accurately manipulate symbols
associated with eigentheory concepts. Various research studies (e.g., Harel, 2000; Henderson, Rasmussen, Sweeney, Wawro, &
Zandieh, 2010; Karakok, 2019; Thomas & Stewart, 2011) have indicated that keeping track of what the various objects and op-
erations are (the number zero versus the zero vector, matrix-vector and scalar-vector multiplication both yielding vectors, the im-
portance of the identity matrix in the homogeneous eigenequation, etc.) is central to developing a keen understanding and ease with
linear algebra. Thus, integrating explicit conversations into class discussions and homework that promote thoughtful consideration of
the objects, symbols, and operations of linear algebra would facilitate student learning. For instance, asking students about what each
of the operations and symbols in the equations, Ax = /1;, A-ADX = 6), and det (A — AI) = 0, represent could support students’
understanding of the steps in the procedure of deriving the CE. Implementing these suggestions for instruction might help students
develop both deeper CK and PK of deriving the CE.
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