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This article shares analysis regarding quantum mechanics students’ metarepresentational competence
(MRC) that is expressed as they engaged in solving an expectation value problem, which involves linear
algebra concepts. The particular characteristic of MRC that is the focus of this analysis is students’
critiquing and comparing the adequacy of representations, specifically matrix notation and Dirac notation,
and judging their suitability for various tasks. With data of students’ work during semistructured individual
interviews, components of students’ MRC were analyzed and categorized according to value-based
preferences, problem-based preferences, and purpose and utility awareness. Detail is provided on two
students who serve as paradigmatic examples of students’ power and flexibility within different notation
systems, and detail of a third student is given as a point of contrast. In addition to adapting MRC as a
helpful construct for characterizing student understanding at the intersection of undergraduate mathematics
and physics, we aim to demonstrate how students’ rich understanding of linear algebra and quantum
mechanics includes and is aided by their understanding and flexible use of different notational systems. For
example, the problem-based preference aspects of MRC highlight that any particular problem-solving
approach is itself intrinsically tied to a notational system. We suggest that any instruction with the goal of
helping students develop a deep understanding of quantum mechanics and linear algebra should provide
opportunities for students to use and improve their MRC.
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I. INTRODUCTION

As part of a broader study of student reasoning on
mathematics and specifically linear algebra within the
context of quantum mechanics, we investigate students’
metarepresentational competence with matrix and Dirac
notation. This study answers the call by the National
Research Council’s report [1], which charges the U.S. to
improve its undergraduate science, technology, engineering,
and mathematics (STEM) education, specifically identifies
that “gaps remain in the understanding of student learning in
upper division courses” (p. 199). Our broader study con-
tributes to this national need by investigating students’
understanding, symbolization, and interpretation of eigen-
theory and related key ideas from linear algebra in quantum
physics courses. The particular research question that we
report on in this paper is: What aspects of metarepresenta-
tional competence exist in students’ reflections on and

comparisons of matrix notation and Dirac notation in
quantum mechanics?
This research question arose for us as we examined data

from individual interviews that we conducted with students
at the end of a quantum spins course. One student’s work in
solving quantum mechanics problems was particularly
striking to us because of the ease with which he moved
between and explicitly discussed different notations,
namely, Dirac notation and matrix notation. Note his
response to the question, “So how do you feel like using
eigenvectors and eigenvalues in Spins has been similar to
and different from how you’ve experienced those in other
classes?” which was asked at the start of his interview:

Buzz1: Uh, well, it’s very similar because you’re doing a
lot of the same math…the difference, especially in
physics, you’re looking at kets. In, in at first it was
kind of jarring, like to- to try to do the math in kets. But
now, it’s kind of- it’s kind of easier, there’s problems,
there are certain problems…where there’s two ways to
do them, they’re kind of parallel, you can do it and you
can expand the- the- the state in- in like as a- and expand
them as- as kets in a different basis, or you can write that
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state as a- as a, as a vector, in that basis, and you can
either do the matrix math for the like expectation values
for example, you can do the matrix math or you can do
the ket math, and sometimes it’s, I’m finding that I’d
rather expand something in the ket.

We were immediately grabbed by his awareness that he
had a choice in which notation to use and that he had grown
in his own facility with the new (to him) Dirac notation.
This led us to review research literature on students’
understanding of symbols, notations, and representations;
we decided the framework of metarepresentational com-
petence [2] aligned with our research goals and provided a
powerful construct with which to explore this phenomenon
in our dataset.
In this article, we explore the notion of metarepresenta-

tional competence (MRC) at the intersection of quantum
physics and linear algebra by sharing a detailed analysis of
three students’ reflections on explicit symbolization
choices they made while solving an expectation value
problem.2 We focus on their reasons for how and why
they chose a specific symbol system—either Dirac notation
or matrix notation—for that particular situation. We also
analyze a third student, who seemed less successful with
the interview task at first, and highlight their reasoning as a
point of contrast. In addition to offering MRC as a helpful
construct for characterizing student understanding at the
intersection of undergraduate mathematics and physics, we
aim to demonstrate how students’ rich understanding of
linear algebra and quantum mechanics includes and is
aided by their understanding and flexible use of different
notational systems.

II. BACKGROUND, THEORETICAL FRAMING,
AND LITERATURE

Students who are physics majors are exposed to a variety
of mathematical concepts and symbols throughout their
undergraduate courses. When they begin studying quantum
mechanics, they are introduced to a new notation system
(Dirac notation) and are expected to align it with previously-
taught concepts and notation systems. For example, consider
the two definitions of “linear transformation” given in

Table I. The one on the left is from a textbook commonly
used in linear algebra courses taught in mathematics depart-
ments, and the one on the right is from a textbook commonly
used in quantum mechanics courses taught in physics
departments. By the time students are enrolled in the
quantum mechanics course, the concept of linear trans-
formation should be familiar to them, yet notice the
differences in notation used in the two definitions.
Particularly important to quantum mechanics is eigen-

theory. More specifically, a Hilbert space (such as C2) can
be assigned to a physical system, to every possible state of
the physical system is associated a vector in the Hilbert
space, and to every possible observable is associated a
Hermitian operator (usually given in its matrix form). The
only possible result of a measurement is an eigenvalue of
the operator, and after the measurement the system will be
found in the corresponding eigenstate. A vector represent-
ing a possible state is symbolized with a ket, which can
behave mathematically like a column vector, such as
jψi ≐ ½a1a2�, a1; a2 ∈ C, and is most often normalized due
to the probabilistic nature of quantum systems. The com-
plex conjugate transpose of a ket is called a bra, which
can behave mathematically like a row vector, such as
hψ j ≐ ½a�1 a�2�. As a particular example, the eigenvalue
equations for Sx (the operator corresponding to the observ-
able of the x component of intrinsic angular momentum) of
a spin-½ particle are Sxj�ix ¼ �ℏ=2j�ix, where jþix and
j−ix are orthonormal eigenvectors of Sx and the corre-
sponding eigenvalues �ℏ=2 of Sx are the two possible
measurement results of the observable. Note that the
orthonormality of the eigenstates of the Hermitian oper-
ators associated with observables means the relevant inner
products of elements of the eigenbasis with each other yield
either 1 or 0 (e.g., h�j�i ¼ 1 and h�j ∓i ¼ 0 for the
eigenstates of Sz in a spin-½ system). When symbolized in
terms of this eigenbasis, the matrix representation of Sx is

� ℏ
2

0

0 − ℏ
2

�
:

Finally, an understanding of these eigenvalue equations
and inner products is important for computing the expect-
ation value of observable A for state ψ when utilizing Dirac
notation. These calculations require the bra and ket
expansion to be expressed in the same eigenbasis as the

TABLE I. Two definitions of linear transformation.

Linear Algebra (Friedberg, Insel, & Spence, 2003, p. 65) Introduction to Quantum Mechanics (Griffiths, 2005, p. 441)

Let V andW be vector spaces (over F). We call a function
T∶V → W a linear transformation from V toW if, for all
x; y ∈ V and c ∈ F, we have:

A linear transformation T̂ takes each vector in a vector space and
“transforms” it into some other vector ðjαi → jα0i ¼ T̂jαiÞ,
subject to the condition that the operation be linear: T̂ðajαi þ
bjβiÞ ¼ aðT̂jαiÞ þ bðT̂jβiÞ for any vectors jαi, jβi and any
scalars a, b.

(a) Tðxþ yÞ ¼ TðxÞ þ TðyÞ and
(b) TðcxÞ ¼ cTðxÞ.

2We presented an earlier analysis of a subset of these data in
Ref. [3].
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matrix representation of A. As one may alternatively
choose to calculate the expectation value of an observable
using matrix notation, expectation value problems present a
rich setting for investigating students’ symbolizing and use
of eigentheory and change of basis in both Dirac and matrix
notation. We further explain why we focus on students
solving an expectation value problem in Sec. III.

A. Theoretical framing

In a project investigating what it means to understand
representation and what higher-level skills may be involved
in representational competence, Ref. [2] developed the
notion of metarepresentational competence (MRC), which
they defined as “the faculty to generate, critique, and refine
representational forms.” They further elaborated that they
chose the prefix “meta” to “emphasize that no specific
representational skills are implicated…[T]he skills we
attend to are broadly applicable, more flexible, and fluid”
(p. 118); In Ref. [4], diSessa re-emphasized that the term is
not meant to summon the idea of metacognition but rather
“purviews that transcend the mere production and use of
representations” (p. 294). MRC includes inventing and
designing new representations, judging and comparing the
quality of representations, understanding the general and
specific functions of representations, and learning to use
and understand new representations [5]. Put briefly, Ref. [6]
stated, “By MRC, we mean the set of critical abilities and
understandings about the “how’s and why’s” of represen-
tations” (p. 446).
In this study, we align ourselves with the theory that

representations are a sense-making tool [7], in that “the
construction of representations on paper during problem
solving mediates and organizes one’s understanding of
mathematical concepts” (p. 101). Furthermore, “In the
process of their emergence, the very contents of a repre-
sentation will afford certain goals to emerge while weak-
ening the emergence of others” (p. 101). This is compatible
with our use of MRC, specific to Dirac notation and matrix
notation, to investigate student reflections on their own
notational preferences in quantum mechanics and how this
competence is an important aspect of a sophisticated
understanding of linear algebra and quantum mechanical
concepts. In analyzing our data, we focus on the aspects of
students’ MRC that enable them to “critique and compare
the adequacy of representations and judge their suitability
for various tasks,” and “understand the purposes of repre-
sentations generally and in particular contexts and under-
stand how representations do the work they do for us”
(Ref. [4], p. 293).
It is important to note that early papers on MRC [2,5,8]

focused mainly on students’ abilities to invent and critique
representations of physical situations (e.g., inventing draw-
ings or graphs to represent motion; creating programs to
make a “spaceship” on a computer move in certain ways
[8]). However, there have been a few studies on students’

MRC regarding algebraic representations as well. For
instance, Ref. [9] examined MRC in an 8th grade
Algebra I classroom where students had to make decisions
about representing and solving word problems algebrai-
cally. The criteria used by the teacher and students related
to the production and critique of equations included
aspects such as ‘equations should only contain one vari-
able,’ ‘terms in an equation should be expressed using the
same units as the final requested quantity,’ and ‘an equation
should be balanced.’ In a related study, Ref. [10] presented
a theoretical frame for coordinating how students use,
develop, and evaluate representations and the relationship
to the reorganization of students’ knowledge structures.
Many physics education research studies focus on the

importance of students’ understanding and use of multiple
representations in physics at the university level [11–14].
Similarly, there exists research that investigates students’
“representational competence” or “representational fluency”
and the assessment of those skills [15–18]. However, there
seems to be a dearth of physics education research studies
at the undergraduate level that explicitly employ the MRC
framework, although compatible findings do exist [e.g.,
Ref. [19] concludes that “students need to develop an
understanding of the disciplinary affordances of different
physics representations” (p. 665), which we interpret as a
call out for the development of students’ MRC]. Thus,
in this paper we explore a new direction into students’
MRC, namely, students’ thoughtful reflection on and use
of canonical representations in undergraduate physics.
Furthermore, we explore how students’ understanding
and use of these representations might benefit from their
MRC and vice versa. In doing so, we hope this work
contributes to diSessa and Sherin’s goal of working to
delimit the extent and content of MRC [5], specifically
with respect to quantum physics students’ reflection and
judgment regarding Dirac notation and matrix notations.

B. Literature on student understanding
of symbols and representations

Research on student understanding and use of symbols
exists throughout both mathematics and physics education
research in the K–16 levels. One construct from math-
ematics education research that is most relevant to our work
is Arcavi’s notion of “symbol sense” [20–21]. Through
working with beginning algebra students, he theorized a
collection of behaviors that collectively define symbol
sense, including (a) “friendliness” with symbols, (b) a
sense of the different roles symbols can play across various
contexts, (c) the recognition of symbols’ meaning at any
step in the solution process; and an awareness of one’s
ability (d) to engineer symbolic expressions, (e) choose
which symbolic representations to employ in a problem
setting, and (f) decide which aspects of a mathematical
situation to symbolize. We see this as particularly relevant
to and compatible with our investigation of students’MRC.
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Specifically, we see behaviors (b), (d), and (e) particularly
salient to the specific aspects of MRC we focus on in this
paper; namely, how students critique and compare the
adequacy and suitability of representations for various
tasks, and how students reflect on representations’ general
and particular purposes.
Research in undergraduate mathematics education has

also studied the importance of understanding symbolization
in mathematics; for instance, Harel and Sowder [22]
describe how mathematical notations play a key role in
forming conceptual entities in higher mathematics. The
authors describe how higher mathematics makes frequent
use of conceptual entities or cognitive objects to aid in
problem solving and the “vertical” growth of mathematical
knowledge, and that mathematical notations play a key role
in forming conceptual entities, aiding in the entification
process. Examining students’ structure sense in high school
and university algebra courses, Novotná and Hoch [23]
found reasonable evidence that high school algebra struc-
ture sense, which resides mostly in the symbolic world
described by Tall [24], is a prerequisite for the formal world
structure sense needed in university abstract algebra
courses.
In linear algebra research, Hillel [25] offered three modes

of description (abstract, algebraic, and geometric) for the
basic objects and operations in linear algebra and pointed
out that “the ability to understand how vectors and trans-
formation in one mode are differently represented, either
within the same mode, or across modes is essential in
coping with linear algebra” (p. 199). Wawro [26] inves-
tigated the ways in which one student reasoned about
solutions to the matrix equations Ax ¼ 0 and Ax ¼ b to
make and justify logical connections between a variety of
concepts in linear algebra. For instance, while trying to
explain why “the columns of A span R3” implies “Any
vector b in R3 can be written as a linear combination of the
columns of A” for a 3 × 3 matrix A, the student said “I’m
just rewriting it a different way to try to think about it,” as
he wrote the matrix equation Ax ¼ b and the corresponding
vector equation. In that work, Wawro posited that the
student’s flexibility with the symbolic representations and
interpretations of the two equations afforded him ways to
successfully reason about and make logical connections
between not only linear algebra concepts but also their
various symbolic representations. Although they did not
use MRC in framing their work, both of these papers
present findings consistent with the importance of repre-
sentational fluency in students’ mathematical development
in linear algebra. We only found one study in linear algebra
that explicitly attended to MRC; Çağlayan [27] had
students explore eigenvalues and eigenvectors in a dynamic
software program and argued that this provided opportu-
nities for students to invent and develop, critique, and
compare the adequacy of various representations, which are
key aspects of MRC.

In physics education research, studies about students’
understanding in quantum mechanics have examined how
students make sense of and use Dirac notation, which is
most likely novel to them when they begin a quantum
mechanics course. Singh and Marshman [28] showed that
even after graduate level instruction in quantum mechanics,
students still struggle with Dirac notation, showing incon-
sistencies in its use among contexts and problems. More
closely related with this current study, Gire and Price [29]
created four categories of structural features of notation
systems and delineated the features for three notations
used in quantum mechanics (Dirac, matrix, and wave
function). The features identified by the authors are as
follows: (a) individuation, or “the degree to which impor-
tant features are represented as separate and elemental”
(p. 5); (b) externalization, or “the degree to which elements
and features are externalized with markings included in the
representation” (p. 7); (c) compactness; and (d) symbolic
support for computation. Using problem-solving interviews
with students as insight into how their reasoning interacts
with these features, Gire and Price found that students in
their study readily used Dirac notation, and that the
structural features vary across the different notations as
well as among several contexts within quantum mechanics.
Building from this work, Schermerhorn et al. [30] inves-
tigated students’ selection of different representation meth-
ods for calculating expectation value problems in quantum
mechanics, specifically with expectation values of spin-½
particles, energy, and position. Schermerhorn et al. adapted
Gire and Price’s structural features framework to highlight
the computational features present in students’ work. Most
relevant to the current study, the authors identify computa-
tional confidence as an indicator of a student’s preference
for summation, matrix, or integration notation. The evi-
dence presented supports the claim that students have
preferences for notation; in this paper, we hope our use
of the MRC framework and our accompanying coding
scheme helps tease apart some of these preferences to a
finer degree.

III. METHODS

Participants for this study were junior physics majors at a
large, public, research-intensive university in the Pacific
Northwestern United States. They were drawn on a volun-
teer basis from a class of 35 students in a Paradigms: Spin
and Quantum Measurements course. This was a nonstand-
ard course in that it was intense and highly focused on
eigentheory in the context of spin systems in quantum
mechanics. This course met for 7 class hours per week for
three weeks during winter term, and it involved many
student-centered activities and discussions. The course used
Quantum Mechanics: A Paradigms Approach [31] as its
textbook, which presents a spin-first approach to the course.
In addition to videotaping each class session, we conducted
individual, semi-structured interviews [32] with 8 to 13
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students at the beginning and end of the course. This
particular report draws on data gathered during the end-
of-course interview, in which 8 students participated. The
goals of the interview questions were to learn how students
reasoned about linear algebra concepts (particularly nor-
malization, basis, and eigentheory), how they reasoned with
these concepts as they discussed quantum mechanics con-
cepts and solved quantum mechanics problems, and how
they symbolized their work. The results presented here grow
from a coding scheme developed to identify MRC as
students discuss, describe, and usematrix andDirac notation
to solve quantum mechanics problems.
To begin our analysis, we viewed the videos and

observed how students navigated the interview problems,
while we kept in mind the overarching research questions
regarding students’ reasoning about and symbolizing
eigentheory in quantum mechanics. Throughout our view-
ing, we noticed some students were rather fluent in how
they talked about and worked with both matrix and Dirac
notations, such as the aforementioned Buzz; this fluidity
was especially evident in his solution of an expectation
value problem. Because this problem seemed to be con-
ducive to eliciting students’ understanding, critiques, and
comparisons of both notations, we identified which of the
eight students had engaged in the expectation value
problem in their interview, resulting in a pool of four
students to study. The second author then read the transcript
or watched the video of the entire interview for all four
students, indicating instances in which the student explic-
itly talked about and reflected on either or both notations.
These instances were then collated into a single document
with all student identifiers removed. Using this document,
each author individually coded for instances of students
making explicit metacommentary on the representations
they chose to use, specifically attending to ideas related to
MRC [4,33]. All authors then met collectively to decide on
a final set of codes for each transcript section. After the
codes were finalized, we used axial coding [34] to place our
collective codes into categories of features and character-
istics of Dirac and matrix notations to which students
seemed to be attuned (Fig. 1).

In Sec. IV, we illustrate our findings by focusing on three
students: Milan, Irvin, and Buzz. Milan and Irvin were both
double majors in mathematics and physics who had
completed one 10-week course in linear algebra and were
concurrently enrolled in a second linear algebra course, and
Buzz was a double major in physics and nuclear engineer-
ing who had completed two 10-week courses in linear
algebra. During the interview, Milan and Buzz demon-
strated flexibility in reasoning about the concepts we were
probing, were articulate in expressing their thinking, and a
great deal of MRC was visible and analyzable through their
explanations. In order to capture the full extent of their
thinking, the interview data is presented in units that are
longer than typically presented; however, these sections are
then discussed in significant detail.

IV. RESULTS

Our coding of the data produced three main categories of
codes: (A) value-based preference, (B) problem-based
preference, and (C) purpose and utility awareness. Each
category is composed of 5, 6, and 4 subcodes, respectively
(see Fig. 1). We note that our MRC codes have overlap with
some aspects of the structural features defined by Ref. [29]
and symbol sense defined by [20–21], and students’
articulation of some of these ideas fit well within
diSessa’s framework of MRC.
Categories (A) and (B) are both delineations of one of

the aforementioned elements of MRC listed in [4]: “critique
and compare the adequacy of representations and judge
their suitability for various tasks” (p. 293). Category
(A) comprises MRC statements related to preferences
students expressed related to some overarching value;
statements were similar to sentiments such as one notation
being preferred because it is faster to write than another
(labeled as A2), more familiar toworkwith (A3), or easier to
write (A5). Other sentiments conveyed a preference based
on a particular notation being clearer to read and interpret
(A1) or simply because a student “just likes it” (A4).
The MRC codes in category (B) comprise preferential

statements students made that seemed more intrinsically

FIG. 1. The list of MRC categories and codes that resulted from our data analysis.
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tied to particular problems or contexts. For example,
statements coded with (B2) expressed sentiments consis-
tent with one notation being preferred because it makes
more direct use of relationships given in the problem
statement (e.g., “sometimes the ket notation is nicer…if
you already know the eigenvalues and you just are
multiplying by operators”). We note that aspects of this
code as well as (B1) (the notation is useful in calculations)
are consistent with the structural feature of symbolic
support for calculation [29]. In addition, we intentionally
use the authors’ other three structural features—compact-
ness, individuation, and externalization—as our codes for
(B4), (B5), and (B6), respectively, because we saw evi-
dence of them in our data (descriptions of the categoriza-
tions are in Sec. II B). A statement was interpreted as
consistent with compactness (B4) when it referred to the
overall size of a particular notation, e.g., that there are fewer
things to write down; we see this as distinct from statements
referring to a particular notation being used because it
needed less information, coded as (B3). Needing less
information within a particular notation may imply that
a notation is also seen as “compact,” however in our coding
we aim not to overinterpret what students might have meant
in these statements. We do note that the main category
(A, B, or C) that these codes best belong in could be open
for discussion. Moreover, some value-based preference
codes (such as clarity, A1) could be indicative of students’
awareness of notational affordances and constraints (cat-
egory B), but evidence was lacking for why the student
thought a given notation was clearer, more likeable, or
easier to write.
Finally, category (C) encapsulates statements that indi-

cate an awareness of representations’ purposes and utility.
Category (C) captures the other aforementioned element of
MRC listed in [3]: “understand the purposes of represen-
tations generally…and understand how representations do
the work they do for us” (p. 293). We note that these codes
in particular are compatible with the aforementioned
characteristics of symbol sense [20–21]. Again, student
statements consistent with all four (C) codes existed in our
data and gave rise to including them in our coding scheme
(see Fig. 1). Specifically, statements in which students
explicitly comment on their freedom to choose any symbol
they want to use in a particular context were captured by
code (C1). We coded sentiments in which students
described an ease with making a particular notation mean
what they wanted it to mean as belonging to category (C2).
When this was assigned, the students demonstrated strong
agency to choose (and edit if needed) symbols consistent
with what they wanted to communicate. Finally, code (C3)
encapsulates sentiments of explicit student reflection on
their personal progress in using a particular notation, and
code (C4) captures when students seemed to “step back”
from the work they were doing to consider which notation
might be best for a given problem.

We organize the remainder of our results section accord-
ing to excerpts from Buzz, Milan, and Irvin, focusing on
aspects of their responses that particularly point to and
illustrate their MRC (or potential lack thereof, in the case of
Irvin). Although not all codes are visible as we present
analysis within these three examples, evidence of their
existence is found in our remaining interview data.

A. Buzz

In the beginning of his interview, during his response
about how using eigenvectors and eigenvalues in his
quantum spins course compared to his experiences using
them in other courses, Buzz volunteered that he sometimes
explicitly chose between doing calculations in matrix
notation or in Dirac notation (see Sec. I). From the
transcript, we see that Buzz was aware that there exist
multiple legitimate ways to solve the problem, seemingly
understanding the various mathematical nuances and impli-
cations of his notational choices. His brief explanation
highlights sentiments that are consistent with symbol sense
characteristics [20–21], such as being “friendly” with
symbols and using them flexibly. We add, however, a
metacognitive aspect of symbol sense here, noting that
Buzz was engaged in self-reflection rather than a researcher
analyzing Buzz’s engagement with symbols. Thus, we code
this as (C4): “able to ‘step back’ and weigh options to
decide which notation system is best.” We also note that
Buzz was aware of his own progress, commenting that it
was “first kind of jarring…to try to do math in kets,” but
that now it is “kind of easier.”We code this as (C3): “aware
of one’s own progress in notation use.”
Because Buzz volunteered expectation value problems as

a situation in which he could use either notation, the
interviewer had him work on such a problem right away,
even though it was prepared to be at the end of the
interview. The problem is given in Fig. 2.
Buzz immediately worked on the problem within Dirac

notation, saying, “basically to find the expectation value…
it’s like denoted that way [writes hAi� but really what you’re
doing is you’re taking the, the bra of the state, and
then you’re putting the operator [writes ¼ hψ jAjψi� in
the middle of the inner product” [Fig. 3(a) line 1]. He
continued,

Buzz: Because the A here is Sx and then this is uh, this is
expressed entirely in the x basis kets, you know that Sx is
just going to um, like apply its eig- eigenvalues to these,
so, so like the eigenvalue co- uh, corresponding to plus x

FIG. 2. The expectation value problem from the interview.
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is going to be þℏ=2 and the, the eigenvalue corre-
sponding to minus x is going to be −ℏ=2, so you end up
with this equation that looks like this. You have the bras
on one side, um, which is x basis, negative 4 over 5, uh
plus, the minus x basis, and then that changes sign
because you’re taking the Hermitian adjoint, 3i over 5,
[see Fig. 3(a) line 2]. And then now you can just take
this but just apply the, the, the eigenvalues to each one,
um, so you have, uh, −4ℏ=10 which will cancel out but,
uh and then plus x ket, and then plus, uh, mi- that’s
gonna be a −ℏ3i=10, and then put a little minus ket
there [Fig. 3(a), line 2]. And then, and then you just,
you’re looking at the, the products of each of these
things, so this times this gives you, uh, ℏ16=50, and then
you’re adding it to this, which you have a negative and
negative, so that’s positive, but then you have i2 so it’s
minus 9ℏ=50 again. So your expectation value ends up
being, uh, 7ℏ=50, I think [Fig. 3(a), line 3]. These are
still kind of new problems, but that’s, that’s would be my
answer at this point.

Note that his work in Fig. 3(a) involved the state’s
expansion and use of eigenvector equations for Sx in ket
notation. We point out his speed and ease in calculating
Sxjψi, which he did by knowing “that Sx is just going to
um, like apply its eig- eigenvalues to these” components
of the psi state vector. He also noted that expectation
value problems were “kind of new.” We add that Dirac
notation itself was first introduced to the students during
this course; as such, Buzz was clearly quick to use and
understand this representation (an additional quality of
MRC [5]).
After discussing what his solution meant physically,

the interviewer asked: “Before you were talking about
bra-ket versus matrix notation, you brought up an
expectation value as an example of like, either or both,
so can you, now that you had this problem, kind of
revisit that?” Buzz immediately solved the problem
completely within matrix notation [Fig. 3(b)], explaining
his steps as he progressed:

Buzz: So, if we’re strictly in the, in the, the plus and
minus ket bas- or x basis, then you can write this vector
as a, as a, like that ket as a, as -4 over 5, and uh i3 over
5, [writes column vector, Fig. 3(b), line 1] and then the,
and then the bra would then be, um, -4 over 5 and then
minus, minus 3i or, sorry -3i over 5 [writes row vector,
Fig. 3(b), line 1] … And then you have the operator in
the middle…the operator in this case is Sx, and we’re in
the x basis so it’s just becomes ℏ=2, 0, 0, minus ℏ=2,
[writes 2 × 2matrix, Fig. 3(b), line 1]. And you can do it
this way, you can- you can do it- bring this over here and
then do that [indicates multiplying the matrix times the
ket column vector] and then, you’re gonna get a vector
and you can dot that vector with that one [indicates the
row vector]. But that’s, that- that- you can do it that way
but, I think this [pointing to his work shown in Fig. 3(a)]
is easier.

Not being sure what he meant by “easier,” which does
indicate some aspect of MRC, the interviewer asked him to
go ahead and finish the problem using matrix notation. He
calculated the matrix times the column vector and that
result times the row vector, determining 7ℏ=50 easily and
quickly [Fig. 3(b), line 2], stating, “which is the same as we
got before, thankfully.” The interviewer then asked Buzz to
reflect on his preference between the two notations:

Buzz: Uh…To be honest, I don’t really, I don’t really
know why I prefer this [Fig. 3], I think it’s just because,
um, I like this notation. This- this specific notation
[Fig. 3(a), line 1] like this to me is like a cleaner way of
writing that [Fig. 3(b), line 1] because that- I mean this
and that [touching lines 1 in both figures] I feel like are
your starting points, so you, you start here with this nice,
like, looking thing [traces his finger under hψ jAjψi], or
you start here with this big array of numbers [puts open
hands around Fig. 3(b)], and I prefer this [Fig. 3(a), line
1], even though you have to expand this into basically
the same amount of information [Fig. 3(a), line 2]. And
also, the nice thing about, about this [Fig. 3(a), line 1],

(a) (b)

FIG. 3. Buzz’s expectation value problem work, in Dirac notation (a) and matrix notation (b).
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is it—actually this is really why it’s better—is because
you can, you can say ok Sx works- acts directly on these
kets, you can just get rid of the matrix altogether.
Whereas this one [Fig. 3(b)] is like, you have to
recognize that, that, that you’re in this basis and it’s
just, yeah it’s not as, it’s not as nice um, ‘cause basically
when you do this matrix multiplication, you have to do
this matrix multiplication just to get where I got from
here to here [Fig. 3(a), line 1 to line 2], which was
literally I just said ok, looked at this and then I expanded
it out because I knew that this [Sx] acting on that [first
term of jψi] was gonna be ℏ=2 and this [Sx] acting on
that [second term of jψi] was going to be−ℏ=2, so I just
put them over there, whereas here kinda have to do that
vector matrix thing first before you get those values.

This excerpt begins with two value statements: that Buzz
prefers Dirac notation because he likes it (A4: likeability)
and because it provides a cleaner way of writing the desired
information (A1: clarity). We see his use of “nice looking
thing” and “big array of numbers” in comparison to one
another as an example of compactness (B4). He also
compares line 1 in 2(a) and line 2 in 2(b) regarding the
“amount” of information they convey, which involves
reflection on the physical and mathematical content
expressed in the compared notations (B6: externalization).
Finally, acting directly on the expansion in terms of the
eigenstates of the operator allowed him to forego the matrix
calculation entirely, which speaks to Buzz’s view of the
utility of a notation for calculation in a specific problem
(B1) by making direct use of given relationships (B2).
When asked about his notation preferences if the basis

expansion of a given state vector and the operator “didn’t

match,” (here they were both in the x basis), Buzz recalled a
problem from their last homework that was “actually
easier…to do the matrix multiplication,” stating “you don’t
want to have to change these kets into different bases all
over the place ‘cause they’re already all written in the same
basis and you know what the operator is in that basis so you
might as well just, do the matrix multiplication.” This
speaks to his awareness of using given relationships
directly (B2) as well as being able to choose which notation
system is best for a certain situation (C4). Finally, when
asked if the notions of basis or eigenvectors and eigenval-
ues come up more in one notation than the other, Buzz
stated, “certainly…every time you write down a ket you’re,
you’re very conscious of what basis you’re in. In this one
[points to Fig. 3(b)] it’s just kind of implied…all this [is] in
the same basis, so you’re just, you’re just writing out
numbers and arrays of numbers, but here [in Fig. 3(a)] I
think that you’re definitely more aware of what basis you’re
in when you’re using this, because you have to be.” This
explanation is consistent with Gire and Price’s [29] notion
of externalization (B6) in that the ket notation allowed
problem features, namely, basis, to be externalized for Buzz
in a way that matrix notation did not.

B. Milan

We focus our examples of Milan’s MRC on his work
with the expectation value problem. Like Buzz, he first
completed the problem in Dirac notation [see Fig. 4(a)]:

Milan: So, this is very convenient because it’s in the Sx
basis. Um, so, basically all we need to do is put Sx in
some matrix representation as—well, do we need to do

(a) (b)

FIG. 4. Milan’s work on the expectation value problem, in Dirac notation (a) and matrix notation (b).
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matrix representation? I don’t think we do. So, let’s not
worry about that. So, the expectation value of Sx is
defined as this ψ , and the Sx, and ψ [writes hψ jSxjψi].
And we’re just going to include the ψ’s in this—We’re
just going to drop the x subscript and just assume that
it’s, um, the x basis….

As Milan began his work on this problem, he thought
aloud about his approach, first stating he would put Sx in a
matrix form but then deciding he did not need to do so.
This speaks to Milan’s ability to “step back” and weigh
options to decide which notation system is best (C4). Once
he decided to solve the problem within Dirac notation, he
explained his choice to “drop the x subscript” from the
expansion of the state ψ in terms of the Sx eigenbasis (note
the missing x subscripts on the j�i kets in Fig. 4(a)
demonstrating Milan’s ease with notation in writing and
engineering symbols to mean what he personally desired
(C2). After working through the calculations, during which
Milan correctly explained his steps to solve the expectation
value problem [Fig. 4(a)], the interviewer asked him to
comment more on his rather explicit choice not to use
matrix notation:

Int: When you first started, you almost started using
matrix notation, and then you decided not to. Can you
talk more about that?
Milan: So, ket—because you know this eigenvalue
equation, ket notation just skips all that. Um, if you
wanted to, you could have written this out as, uh, 1

5
, −4,

−3i [writes row vector in Fig. 4(b)]. But, you can see
that’s more confusing to go through—and then you have
to look at Sx and, where you can write it as ħ=2;−ħ=2,
0, 0, and you have to do matrix multiplication. Um,
actually, that might be quicker, honestly…

Milan’s statement, “Because you know this eigenvalue
equation, ket notation just skips all that” demonstrates his
belief that Dirac notation makes a more direct use of
relationships (B2), specifically those contained in the
eigenvalue equations Sxj�ix ¼ �ℏ=2j�ix. He also stated
that one could have written the given ψ as a column vector
[another example of his awareness of choice in notation
system (C4)], but writing the states as column vectors
would be more confusing in this situation; this evidences
Milan’s belief that Dirac notation can have a greater level of
clarity than matrix notation (A1).
Next, Milan summarized the matrix symbols and oper-

ations that would be necessary to complete the calculation,
which led him to reflect aloud that matrix notation might
actually be faster for him in this problem; this shows a
preference for matrix notation based on a value judgment of
speed (A2). The interviewer prompted Milan to calculate
the expectation value using matrix notation [see Fig. 4(b)],
through which he arrived at the same answer he obtained
through his calculations in Dirac notation.

Milan: Which is, the exact same answer we got before,
and it was substantially quicker. And in—I mean, I guess
it depends how good you were with this kind of notation
[pointing to his work in Fig. 4(a)]. ‘Cause, this [Dirac
notation] is, I learned two and a half weeks ago, and
this [pointing to work in Fig. 4(b)] I learned almost a
year ago.

In this final quote, Milan spontaneously reflected more
about the two notation options, noting aspects of familiarity
and speed in using matrix notation (A2, A3) as reasons
someone might choose it over Dirac notation. Additionally,
Milan demonstrated an awareness of his own progress in
understanding Dirac notation, noting it takes time to
progress in using and understanding new notational
systems (C3).

C. Irvin

To further explore the possible interdependence of
conceptual understanding and metarepresentational com-
petence, we examine a third student, Irvin, whose inter-
action with the expectation value problem (Fig. 2) did not
have as smooth of a start as Milan and Buzz. None of
Irvin’s actions or words during his interaction with the
problem (or his reflection on it) were able to be coded with
our MRC framing. We cannot claim that Irvin did not
possess any MRC; rather, all we can know is that an MRC
way of thinking did not seem activated for Irvin at that time
because we did not see evidence of MRC as he discussed
the problem and his solution. Let us consider his inter-
action. As soon as he finished reading the problem, he
stated the values 16=25 and 9=25 as he wrote them, stating
“Now this one I’m sure of.”When asked to explain, he said
“because it’s the same thing as if this was, so, if I wanted I
can make a similar problem, I can be like, “oh, you got psi,
and it’s- and it’s equal to negative 4 over 5 plus, eh, plus i 3
over 5 minus, uh what’s- it’s in the z basis? I mean done,
that’s the same thing.” His solution to both the original
and his invented problem would be correct if he were
asked to calculate the probabilities of the measurements of
spin up and down along the y axis and z axis, respectively,
which involved making sure the basis representation
of psi matched the axis of orientation for the measuring
apparatus.
The interviewer then followed up by asking “tell me

about the difference in the wording, ‘cause that one [the
current problem] talks about expectation value versus a
probability of up or down [points to the previous interview
problem],” to which Irvin seemed to express surprise with
the exclamation, “wait, what?” He continued with the
explanation:

Irvin: Oh, alright. Yeah, see I got, on the homework
problems, they- they, they got me on this one, they got-
they docked points, I did not put myself an h bar over 2
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here and I put not- put negative h bar over 2 here [writes
those next to the values 16=25 and 9=25, see Fig. 5].
Because it’s an expectation value, so, technically if I
was- if I was gonna do this, like, with perfect, like,
wording, based on the expectation value words there,
then yeah, I would’ve, I would’ve put the h bar, uh, I
woulda- I woulda done everything right [underlines the
two terms in Fig. 5]. But, I- I usually- I- I see
probabilities and expectation val- oo, sorry, expectation
value? [again, seems a bit surprised] I’m sorry, I
thought you meant, never mind. Expectation value’s
th, this thing. [writes hSxi]
We note that this exchange occurred because the inter-

viewer pursued Irvin’s original answer, not because Irvin
noticed it was incorrect. Irvin’s comments of “they got me”
and “they docked points” do not convey that Irvin con-
sidered his answer incorrect conceptually; rather, they seem
to convey that he thought he just didn’t write the symbols
the homework grader and/or professor wanted to see. This
leads us to hypothesize that he may not have had a richly
developed connection of meaning behind the symbols and
the physical and/or mathematical interpretation of them. An
alternative explanation is that Irvin’s MRC capabilities may
not have been evident because his content confusion (state
probabilities versus expectation value) may have dominated
his thinking, leaving little space to make visible any of his
considerations relevant to demonstrating MRC.
In this case, the symbols in question go beyond just

“vector notation versus Dirac notation” to include ℏ=2 and
how to write it sensibly (for instance, the symbolic
concatenation in the second term formally conveys sub-
traction rather than multiplication). His continued explan-
ation of if he were to do “this with perfect wording” and do
“everything right” included writing the correct signed
versions of ℏ=2 next to the probability terms, but he did
not carry out the summing calculation across the two terms.
Finally, after he seemed to have some insightful moment,
he “defined” expectation value by writing the symbols
“hSxi” without saying any words or explanation with it, so
we cannot be sure what “hSxi” meant to him.
Because Irvin seemed to change his way of thinking

during his response, the interviewer asked him, “What just
happened?” Irvin continued to explain:

Irvin: I thought when you said expectation value you
meant like the, the probabilities with their eigenvalues
associated with them. If, if I was gonna, I’d add these

guys up [writes a plus sign between the two terms from
Fig. 5] and I’d get something like, this would be the Sx
[writes “hSxi ¼” in front of his new sum]. Or would it
be? Wait, [reading the problem again] “of Sx,” yes, ok
yeah, so then this would be, eh, just… 16 minus 9
[writing] h bar over 2. So that would be the expectation
value [puts a box around 7

25
ℏ=2, see Fig. 6]. This is the

average, what you’d expect in experiment.

Finally, the interviewer agreed with Irvin’s answer and
asked him to explain everything again, to which he replied

Irvin: I was confused, when they said expectation value,
I wasn’t sure if they meant the probabilities just
multiplied by the eigenvalue it’s associated with.
‘Cause, on one of the problems on the homework, I
got docked points ‘cause I just put a probability and
they’re like [switches voice to impersonate an unknown
homework grader] “Well you didn’t, you didn’t have the
h bar.”

We call attention to a number of aspects of Irvin’s
response. First, we note that Irvin defined expectation value
as “the probabilities with their eigenvalues associated with
them.” In this wording (and in a subsequent, similar
wording), he did not mention adding the two resulting
terms, and, in fact, his response in Fig. 5 did not include the
summation. We interpret this conceptualization as if Irvin
was blending the probabilities of measuring the two
possible outcomes with the expectation (mean) value of
the measurement over a large number of experiments. Next,
we note that Irvin does eventually correctly carry out the
needed procedure of adding terms to result in one value for
expectation value for Sx (see Fig. 6). He also associated the
correct symbols hSxi and an accurate physical interpreta-
tion of “This is the average, what you’d expect in experi-
ment” with his solution.
Lastly, we note that in Irvin’s final explanation he returns

to discussing “the probabilities just multiplied by the
eigenvalue it’s associated with” as expectation value. He
also mentioned again one of his homework answers not
being given full marks: “I got docked points ‘cause I just
put a probability and they’re like ‘you didn’t have an h
bar’.” It is not clear whether he realized the conceptual
distinction between probability and expectation value if, in
his judgment, all he did was neglect to include a certain
symbol. The two different types of questions have two

FIG. 5. Irvin’s second solution to the expectation value
problem.

FIG. 6. Irvin’s final solution to the expectation value problem.
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different forms of answers (e.g., probabilities are real
values between 0 and 1 inclusively) because of what they
are conceptually. One explanation for this could be that
deep conceptual understanding of the quantum mechanical
concepts at play involves coordination with what the
associated symbols mean and why they are important.
Although we do not see evidence of Irvin demonstrating
strong MRC at this moment, it is possible that Irvin would
do so in other scenarios and with other problems and
prompts. In the data presented, it is possible that Irvin was
so focused on the content and correctly interpreting the
problem (which he eventually does) that he simply did not
engage in reasoning that demonstrated his MRC.

V. DISCUSSION

In this article we shared our analysis of the metarepre-
sentational competence of three students as they engaged in
solving a quantum mechanics problem involving linear
algebra. We analyzed two students who serve as paradig-
matic examples of students’ power and flexibility within
different notation systems, and analysis of a third student
was given as a point of contrast. In addition to adapting
MRC as a helpful construct for characterizing student
understanding at the intersection of undergraduate math-
ematics and physics, we demonstrated how students’ rich
understanding of linear algebra and quantum mechanics
includes and is aided by their understanding and flexible
use of different notational systems.
We offer three reasons why this work is important to

mathematics and physics researchers and educators. First,
similar to one of the purposes of Ref. [2], our report acts as
an alternative narrative to a number of articles in physics
education that focus on students’ difficulties or miscon-
ceptions in learning quantum mechanics (e.g., Refs. [35–
37]), and more specifically with the notations used in
quantum mechanics [28,38]. We have shown students’
abilities to critique and understand the general purposes of
the various notations used within quantum mechanics, and
how their metarepresentational competence can even
include some ideas about strengths and weaknesses of
the notations that align with expert-determined structural
aspects of quantum representations [29]. Our findings for
Buzz and Milan are consistent with Smith’s [39] charac-
terization of student “observable expertise” as rich, highly
adaptable to problem specifics, and composed of a wide
variety of strategies. Instead of focusing on the identifica-
tion of students’ difficulties with notation, we highlight
what students attend to when using (or choosing to use) a
particular notation and how this seems to impact their
decision when using a particular notation; this is consistent
with recent calls for research from antideficit perspectives
with respect to investigating student learning [40]. In turn,
educators might examine how they can build upon the
metarepresentational competence students already have to

help deepen and strengthen their understanding of quantum
mechanical and mathematical representations.
Second, most studies on MRC have been about inventing

and critiquing representations, but our study extends
knowledge about MRC by demonstrating that MRC can
be relevant and helpful for understanding and using
canonical representations. In particular, we presented codes
we created for identifying and analyzing students’ MRC in
their talk about eigentheory and quantum mechanics, as
well as general categories for the types of MRC these codes
indicate students demonstrate. This coding scheme still has
the potential to be expanded, extended, and refined,
especially as students’ MRC within quantum mechanics
and linear algebra is further explored, and as students’
MRC is studied within other mathematical and physical
contexts. Our hope is this coding scheme will facilitate
analysis of students’ understanding of representations
within mathematics and physics, as well as help researchers
gain insight into the richness of students’ overall under-
standing of mathematical and physical concepts.
Furthermore, we hope the identification of particularly
useful and powerful elements of MRC, such as those found
in analyzing experts or strong students, will help educators
know the types of thinking and reasoning to emphasize and
cultivate in teaching their students. Education researchers
could then search for teaching methods, questions, and
curricular materials that would support students in devel-
oping their MRC in these productive ways. We echo the
suggestion that “in order to optimize physics learning in
interactive contexts, physics teachers need to know more
about the range of persistent representations available, and
their associated disciplinary affordances” (Ref. [19],
p. 665). Thus, helping students develop deep understanding
of quantum mechanics and linear algebra should include
providing opportunities for students to use and improve
their metarepresentational competence.
Third, this analysis furthers what is known related to how

student understanding of content, in this case, specifically
linear algebra and quantum mechanics, includes and is
aided by their understanding and flexible use of different
notational systems. As mentioned in Ref. [4], one aspect of
educational research is to seek ways to help students
develop deeper understanding of science and mathematics;
an important piece of this deeper understanding includes
knowing “not only how to operate scientific apparatus
(from strategies that solve problems, to representations and
concepts), but also understanding how and why they work,
and even being able to generate and judge alternative
means” (p. 299). Within that, we particularly highlight the
importance of students knowing not only how to “operate”
representations (such as the Dirac or matrix notational
systems) but also how they work and how to judge
alternative representational approaches, as a key piece of
a deep understanding of science and mathematics itself.
Furthermore, Meira [7] states that “problem-solving
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strategies are not simply applied to representations, but
their very emergencemay depend on the existence of specific
inscriptions already displayed on paper” (p. 101). In other
words, a problem-solving approach is itself, rather than
being distinct from, intrinsically tied to a notational system;
this plays out in our data, most readily in the MRC codes
within the “problem-based preference” category. We note
that Buzz and Milan, two of the strongest students within
our study in regards to their understanding of linear algebra
and quantum mechanics concepts, also demonstrated par-
ticularly articulate and thoughtful MRC. This may suggest
that a deep understanding of the physical and mathematical
concepts creates a conducive environment for developing
strong MRC, while MRC simultaneously helps students
develop a rich understanding of physical and mathematical
concepts. As Sherin [41] noted, “We do students a disserv-
ice by treating conceptual understanding as separate from
the use of mathematical notations” (p. 482).
We conclude by suggesting that MRC could be further

explored as aspects of procedural and conceptual under-
standing [42–43] of advanced mathematics and physics
content. Hiebert and Lefevre [42] defined conceptual
knowledge as “knowledge that is rich in relationships…
a connected web of knowledge, a network in which the
linking relationships are as prominent as the discrete pieces
of information” (pp. 3–4), and procedural knowledge as
“familiarity with the individual symbols of the system and
with the syntactic conventions for acceptable configura-
tions of symbols” (p. 7). Star [43] defined deep procedural
knowledge as “knowledge of procedures that is associated
with comprehension, flexibility, and critical judgment and
that is distinct from (but possibly related to) knowledge of
concepts” (p. 408). We consider these in light of diSessa
and Sherin’s [5] description of MRC:

The full range of capabilities that students (and others)
have concerning the construction and use of external
representations. MRC includes the ability to select,
produce and productively use representations but
also the abilities to critique and modify representations
and even to design completely new representations.
(p. 386)

In analyzing the MRC of students as they engaged in
solving a quantum mechanics expectation value problem,
we were able to document knowledge that is rich in
relationships, familiarity with symbols and their syntactic
conventions, and flexibility and critical judgment as stu-
dents chose and carried out procedures—all of which are
aspects of procedural and conceptual knowledge.
Future research could continue to investigate the

relationship between MRC and deep understanding of
advanced mathematics and physics content, as well as
the impact of explicitly trying to teach students to develop
strong MRC on student understanding and performance.
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