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Abstract
1.	 Ecological forecasting provides a powerful set of methods for predicting short- and 

long-term change in living systems. Forecasts are now widely produced, enabling 
proactive management for many applied ecological problems. However, despite nu-
merous calls for an increased emphasis on prediction in ecology, the potential for 
forecasting to accelerate ecological theory development remains underrealized.

2.	 Here, we provide a conceptual framework describing how ecological forecasts 
can energize and advance ecological theory. We emphasize the many opportu-
nities for future progress in this area through increased forecast development, 
comparison and synthesis.

3.	 Our framework describes how a forecasting approach can shed new light on ex-
isting ecological theories while also allowing researchers to address novel ques-
tions. Through rigorous and repeated testing of hypotheses, forecasting can help 
to refine theories and understand their generality across systems. Meanwhile, syn-
thesizing across forecasts allows for the development of novel theory about the 
relative predictability of ecological variables across forecast horizons and scales.

4.	 We envision a future where forecasting is integrated as part of the toolset used 
in fundamental ecology. By outlining the relevance of forecasting methods to 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
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1  |  INTRODUC TION

Ecological forecasting combines ecological theory with recent revolu-
tions in data availability and computing power (Jones et al., 2006; Keitt 
& Abelson, 2021; Reichman et al., 2011) to test specific, quantitative 
hypotheses about future ecosystem states (Box 1). Over time, the rate 
of forecast publication has increased, and ecological forecasts have 
now been produced for marine, freshwater and terrestrial ecosystems 
spanning all seven continents (Lewis et al., 2021; Payne et al., 2017). 
By enabling anticipatory action (Bradford et al.,  2018), ecological 
forecasts are transforming decision-making processes for numerous 
applied ecological problems, from near-term drinking water man-
agement to long-term biodiversity conservation planning (e.g. Carey 
et al., 2021; Gaydos et al., 2019; Henden et al., 2020; Liu et al., 2018).

The growth and development of ecological forecasting paral-
lels an increased emphasis on prediction in fundamental ecological 
research (Carpenter, 2002; Clark et al., 2001; Dietze, 2017; Dietze 
et al., 2018; Evans, 2012; Evans et al., 2013; Hilborn & Mangel, 1997; 
Houlahan et al.,  2017; Maris et al.,  2018; Petchey et al.,  2015). 
Ecology has arguably lagged behind related disciplines (e.g. evolu-
tionary biology) in the development and repeated testing of disci-
plinary theories (Scheiner, 2013), which we broadly define here as 
overarching, repeatable rules and principles (Box 1). Increased em-
phasis on prediction has the potential to energize and accelerate 

ecological theory development, as prediction requires researchers to 
crystallize broad theories into specific, quantitative hypotheses that 
can be tested with data. Furthermore, some have argued that pre-
diction is the only way to demonstrate scientific knowledge, thereby 
assessing the validity of existing theories (Houlahan et al.,  2017). 
While prediction has often been interpreted to include historical 
modelling (Houlahan et al., 2017; Mouquet et al., 2015), forecasting 
is a particularly robust approach to testing theory as it ensures pre-
registration and protects against post hoc overfitting. Likewise, as 
climate change continues to disrupt and change ecosystem function 
across all levels of biological organization, forecasting is essential to 
understand future ecological function (Dietze et al., 2018).

Despite rapid increases in forecast development and the need for 
a stronger emphasis on prediction in fundamental ecological research, 
the potential for forecasting to contribute to ecological theory devel-
opment remains underrealized. There has been little discussion out-
lining how forecasting can contribute to developing and advancing 
ecological theory, likely limiting the adoption of forecasting methods 
(but see Dietze, 2017). To fill this gap, we describe how ecological 
forecasting can shed new light on existing theory (Sections 2 and 3) 
while also allowing researchers to ask and answer novel theoretical 
questions about predictability (Section 4). We conclude by present-
ing a vision and roadmap for the integration of forecasting and the-
ory in ecology (Section 5). By outlining the relevance of forecasting 

ecological theory, we aim to decrease barriers to entry and broaden the com-
munity of researchers using forecasting for fundamental ecological insight.

K E Y W O R D S
ecological forecast, ecological theory, forecast cycle, forecast synthesis, hypothesis testing, 
modelling, predictability, transferability

BOX 1 Glossary of forecasting terminology in the context of ecological theory

Term Definition

Ecological forecast A specific, quantitative prediction about a future ecological state, preferably including an uncertainty 
estimate

Ecological theory An overarching, repeatable rule or principle in ecology

Process-based model A mathematical representation of a hypothesized causal relationship between dependent and 
independent variables

Empirical model A statistical representation of a correlative relationship between dependent and independent variables

Transferability The relative performance of a model, preferably including uncertainties, when applied outside of the 
system in which the model was developed (e.g. new location, temporal or spatial scale, biological 
system)

Uncertainty A probabilistic statement about the imprecision in our knowledge of a quantity or process of interest

Forecast skill The proficiency of an existing model for predicting future ecological states (forecast skill can only be 
assessed retroactively, after data have been collected)

Predictability The extent to which a future ecological state may be predicted based upon current and historical data

Forecast horizon The length of time into the future for which forecasts are made
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methods to ecological theory, we aim to broaden the community of 
researchers using ecological forecasting and identify research direc-
tions to further the implementation of this methodological approach.

2  |  FOREC A STING HARNESSES 
PREDIC TION TO R APIDLY ADVANCE 
THEORY

Ecological forecasting provides a rapid and quantitative demonstra-
tion of the scientific method (Dietze et al., 2018). First, researchers 
formulate a hypothesis about an ecological process and represent 
that process in a model, which may fall anywhere on the spectrum 
from empirical to process based (Box 2). Next, a specific, quantita-
tive prediction is made about the future (unobserved data) based 
upon that hypothesis, preferably including quantified uncertainty. 
Finally, the forecast is tested with data, allowing researchers to eval-
uate and refine their hypothesis. This process can be iterated in a 
forecast cycle as new data are collected, providing repeated tests of 
the underlying ecological hypothesis.

2.1  |  Model improvement and comparison

Using the forecasting cycle to address ecological theory can be trans-
formative in part because it emphasizes model improvement and 

comparison: forecasting requires researchers to not only posit the 
theoretical relationships among dependent and independent vari-
ables (e.g. X will affect Y), but also the functional forms and param-
eters governing these relationships (Houlahan et al., 2017). In other 
words, it forces us to be specific about the predictions that come from 
our hypotheses and to build on prior knowledge when testing theory.

As one of many possible examples of where a forecasting ap-
proach could build upon the status quo, consider that terrestrial 
plant ecologists have been performing nitrogen addition experi-
ments for well over 100 years and have consistently shown that net 
primary productivity (NPP) responds positively to nitrogen additions 
(LeBauer & Treseder, 2008). Building upon this evidence, research-
ers are well positioned to make anticipatory predictions about the 
magnitude of increase in NPP that would be expected with a given 
input of nitrogen, and common features of ecological forecasting 
can accelerate the testing and improvement of these predictions. 
Furthermore, forecasts that quantify specific sources of uncertainty 
(e.g. uncertainty in initial conditions, drivers and parameters of the 
model) can allow researchers to identify which components of the 
forecast are responsible for forecast error, thereby identifying gaps 
in current ecological knowledge that would be most productive to 
address. For example, error in NPP forecasts could result from un-
certainty in the relationship between NPP and nitrogen addition, but 
also uncertainty in a number of other external drivers that influence 
NPP. Forecasts with quantified uncertainty are particularly effective 
at isolating each of these factors. Ultimately, emphasizing model im-
provement and comparison through a forecasting approach allows 
researchers to rapidly build upon existing theories regarding which 
drivers can predict an ecological quantity of interest and the magni-
tude of that effect.

2.2  |  Increasing reproducibility

Creating specific, quantitative predictions that can be tested with 
incoming data is particularly important in the face of the ongoing 
reproducibility crisis across scientific disciplines (e.g. Freedman 
et al., 2015; Open Science Collaboration, 2015). Omission of non-
significant results from publications, that is, publication bias, is com-
mon across ecology and evolutionary biology, as is the practice of 
researchers developing an explanation for their results retroactively 
and reporting this explanation as if it were their original hypothesis 
(Fraser et al., 2018). However, research practices like these can un-
dercut the development of ecological theory by decreasing com-
parability and reproducibility between studies (Fraser et al., 2018). 
Ecological forecasts help address these issues by explicitly docu-
menting a hypothesis before evaluating that hypothesis with data. 
As such, they function as a form of preregistration (sensu Nosek 
et al., 2018; Parker et al., 2019), increasing the validity and credibility 
of research findings.

Likewise, ecological forecasts increase reproducibility by avoid-
ing spurious results that result from overfitting models to data (i.e. 
calibrating a model to closely match one dataset, at the expense of 

BOX 2 Both empirical and process-based models 
can be used to develop ecological theory

Ecological models exist on a spectrum from completely em-
pirical models to highly parameterized process-based models 
(Box 1; Figure 1). Process-based models most directly repre-
sent ecological hypotheses that can be tested with incoming 
data. Because they incorporate ecological theory, process-
based models are less constrained to the historic range of 
variability in the data used to fit the model, and they are 
generally preferred when forecasts extend into novel, out-
of-sample conditions (Cuddington et al., 2013; Evans, 2012; 
Mouquet et al.,  2015; Rastetter,  2017; Tredennick 
et al., 2021). However, empirical models often have greater 
predictive power, particularly in the near term (e.g. Perretti 
et al., 2013). While empirical models do not directly repre-
sent mechanistic hypotheses for how ecological systems 
operate, they can be effective at identifying new potential 
drivers to inform future mechanistic hypotheses (see West 
& Brown, 2005). Many ecological models will not fall at ei-
ther of these extremes, but instead will include both process-
based and empirical aspects. We suggest that models across 
the spectrum of process representation can contribute 
meaningfully to the development of ecological theory.
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predictive power for new data), as can happen when all available 
data are used to fit a model. It is not possible to overfit a forecast, 
because data used to evaluate the model have not yet been collected 
when the forecast is generated. Thus, forecasts inherently provide 
out-of-sample validation. Forecasting new data can highlight model 
biases that might not be detected by any approach that uses an en-
tire dataset for model selection, including cross-validation. Model 
evaluation using in-sample data will share any systematic errors, and 
a researcher using cross-validation may overfit the held-out data 
by modifying models post hoc after cross-validation. For example, 
Averill et al.  (2021) found that out-of-sample validations for some 
forecasts of soil microbial taxonomic and functional groups were 
systematically biased due to small differences in measurement tech-
niques. Ecological forecasts that successfully predict out-of-sample 
data often come from very simple models (Chevalier & Knape, 2020; 
Ward et al., 2014), in part because they cannot increase model fit 
simply by adding additional parameters and overfitting to data. Thus, 
forecasts provide a particularly rigorous test of ecological theory, 
highlighting which aspects of theory have real, predictive ability and 
uncovering previously unknown knowledge gaps.

2.3  |  Iterative forecasts

Iterative forecasts—those that are made repeatedly, updating the 
forecast model through confrontation with new data—may be par-
ticularly useful for hypothesis testing and theory development. 
For example, when comparing multiple alternative auto-regressive 
models, testing short-term predictions and resetting conditions to 
the current state at the start of each forecast (rather than analysing 
model fit statistics over a longer interval) helps to overcome com-
pounding structural biases in the model and reveal periods of time 
where each forecast model performs well (McClure et al.,  2021). 
Iterative forecasts are also useful as a means of accelerating re-
search because they can accommodate non-stationarity, or change 
in ecological processes over time, without requiring explicit nonsta-
tionary processes that initially may not be well represented in small 

datasets (McClure et al., 2021). Consequently, generating repeated 
short-term predictions allows researchers to rapidly refine and com-
pare hypotheses, rather than waiting until all data have been col-
lected and analysing model performance post-hoc.

When developing iterative forecasts, researchers are able to 
conduct targeted sampling to resolve uncertain model processes or 
states, developing a more complete and accurate understanding of 
the ecological process (Redmond et al., 2019). Changing the data col-
lection strategy in response to forecasts is a unique opportunity that 
forecasting offers in comparison with retrospective analysis, and is 
transformative as a means of distinguishing between competing hy-
potheses (Coelho et al., 2019). For example, imagine we have three 
alternative hypotheses/models that are all equally compatible with 
past observations. If we collect data at times and places where the 
models continue to predict the same thing (which we may be likely 
to do under conventional sampling designs), it remains impossible 
to distinguish between the hypotheses. However, if we instead use 
forecasts to predict forward and identify the times and places where 
the models make different predictions, we can then adapt moni-
toring to more efficiently collect the data required to differentiate 
between the models. Any time forecasts diverge, observations are 
going to refute at least one of the models.

3  |  FOREC A ST TR ANSFER ABILIT Y 
E VALUATES THE GENER ALIT Y OF 
ECOLOGIC AL FUNC TION ACROSS 
LOC ATIONS, VARIABLES AND SC ALES

While the term ‘forecast transferability’ (Box 1) may be new to many 
ecologists, understanding the generality of ecological theories has 
long been a central goal for the field. Questions like Do the same 
macroecological patterns apply to microorganisms and macroorganisms, 
and are they caused by the same processes? and What are the generali-
ties in ecosystem properties and dynamics between marine, freshwater 
and terrestrial biomes? are essentially questions about the trans-
ferability of ecological models. Both of these questions appear in 

F I G U R E  1  Conceptual diagram 
describing how forecasts (on a spectrum 
from empirical to process based) 
contribute to ecological hypothesis 
development and refinement.
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the list of 100 fundamental questions in ecology from Sutherland 
et al. (2013). While not all forecasts involve model transfers, here we 
consider any model transfer to new conditions (e.g. time, location, 
species) to be forecasts.

By transferring models to new ecological conditions, research-
ers can empirically assess the generality of ecological structure and 
function, thereby identifying overarching rules and patterns in ecol-
ogy. As an example, consider the case where we already have fore-
cast models for k species within a clade and want to know how well 
we can constrain a forecast for another species in the group (species 
k + 1). Can we predict what drivers and functional forms should be 
used? Can we put prior constraints on parameters for modelling the 
out-of-sample species? How much can we further constrain these 
choices using across species knowledge, including but not limited 
to phylogenetic constraints, functional traits, life-history trade-offs, 
biomechanical constraints, trophic position and physical environ-
mental conditions? Understanding how models transfer across spe-
cies, locations and times is transformative by explicitly identifying 
when, where and why a theory breaks down.

While assessment of model transferability using ecological 
forecasts is only just beginning, emerging research has identified 
at least two general patterns. First, many studies suggest that 
transferability is governed by ecological novelty: relative model 
performance decreases most when the magnitude and charac-
ter of environmental variation differs between the original and 
transferred conditions (Kleiven et al., 2018; McClure et al., 2021; 
Qiao et al.,  2018; Sequeira et al.,  2016). For example, we would 
predict that a model built for one species will perform better for 
a closely related species than one that is more distantly related. 
Second, model structure likely modulates transferability: simple 
models (e.g. models with few parameters) may be more trans-
ferable than complex models, as complex models are more likely 
to incorporate particularities of an individual time or location 
(Wenger & Olden, 2012), and process-based models are thought 
to be better at predicting out-of-sample conditions than empirical 
models (Box 2). However, more precisely characterizing patterns 
in transferability will require both technical advances (e.g. stan-
dardized metrics of transferability) and a significant increase in the 
frequency with which ecological modelling studies assess model 
transferability (Yates et al., 2018).

4  |  NE W FRONTIERS OF ECOLOGIC AL 
RESE ARCH: UNDERSTANDING THE LIMITS 
TO PREDIC TABILIT Y

In addition to providing an effective means of refining existing 
ecological theories, forecasting allows for the development and 
testing of novel theories regarding the predictability of ecological 
variables. Understanding ecological predictability (Box  1) has long 
been an implicit goal in ecology. For example, the classic question 
of whether plant communities are primarily characterized by cli-
max communities (Clements,  1936) or individualistic responses 

(Gleason,  1926) is fundamentally a question of ecological predict-
ability. Recent efforts have been made to explicitly discuss (e.g. 
Godfray & May, 2014; Houlahan et al., 2017; Sutherland et al., 2013) 
and analyse (Dietze, 2017; Lewis et al., 2021; Petchey et al., 2015; 
Ward et al., 2014) the relative predictability of ecological variables. 
These advances, alongside growth in the practice of ecological fore-
casting (Lewis et al., 2021), make now an ideal time to develop test-
able hypotheses about patterns of ecological predictability.

Ecological predictability presents an exciting, synthetic lens 
through which to view ecological theory. To date, only a few stud-
ies have analysed predictability across scales and variables (Lewis 
et al., 2021; Rousso et al., 2020; Ward et al., 2014). These studies 
have found that forecast skill consistently decreases over 1- to 30-
day forecast horizons, forecasts created with greater historical data 
have superior forecast skill, and taxonomically similar systems have 
similar forecast skill. Given these initial results, we suspect that there 
are seemingly distinct phenomena (e.g. algal blooms, epidemics, in-
vasive species) that show congruent patterns of predictability across 
scales (e.g. forecast horizon, grain or extent). Analysing the patterns 
of predictability for phenomena like these may provide a means of 
addressing new problems and new situations without starting from 
scratch each time. In doing so, we can harness sub-disciplinary prog-
ress to advance a broader understanding of ecology across scales 
and variables.

Quantifying ecological predictability may also help to identify 
gaps in existing theory that could be addressed to efficiently ad-
vance our knowledge of ecological processes. If we can understand 
the limits to predictability and isolate the extent to which those 
limits are due to irreducible factors versus imperfect knowledge, 
we could prioritize research in areas with low current forecast skill 
and high potential predictability; these are areas where increased 
knowledge has high value of information (see Bolam et al., 2019) for  
increasing forecast skill. These same areas, when they involve natural 
resources, could also be high priorities for investment in improved 
ecological forecasts to inform management decisions. However, 
characterizing the limits to predictability will require a significant 
body of research, and current hypotheses are insufficient to describe 
how ecological predictability differs across variables and horizons.

Advancing theory about predictability in ecology will require 
the development and repeated testing of hypotheses. To begin this 
process, we propose two hypotheses below about the relation-
ships that govern ecological predictability. For each hypothesis, we 
briefly describe the state of current evidence using forecasting to 
test these hypotheses. Here, we are using forecast skill as a metric 
of predictability (Box 1); while errors in model structure and uncer-
tainty in parameters also affect forecast skill, forecast skill is likely 
correlated with intrinsic predictability, which cannot be measured 
directly (Pennekamp et al., 2019). Our consideration of forecast skill 
as a measure of predictability differs from previous studies that have 
quantified predictability as the improvement in forecast skill relative 
to a null model (e.g. a model that predicts the next observation will 
be the same as the last observation), which removes any predict-
ability that results from autocorrelation (Ward et al., 2014). While 
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null model comparisons are beneficial when quantifying what fac-
tors contribute to the skill of an ecological model, considering such 
autocorrelated processes holistically with forecast skill facilitates 
comparisons of overall ecological predictability between sites, vari-
ables and scales, making it useful for advancing theoretical ecology.

4.1  |  Hypothesis 1: The rate of decline in 
predictability over increasing forecast horizons differs 
across variables and scales

As forecasts extend further into the future, numerous sources of un-
certainty in the forecast (e.g. initial conditions, parameters, external 
forcing; Dietze, 2017) can compound, decreasing the potential pre-
dictability of an ecological state. Consequently, we hypothesize that 
predictability decreases with increasing forecast horizons (Box  1) 
across all variables and scales. However, due to differences in the na-
ture of ecological processes (e.g. the extent to which a process is gov-
erned by chaotic dynamics), we anticipate that the rate of decline in 
predictability likely differs across variables and scales (Dietze, 2017).

Several published studies provide support for the hypothesis 
that ecological forecast skill decreases with increasing forecast hori-
zon through the analysis of simulated data (Petchey et al., 2015) and 
meta-analyses of published forecasts (Lewis et al.,  2021; Rousso 
et al., 2020). However, these studies only describe forecast skill for 
a relatively small subset of ecological variables. How the relationship 
between predictability and forecast horizon differs across scales and 
variables remains comparatively uncharacterized. That being said, 
existing theory provides a suite of predictions about how different 
sources of uncertainty (e.g. initial conditions, parameters, drivers, 
random effects, process error) may affect the rate at which forecast 
proficiency declines within an ecological forecast and creates dif-
ferences in predictability across scales and variables (Dietze, 2017).

A synthesis of near-term forecasts published from 1932 to 2020 
provides support for our assertion that the pattern of decline in pre-
dictability over increasing forecast horizons may be an ecologically 
relevant means of assessing similarities and differences in ecological 
dynamics across systems (Lewis et al., 2021). Analysing forecast skill 
across four variables and 29 papers, Lewis et al.  (2021) found that 
the rate of decline in skill (i.e. predictability) with increasing forecast 
horizon appeared to be very similar for closely related variables (e.g. 
the biomass of individual phytoplankton taxa and chlorophyll, an ag-
gregate measure of phytoplankton biomass) but significantly different 
for variables that were somewhat further removed (e.g. pollen and 
evapotranspiration). However, at the time of that analysis, data were 
only available to analyse the decline in predictability for four variables 
(chlorophyll, phytoplankton biomass, pollen, evapotranspiration) over 
1- to 7-day forecast horizons. Determining the factors that control 
rates of decline in predictability over increasing forecast horizons will 
require the development and comparison of forecasts for many more 
ecological variables and at a wide range of forecast horizons.

Through increased forecast development and comparison, 
ecologists will be able to determine whether there are congruent 

patterns of predictability across variables and scales, synthesizing 
sub-disciplinary theoretical developments to develop a broader un-
derstanding of patterns in ecology.

4.2  |  Hypothesis 2: Predictability increases with 
biological and ecological aggregation

Ecological states can be conceptualized with varying levels of aggre-
gation (e.g. temporal, spatial and phylogenetic aggregation; Figure 2). 
In general, forecasting research across multiple fields (e.g. econom-
ics, meteorology) suggests that increasing levels of aggregation 
typically increase predictability (Hoffmann et al., 2015; Levin, 1987; 
McLeod & Leroux, 2021; Noda, 2004; Wedi, 2014). However, these 
relationships remain poorly characterized in ecology. In line with 
cross-disciplinary research, we hypothesize that increasing biological 
and ecological aggregation increases predictability and aggregation 

F I G U R E  2  Ward et al. (2014) quantified the relationship 
between forecast skill and several metrics of ecological 
aggregation. They found that predictability increased linearly 
with species trophic level for bird populations and with species 
maximum length for fish populations. Conversely, predictability 
increased nonlinearly with species maximum age for fish 
populations. These relationships are plotted here as general, 
non-quantitative patterns. Predictability likely increases across 
many other axes of ecological aggregation; however, the specific 
parameters of these relationships (e.g. do we expect a linear 
relationship? Logarithmic? Exponential?) for each axis remain 
unknown.
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is consequently a useful axis along which to begin comparing the 
predictability of ecological variables.

Previous research analysing several metrics of biological and 
ecological aggregation provides initial support for our hypothesis 
that aggregation increases ecological predictability. For example, 
Ward et al.  (2014) suggest that populations of longer-lived, larger 
and higher trophic-level species—which integrate some variability in 
their environment (Apollonio, 2002)—may be more predictable than 
shorter-lived species (Figure 2). Likewise, numerous phytoplankton 
forecasts have found that aggregate measures of phytoplankton 
biomass (e.g. chlorophyll) may be more predictable than the abun-
dance of an individual species or functional group (e.g. Kakouei 
et al., 2022; Page et al., 2018). Averill et al. (2021) found that the pre-
dictability of soil microbial community composition increases with 
spatial and taxonomic aggregation, and in the spatial ecology realm, 
recent studies have demonstrated that species responses to habitat 
change can be better predicted by focusing efforts at larger spatial 
and temporal scales (Banks-Leite et al., 2022; Brodie et al., 2021). 
Still, these are broad, general predictions (X increases Y) and give 
little indication as to the specific parameters governing this general 
relationship (Figure 2). For example, is this always a linear relation-
ship? Exponential? Logarithmic? Does the nature of the relationship 
between aggregation and predictability differ depending on the axis 
of aggregation considered? Increased forecast development and 
comparison across multiple levels of aggregation will be essential to 
characterizing these relationships.

5  |  CONCLUSION: ROADMAP FOR 
INCRE A SED USE OF FOREC A STING TO 
DE VELOP AND REFINE ECOLOGIC AL 
THEORY

5.1  |  Vision

We envision a future where forecasting is fully integrated as part of 
the suite of research methods used in ecology. As forecast develop-
ment increases, we expect that forecasts will shed light on a wide 
range of existing ecological theories and will aid in developing new 
theories about ecological predictability. Along the way, we antici-
pate that increased use of forecasts in ecology at large will acceler-
ate their integration into proactive ecological management, and that 
harnessing the power of forecasting for both fundamental and ap-
plied ecological research will help strengthen connections between 
ecological theory and practice. Thus, we envision that integration of 
ecological forecasting into the toolset of fundamental ecology could 
rapidly energize and advance ecological research.

5.2  |  Roadmap

Achieving our vision (Section  5.1, above) will require broadening 
the community of researchers that use ecological forecasts in their 

research. Increased production of forecasts across a wide range 
of variables and sites would not only help to refine specific exist-
ing theories, but is essential to building the database of forecast 
studies needed to analyse patterns in ecological transferability and 
predictability.

For ecologists considering using forecasting in their research, 
barriers to entry can be theoretical (e.g. ‘what are the most produc-
tive ways of incorporating forecasts in my work?’) as well as techni-
cal. Throughout this paper (Sections 2 and 3, above), we suggest at 
least three areas of ‘low-hanging fruit’ for incorporating forecasting 
into existing research projects: forecasting the results of an exper-
iment to quantify the accuracy of existing theory, using forecasts 
to test competing hypotheses through model selection and assess-
ing transferability of ecological forecasts to quantify generality in 
ecology. We acknowledge that a forecasting approach is certainly 
not the most effective means of answering every ecological ques-
tion. For example, in cases where driver uncertainty is high, histori-
cal modelling may be more effective than forecasting at identifying 
how well varying model functional forms recreate patterns in data. 
Forecasts are likely to be most beneficial when incorporated as one 
of the many forms of inference used in ecology, and the research 
directions we suggest above are areas we believe will be fruitful for 
ecologists interested in adding forecasting into their repertoire of 
approaches.

Another potential barrier for individual researchers may be a 
perceived lack of the technical and mathematical experience nec-
essary to develop ecological forecasts. One response to this con-
cern is that forecasts do not need to be elaborate to be useful. 
Indeed, very simple models (e.g. predicting that the future state will 
be the same as the last observation) currently often have greater 
forecast skill than their more complex counterparts (Chevalier & 
Knape,  2020; Ward et al.,  2014). Furthermore, forecasts do not 
need to be perfect to be helpful in developing theory; learning 
occurs most quickly when the forecast is wrong, as this identifies 
where existing theory is insufficient. Still, we acknowledge that 
some technical expertise is important when developing forecasts. 
Many educational and training materials are already available and 
helpful for those interested in starting to forecast. For example, the 
Ecological Forecasting Initiative (EFI)—an interdisciplinary consor-
tium aimed at building a community of practice around the devel-
opment and implementation of ecological forecasts—maintains a 
database of over 100 educational resources related to ecological 
forecasting and adjacent skills (e.g. coding in R; Willson & Peters, 
2021). Resources in the database, include course material, videos, 
code repositories, modules and online textbooks, and are catego-
rized as introductory, intermediate or advanced. The EFI community 
continues to identify gaps in available resources and develop new 
material and resources available for anyone interested in ecological 
forecasting. To further increase the accessibility of these methods, 
researchers may consider forming interdisciplinary collaborations 
(e.g. with statisticians and computer scientists) and delegating tasks 
outside of their expertise to experts in these relevant areas (Carey 
et al., 2021).
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Open-access code and reproducible examples can provide help-
ful resources for the development of new forecasts and further 
advance the pace of theory-driven ecological research (Lowndes 
et al., 2017). Promisingly, the use of open science practices in eco-
logical forecasting (e.g. data publication and forecast archiving) is 
already increasing over time, providing a wealth of examples that 
can be used as a foundation for new forecasting projects (e.g. 
Lewis et al., 2021, Dietze, Boettiger, et al., 2021; Dietze, Thomas, 
et al.,  2021). The U.S. National Ecological Observatory Network 
(NEON) Ecological Forecasting Challenge, which promotes the 
development and comparison of multiple forecasts for a range of 
NEON data streams, includes reproducible examples of forecasting 
workflows, including null models, multiple aspects of ecology and 
a single shared cyberinfrastructure, and is freely available online 
(Thomas et al., 2021). Through these and other open science efforts, 
it is becoming easier to build upon previous work and rapidly ad-
vance the use of ecological forecasting.

Several technological developments have the potential to fur-
ther lower barriers to entry for using forecasting in ecology, though 
adoption of these technologies is predicated on the accessible 
learning opportunities described above. Forecasting can be compu-
tationally intensive and may require large data storage/computing 
facilities to deal with the vast amounts of data (e.g. from satellites) 
used in some forecasting projects (e.g. NOAA Coral Reef Watch, Liu 
et al., 2018). Increasing the development and accessibility of such 
facilities could increase adoption of forecasting as a methodological 
approach. Similarly, improved cloud infrastructure with the capac-
ity for intensive computation and data sharing across decentralized 
scientific collaborations can increase the accessibility of research 
collaborations, decreasing barriers to entry for individual research-
ers (Farley et al., 2018; Lowndes et al., 2017; Reichman et al., 2011). 
Both resources are essential for building the capacity of ecological 
forecasting and making it an accessible tool for developing and ad-
vancing ecological theory.

A community-wide effort will be required to fully realize the 
potential of forecasting to inform questions about the limits of 
ecological predictability or the generality of ecological function. In 
particular, it is critical that we increase our ability to compare across 
ecological forecasts. Doing so will require standardized conventions 
for forecast documentation, among other developments, and ef-
forts to create such resources are in progress, with support from 
organizations like EFI. For example, EFI has developed community 
standards and an R package for archiving forecast output and meta-
data (Dietze, Boettiger, et al., 2021; Dietze, Thomas, et al., 2021). 
These standards and associated R package facilitate comparing and 
analysing variables such as model structure, forecast horizon and 
quantified uncertainty, across forecasts of varying skill, facilitating 
future comparative analyses that could test the hypotheses outlined 
in Sections 4.1 and 4.2. Likewise, forecast challenges, where many 
forecasts are developed by separate teams of researchers with dif-
ferent models and approaches (see Hyndman, 2020) provide another 
means of encouraging rapid forecast development and comparison. 

As forecasting becomes integrated into the suite of methods used 
in fundamental ecology, forecast standards and challenges will be 
impactful as means of ensuring that researchers are able to harness 
individual forecasting projects to develop broader theory about the 
predictability and transferability of ecological forecasts.

Amid increases in forecast development and numerous calls 
for increased emphasis on prediction in ecological research (e.g. 
Dietze, 2017; Evans et al., 2013; Houlahan et al., 2017; Levin, 1987), 
ecological forecasting provides a powerful class of methods for the 
development and testing of theory. The future is bright for forecast-
driven insights into fundamental ecological theory.
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