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Abstract

We calculate the constant terms of certain Hilbert modular Eisen-
stein series at all cusps. Our formula relates these constant terms
to special values of Hecke L-series. This builds on previous work of
Ozawa, in which a restricted class of Eisenstein series were studied.
Our results have direct arithmetic applications—in separate work we
apply these formulas to prove the Brumer—Stark conjecture away from
p =2 and to give an exact analytic formula for Brumer—Stark units.

1 Introduction

Let F' be a totally real field of degree n, and let My(n) denote the space of
Hilbert modular forms of level n C Op and weight k over F. Let Ej(n) C
Mj.(n) denote the subspace of Eisenstein series. In this paper we general-
ize results of |2, Section 2.1] and |7] to give the constant terms of nearly
all Eisenstein series £ € Ej(n) at all cusps. The space Ei(n) has a basis
consisting of forms of the form Ejy(n,)|n, where n and 1 are primitive ray
class characters (see . Our formula in Theorem |4.8| gives the constant
terms of these series at all cusps when m is squarefree and coprime to the
conductors of 7 and ¢. In fact, Theorems [4.5]and [4.8| are more general than
this; in particular we handle the case where n and 1 are not necessarily
primitive characters. We work with all weights & > 1. In [7], only primitive
characters are considered, the level raising operator |, is not applied, and
the weight k is taken to be at least 2.

There are concrete arithmetic applications of our results. In |3|, we prove
the Brumer—Stark conjecture away from p = 2 and in 4| we prove an

exact p-adic formula for Brumer—Stark units. Broadly speaking, both of
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these results apply Ribet’s method, whereby cusp forms are constructed by
taking linear combinations of products of Eisenstein series |§]. Central to
the advance of |3| is the method by which this cusp form is constructed. For
this, we require knowledge of the constant terms at all cusps of level-raised
Eisenstein series associated to possibly imprimitive characters; we also need
to include weight & = 1. Therefore the calculations of [7| are not general
enough for our application, which provides the motivation for this paper.

In addition, we prove here some other results that may be of independent
interest. Firstly, we provide a complete enumeration of the cusps on the
Hilbert modular variety. Also, we prove that in weight £ > 1, the cuspidality
of modular forms that are ordinary at a prime p is regulated by the constant
terms at cusps that are unramified at p. We provide two proofs of this fact;
one applies our results on Eisenstein series, and the other is a direct study
of the U, operator. While these two results are likely known to the experts,
we have not found a precise reference for them in the literature.

We now outline the paper and describe our results in greater detail. In
we recall the definition of the space of Hilbert modular forms My(n)
of weight k and level n C Op, following Shimura [10]. Associated to each
A in the narrow class group CI*(F) is a congruence subgroup I'y ,(n) C
GL; (F). The open Hilbert modular variety corresponding to our forms has
ht = # CI"(F) components:

Y = |_| Cia(m)\H", ‘H = complex upper half plane.

The space of modular forms Mjy(n) is endowed with an action of Hecke
operators described in Among these operators are the diamond oper-
ators S(e), indexed by the classes ¢ € G, the narrow ray class group of F
attached to the modulus n. The diamond operators play a central role in
our applications [3|, [4].

In we study the set of cusps associated to Y':

cusps(n) = |_| a(m)\P'(F).

AeCIT(F)

We provide an explicit enumeration of this set. For m | n, let Q, , denote the
quotient of G} x G:/m by the subgroup generated by diagonally embedded
principal ideals (z), where € Op is congruent to 1 modulo n. The following
result proved in §3.3|is already implicit in [12] Pp. 422-423).
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Theorem 1. There is a stratification cusps(n) = ||, Qun with #Qumn =
#HQumn- Each Qu, is stable under the action of G via the diamond opera-
tors.

In We study the Eisenstein series in My (n) and calculate their constant
terms at all cusps. This generalizes the results of |2, Proposition 2.1| and
[7]. We work in a more general setting in this paper by considering all cusps
and allowing for Eisenstein series associated to imprimitive characters. We
normalize our constant terms (see below) so that they are independent
of choice of representatives (up to sign). Furthermore, with these normaliza-
tions the constant terms exhibit nice integrality properties that are studied
by Silliman in |11]. For an ideal b | n, define

(1) Coo(b,1) = | | Q-

bjm
In Theorem we prove the following.

Theorem 2. Let k > 1, and let x1 and xo be narrow ray class characters
of F with associated signs qi,qs € (Z/27)", respectively. Assume that xo is
primitive of conductor b. Then the constant term of Ex(x1, x2) vanishes at
any cusp not lying in Coo(b,n). Furthermore, if

A €T (n)\P'(F)

is represented by /vy € PYF) and lies in Cy(b,n), the constant term of
Ex(x1,x2) at A normalized as in is given by

iT(Xl—XEI) &ksn— fsgn(a)® ~1
(2) 2" 7(x3 ") <Nf) gn(—7)"sgn(@)®xi(ca/b)xz (aa)

x Lx " 1=k) [ (1 = x(a)Ng ™).

Here x denotes the primitive character associated to x1x5 ', f = cond(y),
and q runs through all primes dividing n but not f. The integral ideals a4
and ¢4 associated to A are defined in , and the condition A € Cy (b, n)
implies that b | ¢ 4.

In Theorem [4.5] we also consider the case & = 1. In Theorem [4.§ we
build on the result above and consider a more general case; we calculate
the constant terms of all level-raised Eisenstein series Ej(x1, x2)|m, Where
x1 and Yo are possibly imprimitive, under certain mild conditions. These
results are essential in our arithmetic applications |3| and [4]. In those works,
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we construct cusp forms by taking the appropriate linear combinations of
products of Eisenstein series considered here with certain other auxiliary
forms constructed in [11].

In §5|we conclude with the following result on the cuspidality of ordinary
forms that is applied in our arithmetic applications |3|, [4|. Fix a prime p
and let P = ged(p™, n) denote the p-part of n. The set C, (P, n) defined in
may be viewed as the set of “p-unramified” cusps.

Theorem 3. Let p be a prime. If f € My(n) is p-ordinary for each prime
p C Op dwiding p, then f is cuspidal if and only if the constant term of f
vanishes at each cusp in Co (P, 0).

2 Notation on Hilbert Modular Forms

We refer the reader to |2, §2.1] for our precise definitions and notations,
following Shimura |10], concerning the space of classical Hilbert modular

forms over the totally real field F'. We recall certain aspects of this definition.

2.1 Hilbert Modular Forms

Let H denote the complex upper half plane endowed with the usual action
of GL (R) via linear fractional transformations, where GL; denotes the
group of matrices with positive determinant. We fix an ordering of the n
embeddings F — R, which yields an embedding of GLj (F) — GLj (R)"
and hence an action of GL3 (F') on H™. Here GLj (F') denotes the group of
matrices with totally positive determinant.

For each class A in the narrow class group C17(F), we choose a repre-
sentative fractional ideal t). Let n C O be an ideal, and assume that the
representative ideals t), have been chosen to be relatively prime to n. Define

the groups
a B +
LCox(n) :{ ( v 6 ) € GLy(F) : a,d € Op,vy € ty0n,
ﬁ6<nw%a5—ﬁ766¥},

n“”:{(i ?)ermmyaz1(mMn%.

Here 0 denotes the different of F'.
Let k be a positive integer. We denote by My (n) the space of Hilbert
modular forms for F' of level n and weight k. Each element f € My(n) is
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a tuple f = (fi)recr+(r) of holomorphic functions fy: H" — C such that
flax = fo for all X € CI"(F) and A € Ty \(n). Here the weight & slash
action is defined in the usual way:

" _ +Bl anzn_l'ﬁn
ooy za) = N(det(A)M2 [ (rzit6:) o [ St
Plag(z, . z) (det(A)) (vizi+6;) fA<%21+517 " Ynzn + 0n )

=1

where «; denotes the image of o under the ith real embedding of F' and
similarly for 5;, i, ;.

2.2 Constant terms and cusp forms

Suppose that A4 = (A, ) is an ordered pair with
_(a B +
A= ( v 6 ) € GL; (F)
and )\ € CI"(F). We define the fractional ideal

by = a0+ 7(’90)‘1.

Given f = (fy\) € Mg(n) and a pair A = (A, \) as above, the function
falax has a Fourier expansion

(3) Flax(z) = aa(0) + ) aa(b)er(b2),

bEa
b>0

where a is a lattice in F' depending on A, and

er(bz) == exp(2mi(biz1 + -+ + bpzn))-
Definition 2.1. The normalized constant term of the form f at A is
(4) ca(0, ) = aa(0) - (N£)™**(Nb o) " (N(det A))*/*.

As we will see later, the constant terms with this normalization will
exhibit nice invariance properties as well as integrality properties. The space
of cusp forms Sk(n) C My(n) is defined to be subspace of forms f such that
ca(0, f) = 0 for all pairs A.

2.3 g-expansion

When A = 1 we drop the subscript A and write simply

C,\(O, f) = CL)\(O) (Nt)\)_k/z.
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Furthermore when A = 1, the lattice a appearing in (3) is the ideal
tr. Any non-zero integral ideal m may be written m = (b)t;* with b € t,
totally positive for a unique A € C1*(F). We define the normalized Fourier
coefficients

c(m, f) = ax(b)(Nty)7*/2,

The collection of normalized Fourier coefficients {c,(0, f), c(m, f)} is called
the g-expansion of f. Note that these normalized coefficients are denoted
with a capital C' in [10].

2.4 Forms over a field K

Each tuple f € M (n) is determined by its g-expansion, which the collection
of coefficients

ex(0, f) € C, X € CIT(F), c(m, f) e C,m C Op,m#0

defined in For any subfield K C C, define My (n, K) to be the K-
vector subspace of My(n) consisting of modular forms whose g-expansion
coefficients all lie in K. A fundamental result of Shimura |9, Theorem 7|

states

(5) Mk(l’l, K) :Mk(n, Q) ®Q K.

We define My (n, K) by more generally if K is any field of characteristic
0. This generalizes in the obvious way to define Si(n, K).

2.5 Hecke operators

The space M(n) is endowed with the action of a Hecke algebra T C
End(My(n)) generated over Z by the following operators:

o T, for q{n.
o U, for q|n.

e The “diamond operators” S(e) for each class ¢ € G = narrow ray
class group of F' of conductor n.

We refer to |10} §2| for the definition of these operators. We warn that
in loc. cit. both Ty and U, are denoted by Tj,.

Let us recall the definition of the diamond operators S(e). Let f =
(/3 )recrt(m) € Mi(n) and let ¢ denote an ideal of Op that is relatively
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prime to n, and which hence represents a class in GF. For each p € C1*(F),
let A € CI"(F) denote the class of e~ Write t\t;,'e* = (z) where z is a
totally positive element of F™*, uniquely determined up to multiplication by
a totally positive unit in Oj.. Let

(6) A, = ( ? B ) € GL} (F)

be a matrix satisfying the following conditions:

a, e, B, € t;lb_le, Yu € thOme, 9, € tAtljle,
det(A,) =z, d, =2 (mod t,t, en).

(8) fls@© = (9u)pecr+ () Wwhere g, = fila,.

2.6 Raising the level

For a Hilbert modular form f € My(n) and an integral ideal q of F', there

is a form

fla € My (ng)

characterized by the fact that for nonzero integral ideals a we have

c(a/q, f) ifqla

) cla. 11y) = {O fate

and

(10) CA(0> f|‘1) = CAq(Ov f)

for all A € CI"(F). We recall the definition of f|;. For every \ there is a
p € CI*(F) and a totally positive element «, € F' such that

qty = (O‘u)tu'

(11) (fla)x := Nq"“/2f#\( a, 0 )
0 1

The fact that f|, lies in My (nq) and satisfies @f is proven in |10, Prop
2.3].
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3 Cusps

3.1 Admissibility

Recall the fractional ideal
(12) byg=aO0fr + ’}/(t,\a)il

defined in associated to a pair A = (A,\) with A € GLJ(F) and
A € CI*(F). We now define the integral ideals

(13) ay = ab;ll, Cq = v(t,\ObA)_l.

The ideals a4, ¢4 are relatively prime.

To explain the meaning of these invariants, consider the case F' = Q.
If A represents the cusp a/y € P(Q) with «,~ relatively prime integers,
then a4 = (a) and ¢4 = (7). Finally, we define

(14) my = ged(cg,n).

Given a form f € M (n), it is clear that the normalized constant term
c4(0, f) defined in depends only on A up to left multiplication by an
element of I'y ,(n). Furthermore, writing

B:{(%‘ ?)eGL;(F)},

it is almost true that c4(0, f) depends on A up to right multiplication by
an element of B—there is a sign ambiguity

(15) (0, f) =sgn(Na)*ean(0,f),  A'= ( g ? ) € B.

To see this one combines the following equalities, which follow from the

definitions and , together with the definition of c4(0, f):

aax(0) = aa(0)N(a/8)"2,
NbAA/ = NbA . ’NO(‘,
det(AA") = det(A)N(ad).

If k is odd and the class of A in I'y y(n)\GLj (F) is fixed under right
multiplication by an element A’ € B with Naw < 0, then it follows from (15])
that c4(0, f) = 0. Let us determine the pairs A for which this is the case.
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Definition 3.1. A pair (m,n) with m | n is called admissible if there does
not exist a pair of units €,e; € Of such that ¢, = 1 (mod m),e; = 1

(mod n/m), with Ne; = Ney = —1 and € /€y totally positive.

Definition 3.2. With the level n fixed, a pair A = (A, \) with A € GLJ (F)
and \ € CI*(F) is called admissible if (m4,n) is admissible.

Theorem 3.3. Given a pair A = (A, \), the class of A in Ty \(n)\GL3 (F)
is fized by right multiplication by an element A" € B with Na < 0 if and
only if A is not admissible.

Before proving the theorem, we introduce some notation and prove an
important lemma. Given a fractional ideal b and an integral ideal m, we
denote by (b/bm)* the subset of elements of b/bm that generate this quotient

as an Op/m-module. This is a principal homogeneous space for the group

(Op/m)".
Definition 3.4. For a fractional ideal b and an integral ideal m, we define
R = (b/bm)" /O,

the quotient of the set (b/bm)* by the action of multiplication by the group
of totally positive units of F.

Definition 3.5. Let P,(n) be the set of tuples (b,m,«,~) where b is a

fractional ideal of F', m is an integral ideal dividing n, o € RY, and v €

botym
Rn/m .

Note that the number of elements in Rﬁ%m = (botym/bot\n)*/OF , is
independent of A, thanks to the bijection with (Op/(n/m))*/O% . Therefore

the cardinality of P,(n) is also independent of A.
The heart of Theorem [3.3]is the following lemma.

Lemma 3.6. Fiz A € CIT(F).
There is a canonical bijection

p: Tia(\(F?\ (0,0)) — Pa(n)

given by (a,y) — (b,m,@,7), where b = by and m = my are defined as in
ond ()

Proof. The fact that the map ¢ is well-defined is elementary and left to the
reader. Surjectivity is also not difficult. Given a fractional ideal b and an
integral ideal m | n, choose v € t,0b such that ged(707!t; ", n) = m. Scaling
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~ by an appropriate element of O relatively prime to n, we can ensure that
v lands in any class in R:%m without changing the ged condition. Next we

choose any o € Op such that
(16) aOr +~y(0t)) ' =b.

Scaling @ by an appropriate element of O relatively prime to v(dt\b)™!,
we can ensure that « lands in any class in RY without affecting . This
proves the desired surjectivity.

For injectivity, suppose that

(17) QO(CY?P)/) = QD(O.//,")//) = (b>m>av 7)

Let A correspond to (a,v) and A" to (o/,7') as in the statement of the
lemma. From the third component of , there exists a totally positive
unit € € Of, such that o/ = ea mod bm. Since Y7 4 bn = bm, we

p

can act by an element of the form < 8 ] ) on (a,v) with 8 € (o))~ to

ensure that « = o (mod bn).
Next let u € OF, such that 4/ = uy (mod bdtyn). Such a u exists by
the fourth component of . Note that the pairs (a,7), (a/,7") can be

completed to matrices

_ [ @ B _ r_ o f no_
M_<7 5>,det(]\/[)—1, M—<7, 5 , det(M') = u,
with 3,8 € (0ty\b)~! and 6,8 € b~!. We claim that § and ¢’ can be chosen
to satisfy

&' =6u (mod b~ 'n).

Granting the claim, it is straightforward to check that

/

MM (O‘) - <O‘) and MM~ €Ty, (n)
Y Y

as desired.

It remains prove the claim. Given any y € b~ ¢4, we can write y = v
with z € (0t,b%)~! and replace (3,8) by (8 + ax,d + vx). Hence § can
be replaced by any element in its equivalence class in b='/b ¢ . Since
ged(cq,n) = m, to prove the claim it therefore suffices to show that ¢’ = ud
(mod b~'m). If @ = 0, this is clear since m = 1. Otherwise, multiplication
by a induces an isomorphism b~!/b~'m — a4/a4m, so we must show that
ad’ = adu (mod aam). Now m divides ¢4, which is coprime to a4, so by
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the Chinese Remainder Theorem it suffices to separately show that ad’ =
adu (mod ay) and ad’ = adu (mod m). The first of these is trivial since
ad’, adu € ay. To prove ad’ = adu (mod m) we note

ad — adu = 'Y + (a—a')d — Byu

with v = /7 € cx C m, fyu € ¢4 C m, and (o — &’)d € n C m. This
concludes the proof. O]

Proof of Theorem[3.3] Suppose that A = (A, A) is not admissible with A =

(6

~
ity, so Ne = =1, e =1 (mod m), and € = €163 (mod n/m) with €6, € OF

X 691 ) sends A

, and let m = my. Let € = ¢; € O} in the definition of admissibil-

a totally positive unit. Right multiplication by M = < 0

to ( ac : ) It is immediate from the definition that ¢(a, ) = ¢(ae, ye),

e
hence Lemma implies that there exists A’ € I'y y(n) such that A’A and
AM have the same first column. Therefore there exists N = ( é : ) eB

such that A’A = AMN. Tt follows that the class of A in I'; \(n)\GLj (F) is
fixed by right multiplication by M N € B, and the lower right entry of M N

has negative norm.

To prove the converse, suppose that A = ( j ? ) € GLJ(F) and
the class of A in I'; y(n)\GLj (F) is fixed by right multiplication by M =

( g Z ) € B, where Nz < 0. By Lemma |3.6| we have ¢(«, ) = ¢(az, yz).

From the first component of this equation, we see that x € O%. From the
third and fourth components we see that there exist totally positive units
U, Uy € O}‘;’Jr such that

r=wu; (modm) T =up (mod n/m),

where m = m4. Note that Nx < 0 (and hence Nx = —1) since Nz < 0 and
xz is totally positive. Then letting ¢; = x/u; and €3 = x/uy shows that
(m, n) is not admissible. O

Corollary 3.7. Let k be odd, and let f € My(n). The constant term c4(0, f)

vanishes if A is not admissible.

Proof. By Theorem if A = (A, \) is not admissible then the class of A
in Ty ,\(n)\GL3 (F) is fixed by right multiplication by an element A’ € B
with Na < 0. Then c4(0, f) = caa (0, f), but by we also have
ca(0, f) = —caar (0, f). The result follows. O
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3.2 Definition of cusps

For I' C T’y \(n) any congruence subgroup, the associated set of cusps is by
definition the finite set

(18)  cusps(T') :=T'\GLj (F)/ {( 3‘ g ) € GL;(F)} < D\PY(F).
The bijection in 1| is ( ?; g ) — (a1 ). We define
(19) cusps(n) = |_| cusps(I'y x(n)).

An ordered pair A = (A, \) with A € GLj (F) and A € CI(F) gives rise
to an element of cusps(n) by considering the image of A in cusps(I'; x(n))
in the A-component of the disjoint union . The cusp represented by A
will be denoted [A] € cusps(n).

Definition 3.8. For each m | n, we define Qn, to be the set of cusps
[A] € cusps(n) such that m4 = m.

The set of admissible cusps is defined by

cusps®(n) = |_| Quma = {[A]: A is admissible}.

min
(m,n) admissible

There is a canonical action of the diamond operators on cusps(n) that
is compatible with its action on modular forms. Given an integral ideal ¢
coprime with n and a cusp A = (A, 1), we define A and A, as in (7) and
define

S(e)A=A" = (AN, where A'=AA

Proposition 3.9. Each set Qu, is invariant under the action of G via
the diamond operators.

Proof. With notation as above, one checks directly from the definitions that
b4 = bym. Furthermore one calculates that

maby = ged((y.a + 8,7)(0t)) 7, nba)
= ged(8,7(0t) ", nb )
C ged(y(t,) 'm, b )
= ged(cqbam, nb y)

= mAbA/.
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Therefore my C my4. However, this is a group action; replacing m by an
ideal whose image in G is inverse to m and switching the roles of A4 and A’,
we find the reverse inclusion my4 C my . Hence m4 = my, and the result
follows. 0]

3.3 Enumeration of cusps

We now enumerate cusps(n) and more specifically each subset Q. Recall
the set of 4-tuples Py (n) defined in Definition For each ideal m | n, let
Pr(m,n) C Py(n) denote the set of tuples whose second coordinate is m.
There is a natural action of F™* on Py (n) that preserves each Py(m,n), given
by

z-(b,m,a,v) = (b(z), m, az,yz).

The following is an immediate corollary of Lemma

Corollary 3.10. For each class A € G, there is a canonical bijection
[ a(m)\PY(F) — Py(n)/F*.
There are canonical bijections

(20) Qua — || Pi(mn)/F*,
AeCIT(F)

cusps(n) — |_| P\(n)/F*.
AECTH (F)

Definition 3.11. Let Qu, denote the quotient of G}, x G:/m by the sub-
group generated by diagonally embedded principal ideals (z), where x € Op
is congruent to 1 modulo n.

Corollary 3.12. We have #Qumn = #Qmn, hence # cusps(n) = th #Qun.

Proof. From we have #Qm . = ht#(Py(m,n)/F*), where ht = # CI*(F).
There is a surjective map

(21) Py\(m,n)/F* — CI(F), (b,a,y) — [b].

For an ideal a, we put R, = ROF. If U denotes the image of O% mapped
diagonally to Ry X Rn/m, then the fiber over a point in is a principal
homogeneous space for (Ru X Ry/m)/U. Therefore

(22) #Qun = (W) - #(Ra X Ruym) /U),
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where h = # CI(F'). Meanwhile, there is an exact sequence
(23) 1 = (R X Rujm)/U = Qun — CIT(F) x CI(F) — 1,

where the second nontrivial arrow is ([a], [b]) — ([a/b], [a]). From we
deduce that #Qw . also equals the right side of , completing the proof
of the corollary. O

3.4 Constant term map

If £ is even we define

Cp = @ C.

cusps(n)

Then implies that we have a well-defined constant term map
(24) con: My(n) — Ck,  f > (cal0, f)) -

For k odd we must deal with the sign ambiguity in (15). For k an odd

integer, let
Cy = @ @ C.

AeCIt(F) Ael'; z(n)\GLJ (F)
A admissible

Endow C, with a right action of the upper triangular Borel B by

[A] - A" — [AA]sgn(NJ),  where A" = ( ; Z; ) :

We let
Cy = Hy(B,Cy) = Ci/{c-b—c: ce Cy,be B).

Of course, Theorem [3.3]implies that

Cp & @ C.

cusps*(n)

However, fixing such an isomorphism requires making a non-canonical choice,
which we would like to avoid. For positive odd k we again have a canonical

constant term map
(25) cong : Mk(n) — Ck

that sends a modular form f = (fy) to the tuple of normalized constant
terms c4(0, f). The discussion above implies that this map is well-defined.
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3.5 Cusps above co and 0

We introduce the suggestive notation
Co(n) = Do = {[A] € cusps(n): 1 | ca}.

This is the smallest set of cusps containing the cusps oo € T'y (n)\P!(F) for
each A € CI7(F) that is stable under the action of the diamond operators
S(e). It follows from equation with m = n that #C.(n) = hh,, where
h, = #G,, the size of the wide ray class group of conductor n. Similarly, let

Co(n) = Q10 = {[A] € cusps(n): ged(n,cq) = 1}

This is the smallest G -invariant set of cusps containing 0 € T'y ,(n)\P!(F')
for each A € CI7(F).
If n =1, then cusps(n) = C(n) = Cy(n). If n is prime, then cusps(n) is
a disjoint union of Cy(n) and Cy(n). In general there will be more cusps.
If b is a divisor of n, then for x = 0, co we define C, (b, n) to be all elements

in cusps(n) whose image under the canonical map cusps(n) — cusps(b) lies
in C,(b), i.c.

Coo(ban) = |_| Qm,na Cg(b,n) = |_| Dm,n'

bjmn min
(b,m)=1

3.6 Lemma on level raising and cusps

The following remark will be used in later computations.

Lemma 3.13. Let f € My(n) and let q 1 n be a prime ideal. Let A = (A, \)
represent a cusp [A] € Cx(qm,qn) for some m | n. There exists a pair
A" = (A, ) such that [A'] € Coo(m,n) and

(26) CA(Ov f|q) - CA’(Oa f)

Proof. Write A = (A, \). By definition,

((Fla)x)la = Nq_kmfu\A/, where A’ = < oz;a O‘gﬁ )

and gty = (a,)t,. Let A = (A, u). Then [A'] € Coo(m,n) and c4(0, f|q) =
ca (0, f) are direct calculations using . ]
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4 Eisensteln series

We recall the well-known Eisenstein series using |2, §2.2] and |1| as conve-
nient references. Let 7, x be narrow ray class characters of modulus a, b,
respectively, such that ny has sign (k, k, ..., k). With the exception of the
case F' = Q,k = 2,1° = x° = 1, when there are convergence issues, there is
an Eisenstein series Ex(n, x) € My (ab). Here n and y are not assumed to be
primitive characters, and 1n°, x° denote the primitive characters associated
to 1, x. The Eisenstein series Ey(n, x) has g-expansion coefficients given by

c(m, Ex(n,x)) = Y _ n(m/e)x(x)Ne* .

t|m

For k > 1, we have

27" YN L(xn™ 1 —k) ifa=1

ax(0, Ex(n, x)) = {0 if a# 1.

For k=1, a=1, and n = 1, we note that

. L(x,0) ifb#1
a0, Ea(1,x)) = 27" { L(x,0) + X—>1<(tA)L(X—1,o) if b=1

for all A € CI7(F).

Given a fixed level n, the Eisenstein subspace Ej(n) C My(n) is defined
to be subspace spanned by the Eisenstein series Ej(7, x)|q where 7, x are
primitive narrow ray class characters of conductor a, b, respectively, such
that nx has sign (k,k,...,k) and abq | n. An elementary argument using
Hecke operators shows that for k£ > 1, these Eisenstein series are linearly
independent (see |1) Prop. 3.8|). For k = 1, we have E1(n, x)|q = E1(X,1)|qs
and these equations generate the space of relations among the Eisenstein
series.

The Eisenstein subspace is a complement to the space of cusp forms
Sk(n), i.e. we have

(27) M(n) = Ej,(n) ® Si(n).

Furthermore, for k£ > 2 (excluding the case FF = Q,k = 2) the restric-
tion of the map cony defined in and to the subspace Ej(n) is an

isomorphism:

(28) CONg g - Ek(n) :> Ck
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The results and are proven in |12, Prop. 1.5] for weight k = 2,
and we sketch now a proof in the general case. Firstly, one can show that

(excluding the case F' = Q, k = 2) that there is an equality of dimensions

in :

# cusps(n) = thl #HQun if k> 2 is even,

(29) dime Ei(n) = {#cusps (n) = Z;‘n #HQumn if k> 3 is odd.

To see this for k even, note that #Qu » is the number of pairs (1, x2) where
X1, X2 are ray class characters of modulus m,n/m, respectively, such that
X1X2 is totally even. To such a pair we can associate the Eisenstein series
Er(XY, X3) Im/ cond(xa)- Here x? and x3 denote the primitive avatars of y; and
X2, respectively. These Eisenstein series form the defining basis for Ej(n).

For k£ > 3 odd, it is not hard to show that there exists a pair of characters
X1, X2 of modulus m,n/m, respectively, with x;x2 totally odd if and only if
(m,n) is an admissible pair. In this case, #Qm is equal to the size of the
set of such pairs (x1, x2). The argument then continues as in the case for &
even, and we find that the dimension of Ej(n) is Z:1|n #HQmn-

With in hand, both l) and for k > 2 follow from the fact
that

Ey,(n) N Sk(n) = {0},

which is usually proven using the Petersson inner product (see for instance

[1, Prop. 3.9] or |12} Page 423]).

4.1 Evaluation of constant terms of Eisenstein series

Let x; and ys be ray class characters of modulus a and b and signatures
q1 and o, respectively. Put n = ab. Let k£ be a positive integer and assume
¢ +q = (k,..., k) (mod 2). In this section we compute the constant terms
of Eisenstein series Ey(x1,x2) at various cusps A = (A, ), where A =
(37) € GLE(F).

We write ag = cond(x1), bg = cond(x2) and let a; = a/ag, by = b/bo.
Without loss of generality, we assume that ged(ag, a;) = 1 and that a; is
square-free, since increasing the modulus at a prime already dividing the
conductor or increasing the power of a prime already dividing the modulus
does not affect the character or associated Eisenstein series. We make the
same assumptions about b;.

Definition 4.1. The Gauss sum associated to a primitive character x of
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conductor b and sign r € (Z/2Z)" is given by

()= Y sen(a) x(zbd)ep(x).

zeb—1o-1/0-1

For a general character y we define 7(x) = 7(x") where x° is the associated

primitive character.

Recall the invariants au, b, ¢4 defined in §3.1]

Definition 4.2. Assume that [A4] € C(b,n), i.e. that b | c4. Write by =
cond(z). Let x denote the primitive character associated to x1x5 ', and
write f = cond(y). Define

Pa(x1, x2, k) =
(30)
%Ti)f;ﬁ)) (waf) sgn(—7)"sgn ()2 x1(c.a/bo) (x3) (@) Ly 1~ k),

where x5 denotes the primitive avatar of x». Here and throughout this arti-
cle, we adopt the convention that x;(m) = 0 if gcd(m, a) # 1, and similarly
for any ray class character. We also use the convention that if « = 0 and m

is a fractional ideal, then

0 ifa#1,
X1<m) ifa=1.

sgn(a)” x1(am) = {

For example, when v = 0 in the expression sgn(—v)% x1(c4/b) should
be interpreted as 0 if a # 1 and as ;' (txdb4b) if a = 1. The analogous
convention holds for the term sgn(a)®x; "' (a4) = sgn(a)®x; ' (ab!).

For finite sets S and T of finite places of F', define

Pa(x1, X2, k,5,T) = Pa(x1, X2, k) H(l —x " '(q)Ng" ) H(l — x(@)Ng™").

qes qeT

Further, for an ideal a | n we define

do,a(a) = { 1 [A] € Cy(a,n)

and
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Remark 4.3. Suppose that ay = cond(x;) and by = cond(ys) are coprime.
Then

T(xaxz") = x1(bo)xz ' (a0)T(x1)7(xz ")

and hence

(31)

P k _ T(Xl) _ q1 q2 —1 L —1 _k,

A(X15 X, )—2n(Nak)sgn( v)sgn(a)®xi(ca)xs (aa/ao)L(x 1 — k).
0

We require one more piece of notation.

Definition 4.4. Let m | n. We write J,, = Jn(A) for the set of prime
divisors q | m such that [A] € Cy(q,n) and J¢ for the set of prime divisors
q | m such that [A] € Co(q,n).

Theorem 4.5. Assume that 2 is primitive of conductor b. The normalized

constant terms of Ex(x1,x2) at A are given as follows.

(1) Let k > 1. The normalized constant term of Ey(x1,x2) at A equals

(32) 6OO,A(b)PA(X17X27k7®7Tn,f)7
where T, 5 is the set of primes dividing n but not f.

(2) Let k = 1. Suppose that a and b are coprime. The normalized constant
term of Ey(x1, x2) ot a cusp A equals

507A(a)5007A(b)PA(X17 X2, 17 (Da Tn,f)
(33) 4 6u.a(a0)00.a(6) Palx2, x1. 1. J5, 0) J] (1 = Ng™),

q€Jay

Remark 4.6. Note that F;(x1,x2) = Ei(x2,x1). The theorem only as-
sumes that yo is primitive; if we assume also that y; is primitive, then in
the setting of part (2) the sets T}, Jo, and J¢ are empty and becomes
symmetric with respect to x; and y».

Remark 4.7. The term dp 4(a) is unnecessary in since Py(x, 1, 1)
already vanishes if [A] € Cy(a,n). In this case the assumption ged(a, b) = 1
implies that ged(a,cy) is non-trivial, whence xi(c4/bo) = 0. We include
this factor simply as a reminder that this portion of the constant term is
supported on Cp(a,n) N Cu(bo, n).

Proof of Theorem Recall the definition of the Eisenstein series Ej,(x1, X2)
given in |10, Prop. 3.4] (see also |2, section 2.2|). Let

U={uecO;:Nu*=1u=1(mod n)}.
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For k > 1, we have Ex(x1, x2) = (fa(2))recrt(r), Where fy(2) is defined via
Hecke’s trick as follows. For z € H and s € C with Re(2s + k) > 2, define

(34) f(z,8) = Car(xa) Y Ntbga(z,s)

teCl(F)

where

VArD(E)"N(t,) 2
[0 - UN(@)N(b)(—2mi)kn

Cy\ =

B sgn(a)‘hxl(at_l)sgn(—b)‘hxgl(—bbbb\t_l)
(35 oa(z8) = Z (az + b)*laz + bJ?*

a,b
— Z sgn(ag)? x1(aor " )sgn(—bg)2x;  (—bobdtyr ™) x
(a0,bo)
(36) .

(a,b)zz(ao,bo) (az + b)*laz + bJ?s
The sum in runs over representatives t for the wide class group
CI(F). The sum in runs over representatives (a,b) for the nonzero el-
ements of the product v x Dflb’ltglt modulo the diagonal action of U. In
equation the sum (ag, by) runs through (t/vab)x (071671 'v /071t 'va),
while (a, b) ranges over nonzero elements of t x 97161t 't modulo the di-
agonal action of U such that a = ag (mod tab) and b = by (mod d7t; 'ta).

Here we use
x1(a) =sgn(a)® fora=1 (mod a), x2(b) =sgn(b)® for b=1 (mod b).

We remark that in the definition we already use that yo is primitive,
applying [10, equation (3.11)]). The function f\(z,s) can be analytically
continued in the variable s to the entire complex plane, and we set f\(z) =
fa(2,0).

We choose representatives of the cusp [A] = [(A,\)], with A = ( 7,
as follows. Let g = ged(b, c4). The cusp [A] only depends on («,7), so for
convenience we are free to choose 3,9 such that

(37) det(A) =1, 6 € (tAabAg)_lv o€ b(bAg)_l'
Such (3, ¢ exist because (using notation from ) we have

(38) ab(bag) ™ +(60bag) " = aabg +cag”t = Op.
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The last equality holds as c4g~! is coprime to both bg~! and a4. The map
(a,b) — (u,v) = (a,b)A induces a bijection
(39) tx t(dtyb) ! — thagb ! x v(dtybag)
To see this note that

(u,v) = (a4 by,af + bd) and (a,b) = (ud — vy, —uf + va).
For (a,b) € v x v(dt\b) ™! we have

u=aco+by€rbagb™" (ab(bag) " + y(t\0bag) ") = tbagb!
by . Meanwhile

v =af+ b6 € t(0tr\bag) " +r(0tyb) Tb(b4g) "t = t(dtybag) "

For the other direction we note that for (u,v) € tb gb™" x v(dt\bag)~' we

have
a=ud —vy € tbagb tb(bgg) ' +rg y(dtabs) T =t +t(cafg) =
and
b= —uB +va € thagb t(0tybag) " + t(0tybag) ta = t(dtyb) L.
This completes the proof that is a bijection. This bijection restricts to

a bijection

tab x v(dty) ta — thaga x t(dtybyg) 'n.

The function gy(z, s)|4 can be written

g (z,8)|a = Z sen(uod — voy) ™ x1((uod — vory)t™Hsgn(ueB — voa)2 x5 ' ((uoB — voar) bt r ™)

uo,v0

(40)

1
X .
Z (uz 4+ v)F|luz + v|?s

(u,v)=(uo,v0)

Here ug and vy run through complete sets of representatives of
thagb ' /tbaga  and  t(0tybag) ! /t(0ty\bag) 'n,
respectively, and the pair (u,v) runs through representatives for

((tbagb™ x v(dtrbag) ")\ {(0,0)}) /U
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such that (u,v) = (ug,vo). We now recall notation from [10, §3]. Up to a

constant factor the sum

1
(uav)EZ(uo,vo) (e +v)ffuz + vl
equals the series Ej (2, ug, vo, tb4ga, t(dtyb4g) 'n) defined in |10} equation
(3.1)], with 7 in loc. cit. set to 0.
We are now ready to prove (1), though we remark that much of what is
said below also applies to (2). We have k& > 2. By |10} equation (3.7)] the
constant term of gy(z, s)|4 at s = 0 is the value at s = 0 of

ngn(uoé — 007) " x1((uod — voy)r™H)sgn(uf — voa)2 x5y (g — voa)bdtyr ™)

uo,v0

x (—1)"6(ug, th 4ga) Z sgn(Nv)F|Noy| 725,

V=0

Here 6(ug, tbaga) = 0 if up ¢ tbga and is 1 otherwise. Therefore only the
summands where the class of ug is trivial contribute to the constant term
of gx(z,5)|a at s = 0.

If ug € tbyga, then using the relation byy = ug — apar we deduce that
boy € tb4. On the other hand byy € tb4c4b~!. Therefore

boy € thy Ntb e b™ =tbcag™.

From this we obtain by € t(t,0g) . Now consider the case that A does not
represent a cusp in Cy (b, n). This is equivalent to b { ¢4 which in turn is

equivalent to g # b. Hence bybdtyr™?

is an integral ideal not coprime to b.
Therefore x5 ' (—bobdtyt™!) = 0 and hence the terms where the class of ug
is trivial also vanish, so the constant term of g,(z,s)|a at s = 0 is 0. Note
that here we have used by = —ugf + voa.

Next we turn to the case that A does represent a cusp in Cy.(b,n), so
g = b. As observed above we are only interested in the term with uy € tb 4ga.
We choose ug = 0 to represent the trivial coset in th 4gb~! /tb 4ga. Therefore

the constant term of gx(z,s)|4 at s = 0 is the value at s = 0 of

Z sgn(N(—wvp))*sgn(y) " sgn(a)®x1(—vore")x; ' (—voabdtye ™) (1) Z

V=00

= “sgn(y)%sgn(a)®xa (—vye g H(—vabdtye )N (vOp) F .

Hence the constant term of fy(z,s)[4 at s = 0 is the value of the following

sgn(Nv)*

‘ Nuv | k+2s
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sum at s = 0:

Car(x2) > NP> sgn(y)”sgn(a)x:(—vyet)xg  (—vabdtye )N (vOp) F-2

teCI(F) v
= Ca7(xa2)sgn () Msgn(a)®(—1) 772" x (7 (bdtaba) " )xs ' (a(ba) TN (bdtrb ) 2
X Z Z X1 (0006, b gt ™) x5 L (wbdty b gt N (vbdty by ) TN () 7R

Here we have made the change of variable v — —v. The value of this at

s=201s

Cat(x2)sgn ()" sgn(a)® (—1) " x1(c4/b)x3 ' (a)N(bdtyb )" x
03 - UIL(x. k) J] (1 = x(a)Nq™),

qe,Tn,f

where y is the primitive character associated to x1x; ' and q runs through
the set T, of all primes dividing n but not § = cond(x). Next we use the
functional equation

d(F)2 =k N =k (277)kn

) Y

L(x, k) =

together with the relations

We find that the unnormalized constant term ay 4(0) of fi(z,0)|4 is

T(x1X5 " ’ 2 7

S((xxl)) (N;[;A) Ny %sgn(—7)" sgn(e)®x1(ca/b)x; ' (a.4) X
L(Xfl, 1-— k)
oo

T = x(a)Ng™).

q

/2 multiplied by this, yielding

The normalized constant term is (Nb A)_’“Nt;k
statement (1) of the theorem.

Everything up to this point also applies when k£ = 1. However, when
k =1, the formula in {10} equation (3.7)] shows that there is an additional

term which arises from the constant term in the g-expansion of

1
Z (uz +v)|uz + v|?

(u,v)=(uo,v0)
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at s = 0; its value is the following sum at s = 0:

(—2mi)*N(b1) sgnN(u)

Therefore the second term in the constant term of g)(z, s)|a at s = 0 is the

value of the following at s = 0:

> sgn(ugd — v97)™ x1((1ed — v07)r ™" )sgn(ueS — voar) x5 (1o — vocr)bdEAT )

uo,v0

y (—2mi)*N(b~1) Z sgnN(u)

on\/d(F) &= [Nuf*
(41)
(= 2m k”N ngnNu
o |Na|2s

X Z sgn(ud — vey) " x1((ud — voy)r H)sgn(ufB — voa) x5 (uB — voar)bdtyr ™).
V0
Here the second sum in runs through all vy in a set of representatives
for

t(0trb4) ! /t(dtbag) " ab.

By the definition of g, we have vy € dt,\b4g, and hence vy € t(0t\bag) ta =
vy € ta. Therefore the last sum above (i.e. the expression appearing in
after the x symbol) can be written as a double sum

(42)

> sgn(ud — vyy) x1((ud — vpy)e ")
vo€r(dtabag) ! /r(dtrbag)'a
(43)

X Z sgn(ufB — vha)2xy H((uf — vha)botye ™)

vhEr(dtabag) ! /r(dtabag) tab
vh=vo (mod t(dtrbag) " la)

Recall that the “finite part" of the character ys is the character

Xa.p: (Op/b)" = C* xo (@) = sgn(@)®x2((a)).

We extend x2 s to a function of O/b by dictating xo, () = 0 if ged(a, b) #
1. Up to multiplication by a nonzero scalar, the expression (43) in large
parenthesis is the sum of y,  over a coset of the ideal in O/b generated by
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asbg~!. Since Y, is primitive of conductor b, it is elementary that such a
sum vanishes unless a4bg™! is divisible by b, i.e. unless g = Op. In other
words, if [A] & Cy(b,n) then the sum is 0 and if [A] € Cy(b,n) then
(43) equals
Nb - sgn(uf)?x; H(ufbdtye ™).

As we now show, a similar argument implies that the sum is zero
unless we also have [A] € Cx(ag,n). Since g = 1, the sum
(44) Z sgn(ud — vy)? x1((ud — vey)r ™).

Vo

appearing in is the sum of x r over a coset of the ideal in O/a generated
by 7(0t\b4) ™! = c4. This vanishes unless ag = cond(x;) divides ¢4. Hence

(44) vanishes unless daq | ¢4, i.e. unless [A] € C(ag, n). Furthermore when
[A] € Cx(ag,n) the value of can be easily calculated directly. Let

ag = quJg qand ag = a;/ap = HqGJal q. Then the value of is

Nas [ J(1 = Ng~")sgn(ugd)” X (uodr ™),

qlas
where x7 is the character x; with modulus apas.
Combining these calculations, we find that for [A] € Cy(b,n)NCy(ag, n),
the second part of the constant term of fy\(z,s)|a at s = 0 is the value at
s = 0 of the following:

(—2mi)

Cht *Na L=Ng!
) 2" N(v(0tyby)tag)\/d(F) 31]:!;( i
1 i sgnNu
X Z Ntngn uod) " sgn (uoB) X7 (uodt ™) x5 ' (uo SOt Z |Nu|2s
teCl(F) uo =
(—2mi)™ Q 2\*(5pL -
= )7 (x2) H “H)sgn(8)™sgn(B)®x; (507 b.a) Xz (Botrb.A)

2PN ((0tpby)~

qlﬂs
X Z Z XTXQ_I(Ub(bA)_lt_l) |NU|25 :

The value at s =0 is

(45)

7(x2)Nty/*Nb 4
2"Nb

sgn () sgn(B)%x; (66~ b4) x5 (Btaba) L(x. 0) [ J(1—=x(a) [J(1-Na ™).

qlaz qlas

Since agay | ¢y, it follows that 8y € agas and hence ad = 1 (mod apas),

whence

sgn(0)? x7(067"b.4) = sgn(e)® (x7) ™" (a.4/b) = sgn(a)® xi ' (a.4/b),



26 S. Dasgupta and M. Kakde

where the last equality follows since ged(ay,as) = 1. Similarly ad € b =
—fBy =1 (mod b), hence

sgn(B)2 x5 (Botaba) = sgn(—7)2x2(ca).

Therefore, noting , after scaling by the normalization factor (Nb A)_thgl/ 2
for constant terms, the value in is equal to

Palxzx, D) [0 = x(a) JJ(1 = Ng ™).

qlaz qlas

The first term calculated above (for k& > 1) is non-zero only when the
cusp [A] belongs to Cy(b,n) N Cy(a,n). The second term is non-zero only
when [A] belongs to Cy(b,n) N Cy(ag,n). This finishes the proof. O

4.2 Constant terms for raised level and imprimitive
characters

In our arithmetic application |3|, we require the constant terms of the level-
raised Eisenstein series Ei(x,v)|n for auxiliary squarefree ideals m, with y
and 1 possibly imprimitive. This level raising is related to the T-smoothing
operation of Deligne-Ribet [5].

The following notation will be in effect throughout this section. Let x and
1 be characters of modulus a and b and signatures ¢; and gs, respectively.
Let k be a positive integer such that ¢1+¢2 = (k, ..., k) (mod 2). We denote
the conductors of x and ¥ by ag and by, respectively and put a; = a/ay and
by = b/by. Assume ged(by,a) = 1. Let n = abl for a square-free integral
ideal [ with ged(ab, [) = 1. We assume that a; is squarefree and coprime to
ag, and similarly for (by, by).

Let A = (A, \) with

A= ( 3 I ) € GL}(F), AeCIT(F).

Theorem 4.8. Let m be a divisor of [. The normalized constant term of
Er(x,¥)|m at A is given as follows:

o [fk > 2, then the normalized constant term of Ex(x,v)|m at A is
(46)
0004 (00) PA0G 0, K, g Jo) [T (1-Na™) [ (w(@Na") ™ T x ().

a€Je, q€Jm a€JIm
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o [fk =1, we further assume that ged(a,b) = 1. Then the normalized
constant term of Ey(x,¥)|m at A is

(47)
00.4(8)000,4(60) Pa(x, ¥, 1, T Jo) T (1= Na™) T @(@Na)™ [ x(a
q€Jp, q€Jm qeJG
+ 0o, a(60)00.4(0) Pa(¥, X 1, 5,5 Jo) [T (1= Na™) T x(@)Ng) ™ [T 7
q€Jay q€Jm q<Jqn

Proof. We give the proof for k£ > 2. The argument for k£ = 1 is identical and
left to the reader.

First we assume that b = by, i.e. by = 1 and calculate the constant
term of Ex(X,?)|m. Let m = q; - - - q; and use induction on j. The base case
J = 0 follows directly from . Write p for the Mobius function defined by
u(t) = (—1)* where k is the number of prime factors of t if t is squarefree,

and u(t) = 0 otherwise. For j > 0 we use the expression

tjm
Here xm denotes the character x viewed with modulus am. If J, = {q1,...,q;},

then 6y 4(am) = dp 4(a), so by the normalized constant term of Ey(xm, %)
at A is

(49> 50,A(a)5OO,A<bO)PA<X7 w7 k? ®7 Ja1) H(l - Xw_l(qz)Nq;k>

qlm
The induction hypothesis gives the normalized constant term at A of each
term on the right side of except for Ej(x,¥)|m. Therefore one can use
(48) and to solve for the normalized constant term of Ejx(x,1)|n at A.
One obtains

00,4(0)000,4(B0) Pa(x, 1, k, 0, Jo,) [ [Oxv0™" (a:)Naf) ™
qlm

as desired. Now suppose Jn # {q1,...,q;}, which is equivalent to [A] ¢
Co(m,n). This in turn implies that [A] € C,(q;,n) for some i, whence
(ca/bo,am) # 1 and xwm(ca/by) = 0. Therefore implies that the con-
stant term of Ex(xm, %) at A is 0. Without loss of generality, assume that
q; ¢ Jm. For every subset I C {q1,...,q9;21}, put q; = Hqiel q;. If I #
{q1,...,9j-1}, then we can apply the induction hypothesis to the forms
Ei(x, )| for both t = q; and t = q;q; on the right side of 1} to see
that the contributions made by their constant terms at A cancel. It fol-
lows that the constant term of Ei(x,%)|m at A equals x'(q;) times that
of Ei(X,%)|m/q;, and we are done by the induction hypothesis.
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Next we relax the condition that b; = 1. We use the expression

(5()) |m - Z:u Nt i 1Ek<X7 0)’tm7
t|b1

where ¢ is the primitive character associated with 1. The case already
completed for ¢ primitive gives the constant terms of the forms on the right
of . The result then follows from the formula

> O @MY [T @Na) ™ ] x ()

/by qeJi qeJ¢
=[] —Na") [T (0 =x"e(a)Ng").
qEJ[,l qGng

5 Ordinary forms

Let p be a prime ideal of Op dividing a prime number p. Following Hida,
we define the ordinary operator

. !
egrd = lim U;".
n—oo

Let B = ged(p™, n) be the p-part of n. We define

e%d = egrd.
pIF
Let E be a finite extension of Q,. The space of P-ordinary forms is defined
by:
Myi(n, E)¥ Y = e My (n, E)

This is the largest subspace on which the operator U, acts invertibly for
each p | B.

Theorem 5.1. A form f € My(n, E)¥ 4 is cuspidal if and only if its
constant terms at all cusps in Cy(P,n) are zero. If f € Myg(n, E) has

constant terms zero at all cusps in Coo(P,n), then ex(f) is cuspidal.

We provide two proofs of Theorem The first proof is longer, but its
method could have other applications, so we include full details. We begin

with the following elementary lemma from linear algebra.

Lemma 5.2. Let V' be a finite dimensional vector space over a field and let
B = {v1,...,v,} be a basis. Let S be a possibly infinite set of commuting
endomorphisms of V' satisfying the following properties:
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o After re-ordering, the matriz for each T € S with respect to the basis

B s in Jordan canonical form.
o Fvery Jordan block of size greater than 1 has associated eigenvalue 0.

Let B" C B be the set of basis vectors that are actual (non-generalized)
eigenvectors for every T € S. Suppose the elements of B' are distinguished
by their S-eigenvalues, i.e. for v; # v; in B', there exists T € S such that
the T-eigenvalues of v; and v; are distinct. Finally let W C V' be a subpace
that is preserved by each T. Then W is nonzero if and only if it contains

some v; € B’.

Proof. Suppose v = > a;v; € W with the a; not all zero. We first show
that we can find another nonzero v € W such that its expression as a
linear combination of elements in B only contains elements of B’. For this,
suppose that v; € B\ B’ occurs in v with a nonzero coefficient a;. Let T' € S
such that v; is not an eigenvector for 1. Then there is a unique n > 1 such
that T"(v;) € B is an eigenvector for 7. We replace v by T"(v). This is
another element of W its expression as a linear combination of the v; has
at most as many elements of B\ B’ as did v. And the term a;v; has been
replaced by a; 7" (v;)—this uses the fact that the T-eigenvalue of 7" (v;) is 0.
Note in particular that since T"(v;) € B occurs with a nonzero coefficient,
T"(v) # 0. If T"(v;) € B’, we have reduced the number of elements of B\ B’
in our linear combination. If not, there is some other 77 € S that we can
apply a certain number of times, say m, to replace T"(v;) by its associated
T'-eigenvector. Continuing in this way, we get a sequence of nonzero vectors
v — T"(v) = (T")™T"(v) — --- and a corresponding sequence of terms

occuring in the expression of these vectors in terms of B:
a;v; — a;T™(v;) = a;(T)™T™(v) — - - -

Since this latter sequence clearly cannot contain a cycle, and B is finite, it
must terminate. This occurs when the corresponding element of B actually
lies in B’. We have therefore created a new nonzero element of W whose
expression in the basis B contains fewer elements of B\ B’. Continuing this
procedure yields a nonzero element of W that is in the span of B’.

Now let v = > a;v; € W with v; € B’ be such an element. If more
than one v; occurs in this linear combination with nonzero coefficient, say
vy and vy, then by assumption we can find 7" € S such that the associated
eigenvalues A\ (T") and \y(T") are distinct. We can replace v by T'(v)— A (T')v.
This annihilates the v; term, but is nonzero because it does not annihilate
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the vy term. Furthermore it has fewer nonzero coefficients than v. Continuing
in this way, we can repeatedly decrease the number of terms in the expression
of v until we find that there is some v; € B'NW. O

Proof 1 of Theorem|[5.1] The second statement of the theorem follows from
the first since eg!(f) preserves the space E[Coo(P,n)]. To prove the first
statement, let f € M (n, E)¥ 4 be a form whose constant terms at all
cusps in Cw (P, n) are zero. Then [ is a sum of a cusp form and a linear
combination of Eisenstein series. The cusp form does not affect any constant
terms; we can therefore assume that f is a linear combination of Eisenstein
series, and we must show that f = 0. The Eisenstein subspace has the
following convenient basis, for which each of the Hecke operators is in Jordan

canonical form:

(51) B = {Ey.(1je, s)|c}, where

1 and ) are primitive characters of conductor a, b respectively.

t, 5 are each squarefree products of primes such that ged(a, v) = ged(b, s5) =
1.

abrs is divisible by all primes dividing n.

¢ is only divisible by primes dividing ged(ar, bs).

abrsc divides n.

Since this is a lot of notation, it is behooves us to demonstrate this with
an example. Suppose that n and v are primitive of conductor a,b with
associated Eisenstein series Ei(n,1) € Mg(ab). Let p be a prime not di-
viding ab. For n > 1, the generalized eigenspace of My (abp™) correspond-
ing to Fy(n,1)—i.e. the subspace on which all the Hecke operators away
from p act via the eigenvalues of Fj(n,1)—has 2 or 3 Jordan blocks for
the action of Up: (1) the form Ejy(n,, 1) with U,-eigenvalue o (p)Np*~1, (2)
the form Ej(n,1,) with Up-eigenvalue n(p), and (3) if n > 2, a Jordan
block with U,-eigenvalue 0 and basis Ej(n,,¥p)|pi as i =0,...,n — 2. Here
Uy (Ex(np, Up)lpi) = Er(1p, p) i for i > 1, and Uy(Eg(np, 1)) = 0. The
basis is the generalization of this case to the general setting.

Now, the space Ej(n, E)¥° is the subspace of Ei(n, E) generated by
the subset By C B consisting of the Ej(n.,1s)|c such that ar is coprime
to P. We apply Lemma where the set of endomorphisms S is the set
of Hecke operators indexed by the primes not dividing B: the T, for g { n
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and U, for q | n/SB. The subspace W C Ej(n, E)¥ " is taken to be the
subspace of elements whose constant terms at all cusps in Coo (3, n) vanish.
This subspace is fixed by the Hecke operators away from 8. We need to
prove that W = {0}, and the lemma implies that is suffices to show that
no eigenvector in By lies in WW. The subset B;’p C By of eigenvectors is the
set of Ek(1,1s)|c such that av is coprime to P and ¢ = 1. It remains to
prove that for such a form Ej (1, s), there exists a cusp [A] € Co (B, n)
such that the constant term at A is nonzero.

For this, we first note that it suffices to show this at the minimal level
at which Fy(n,,1s) appears, namely n’ = abrs. Indeed, if we let B’ be the
p-part of n’; then the canonical map Co (P, n) — C(P',n') is surjective.
Therefore we assume that n = abrs.

Write s = 5189, where 51 = ged(s, av). Note that B | bsy. Let A be a
cusp in Cu(bs,n) C Cop (P, n) such that c4/bs; is coprime with ar. We use
the expression

Ei(ir,s) = Y ()i (m)Nm* ™ B (e, ¢s,) |-

m|sy
to show that the constant term of Ejy(n,%s) at A is nonzero. By Lemma
the constant term of Ej (7, ¥s,)|m at A equals the constant term of
Ei(ne,1s,) at some other A', where [A'] € Cx(bs/m,n/m). If m # s;, then
by definition bs/m is not coprime to ar. Then Py (n,v,k) = 0 because of
the n(c4/) factor, and hence by Theoremthe constant term is 0. On the
other hand if m = s; then Theorem shows that this constant term is
nonzero as long as ¢4 /b is coprime with ar. This holds because ¢ 4/bs; is
coprime with at. The result follows. O

Proof 2 of Theorem Our second proof of the first statement is a direct
computation using the action of the Hecke operator U, for each p | *B. First
we note that since we are on the ordinary subspace, each U, acts semisimply
(see |6, pg. 382|). Furthermore the operator U, preserves Co (B, n). There-
fore it suffices to consider the case where f is a Up-eigenvector for each
plPB.

Let us recall the explicit definition of the operator U,. For each p €
CI*(F), let A € CI"(F) denote the class of up~'. Write t\t,'p = (x) where

x is a totally positive element of F™*. Given [ € F' define mg = ( é i ) .

Then flu, = (9u)uecr+ () Where

(52) gu=Np" 22N ()l

Bety o1/t o 1p
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Let A = (A, u) represent a cusp. If p” | ¢4 with » > 0, then one readily
checks that p™*! | ¢4, where A" = (mgA, \) is an associated cusp appearing
in . Therefore since f is a U,-eigenform with nonzero eigenvalue for
each p | B, and its constant terms vanish on C (B, n), then by applying U,
repeatedly we see that the constant terms of f vanish on Cy (o, n), where
By is the product of the distinct primes dividing .

Next, to show that f has vanishing constant terms at all cusps in cusps(n)
Cx(1,n), we show that we can remove the primes in 9y one-by-one. There-
fore, let Py | Po, and let p | P1. We will show that the cuspidality of f on
Cso (P, n) implies its cuspidality on C (1 /p, n). Sequentially removing all
the primes p | Py in this fashion will then give the desired result.

For this, we use the expression once again. We also introduce the
notation f(A) to denote the normalized constant term of f at the cusp A.
If A€ Cu(PB1/p,n) but A € Coo(P1, 1), then one can check directly from
the definitions that there is a unique 8 € t;'07'/t;"0~"p such that the
associated cusp A" = (mgA, \) also does not lie in C (P, n); for all the
other 3, the associated cusp does lie in C (P, n). The cuspidality of f on
Co(B1, n) therefore implies that

apf(A) = flv, (A) = Np* 1 f(A),

where a, denotes the U,-eigenvalue of f. Note that the constant Np*~! arises
from tracing through our normalization factors on constant terms. Now, the
set Coo(P1/p, 1) \ Co(P1, n) is finite, so continually repeating this process,
the sequence

(53) A=A — -

must eventually arive at a repetition. At this point we obtain an equation
of the form

G f(A") = Nplt =1 f(A)

for some positive integer r and some cusp A”. As the Hecke eigenvalue a,
is a p-adic unit and k > 1, we have a; # Np*=Dr for any positive integer
r. We obtain f(A”) = 0, and hence the same is true for every other cusp
appearing in the sequence ; in particular f(A) = 0 as desired. O
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