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Abstract

We calculate the constant terms of certain Hilbert modular Eisen-
stein series at all cusps. Our formula relates these constant terms
to special values of Hecke L-series. This builds on previous work of
Ozawa, in which a restricted class of Eisenstein series were studied.
Our results have direct arithmetic applications—in separate work we
apply these formulas to prove the Brumer–Stark conjecture away from
p = 2 and to give an exact analytic formula for Brumer–Stark units.

1 Introduction

Let F be a totally real field of degree n, and let Mk(n) denote the space of
Hilbert modular forms of level n ⇢ OF and weight k over F . Let Ek(n) ⇢
Mk(n) denote the subspace of Eisenstein series. In this paper we general-
ize results of [2, Section 2.1] and [7] to give the constant terms of nearly
all Eisenstein series E 2 Ek(n) at all cusps. The space Ek(n) has a basis
consisting of forms of the form Ek(⌘, )|m, where ⌘ and  are primitive ray
class characters (see §4). Our formula in Theorem 4.8 gives the constant
terms of these series at all cusps when m is squarefree and coprime to the
conductors of ⌘ and  . In fact, Theorems 4.5 and 4.8 are more general than
this; in particular we handle the case where ⌘ and  are not necessarily
primitive characters. We work with all weights k � 1. In [7], only primitive
characters are considered, the level raising operator |m is not applied, and
the weight k is taken to be at least 2.

There are concrete arithmetic applications of our results. In [3], we prove
the Brumer–Stark conjecture away from p = 2 and in [4] we prove an
exact p-adic formula for Brumer–Stark units. Broadly speaking, both of
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these results apply Ribet’s method, whereby cusp forms are constructed by
taking linear combinations of products of Eisenstein series [8]. Central to
the advance of [3] is the method by which this cusp form is constructed. For
this, we require knowledge of the constant terms at all cusps of level-raised
Eisenstein series associated to possibly imprimitive characters; we also need
to include weight k = 1. Therefore the calculations of [7] are not general
enough for our application, which provides the motivation for this paper.

In addition, we prove here some other results that may be of independent
interest. Firstly, we provide a complete enumeration of the cusps on the
Hilbert modular variety. Also, we prove that in weight k > 1, the cuspidality
of modular forms that are ordinary at a prime p is regulated by the constant
terms at cusps that are unramified at p. We provide two proofs of this fact;
one applies our results on Eisenstein series, and the other is a direct study
of the Up operator. While these two results are likely known to the experts,
we have not found a precise reference for them in the literature.

We now outline the paper and describe our results in greater detail. In
§2 we recall the definition of the space of Hilbert modular forms Mk(n)

of weight k and level n ⇢ OF , following Shimura [10]. Associated to each
� in the narrow class group Cl+(F ) is a congruence subgroup �1,�(n) ⇢
GL+

2 (F ). The open Hilbert modular variety corresponding to our forms has
h
+ = #Cl+(F ) components:

Y =
G

�2Cl+(F )

�1,�(n)\Hn
, H = complex upper half plane.

The space of modular forms Mk(n) is endowed with an action of Hecke
operators described in §2.5. Among these operators are the diamond oper-
ators S(e), indexed by the classes e 2 G

+
n , the narrow ray class group of F

attached to the modulus n. The diamond operators play a central role in
our applications [3], [4].

In §3, we study the set of cusps associated to Y :

cusps(n) =
G

�2Cl+(F )

�1,�(n)\P1(F ).

We provide an explicit enumeration of this set. For m | n, let Qm,n denote the
quotient of G+

m ⇥G
+
n/m by the subgroup generated by diagonally embedded

principal ideals (x), where x 2 OF is congruent to 1 modulo n. The following
result proved in §3.3 is already implicit in [12, Pp. 422-423].
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Theorem 1. There is a stratification cusps(n) =
F

m|n Qm,n with #Qm,n =

#Qm,n. Each Qm,n is stable under the action of G
+
n via the diamond opera-

tors.

In §4 we study the Eisenstein series in Mk(n) and calculate their constant
terms at all cusps. This generalizes the results of [2, Proposition 2.1] and
[7]. We work in a more general setting in this paper by considering all cusps
and allowing for Eisenstein series associated to imprimitive characters. We
normalize our constant terms (see (4) below) so that they are independent
of choice of representatives (up to sign). Furthermore, with these normaliza-
tions the constant terms exhibit nice integrality properties that are studied
by Silliman in [11]. For an ideal b | n, define

(1) C1(b, n) =
G

b|m

Qm,n.

In Theorem 4.5 we prove the following.

Theorem 2. Let k > 1, and let �1 and �2 be narrow ray class characters

of F with associated signs q1, q2 2 (Z/2Z)n, respectively. Assume that �2 is

primitive of conductor b. Then the constant term of Ek(�1,�2) vanishes at

any cusp not lying in C1(b, n). Furthermore, if

A 2 �1,�(n)\P1(F )

is represented by ↵/� 2 P1(F ) and lies in C1(b, n), the constant term of

Ek(�1,�2) at A normalized as in (4) is given by

(2)

1

2n
⌧(�1�

�1
2 )

⌧(��1
2 )

✓
Nb

Nf

◆k

sgn(��)q1sgn(↵)q2�1(cA/b)�
�1
2 (aA)

⇥ L(��1
, 1� k)

Y

q

(1� �(q)Nq�k).

Here � denotes the primitive character associated to �1�
�1
2 , f = cond(�),

and q runs through all primes dividing n but not f. The integral ideals aA
and cA associated to A are defined in (13), and the condition A 2 C1(b, n)

implies that b | cA.

In Theorem 4.5 we also consider the case k = 1. In Theorem 4.8 we
build on the result above and consider a more general case; we calculate
the constant terms of all level-raised Eisenstein series Ek(�1,�2)|m, where
�1 and �2 are possibly imprimitive, under certain mild conditions. These
results are essential in our arithmetic applications [3] and [4]. In those works,
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we construct cusp forms by taking the appropriate linear combinations of
products of Eisenstein series considered here with certain other auxiliary
forms constructed in [11].

In §5 we conclude with the following result on the cuspidality of ordinary
forms that is applied in our arithmetic applications [3], [4]. Fix a prime p

and let P = gcd(p1, n) denote the p-part of n. The set C1(P, n) defined in
(1) may be viewed as the set of “p-unramified” cusps.

Theorem 3. Let p be a prime. If f 2 Mk(n) is p-ordinary for each prime

p ⇢ OF dividing p, then f is cuspidal if and only if the constant term of f

vanishes at each cusp in C1(P, n).

2 Notation on Hilbert Modular Forms

We refer the reader to [2, §2.1] for our precise definitions and notations,
following Shimura [10], concerning the space of classical Hilbert modular
forms over the totally real field F . We recall certain aspects of this definition.

2.1 Hilbert Modular Forms

Let H denote the complex upper half plane endowed with the usual action
of GL+

2 (R) via linear fractional transformations, where GL+
2 denotes the

group of matrices with positive determinant. We fix an ordering of the n

embeddings F ,! R, which yields an embedding of GL+
2 (F ) ,! GL+

2 (R)n

and hence an action of GL+
2 (F ) on Hn. Here GL+

2 (F ) denotes the group of
matrices with totally positive determinant.

For each class � in the narrow class group Cl+(F ), we choose a repre-
sentative fractional ideal t�. Let n ⇢ OF be an ideal, and assume that the
representative ideals t� have been chosen to be relatively prime to n. Define
the groups

�0,�(n) =

⇢✓
↵ �

� �

◆
2 GL+

2 (F ) : ↵, � 2 OF , � 2 t�dn,

� 2 (t�d)
�1
,↵� � �� 2 O⇤

F

�
,

�1,�(n) =

⇢✓
↵ �

� �

◆
2 �0,�(n) : � ⌘ 1 (mod n)

�
.

Here d denotes the different of F .
Let k be a positive integer. We denote by Mk(n) the space of Hilbert

modular forms for F of level n and weight k. Each element f 2 Mk(n) is
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a tuple f = (f�)�2Cl+(F ) of holomorphic functions f� : Hn ! C such that
f�|A,k = f� for all � 2 Cl+(F ) and A 2 �1,�(n). Here the weight k slash
action is defined in the usual way:

f�|A,k(z1, . . . , zn) = N(det(A))k/2
nY

i=1

(�izi+�i)
�k·f�

✓
↵1z1 + �1

�1z1 + �1
, . . . ,

↵nzn + �n

�nzn + �n

◆
,

where ↵i denotes the image of ↵ under the ith real embedding of F and
similarly for �i, �i, �i.

2.2 Constant terms and cusp forms

Suppose that A = (A,�) is an ordered pair with

A =

✓
↵ �

� �

◆
2 GL+

2 (F )

and � 2 Cl+(F ). We define the fractional ideal

bA = ↵OF + �(t�d)
�1
.

Given f = (f�) 2 Mk(n) and a pair A = (A,�) as above, the function
f�|A,k has a Fourier expansion

(3) f�|A,k(z) = aA(0) +
X

b2a
b�0

aA(b)eF (bz),

where a is a lattice in F depending on A, and

eF (bz) := exp(2⇡i(b1z1 + · · ·+ bnzn)).

Definition 2.1. The normalized constant term of the form f at A is

(4) cA(0, f) = aA(0) · (Nt�)�k/2(NbA)
�k(N(detA))k/2.

As we will see later, the constant terms with this normalization will
exhibit nice invariance properties as well as integrality properties. The space
of cusp forms Sk(n) ⇢ Mk(n) is defined to be subspace of forms f such that
cA(0, f) = 0 for all pairs A.

2.3 q-expansion

When A = 1 we drop the subscript A and write simply

c�(0, f) = a�(0)(Nt�)
�k/2

.
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Furthermore when A = 1, the lattice a appearing in (3) is the ideal
t�. Any non-zero integral ideal m may be written m = (b)t�1

� with b 2 t�
totally positive for a unique � 2 Cl+(F ). We define the normalized Fourier

coefficients

c(m, f) = a�(b)(Nt�)
�k/2

.

The collection of normalized Fourier coefficients {c�(0, f), c(m, f)} is called
the q-expansion of f . Note that these normalized coefficients are denoted
with a capital C in [10].

2.4 Forms over a field K

Each tuple f 2 Mk(n) is determined by its q-expansion, which the collection
of coefficients

c�(0, f) 2 C,� 2 Cl+(F ), c(m, f) 2 C,m ⇢ OF ,m 6= 0

defined in §2.3. For any subfield K ⇢ C, define Mk(n, K) to be the K-
vector subspace of Mk(n) consisting of modular forms whose q-expansion
coefficients all lie in K. A fundamental result of Shimura [9, Theorem 7]
states

(5) Mk(n, K) = Mk(n,Q)⌦Q K.

We define Mk(n, K) by (5) more generally if K is any field of characteristic
0. This generalizes in the obvious way to define Sk(n, K).

2.5 Hecke operators

The space Mk(n) is endowed with the action of a Hecke algebra T̃ ⇢
End(Mk(n)) generated over Z by the following operators:

• Tq for q - n.

• Uq for q | n.

• The “diamond operators” S(e) for each class e 2 G
+
n = narrow ray

class group of F of conductor n.

We refer to [10, §2] for the definition of these operators. We warn that
in loc. cit. both Tq and Uq are denoted by Tq.

Let us recall the definition of the diamond operators S(e). Let f =

(f�)�2Cl+(F ) 2 Mk(n) and let e denote an ideal of OF that is relatively
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prime to n, and which hence represents a class in G
+
n . For each µ 2 Cl+(F ),

let � 2 Cl+(F ) denote the class of µe�2. Write t�t�1
µ e2 = (x) where x is a

totally positive element of F ⇤, uniquely determined up to multiplication by
a totally positive unit in O⇤

F . Let

(6) Aµ =

✓
↵µ �µ

�µ �µ

◆
2 GL+

2 (F )

be a matrix satisfying the following conditions:

↵µ 2 e, �µ 2 t�1
µ d�1e, �µ 2 t�dne, �µ 2 t�t

�1
µ e,

det(Aµ) = x, �µ ⌘ x (mod t�t
�1
µ en).

(7)

Then

(8) f |S(e) = (gµ)µ2Cl+(F ) where gµ = f�|Aµ .

2.6 Raising the level

For a Hilbert modular form f 2 Mk(n) and an integral ideal q of F , there
is a form

f |q 2 Mk(nq)

characterized by the fact that for nonzero integral ideals a we have

(9) c(a, f |q) =
(
c(a/q, f) if q | a
0 if q - a

and

(10) c�(0, f |q) = c�q(0, f)

for all � 2 Cl+(F ). We recall the definition of f |q. For every � there is a
µ 2 Cl+(F ) and a totally positive element ↵µ 2 F such that

qt� = (↵µ)tµ.

Then

(11) (f |q)� := Nq�k/2
fµ|0

@ ↵µ 0
0 1

1

A
.

The fact that f |q lies in Mk(nq) and satisfies (9)–(10) is proven in [10, Prop
2.3].
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3 Cusps

3.1 Admissibility

Recall the fractional ideal

(12) bA = ↵OF + �(t�d)
�1

defined in §2.2 associated to a pair A = (A,�) with A 2 GL+
2 (F ) and

� 2 Cl+(F ). We now define the integral ideals

(13) aA = ↵b�1
A
, cA = �(t�dbA)

�1
.

The ideals aA, cA are relatively prime.
To explain the meaning of these invariants, consider the case F = Q.

If A represents the cusp ↵/� 2 P1(Q) with ↵, � relatively prime integers,
then aA = (↵) and cA = (�). Finally, we define

(14) mA = gcd(cA, n).

Given a form f 2 Mk(n), it is clear that the normalized constant term
cA(0, f) defined in §2.2 depends only on A up to left multiplication by an
element of �1,�(n). Furthermore, writing

B =

⇢✓
↵ �

0 �

◆
2 GL+

2 (F )

�
,

it is almost true that cA(0, f) depends on A up to right multiplication by
an element of B—there is a sign ambiguity

(15) c(AA0,�)(0, f) = sgn(N↵)kc(A,�)(0, f), A
0 =

✓
↵ �

0 �

◆
2 B.

To see this one combines the following equalities, which follow from the
definitions (3) and (12), together with the definition (4) of cA(0, f):

aAA0(0) = aA(0)N(↵/�)
k/2

,

NbAA0 = NbA · |N↵|,
det(AA0) = det(A)N(↵�).

If k is odd and the class of A in �1,�(n)\GL+
2 (F ) is fixed under right

multiplication by an element A0 2 B with N↵ < 0, then it follows from (15)
that cA(0, f) = 0. Let us determine the pairs A for which this is the case.
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Definition 3.1. A pair (m, n) with m | n is called admissible if there does
not exist a pair of units ✏1, ✏2 2 O⇤

F such that ✏1 ⌘ 1 (mod m), ✏2 ⌘ 1

(mod n/m), with N✏1 = N✏2 = �1 and ✏1/✏2 totally positive.

Definition 3.2. With the level n fixed, a pair A = (A,�) with A 2 GL+
2 (F )

and � 2 Cl+(F ) is called admissible if (mA, n) is admissible.

Theorem 3.3. Given a pair A = (A,�), the class of A in �1,�(n)\GL+
2 (F )

is fixed by right multiplication by an element A
0 2 B with N↵ < 0 if and

only if A is not admissible.

Before proving the theorem, we introduce some notation and prove an
important lemma. Given a fractional ideal b and an integral ideal m, we
denote by (b/bm)⇤ the subset of elements of b/bm that generate this quotient
as an OF/m-module. This is a principal homogeneous space for the group
(OF/m)⇤.

Definition 3.4. For a fractional ideal b and an integral ideal m, we define

Rb
m = (b/bm)⇤/O⇤

F,+,

the quotient of the set (b/bm)⇤ by the action of multiplication by the group
of totally positive units of F .

Definition 3.5. Let P�(n) be the set of tuples (b,m,↵, �) where b is a
fractional ideal of F , m is an integral ideal dividing n, ↵ 2 Rb

m, and � 2
Rbdt�m

n/m .

Note that the number of elements in Rbdt�m
n/m = (bdt�m/bdt�n)⇤/O⇤

F,+ is
independent of �, thanks to the bijection with (OF/(n/m))⇤/O⇤

F,+. Therefore
the cardinality of P�(n) is also independent of �.

The heart of Theorem 3.3 is the following lemma.

Lemma 3.6. Fix � 2 Cl+(F ).

There is a canonical bijection

' : �1,�(n)\(F 2 \ (0, 0)) �! P�(n)

given by (↵, �) 7! (b,m,↵, �), where b = bA and m = mA are defined as in

(12) and (14).

Proof. The fact that the map ' is well-defined is elementary and left to the
reader. Surjectivity is also not difficult. Given a fractional ideal b and an
integral ideal m | n, choose � 2 t�db such that gcd(�d�1t�1

� , n) = m. Scaling
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� by an appropriate element of OF relatively prime to n, we can ensure that
� lands in any class in Rbdt�m

n/m without changing the gcd condition. Next we
choose any ↵ 2 OF such that

(16) ↵OF + �(dt�)
�1 = b.

Scaling ↵ by an appropriate element of OF relatively prime to �(dt�b)�1,
we can ensure that ↵ lands in any class in Rb

m without affecting (16). This
proves the desired surjectivity.

For injectivity, suppose that

(17) '(↵, �) = '(↵0
, �

0) = (b,m,↵, �).

Let A correspond to (↵, �) and A0 to (↵0
, �

0) as in the statement of the
lemma. From the third component of (17), there exists a totally positive
unit ✏ 2 O⇤

F,+ such that ↵0 ⌘ ✏↵ mod bm. Since �d�1t�1
� + bn = bm, we

can act by an element of the form
✓
✏ �

0 1

◆
on (↵, �) with � 2 (dt�)�1 to

ensure that ↵ ⌘ ↵
0 (mod bn).

Next let u 2 O⇤

F,+ such that �0 ⌘ u� (mod bdt�n). Such a u exists by
the fourth component of (17). Note that the pairs (↵, �), (↵0

, �
0) can be

completed to matrices

M =

✓
↵ �

� �

◆
, det(M) = 1, M

0 =

✓
↵
0
�
0

�
0
�
0

◆
, det(M 0) = u,

with �, �0 2 (dt�b)�1 and �, �0 2 b�1. We claim that � and �0 can be chosen
to satisfy

�
0 ⌘ �u (mod b�1n).

Granting the claim, it is straightforward to check that

M
0
M

�1

✓
↵

�

◆
=

✓
↵
0

�0

◆
and M

0
M

�1 2 �1,�(n)

as desired.
It remains prove the claim. Given any y 2 b�1cA, we can write y = �x

with x 2 (dt�b2)�1 and replace (�, �) by (� + ↵x, � + �x). Hence � can
be replaced by any element in its equivalence class in b�1

/b�1cA. Since
gcd(cA, n) = m, to prove the claim it therefore suffices to show that �0 ⌘ u�

(mod b�1m). If ↵ = 0, this is clear since m = 1. Otherwise, multiplication
by ↵ induces an isomorphism b�1

/b�1m ! aA/aAm, so we must show that
↵�

0 ⌘ ↵�u (mod aAm). Now m divides cA, which is coprime to aA, so by
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the Chinese Remainder Theorem it suffices to separately show that ↵�0 ⌘
↵�u (mod aA) and ↵�

0 ⌘ ↵�u (mod m). The first of these is trivial since
↵�

0
,↵�u 2 aA. To prove ↵�0 ⌘ ↵�u (mod m) we note

↵�
0 � ↵�u = �

0
�
0 + (↵� ↵

0)�0 � ��u

with � = �
0
�
0 2 cA0 ⇢ m, ��u 2 cA ⇢ m, and (↵ � ↵

0)� 2 n ⇢ m. This
concludes the proof.

Proof of Theorem 3.3. Suppose that A = (A,�) is not admissible with A =✓
↵ ⇤
� ⇤

◆
, and let m = mA. Let ✏ = ✏1 2 O⇤

F in the definition of admissibil-

ity, so N✏ = �1, ✏ ⌘ 1 (mod m), and ✏ ⌘ ✏1✏2 (mod n/m) with ✏1✏2 2 O⇤

F

a totally positive unit. Right multiplication by M =

✓
✏ 0
0 ✏

�1

◆
sends A

to
✓
↵✏ ⇤
�✏ ⇤

◆
. It is immediate from the definition that '(↵, �) = '(↵✏, �✏),

hence Lemma 3.6 implies that there exists A
0 2 �1,�(n) such that A

0
A and

AM have the same first column. Therefore there exists N =

✓
1 ⇤
0 ⇤

◆
2 B

such that A0
A = AMN . It follows that the class of A in �1,�(n)\GL+

2 (F ) is
fixed by right multiplication by MN 2 B, and the lower right entry of MN

has negative norm.

To prove the converse, suppose that A =

✓
↵ �

� �

◆
2 GL+

2 (F ) and

the class of A in �1,�(n)\GL+
2 (F ) is fixed by right multiplication by M =✓

x ⇤
0 z

◆
2 B, where Nz < 0. By Lemma 3.6, we have '(↵, �) = '(↵x, �x).

From the first component of this equation, we see that x 2 O⇤

F . From the
third and fourth components we see that there exist totally positive units
u1, u2 2 O⇤

F,+ such that

x ⌘ u1 (mod m) x ⌘ u2 (mod n/m),

where m = mA. Note that Nx < 0 (and hence Nx = �1) since Nz < 0 and
xz is totally positive. Then letting ✏1 = x/u1 and ✏2 = x/u2 shows that
(m, n) is not admissible.

Corollary 3.7. Let k be odd, and let f 2 Mk(n). The constant term cA(0, f)

vanishes if A is not admissible.

Proof. By Theorem 3.3, if A = (A,�) is not admissible then the class of A
in �1,�(n)\GL+

2 (F ) is fixed by right multiplication by an element A
0 2 B

with N↵ < 0. Then cA(0, f) = c(AA0,�)(0, f), but by (15) we also have
cA(0, f) = �c(AA0,�)(0, f). The result follows.
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3.2 Definition of cusps

For � ⇢ �0,�(n) any congruence subgroup, the associated set of cusps is by
definition the finite set

(18) cusps(�) := �\GL+
2 (F )/

⇢✓
↵ �

0 �

◆
2 GL+

2 (F )

�
$ �\P1(F ).

The bijection in (18) is
✓
↵ �

� �

◆
! (↵ : �). We define

(19) cusps(n) =
G

�

cusps(�1,�(n)).

An ordered pair A = (A,�) with A 2 GL+
2 (F ) and � 2 Cl+(F ) gives rise

to an element of cusps(n) by considering the image of A in cusps(�1,�(n))

in the �-component of the disjoint union (19). The cusp represented by A
will be denoted [A] 2 cusps(n).

Definition 3.8. For each m | n, we define Qm,n to be the set of cusps
[A] 2 cusps(n) such that mA = m.

The set of admissible cusps is defined by

cusps⇤(n) =
G

m|n
(m,n) admissible

Qm,n = {[A] : A is admissible}.

There is a canonical action of the diamond operators on cusps(n) that
is compatible with its action on modular forms. Given an integral ideal e
coprime with n and a cusp A = (A, µ), we define � and Aµ as in (7) and
define

S(e)A = A0 = (A0
,�), where A

0 = AµA.

Proposition 3.9. Each set Qm,n is invariant under the action of G
+
n via

the diamond operators.

Proof. With notation as above, one checks directly from the definitions that
bA0 = bAm. Furthermore one calculates that

mA0bA0 = gcd((�µ↵ + �µ�)(dt�)
�1
, nbA0)

= gcd(�µ�(dt�)
�1
, nbA0)

⇢ gcd(�(dtµ)
�1m, nbA0)

= gcd(cAbAm, nbA0)

= mAbA0 .
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Therefore mA0 ⇢ mA. However, this is a group action; replacing m by an
ideal whose image in G

+
n is inverse to m and switching the roles of A and A0,

we find the reverse inclusion mA ⇢ mA0 . Hence mA = mA0 , and the result
follows.

3.3 Enumeration of cusps

We now enumerate cusps(n) and more specifically each subset Qm,n. Recall
the set of 4-tuples P�(n) defined in Definition 3.5. For each ideal m | n, let
P�(m, n) ⇢ P�(n) denote the set of tuples whose second coordinate is m.
There is a natural action of F ⇤ on P�(n) that preserves each P�(m, n), given
by

x · (b,m,↵, �) = (b(x),m,↵x, �x).

The following is an immediate corollary of Lemma 3.6.

Corollary 3.10. For each class � 2 G
+
1 , there is a canonical bijection

�1,�(n)\P1(F ) �! P�(n)/F
⇤
.

There are canonical bijections

Qm,n �!
G

�2Cl+(F )

P�(m, n)/F ⇤
,(20)

cusps(n) �!
G

�2Cl+(F )

P�(n)/F
⇤
.

Definition 3.11. Let Qm,n denote the quotient of G+
m ⇥ G

+
n/m by the sub-

group generated by diagonally embedded principal ideals (x), where x 2 OF

is congruent to 1 modulo n.

Corollary 3.12. We have #Qm,n = #Qm,n, hence #cusps(n) =
P

m|n#Qm,n.

Proof. From (20) we have #Qm,n = h
+#(P�(m, n)/F ⇤), where h+ = #Cl+(F ).

There is a surjective map

(21) P�(m, n)/F ⇤ �! Cl(F ), (b,↵, �) 7! [b].

For an ideal a, we put Ra = ROF
a . If U denotes the image of O⇤

F mapped
diagonally to Rm ⇥Rn/m, then the fiber over a point in (21) is a principal
homogeneous space for (Rm ⇥Rn/m)/U . Therefore

(22) #Qm,n = (h+
h) ·#((Rm ⇥Rn/m)/U),
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where h = #Cl(F ). Meanwhile, there is an exact sequence

(23) 1 ! (Rm ⇥Rn/m)/U ! Qm,n ! Cl+(F )⇥ Cl(F ) ! 1,

where the second nontrivial arrow is ([a], [b]) 7! ([a/b], [a]). From (23) we
deduce that #Qm,n also equals the right side of (22), completing the proof
of the corollary.

3.4 Constant term map

If k is even we define
Ck =

M

cusps(n)

C.

Then (15) implies that we have a well-defined constant term map

(24) conk : Mk(n) �! Ck, f 7! (cA(0, f))[A].

For k odd we must deal with the sign ambiguity in (15). For k an odd
integer, let

C̃k =
M

�2Cl+(F )

M

A2�1,�(n)\GL+
2 (F )

A admissible

C.

Endow C̃k with a right action of the upper triangular Borel B by

[A] · A0 7! [AA0]sgn(N�), where A
0 =

✓
⇤ ⇤
0 �

◆
.

We let
Ck = H0(B, C̃k) = C̃k/hc · b� c : c 2 C̃k, b 2 Bi.

Of course, Theorem 3.3 implies that

Ck
⇠=

M

cusps⇤(n)

C.

However, fixing such an isomorphism requires making a non-canonical choice,
which we would like to avoid. For positive odd k we again have a canonical
constant term map

(25) conk : Mk(n) �! Ck

that sends a modular form f = (f�) to the tuple of normalized constant
terms cA(0, f). The discussion above implies that this map is well-defined.
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3.5 Cusps above 1 and 0

We introduce the suggestive notation

C1(n) = Qn,n = {[A] 2 cusps(n) : n | cA}.

This is the smallest set of cusps containing the cusps 1 2 �1,�(n)\P1(F ) for
each � 2 Cl+(F ) that is stable under the action of the diamond operators
S(e). It follows from equation (23) with m = n that #C1(n) = h

+
hn, where

hn = #Gn, the size of the wide ray class group of conductor n. Similarly, let

C0(n) = Q1,n = {[A] 2 cusps(n) : gcd(n, cA) = 1}.

This is the smallest G+
n -invariant set of cusps containing 0 2 �1,�(n)\P1(F )

for each � 2 Cl+(F ).
If n = 1, then cusps(n) = C1(n) = C0(n). If n is prime, then cusps(n) is

a disjoint union of C1(n) and C0(n). In general there will be more cusps.
If b is a divisor of n, then for ⇤ = 0,1 we define C⇤(b, n) to be all elements

in cusps(n) whose image under the canonical map cusps(n) ! cusps(b) lies
in C⇤(b), i.e.

C1(b, n) =
G

b|m|n

Qm,n, C0(b, n) =
G

m|n
(b,m)=1

Qm,n.

3.6 Lemma on level raising and cusps

The following remark will be used in later computations.

Lemma 3.13. Let f 2 Mk(n) and let q - n be a prime ideal. Let A = (A,�)

represent a cusp [A] 2 C1(qm, qn) for some m | n. There exists a pair

A0 = (A0
, µ) such that [A0] 2 C1(m, n) and

(26) cA(0, f |q) = cA0(0, f)

Proof. Write A = (A,�). By definition,

((f |q)�)|A = Nq�k/2
fµ|A0 , where A

0 =

✓
↵µ↵ ↵µ�

� �

◆

and qt� = (↵µ)tµ. Let A0 = (A0
, µ). Then [A0] 2 C1(m, n) and cA(0, f |q) =

cA0(0, f) are direct calculations using (11).
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4 Eisenstein series

We recall the well-known Eisenstein series using [2, §2.2] and [1] as conve-
nient references. Let ⌘,� be narrow ray class characters of modulus a, b,
respectively, such that ⌘� has sign (k, k, . . . , k). With the exception of the
case F = Q, k = 2, ⌘0 = �

0 = 1, when there are convergence issues, there is
an Eisenstein series Ek(⌘,�) 2 Mk(ab). Here ⌘ and � are not assumed to be
primitive characters, and ⌘

0
,�

0 denote the primitive characters associated
to ⌘,�. The Eisenstein series Ek(⌘,�) has q-expansion coefficients given by

c(m, Ek(⌘,�)) =
X

r|m

⌘(m/r)�(r)Nrk�1
.

For k > 1, we have

c�(0, Ek(⌘,�)) =

(
2�n

⌘
�1(�)L(�⌘�1

, 1� k) if a = 1

0 if a 6= 1.

For k = 1, a = 1, and ⌘ = 1, we note that

c�(0, E1(1,�)) = 2�n ·
⇢

L(�, 0) if b 6= 1
L(�, 0) + �

�1(t�)L(��1
, 0) if b = 1

for all � 2 Cl+(F ).
Given a fixed level n, the Eisenstein subspace Ek(n) ⇢ Mk(n) is defined

to be subspace spanned by the Eisenstein series Ek(⌘,�)|q where ⌘,� are
primitive narrow ray class characters of conductor a, b, respectively, such
that ⌘� has sign (k, k, . . . , k) and abq | n. An elementary argument using
Hecke operators shows that for k > 1, these Eisenstein series are linearly
independent (see [1, Prop. 3.8]). For k = 1, we have E1(⌘,�)|q = E1(�, ⌘)|q,
and these equations generate the space of relations among the Eisenstein
series.

The Eisenstein subspace is a complement to the space of cusp forms
Sk(n), i.e. we have

(27) Mk(n) = Ek(n)� Sk(n).

Furthermore, for k � 2 (excluding the case F = Q, k = 2) the restric-
tion of the map conk defined in (24) and (25) to the subspace Ek(n) is an
isomorphism:

(28) conk,E : Ek(n)
⇠�! Ck.
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The results (27) and (28) are proven in [12, Prop. 1.5] for weight k = 2,
and we sketch now a proof in the general case. Firstly, one can show that
(excluding the case F = Q, k = 2) that there is an equality of dimensions
in (28):

(29) dimC Ek(n) =

(
#cusps(n) =

P
m|n#Qm,n if k � 2 is even,

#cusps⇤(n) =
P

⇤

m|n#Qm,n if k � 3 is odd.

To see this for k even, note that #Qm,n is the number of pairs (�1,�2) where
�1,�2 are ray class characters of modulus m, n/m, respectively, such that
�1�2 is totally even. To such a pair we can associate the Eisenstein series
Ek(�0

1,�
0
2)|m/ cond(�1). Here �0

1 and �0
2 denote the primitive avatars of �1 and

�2, respectively. These Eisenstein series form the defining basis for Ek(n).
For k � 3 odd, it is not hard to show that there exists a pair of characters

�1,�2 of modulus m, n/m, respectively, with �1�2 totally odd if and only if
(m, n) is an admissible pair. In this case, #Qm,n is equal to the size of the
set of such pairs (�1,�2). The argument then continues as in the case for k
even, and we find that the dimension of Ek(n) is

P
⇤

m|n#Qm,n.
With (29) in hand, both (27) and (28) for k � 2 follow from the fact

that
Ek(n) \ Sk(n) = {0},

which is usually proven using the Petersson inner product (see for instance
[1, Prop. 3.9] or [12, Page 423]).

4.1 Evaluation of constant terms of Eisenstein series

Let �1 and �2 be ray class characters of modulus a and b and signatures
q1 and q2, respectively. Put n = ab. Let k be a positive integer and assume
q1+q2 ⌘ (k, . . . , k) (mod 2). In this section we compute the constant terms
of Eisenstein series Ek(�1,�2) at various cusps A = (A,�), where A =

( ↵ ⇤
� ⇤ ) 2 GL+

2 (F ).
We write a0 = cond(�1), b0 = cond(�2) and let a1 = a/a0, b1 = b/b0.

Without loss of generality, we assume that gcd(a0, a1) = 1 and that a1 is
square-free, since increasing the modulus at a prime already dividing the
conductor or increasing the power of a prime already dividing the modulus
does not affect the character or associated Eisenstein series. We make the
same assumptions about b1.

Definition 4.1. The Gauss sum associated to a primitive character � of
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conductor b and sign r 2 (Z/2Z)n is given by

⌧(�) =
X

x2b�1d�1/d�1

sgn(x)r�(xbd)eF (x).

For a general character � we define ⌧(�) = ⌧(�0) where �0 is the associated
primitive character.

Recall the invariants aA, bA, cA defined in §3.1.

Definition 4.2. Assume that [A] 2 C1(b, n), i.e. that b | cA. Write b0 =

cond(�2). Let � denote the primitive character associated to �1�
�1
2 , and

write f = cond(�). Define

PA(�1,�2, k) =

1

2n
⌧(�1�

�1
2 )

⌧(��1
2 )

✓
Nb0
Nf

◆k

sgn(��)q1sgn(↵)q2�1(cA/b0)(�
0
2)

�1(aA)L(�
�1
, 1� k),

(30)

where �0
2 denotes the primitive avatar of �2. Here and throughout this arti-

cle, we adopt the convention that �1(m) = 0 if gcd(m, a) 6= 1, and similarly
for any ray class character. We also use the convention that if a = 0 and m

is a fractional ideal, then

sgn(a)q1�1(am) =

(
0 if a 6= 1,

�1(m) if a = 1.

For example, when � = 0 in (30) the expression sgn(��)q1�1(cA/b) should
be interpreted as 0 if a 6= 1 and as ��1

1 (t�dbAb) if a = 1. The analogous
convention holds for the term sgn(↵)q2��1

2 (aA) = sgn(↵)q2��1
2 (↵b�1

A
).

For finite sets S and T of finite places of F , define

PA(�1,�2, k, S, T ) = PA(�1,�2, k)
Y

q2S

(1� �
�1(q)Nqk�1)

Y

q2T

(1� �(q)Nq�k).

Further, for an ideal a | n we define

�0,A(a) =

⇢
0 if [A] /2 C0(a, n)
1 [A] 2 C0(a, n)

and

�1,A(a) =

⇢
0 if [A] /2 C1(a, n)
1 [A] 2 C1(a, n).
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Remark 4.3. Suppose that a0 = cond(�1) and b0 = cond(�2) are coprime.
Then

⌧(�1�
�1
2 ) = �1(b0)�

�1
2 (a0)⌧(�1)⌧(�

�1
2 )

and hence
(31)

PA(�1,�2, k) =
⌧(�1)

2n(Nak0)
sgn(��)q1sgn(↵)q2�1(cA)�

�1
2 (aA/a0)L(�

�1
, 1� k).

We require one more piece of notation.

Definition 4.4. Let m | n. We write Jm = Jm(A) for the set of prime
divisors q | m such that [A] 2 C0(q, n) and J

c
m for the set of prime divisors

q | m such that [A] 2 C1(q, n).

Theorem 4.5. Assume that �2 is primitive of conductor b. The normalized

constant terms of Ek(�1,�2) at A are given as follows.

(1) Let k > 1. The normalized constant term of Ek(�1,�2) at A equals

(32) �1,A(b)PA(�1,�2, k, ;, Tn,f),

where Tn,f is the set of primes dividing n but not f.

(2) Let k = 1. Suppose that a and b are coprime. The normalized constant

term of E1(�1,�2) at a cusp A equals

(33)
�0,A(a)�1,A(b)PA(�1,�2, 1, ;, Tn,f)

+ �1,A(a0)�0,A(b)PA(�2,�1, 1, J
c
a1 , ;)

Y

q2Ja1

(1� Nq�1),

Remark 4.6. Note that E1(�1,�2) = E1(�2,�1). The theorem only as-
sumes that �2 is primitive; if we assume also that �1 is primitive, then in
the setting of part (2) the sets Tn,f, Ja1 and J

c
a1 are empty and (33) becomes

symmetric with respect to �1 and �2.

Remark 4.7. The term �0,A(a) is unnecessary in (47) since PA(�, , 1)

already vanishes if [A] 62 C0(a, n). In this case the assumption gcd(a, b) = 1

implies that gcd(a, cA) is non-trivial, whence �1(cA/b0) = 0. We include
this factor simply as a reminder that this portion of the constant term is
supported on C0(a, n) \ C1(b0, n).

Proof of Theorem 4.5. Recall the definition of the Eisenstein series Ek(�1,�2)

given in [10, Prop. 3.4] (see also [2, section 2.2]). Let

U = {u 2 O⇤

F : Nuk = 1, u ⌘ 1(mod n)}.
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For k � 1, we have Ek(�1,�2) = (f�(z))�2Cl+(F ), where f�(z) is defined via
Hecke’s trick as follows. For z 2 H and s 2 C with Re(2s+ k) > 2, define

(34) f�(z, s) = C�⌧(�2)
X

r2Cl(F )

Nrkg�(z, s)

where

C� =

p
dF�(k)nN(t�)�k/2

[O⇤

F : U ]N(d)N(b)(�2⇡i)kn

and

g�(z, s) =
X

a,b

sgn(a)q1�1(ar�1)sgn(�b)q2��1
2 (�bbdt�r�1)

(az + b)k|az + b|2s(35)

=
X

(a0,b0)

sgn(a0)
q1�1(a0r

�1)sgn(�b0)
q2�

�1
2 (�b0bdt�r

�1) ⇥

X

(a,b)⌘(a0,b0)

1

(az + b)k|az + b|2s .
(36)

The sum in (34) runs over representatives r for the wide class group
Cl(F ). The sum in (35) runs over representatives (a, b) for the nonzero el-
ements of the product r ⇥ d�1b�1t�1

� r modulo the diagonal action of U . In
equation (36) the sum (a0, b0) runs through (r/rab)⇥(d�1b�1t�1

� r/d�1t�1
� ra),

while (a, b) ranges over nonzero elements of r ⇥ d�1b�1t�1
� r modulo the di-

agonal action of U such that a ⌘ a0 (mod rab) and b ⌘ b0 (mod d�1t�1
� ra).

Here we use

�1(a) = sgn(a)q1 for a ⌘ 1 (mod a), �2(b) = sgn(b)q2 for b ⌘ 1 (mod b).

We remark that in the definition (35) we already use that �2 is primitive,
applying [10, equation (3.11)]). The function f�(z, s) can be analytically
continued in the variable s to the entire complex plane, and we set f�(z) =
f�(z, 0).

We choose representatives of the cusp [A] = [(A,�)], with A =
�
↵ �
� �

�
,

as follows. Let g = gcd(b, cA). The cusp [A] only depends on (↵, �), so for
convenience we are free to choose �, � such that

(37) det(A) = 1, � 2 (t�dbAg)
�1
, � 2 b(bAg)

�1
.

Such �, � exist because (using notation from (13)) we have

(38) ↵b(bAg)
�1 + �(t�dbAg)

�1 = aAbg
�1 + cAg

�1 = OF .
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The last equality holds as cAg�1 is coprime to both bg�1 and aA. The map
(a, b) 7! (u, v) = (a, b)A induces a bijection

(39) r⇥ r(dt�b)
�1 �! rbAgb

�1 ⇥ r(dt�bAg)
�1
.

To see this note that

(u, v) = (a↵ + b�, a� + b�) and (a, b) = (u� � v�,�u� + v↵).

For (a, b) 2 r⇥ r(dt�b)�1 we have

u = a↵ + b� 2 rbAgb
�1

�
↵b(bAg)

�1 + �(t�dbAg)
�1
�
= rbAgb

�1

by (38). Meanwhile

v = a� + b� 2 r(dt�bAg)
�1 + r(dt�b)

�1b(bAg)
�1 = r(dt�bAg)

�1
.

For the other direction we note that for (u, v) 2 rbAgb�1 ⇥ r(dt�bAg)�1 we
have

a = u� � v� 2 rbAgb
�1b(bAg)

�1 + rg�1
�(dt�bA)

�1 = r+ r(cA/g) = r

and

b = �u� + v↵ 2 rbAgb
�1(dt�bAg)

�1 + r(dt�bAg)
�1
↵ = r(dt�b)

�1
.

This completes the proof that (39) is a bijection. This bijection restricts to
a bijection

rab⇥ r(dt�)
�1a �! rbAga⇥ r(dt�bAg)

�1n.

The function g�(z, s)|A can be written

g�(z, s)|A =
X

u0,v0

sgn(u0� � v0�)
q1�1((u0� � v0�)r

�1)sgn(u0� � v0↵)
q2�

�1
2 ((u0� � v0↵)bdt�r

�1)

⇥
X

(u,v)⌘(u0,v0)

1

(uz + v)k|uz + v|2s .

(40)

Here u0 and v0 run through complete sets of representatives of

rbAgb
�1
/rbAga and r(dt�bAg)

�1
/r(dt�bAg)

�1n,

respectively, and the pair (u, v) runs through representatives for
�
(rbAgb

�1 ⇥ r(dt�bAg)
�1) \ {(0, 0)}

�
/U
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such that (u, v) ⌘ (u0, v0). We now recall notation from [10, §3]. Up to a
constant factor the sum

X

(u,v)⌘(u0,v0)

1

(uz + v)k|uz + v|2s

equals the series Ek,U(z, u0, v0, rbAga, r(dt�bAg)�1n) defined in [10, equation
(3.1)], with r in loc. cit. set to 0.

We are now ready to prove (1), though we remark that much of what is
said below also applies to (2). We have k � 2. By [10, equation (3.7)] the
constant term of g�(z, s)|A at s = 0 is the value at s = 0 of
X

u0,v0

sgn(u0� � v0�)
q1�1((u0� � v0�)r

�1)sgn(u0� � v0↵)
q2�

�1
2 ((u0� � v0↵)bdt�r

�1)

⇥ (�1)kn�(u0, rbAga)
X

v⌘v0

sgn(Nv)k|Nv|�k�2s
.

Here �(u0, rbAga) = 0 if u0 /2 rbAga and is 1 otherwise. Therefore only the
summands where the class of u0 is trivial contribute to the constant term
of g�(z, s)|A at s = 0.

If u0 2 rbAga, then using the relation b0� = u0 � a0↵ we deduce that
b0� 2 rbA. On the other hand b0� 2 rbAcAb�1. Therefore

b0� 2 rbA \ rbAcAb
�1 = rbAcAg

�1
.

From this we obtain b0 2 r(t�dg)�1
. Now consider the case that A does not

represent a cusp in C1(b, n). This is equivalent to b - cA which in turn is
equivalent to g 6= b. Hence b0bdt�r�1 is an integral ideal not coprime to b.
Therefore ��1

2 (�b0bdt�r�1) = 0 and hence the terms where the class of u0

is trivial also vanish, so the constant term of g�(z, s)|A at s = 0 is 0. Note
that here we have used b0 = �u0� + v0↵.

Next we turn to the case that A does represent a cusp in C1(b, n), so
g = b. As observed above we are only interested in the term with u0 2 rbAga.
We choose u0 = 0 to represent the trivial coset in rbAgb�1

/rbAga. Therefore
the constant term of g�(z, s)|A at s = 0 is the value at s = 0 of

X

v0

sgn(N(�v0))
ksgn(�)q1sgn(↵)q2�1(�v0�r

�1)��1
2 (�v0↵bdt�r

�1)(�1)kn
X

v⌘v0

sgn(Nv)k

|Nv|k+2s

=
X

v

sgn(�)q1sgn(↵)q2�1(�v�r�1)��1
2 (�v↵bdt�r

�1)N(vOF )
�k�2s

.

Hence the constant term of f�(z, s)|A at s = 0 is the value of the following
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sum at s = 0:

C�⌧(�2)
X

r2Cl(F )

Nrk
X

v

sgn(�)q1sgn(↵)q2�1(�v�r�1)��1
2 (�v↵bdt�r

�1)N(vOF )
�k�2s

= C�⌧(�2)sgn(�)
q1sgn(↵)q2(�1)�kn�2ns

�1(�(bdt�bA)
�1)��1

2 (↵(bA)
�1)N(bdt�bA)

k+2s

⇥
X

r

X

v

�1(vbdt�bAr
�1)��1

2 (vbdt�bAr
�1)N(vbdt�bA)

�k�2sN(r�1)�k
.

Here we have made the change of variable v 7! �v. The value of this at
s = 0 is

C�⌧(�2)sgn(�)
q1sgn(↵)q2(�1)�kn

�1(cA/b)�
�1
2 (aA)N(bdt�bA)

k⇥
[O⇤

F : U ]L(�, k)
Y

q2Tn,f

(1� �(q)Nq�k),

where � is the primitive character associated to �1�
�1
2 and q runs through

the set Tn,f of all primes dividing n but not f = cond(�). Next we use the
functional equation

L(�, k) =
d(F )

1
2�k

N f1�k(2⇡i)kn

2n�(k)n⌧(��1)
L(��1

, 1� k)

together with the relations

⌧(�2)⌧(�
�1
2 ) = sgn(�1)q2Nb,

⌧(�)⌧(��1) = sgn(�1)q1+q2Nf.

We find that the unnormalized constant term a�,A(0) of f�(z, 0)|A is

⌧(�1�
�1
2 )

⌧(��1
2 )

✓
NbbA
Nf

◆k

Ntk/2� sgn(��)q1sgn(↵)q2�1(cA/b)�
�1
2 (aA) ⇥

L(��1
, 1� k)

2n

Y

q

(1� �(q)Nq�k).

The normalized constant term is (NbA)�kNt�k/2
� multiplied by this, yielding

statement (1) of the theorem.
Everything up to this point also applies when k = 1. However, when

k = 1, the formula in [10, equation (3.7)] shows that there is an additional
term which arises from the constant term in the q-expansion of

X

(u,v)⌘(u0,v0)

1

(uz + v)|uz + v|2s
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at s = 0; its value is the following sum at s = 0:

(�2⇡i)knN(b�1)

2n
p

d(F )

X

u⌘u0

sgnN(u)

|Nu|2s .

Therefore the second term in the constant term of g�(z, s)|A at s = 0 is the
value of the following at s = 0:

X

u0,v0

sgn(u0� � v0�)
q1�1((u0� � v0�)r

�1)sgn(u0� � v0↵)
q2�

�1
2 ((u0� � v0↵)bdt�r

�1)

⇥ (�2⇡i)knN(b�1)

2n
p
d(F )

X

u⌘u0

sgnN(u)

|Nu|2s

=
(�2⇡i)knN(b�1)

2n
p

d(F )

X

u

sgnNu

|Nu|2s

⇥
X

v0

sgn(u� � v0�)
q1�1((u� � v0�)r

�1)sgn(u� � v0↵)
q2�

�1
2 ((u� � v0↵)bdt�r

�1).

(41)

Here the second sum in (41) runs through all v0 in a set of representatives
for

r(dt�bAg)
�1
/r(dt�bAg)

�1ab.

By the definition of g, we have � 2 dt�bAg, and hence v0 2 r(dt�bAg)�1a )
v0� 2 ra. Therefore the last sum above (i.e. the expression appearing in
(41) after the ⇥ symbol) can be written as a double sum

X

v02r(dt�bAg)�1/r(dt�bAg)�1a

sgn(u� � v0�)
q1�1((u� � v0�)r

�1)

(42)

⇥

0

BBB@
X

v002r(dt�bAg)�1/r(dt�bAg)�1ab
v00⌘v0 (mod r(dt�bAg)�1a)

sgn(u� � v
0

0↵)
q2�

�1
2 ((u� � v

0

0↵)bdt�r
�1)

1

CCCA
.

(43)

Recall that the “finite part" of the character �2 is the character

�2,f : (OF/b)
⇤ ! C⇤

, �2,f (↵) = sgn(↵)q2�2((↵)).

We extend �2,f to a function of O/b by dictating �2,f (↵) = 0 if gcd(↵, b) 6=
1. Up to multiplication by a nonzero scalar, the expression (43) in large
parenthesis is the sum of �2,f over a coset of the ideal in O/b generated by
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aAbg�1. Since �2 is primitive of conductor b, it is elementary that such a
sum vanishes unless aAbg�1 is divisible by b, i.e. unless g = OF . In other
words, if [A] 62 C0(b, n) then the sum (43) is 0 and if [A] 2 C0(b, n) then
(43) equals

Nb · sgn(u�)q2��1
2 (u�bdt�r

�1).

As we now show, a similar argument implies that the sum (41) is zero
unless we also have [A] 2 C1(a0, n). Since g = 1, the sum

(44)
X

v0

sgn(u� � v0�)
q1�1((u� � v0�)r

�1).

appearing in (42) is the sum of �1,f over a coset of the ideal in O/a generated
by �(dt�bA)�1 = cA. This vanishes unless a0 = cond(�1) divides cA. Hence
(44) vanishes unless a0 | cA, i.e. unless [A] 2 C1(a0, n). Furthermore when
[A] 2 C1(a0, n) the value of (44) can be easily calculated directly. Let
a2 =

Q
q2Jc

a1
q and a3 = a1/a2 =

Q
q2Ja1

q. Then the value of (44) is

Na3
Y

q|a3

(1� Nq�1)sgn(u0�)
q1�

⇤

1(u0�r
�1),

where �⇤

1 is the character �1 with modulus a0a2.
Combining these calculations, we find that for [A] 2 C0(b, n)\C1(a0, n),

the second part of the constant term of f�(z, s)|A at s = 0 is the value at
s = 0 of the following:

C�⌧(�2)
(�2⇡i)n

2nN(r(dt�bA)�1a3)
p

d(F )
· Na3

Y

q|a3

(1� Nq�1)

⇥
X

r2Cl(F )

Nr
X

u0

sgn(u0�)
q1sgn(u0�)

q2�
⇤

1(u0�r
�1)��1

2 (u0�bdt�r
�1)

X

u⌘u0

sgnNu

|Nu|2s

= C�⌧(�2)
(�2⇡i)n

2nN((dt�bA)�1)
p

d(F )

Y

q|a3

(1� Nq�1)sgn(�)q1sgn(�)q2�⇤

1(�b
�1bA)�

�1
2 (�dt�bA)

⇥
X

r

X

u

�
⇤

1�
�1
2 (ub(bA)

�1r�1)
1

|Nu|2s .

The value at s = 0 is
(45)
⌧(�2)Nt

1/2
� NbA

2nNb
sgn(�)q1sgn(�)q2�⇤

1(�b
�1bA)�

�1
2 (�dt�bA)L(�, 0)

Y

q|a2

(1��(q))
Y

q|a3

(1�Nq�1).

Since a0a2 | cA, it follows that �� 2 a0a2 and hence ↵� ⌘ 1 (mod a0a2),
whence

sgn(�)q1�⇤

1(�b
�1bA) = sgn(↵)q1(�⇤

1)
�1(aA/b) = sgn(↵)q1��1

1 (aA/b),
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where the last equality follows since gcd(aA, a2) = 1. Similarly ↵� 2 b )
��� ⌘ 1 (mod b), hence

sgn(�)q2��1
2 (�dt�bA) = sgn(��)q2�2(cA).

Therefore, noting (31), after scaling by the normalization factor (NbA)�1Nt�1/2
�

for constant terms, the value in (45) is equal to

PA(�2,�1, 1)
Y

q|a2

(1� �(q))
Y

q|a3

(1� Nq�1).

The first term calculated above (for k � 1) is non-zero only when the
cusp [A] belongs to C1(b, n) \ C0(a, n). The second term is non-zero only
when [A] belongs to C0(b, n) \ C1(a0, n). This finishes the proof.

4.2 Constant terms for raised level and imprimitive

characters

In our arithmetic application [3], we require the constant terms of the level-
raised Eisenstein series Ek(�, )|m for auxiliary squarefree ideals m, with �
and  possibly imprimitive. This level raising is related to the T -smoothing
operation of Deligne–Ribet [5].

The following notation will be in effect throughout this section. Let � and
 be characters of modulus a and b and signatures q1 and q2, respectively.
Let k be a positive integer such that q1+q2 ⌘ (k, . . . , k) (mod 2). We denote
the conductors of � and  by a0 and b0, respectively and put a1 = a/a0 and
b1 = b/b0. Assume gcd(b1, a) = 1. Let n = abl for a square-free integral
ideal l with gcd(ab, l) = 1. We assume that a1 is squarefree and coprime to
a0, and similarly for (b1, b0).

Let A = (A,�) with

A =

✓
↵ ⇤
� ⇤

◆
2 GL+

2 (F ), � 2 Cl+(F ).

Theorem 4.8. Let m be a divisor of l. The normalized constant term of

Ek(�, )|m at A is given as follows:

• If k � 2, then the normalized constant term of Ek(�, )|m at A is

(46)
�1,A(b0)PA(�, , k, J

c
b1 , Ja1)

Y

q2Jb1

(1�Nq�1)
Y

q2Jm

( (q)Nqk)�1
Y

q2Jc
m

�
�1(q).
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• If k = 1, we further assume that gcd(a, b) = 1. Then the normalized

constant term of E1(�, )|m at A is

(47)
�0,A(a)�1,A(b0)PA(�, , 1, J

c
b1 , Ja1)

Y

q2Jb1

(1� Nq�1)
Y

q2Jm

( (q)Nq)�1
Y

q2Jc
m

�
�1(q)

+ �1,A(a0)�0,A(b)PA( ,�, 1, J
c
a1 , Jb1)

Y

q2Ja1

(1� Nq�1)
Y

q2Jm

(�(q)Nq)�1
Y

q2Jc
m

 
�1(q)

Proof. We give the proof for k � 2. The argument for k = 1 is identical and
left to the reader.

First we assume that b = b0, i.e. b1 = 1 and calculate the constant
term of Ek(�, )|m. Let m = q1 · · · qj and use induction on j. The base case
j = 0 follows directly from (32). Write µ for the Möbius function defined by
µ(t) = (�1)k where k is the number of prime factors of t if t is squarefree,
and µ(t) = 0 otherwise. For j > 0 we use the expression

(48) Ek(�m, ) =
X

t|m

µ(t)�(t)Ek(�, )|t.

Here �m denotes the character � viewed with modulus am. If Jm = {q1, . . . , qj},
then �0,A(am) = �0,A(a), so by (32) the normalized constant term of Ek(�m, )

at A is

(49) �0,A(a)�1,A(b0)PA(�, , k, ;, Ja1)
Y

q|m

(1� � 
�1(qi)Nq

�k
i ).

The induction hypothesis gives the normalized constant term at A of each
term on the right side of (48) except for Ek(�, )|m. Therefore one can use
(48) and (49) to solve for the normalized constant term of Ek(�, )|m at A.
One obtains

�0,A(a)�1,A(b0)PA(�, , k, ;, Ja1)
Y

q|m

(� �1(qi)Nq
k
i )

�1

as desired. Now suppose Jm 6= {q1, . . . , qj}, which is equivalent to [A] /2
C0(m, n). This in turn implies that [A] 2 C1(qi, n) for some i, whence
(cA/b0, am) 6= 1 and �m(cA/b0) = 0. Therefore (32) implies that the con-
stant term of Ek(�m, ) at A is 0. Without loss of generality, assume that
qj /2 Jm. For every subset I ⇢ {q1, . . . , qj�1}, put qI =

Q
qi2I

qi. If I 6=
{q1, . . . , qj�1}, then we can apply the induction hypothesis to the forms
Ek(�, )|t for both t = qI and t = qIqj on the right side of (48) to see
that the contributions made by their constant terms at A cancel. It fol-
lows that the constant term of Ek(�, )|m at A equals ��1(qj) times that
of Ek(�, )|m/qj , and we are done by the induction hypothesis.
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Next we relax the condition that b1 = 1. We use the expression

(50) Ek(�, )|m =
X

t|b1

µ(t) (t)(Nt)k�1
Ek(�, 

0)|tm,

where  
0 is the primitive character associated with  . The case already

completed for  primitive gives the constant terms of the forms on the right
of (50). The result then follows from the formula

X

t|b1

µ(t) (t)(Nt)k�1
Y

q2Jt

( (q)Nqk)�1
Y

q2Jc
t

�
�1(q)

=
Y

q2Jb1

(1� Nq�1)
Y

q2Jc
b1

(1� �
�1
 (q)Nqk�1).

5 Ordinary forms

Let p be a prime ideal of OF dividing a prime number p. Following Hida,
we define the ordinary operator

e
ord
p = lim

n!1

U
n!
p .

Let P = gcd(p1, n) be the p-part of n. We define

e
ord
P =

Y

p|P

e
ord
p .

Let E be a finite extension of Qp. The space of P-ordinary forms is defined
by:

Mk(n, E)P- ord = e
ord
P Mk(n, E)

This is the largest subspace on which the operator Up acts invertibly for
each p | P.

Theorem 5.1. A form f 2 Mk(n, E)P- ord
is cuspidal if and only if its

constant terms at all cusps in C1(P, n) are zero. If f 2 Mk(n, E) has

constant terms zero at all cusps in C1(P, n), then e
ord
P (f) is cuspidal.

We provide two proofs of Theorem 5.1. The first proof is longer, but its
method could have other applications, so we include full details. We begin
with the following elementary lemma from linear algebra.

Lemma 5.2. Let V be a finite dimensional vector space over a field and let

B = {v1, . . . , vn} be a basis. Let S be a possibly infinite set of commuting

endomorphisms of V satisfying the following properties:
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• After re-ordering, the matrix for each T 2 S with respect to the basis

B is in Jordan canonical form.

• Every Jordan block of size greater than 1 has associated eigenvalue 0.

Let B
0 ⇢ B be the set of basis vectors that are actual (non-generalized)

eigenvectors for every T 2 S. Suppose the elements of B
0
are distinguished

by their S-eigenvalues, i.e. for vi 6= vj in B
0
, there exists T 2 S such that

the T -eigenvalues of vi and vj are distinct. Finally let W ⇢ V be a subpace

that is preserved by each T . Then W is nonzero if and only if it contains

some vi 2 B
0
.

Proof. Suppose v =
P

aivi 2 W with the ai not all zero. We first show
that we can find another nonzero v

0 2 W such that its expression as a
linear combination of elements in B only contains elements of B0. For this,
suppose that vi 2 B \B0 occurs in v with a nonzero coefficient ai. Let T 2 S

such that vi is not an eigenvector for T . Then there is a unique n � 1 such
that T

n(vi) 2 B is an eigenvector for T . We replace v by T
n(v). This is

another element of W ; its expression as a linear combination of the vi has
at most as many elements of B \ B0 as did v. And the term aivi has been
replaced by aiT

n(vi)—this uses the fact that the T -eigenvalue of T n(vi) is 0.
Note in particular that since T

n(vi) 2 B occurs with a nonzero coefficient,
T

n(v) 6= 0. If T n(vi) 2 B
0, we have reduced the number of elements of B\B0

in our linear combination. If not, there is some other T
0 2 S that we can

apply a certain number of times, say m, to replace T
n(vi) by its associated

T
0-eigenvector. Continuing in this way, we get a sequence of nonzero vectors

v ! T
n(v) ! (T 0)mT n(v) ! · · · and a corresponding sequence of terms

occuring in the expression of these vectors in terms of B:

aivi ! aiT
n(vi) ! ai(T

0)mT n(v) ! · · · .

Since this latter sequence clearly cannot contain a cycle, and B is finite, it
must terminate. This occurs when the corresponding element of B actually
lies in B

0. We have therefore created a new nonzero element of W whose
expression in the basis B contains fewer elements of B \B0. Continuing this
procedure yields a nonzero element of W that is in the span of B0.

Now let v =
P

aivi 2 W with vi 2 B
0 be such an element. If more

than one vi occurs in this linear combination with nonzero coefficient, say
v1 and v2, then by assumption we can find T 2 S such that the associated
eigenvalues �1(T ) and �2(T ) are distinct. We can replace v by T (v)��1(T )v.
This annihilates the v1 term, but is nonzero because it does not annihilate
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the v2 term. Furthermore it has fewer nonzero coefficients than v. Continuing
in this way, we can repeatedly decrease the number of terms in the expression
of v until we find that there is some vi 2 B

0 \W .

Proof 1 of Theorem 5.1. The second statement of the theorem follows from
the first since e

ord
P (f) preserves the space E[C1(P, n)]. To prove the first

statement, let f 2 Mk(n, E)P- ord be a form whose constant terms at all
cusps in C1(P, n) are zero. Then f is a sum of a cusp form and a linear
combination of Eisenstein series. The cusp form does not affect any constant
terms; we can therefore assume that f is a linear combination of Eisenstein
series, and we must show that f = 0. The Eisenstein subspace has the
following convenient basis, for which each of the Hecke operators is in Jordan
canonical form:

(51) B = {Ek(⌘r, s)|c}, where

• ⌘ and  are primitive characters of conductor a, b respectively.

• r, s are each squarefree products of primes such that gcd(a, r) = gcd(b, s) =

1.

• abrs is divisible by all primes dividing n.

• c is only divisible by primes dividing gcd(ar, bs).

• abrsc divides n.

Since this is a lot of notation, it is behooves us to demonstrate this with
an example. Suppose that ⌘ and  are primitive of conductor a, b with
associated Eisenstein series Ek(⌘, ) 2 Mk(ab). Let p be a prime not di-
viding ab. For n � 1, the generalized eigenspace of Mk(abpn) correspond-
ing to Ek(⌘, )—i.e. the subspace on which all the Hecke operators away
from p act via the eigenvalues of Ek(⌘, )—has 2 or 3 Jordan blocks for
the action of Up: (1) the form Ek(⌘p, ) with Up-eigenvalue  (p)Npk�1, (2)
the form Ek(⌘, p) with Up-eigenvalue ⌘(p), and (3) if n � 2, a Jordan
block with Up-eigenvalue 0 and basis Ek(⌘p, p)|pi as i = 0, . . . , n� 2. Here
Up(Ek(⌘p, p)|pi) = Ek(⌘p, p)|pi�1 for i � 1, and Up(Ek(⌘p, p)) = 0. The
basis (51) is the generalization of this case to the general setting.

Now, the space Ek(n, E)P- ord is the subspace of Ek(n, E) generated by
the subset BP ⇢ B consisting of the Ek(⌘r, s)|c such that ar is coprime
to P. We apply Lemma 5.2 where the set of endomorphisms S is the set
of Hecke operators indexed by the primes not dividing P: the Tq for q - n
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and Uq for q | n/P. The subspace W ⇢ Ek(n, E)P- ord is taken to be the
subspace of elements whose constant terms at all cusps in C1(P, n) vanish.
This subspace is fixed by the Hecke operators away from P. We need to
prove that W = {0}, and the lemma implies that is suffices to show that
no eigenvector in BP lies in W . The subset B0

P ⇢ BP of eigenvectors is the
set of Ek(⌘r, s)|c such that ar is coprime to P and c = 1. It remains to
prove that for such a form Ek(⌘r, s), there exists a cusp [A] 2 C1(P, n)

such that the constant term at A is nonzero.
For this, we first note that it suffices to show this at the minimal level

at which Ek(⌘r, s) appears, namely n0 = abrs. Indeed, if we let P0 be the
p-part of n0, then the canonical map C1(P, n) ! C1(P0

, n0) is surjective.
Therefore we assume that n = abrs.

Write s = s1s2, where s1 = gcd(s, ar). Note that P | bs2. Let A be a
cusp in C1(bs, n) ⇢ C1(P, n) such that cA/bs1 is coprime with ar. We use
the expression

Ek(⌘r, s) =
X

m|s1

µ(m) (m)Nmk�1
Ek(⌘r, s2)|m.

to show that the constant term of Ek(⌘r, s) at A is nonzero. By Lemma
3.13, the constant term of Ek(⌘r, s2)|m at A equals the constant term of
Ek(⌘r, s2) at some other A0, where [A0] 2 C1(bs/m, n/m). If m 6= s1, then
by definition bs/m is not coprime to ar. Then PA0(⌘, , k) = 0 because of
the ⌘(cA0) factor, and hence by Theorem 4.8 the constant term is 0. On the
other hand if m = s1 then Theorem 4.8 shows that this constant term is
nonzero as long as cA0/b is coprime with ar. This holds because cA/bs1 is
coprime with ar. The result follows.

Proof 2 of Theorem 5.1. Our second proof of the first statement is a direct
computation using the action of the Hecke operator Up for each p | P. First
we note that since we are on the ordinary subspace, each Up acts semisimply
(see [6, pg. 382]). Furthermore the operator Up preserves C1(P, n). There-
fore it suffices to consider the case where f is a Up-eigenvector for each
p | P.

Let us recall the explicit definition of the operator Up. For each µ 2
Cl+(F ), let � 2 Cl+(F ) denote the class of µp�1. Write t�t�1

µ p = (x) where

x is a totally positive element of F ⇤. Given � 2 F define m� =

✓
1 �

0 x

◆
.

Then f |Up = (gµ)µ2Cl+(F ) where

(52) gµ = Np(k�2)/2
X

�2t�1
µ d�1/t�1

µ d�1p

(f�)|m�
.
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Let A = (A, µ) represent a cusp. If pr | cA with r > 0, then one readily
checks that pr+1 | cA0 , where A0 = (m�A,�) is an associated cusp appearing
in (52). Therefore since f is a Up-eigenform with nonzero eigenvalue for
each p | P, and its constant terms vanish on C1(P, n), then by applying Up

repeatedly we see that the constant terms of f vanish on C1(P0, n), where
P0 is the product of the distinct primes dividing P.

Next, to show that f has vanishing constant terms at all cusps in cusps(n) =

C1(1, n), we show that we can remove the primes in P0 one-by-one. There-
fore, let P1 | P0, and let p | P1. We will show that the cuspidality of f on
C1(P1, n) implies its cuspidality on C1(P1/p, n). Sequentially removing all
the primes p | P0 in this fashion will then give the desired result.

For this, we use the expression (52) once again. We also introduce the
notation f(A) to denote the normalized constant term of f at the cusp A.
If A 2 C1(P1/p, n) but A 62 C1(P1, n), then one can check directly from
the definitions that there is a unique � 2 t�1

µ d�1
/t�1

µ d�1p such that the
associated cusp A0 = (m�A,�) also does not lie in C1(P1, n); for all the
other �, the associated cusp does lie in C1(P1, n). The cuspidality of f on
C1(P1, n) therefore implies that

apf(A) = f |Up(A) = Npk�1
f(A0),

where ap denotes the Up-eigenvalue of f . Note that the constant Npk�1 arises
from tracing through our normalization factors on constant terms. Now, the
set C1(P1/p, n) \C1(P1, n) is finite, so continually repeating this process,
the sequence

(53) A ! A0 ! · · ·

must eventually arive at a repetition. At this point we obtain an equation
of the form

a
r
pf(A00) = Np(k�1)r

f(A00)

for some positive integer r and some cusp A00. As the Hecke eigenvalue ap

is a p-adic unit and k > 1, we have a
r
p 6= Np(k�1)r for any positive integer

r. We obtain f(A00) = 0, and hence the same is true for every other cusp
appearing in the sequence (53); in particular f(A) = 0 as desired.
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