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when combining adaptive meshing procedures with ensemble-based data assimilation (DA)
techniques. In particular, we focus on the case where each ensemble member evolves
independently upon its own mesh and is interpolated to a common mesh for the DA

Keywords: update. This paper outlines a framework to develop time-dependent reference meshes
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Adaptive meshing define the spatial meshes of the ensemble members. We develop a time-dependent
LETKF spatial localization scheme based on the metric tensor (MT localization). We also explore
Localization how adaptive moving mesh techniques can control and inform the placement of mesh

points to concentrate near the location of observations, reducing the error of observation
interpolation. This is especially beneficial when we have observations in locations that
would otherwise have a sparse spatial discretization. We illustrate the utility of our results
using discontinuous Galerkin (DG) approximations of 1D and 2D inviscid Burgers equations.
The numerical results show that the MT localization scheme compares favorably with
standard Gaspari-Cohn localization techniques. In problems where the observations are
sparse, the choice of common mesh has a direct impact on DA performance. The numerical
results also demonstrate the advantage of DG-based interpolation over linear interpolation
for the 2D inviscid Burgers equation.
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1. Introduction

Data assimilation (DA) has its origins in numerical weather prediction and is now employed in many scientific and
engineering disciplines. DA combines noisy data, usually from instrumental uncertainty or issues with scale, with models
that are imperfect, due to simplifying assumptions or other inaccuracies, to improve predictions about the past, current, or
future state of a system. Typical DA techniques require a prior uncertainty and use the likelihood of observations to calculate

* This research was supported in part by NSF grants DMS-1714195 and DMS-1722578.
* Corresponding author.
E-mail address: erikvv@ku.edu (E.S. Van Vleck).

https://doi.org/10.1016/j.jcp.2022.111407
0021-9991/© 2022 Elsevier Inc. All rights reserved.



C. Krause, W. Huang, D.B. Mechem et al. Journal of Computational Physics 466 (2022) 111407

the posterior distribution. This Bayesian context provides not only predictions but also quantification of the uncertainty in
these predictions, which is commonly realized by employing an ensemble of solutions.

When the physical model employed within a DA technique is the discretization of a time dependent partial differential
equation (PDE), the potential exists to increase both accuracy and efficiency of obtaining approximate solutions through
the use of non-uniform, time evolving spatial meshes. Combining DA with adaptive moving mesh techniques presents both
challenges and opportunities. The advantages include the accurate, efficient approximation of ensemble solutions, especially
those with sharp, moving interfaces, and the improved approximation/interpolation of observational data at fixed or time-
dependent locations. Time-dependent adaptive meshes provide the ability to take optimal advantage of observations by
focusing DA in regions of the model ensemble solutions where the observational constraint is most beneficial. Regions of
importance in both space and time, based upon different measures of sensitivity, can be highlighted to improve DA skill
in those regions. At times in which observational data is used to update ensemble solutions, the use of a well designed
adaptive mesh that supports this update has the potential to reduce, balance, or control the impact of different sources of
errors and sensitivities.

Our contribution in this paper is to develop a framework and techniques to utilize adaptive meshing techniques for DA
with application to time dependent PDE models in one and higher space dimensions. The specific techniques employed
include the use of a metric tensor characterization of adaptive meshes that generalizes to higher space dimensions and
allows for easily forming combinations of different meshes. We develop a common mesh for the update of ensemble so-
lutions at observation times that combines properties of both an average mesh that supports the ensemble solutions and
a mesh concentrated near the location of observations. Meshes are obtained from metric tensors using the moving mesh
PDE (MMPDElab [15]) techniques to form well-conditioned finite element PDE discretizations. Testing is performed with
a moving mesh, discontinuous Galerkin (DG) discretization of 1D, 2D inviscid Burgers’ equations for solutions with sharp,
moving interfaces, together with the associated conservative interpolation capabilities, to show the efficacy of the techniques
developed here. Localization techniques are developed based on metric tensors and robust results are obtained with RMSEs
that do not vary significantly when restricted to regions of large variation in the true solution. In this work the ensemble
solutions evolve on their own spatial meshes that are allowed to evolve during the analysis cycle. While this may improve
the accuracy of the ensemble solutions, improved vectorization and applicability may be obtained by forming meshes that
are fixed between ensemble members and over each analysis cycle.

Central to the techniques developed here is the characterization of meshes through a metric tensor. An adaptive mesh,
while not usually uniform in the standard Euclidean metric, can be viewed as uniform with respect to some other metric.
This metric is defined by a positive-definite matrix valued (locally defined and of dimension equal to the spatial dimension)
monitor function, also called a metric tensor. In the finite element context we consider, the local metric tensor determines
the shape, size, and orientation of the element. We also make use of a way to combine two or more metric tensors that are
supported on the same mesh. Geometrically, the metric tensor intersection is the same as circumscribing an ellipsoid on an
element of two meshes and then finding an ellipsoid that resides in the geometric intersection of the first two ellipsoids.
The new element given by that intersecting ellipsoid is the result of the metric tensor intersection.

Localization techniques that limit the sphere of influence of observations are a critical component in the success of
modern DA techniques. Broadly speaking, localization schemes fall into two categories: domain localization [12,29] and co-
variance (or R) localization [11]. Domain localization schemes define a spatial radius and use that to define which mesh
points are affected by a given observation. Covariance localization schemes use a correlation function to modify the covari-
ance matrix that is used in the DA update, so that the covariance between an observation and the solution values decays to
zero as the distance between the observation and the solution values increases.

We develop a domain localization scheme that employs the metric tensor. Employing a fixed, uniform radius of influence
for all observations as a localization scheme may not be effective if there is a steep gradient in the solution. One could
predetermine the location of the gradient and adjust the localization scheme accordingly, but if the regions of large gradient
are time-dependent, this will usually result in the tuned localization parameter being quite small. On the other hand, since
the metric tensor provides information about the dynamics of the ensemble solution, it can be used to define an adaptive
localization scheme where the localization radius can vary in time and space.

One benefit of using an adaptive moving mesh is that fewer mesh points can be used while still maintaining the same
accuracy. Having an adaptive time-dependent common mesh allows for a fewer number of nodes used in the common mesh
as compared to a fixed, fine common mesh, increasing the efficiency of the linear algebra, e.g., when updating the mean and
covariance with an ensemble Kalman filter. An efficient implementation of the Ensemble Kalman Filter (EnKF) [10] requires
O((D 4 N¢)D? + (M + D)N?) flops when D « M or more generally, for example when D ~ M, O((M + D + N,)N2) (see,
e.g., [27]) where D is the dimension of the observation space, M is the dimension of the discretized dynamical system, and
N, is the number of ensemble members. In large scale geophysical applications we typically desire Ne ~ 20 (in general N,
should be roughly the number of positive and neutral Lyapunov exponents). A reduction in M based upon using fewer mesh
points while maintaining or enhancing accuracy results in improved efficiency.

There are several recent works on integrating adaptive spatial meshing techniques with DA, although most of the focus
has been on PDE models in one space dimension. This includes methods based on evolving meshes based on the solu-
tion of a differential equation, methods in which meshes are updated statically based upon interpolation, and remeshing
techniques that add or subtract mesh points as the solution structure changes. In an ensemble-based method, an adaptive
mesh PDE discretization can be used for each of the ensemble members. However, the computation of the ensemble mean
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and covariance is greatly simplified if, e.g., through interpolation, all ensemble members are supported on the same spatial
mesh. If the ensemble members’ meshes can evolve independently via an adaptive moving mesh scheme, special care must
be taken to calculate the mean and covariance at each DA step. Previous works have explored two general approaches to
this problem. One approach is to interpolate the ensemble solutions to a common mesh at each observational time step
and assimilate the PDE variables only. The common mesh approach is used here, as well as in [2,9]. Another method is to
assimilate both the PDE variables and the common mesh locations, as done in [5,32]. In [5,32], the state variables of the
PDE were augmented with the position of the nodes and incorporated into a DA scheme. The test problem consisted of a
two-dimensional ice sheet assumed to be radially symmetric; therefore, it reduced to a problem with one spatial dimen-
sion. In [2] and [9] common meshes were developed based on combining, through interpolation, the ensemble meshes. This
allowed for update of mean and covariance for Kalman filter based DA techniques while allowing each ensemble member
to evolve on its own independent mesh. That is, at each observational timestep, the ensemble members were interpolated
to the common mesh, updated with the DA analysis, and then interpolated back to their respective meshes. Specifically, a
uniform, non-conservative (remeshing allowed with number of mesh points potentially varying with time) mesh was used
in [2], with Lagrangian observations in one spatial dimension. Higher spatial dimensions were used in [9], with a fixed
common mesh refined near observation locations. The work [32] employs a 1D non-conservative adaptive meshing scheme
as in [2] and extends this approach through the use of an adaptive common mesh, where, like in [5], the state vector is
augmented with the node locations.

The outline of this paper is as follows. Background of data assimilation and adaptive moving mesh techniques is given in
Section 2. This includes the framework we develop to include equations describing mesh movement within a DA framework.
In Section 3 we summarize several DA techniques that will benefit from the adaptive meshing techniques developed here.
The development of adaptive meshing techniques for DA is detailed in Section 4. Metric tensors are introduced and their
connection to non-uniform meshes is discussed. Techniques for combining meshes based on metric tensor intersection and
for concentrating ensemble mesh(es) near observation locations are developed. The details of our implementation are in
Section 5. This includes the discontinuous Galerkin discretization we employ and the specific metric tensor formulation we
use to adaptively evolve the ensemble mesh(es). The details of our experimental setup and numerical results for both 1D
and 2D inviscid Burgers equations are presented in Section 6.

2. Background on data assimilation and adaptive moving meshes
2.1. Data assimilation framework and the ensemble Kalman filter

Data assimilation techniques seek to combine models and data to improve predictions and quantify uncertainty typically
in a Bayesian context (see, e.g., [6], [24], [31], [33]). Consider a finite dimensional discrete time system for a state vector
uecRM (M > 0) that evolves based upon

U1 =VW(w) + &, & ~N(0, %), (1)

where W(.) propagates the state forward in time, n stands for the nth time step, and &, is assumed to be a normally dis-
tributed model error with covariance matrix ¥ and mean 0. Equation (1) can be used to forecast the state of the dynamical
system, but this prediction can often be improved by including the observation y; 1 € RP (D > 0) given by the data model

V1= H(uf]-l,-l) + Mn+1, Mn+1 NN(Os R), (2)

where “;H is the unknown “truth” at time n+ 1, H : RM — RP is the observation operator, and np41 is assumed to be a
normally distributed observation error with covariance matrix R and mean 0. We will distinguish between the dimension
D of the observation space and the number of observation locations N, where in general N, < D with strict inequality
when multiple quantities are observed at a single location. In many applications, D << M. We wish to determine {un}f;’:O
that satisfies, in some sense, both the physical and data models. Note that implicit in the formulation of the data model (2)
is that the state variables (u, 1) and data variables (y,1) are supported on common spatial locations.

Ensemble DA procedures use an ensemble of solutions to make predictions for the physical state via a two-step process.
First, the prediction step uses the physical model (1) to integrate the ensemble members {us! }Ne where N, is the number

i=1
of ensemble members, to make the ensemble forecasts {ﬁz"+1 }fﬁl. Second, the analysis step incorporates the observations at

time tn41 to adjust the prediction {u’! }fﬁl. The Ensemble Kalman Filter (EnKF) does this through the following sequential

n+1
process:

6, =W FE e= 1o Ne

Prediction: My = N% 25\21 l3?}1’ 3
b 1 Ne (~ej -~ ;i N T
Phyy = Ne—1 i (“n+1 - mn+1) (“n+1 - mn+1) )
-1
Kit1 =Pt HT(HP?, HT +R)

Analysis: n+1 netH' (HPY ) (4)

€i

ul = (I —KnstH) 07 + Kopr¥nst, ei=1,...,Ne

3
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where [ is the identity matrix, H is the linearization of #, and Ky is the Kalman gain matrix. The ensemble mean ;.1
together with the forecast covariance Pﬁ 11 in (3) is employed to make predictions with a measure of uncertainty. Again,
the implicit assumption here is that all ensemble members reside on the same mesh.

2.2. Moving mesh methods and coupling of PDE and mesh equations

Consider now the physical model as a time-dependent PDE written abstractly as ‘;—L[’ = F(u) posed on an appropriate
function space. PDEs employed in a DA context may be coupled to an equation that evolves the spatial mesh, enabling DA
on an adaptive moving mesh. There are two basic approaches to adaptive moving meshes. The first is a rezoning approach,
used in [2,32], which updates the mesh at each time using a given mesh generation and interpolates the PDE solution from
the old mesh to the new mesh. The second approach is a quasi-Lagrange approach where the mesh is considered to move

continuously with time. In this case, the discretized PDE is supplemented with an advective term to reflect mesh movement.
du
If u =u(x(t),t) satisfies a PDE given by u; = F(u), then the total derivative e is given by
du v dx n v dx
—_— = u-— Uur = u-—
de % de T T T de

The equation for the mesh movement comes from a variational approach in which a cost function (the meshing func-
tional) is minimized through a gradient flow differential equation:

+ F(u) = F(u, x). (5)

Y= — VLl w) =G w), (6)
where T > 0 is a user-specified parameter controlling the speed of mesh movement. We note that when t =0, (6) reduces
to an algebraic equation G(x, u) =0 and when satisfied the mesh instantaneously satisfies a local minimizer of the meshing
functional. In practice, (5) and (6) can be solved simultaneously or alternately. We adopt here an alternate approach where
(6) is integrated first for the new mesh based upon the currently available u and then (5) is solved for u based upon the
moving mesh defined via the old and new meshes.

As a concrete example of a PDE and mesh movement equation, consider a 1D reaction diffusion equation:

Ur—uUxx=f(u), 0<x<1, t>0 (7)

with, for example, homogeneous Dirichlet or homogeneous Neumann boundary conditions and smooth initial data.
A non-uniform finite difference discretization in space yields (U; = Uj(t) ~ u(x;(t),t)):

U = [Uj+1—Uj—1]xj+ 2 [Ym Yy YUy pap). (8)

Xj+1—Xj-1 Xj+17Xj—1 LXj=Xj1 © Xj117Xj

Now consider a moving mesh scheme determined by the equidistribution of arc length of the solution:

TXj = \/(Xj+1 = Xj)2+ Ujy1 —Up? - \/(qu —Xj)? + (Uj_1 —Uj2 (9)

After discretizing both (8) and (9) in time we obtain a discrete time, finite dimensional model (1) with the state vector U
or l): depending on whether only the PDE solution is assimilated or if the mesh locations are as well.

In [5,32], the state vector U™ at time n is augmented with the mesh points x". That is, the new state vector is given by

Vi [Uﬂ (10)

X

The DA update is then performed on this augmented state vector. Note that this approach doubles M in the DA scheme,

affecting the computational cost of the DA update. In [2,32] the mesh movement is based on a Lagrangian flow of form

dd—’t‘ = u together with upper and lower bounds on the mesh spacing that are enforced by remeshing and subtracting or

adding mesh points. For example, on a spatial domain Q = (0, 1) this corresponds to a meshing functional of the form

X

L(x, u):—/u(y,t)dy. (11)

0

This type of mesh movement based upon physical characteristics of the solution can be combined with other factors,
including error in the ensemble solutions and the observations, to obtain meshes that incorporate all these different factors.

4
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Fig. 1. Visual comparison of different choices of common mesh.

2.3. Considerations in designing a common mesh

A natural approach is to use the freedom of designing a common mesh so that the DA is performed on this mesh much
like in the case of ODEs. In addition, the analysis obtained on the common mesh is interpolated back to existing or updated
mesh(es) for the ensemble members.

Consider D observations at a fixed time t, y(t) = (y1(t), ..., yp(t))T € R? supported on a potentially time-dependent
set of observation locations {x?(t)}?zl. In practice, these observations are related to the unknown truth u® through the
observation operator, suppressing the time dependence,

y=HW)+n,  n~NQOR). (12)

The use of a common mesh to reduce to the ODE case necessitates interpolation of the ensemble members and/or the
observations onto a common mesh. As a result not only must the ensemble members be interpolated to the common mesh
but also to the observation locations to evaluate the innovation (assuming this is the domain of the observation operator),

ul = Zouh) and  Zoc(y — [H(Zeo () + 1)), (13)

where the abstract interpolation operator Z,. maps from the observation locations to the common mesh and Z,, maps from
the ensemble mesh to the observation locations. After the analysis is obtained on the common mesh, then it is interpolated
back onto the ensemble mesh(es) or other locations (e.g., for reanalysis) using an operator Zc,,

ul > Te(ul). (14)

These interpolation operations induce potential structural errors into the DA. In the ideal scenario all meshes and locations
of interest are included in the common mesh. This effectively minimizes interpolation error but may not be feasible with
realistic computational capabilities.

We next illustrate visually the difference between focusing a common mesh on the observation locations, on regions of
large variation in the ensemble solutions, and a combined mesh that focuses on both the observation locations and locations
of large gradients in the ensemble solutions. Fig. 1(b) shows a snapshot at t = 1.5 of the ensemble mean for a 2D inviscid
Burgers equation (51) starting from a Gaussian bump initial condition and supported by a combined common mesh. At this
time, the front has fully formed and is beginning to propagate to the upper right corner. Periodic boundary conditions are
employed and over longer time the support of the solution in concentrated in a tube from the lower left corner of the
domain to the upper right corner. Sixteen observations are uniformly distributed along two quarter circles that are placed
away from the primary support of the solution. All three meshes displayed in Fig. 1 are based upon 30 x 30 grids (where
each quadrilatural element is divided into 4 triangular elements). In Fig. 1(a), the observation locations and a mesh M,‘g
is displayed that concentrates mesh points near the observations. Fig. 1(d) displays an average ensemble mesh obtained
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by forming the mesh obtained from the metric tensors of the metric tensor intersection of all the ensemble meshes/metric
tensors. In Fig. 1(c) the mesh corresponding to the metric tensor intersection M} ﬂMg of the metric tensors corresponding
to the average ensemble mesh and the observation mesh. This mesh has the property that it is not as focused as either the
observational mesh or the ensemble mesh but seeks to incorporate finer meshes near both the observations and regions of
large variation in the ensemble solutions.

3. Bayes’ theorem and data assimilation techniques

Many DA techniques are based upon a Bayesian approach that determine the posterior distribution from the prior distri-
bution and the likelihood. Given an observation y, at time t,, and a prior estimate P (u,) of the state, Bayes’ Theorem states
that

P (un |yn) < P (yn|up) P (uy). (15)

This procedure extends to the sequential assimilation of observations at multiple times under the assumption that the state
is Markovian. Note that since the model noise {éj}?’:l is independent and identically distributed (i.i.d.), the prior can be
written as P (un) = [[]}_; P (u;jlu;_1)]P(uo), where, e.g., ug ~ N (uj, PH).

For nonlinear models (1) available DA techniques include the EnKF, particle filters (PFs), variational methods such as
4DVar, and hybrid techniques that seek to combine the best features of different types of techniques. Several of these
classes of methods are naturally ensemble based (EnKF, PF and their variants, as well as several hybrid methods) while
variational methods may employ ensembles of solutions to approximate derivatives or as part of an iterative linear system
solver.

Variational methods such as 4DVar and 3DVar are direct formulations of Bayes’ Theorem. The analysis update of a
variational DA algorithm can be viewed as the minimizer of a corresponding cost function. For example, when the prior
distribution and the observational error model are Gaussian, the cost function for strong constraint 4DVar is

N
J(uo) = (uo — up) "B (g — up) + Y (¥n — H() Ry (¥ — H(up)), (16)

n=0

where u,, is obtained by the evolution of the deterministic model dynamics (e.g., (1) in the deterministic limit ¥ — 0) and
B is the background error covariance. Note that this cost function is quadratic when both the physical model ¥ and the
observation operator  are linear, so in this case there is a unique optimizer. In the case that either the physical model or
observation operator are nonlinear, or if the error distributions are not Gaussian, the posterior distribution may not have a
unique optimum. The use of non-Gaussian error distributions results to corresponding terms in the cost function (16) which
may be approximated at least locally with a quadratic cost function, e.g., with variants such as incremental 4DVar.

Both EnKF and 4DVar are used in large-scale applications. 4DVar provides great flexibility in including terms in the cost
function, does not require linear physical model or observation operators, and can make use of sophisticated optimization
techniques. EnKF is based upon Gaussian assumptions and parameterizes the prediction and uncertainty in terms of the
ensemble mean and sample covariance. Together with local linear approximation of the observation operator, EnKF is a
linear solver corresponding to a quadratic cost function. For more on the advantages and disadvantages of the EnKF and
4DVar techniques, see [23,25].

Hybrid methods seek to combine the advantages of ensemble Kalman filter techniques and variational techniques. An
important motivation behind hybrid methods is to incorporate flow-dependent background error covariance matrices (P?

n1)
into a variational setting. A representative hybrid method is the ETKF-4DVar technique in which B in (16) is replaced by

B=BB+(1-B)Py

where 0 < 8 <1 is a weighting factor, B is the background error covariance used in 4DVar, and Pj is the error covariance
found using the ensemble transform Kalman filter (ETKF) [4], a square root filter similar to the EnKF (3), (4). For 8 =1 this
reduces to the standard 4DVar, while for 8 =0 it is known as 4DVAR-BEN based on using flow dependent Background error
covariances computed from EnKF background ensembles, and for g = 1/2, the method is known as the ETKF-4DVAR. For
further discussion of hybrid methods, see, e.g., [1,3,26].

While the previous classes of techniques all rely to some extent on Gaussian assumptions by parameterizing the predicted
state and its uncertainty in terms of a mean and covariance, particle filters approximate the posterior distributions in an
unstructured way in terms of particles (analogous to ensemble members) and particle weights. For example, the standard
or bootstrap particle filter uses the model dynamics (1) to make predictions using each particle. The weights {wg"_ 1}& , are
updated using the observation yj,. In the bootstrap PF the update is

wr =cwp P (ynluy), (17)

n—1
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Fig. 2. Algorithm for DA on an adaptive moving mesh. Optional steps are in red; required steps are in blue. (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

where the likelihood, given Gaussian observational error model, is
1 _
P (Yn|un) o< exp [—5 (¥n — Hup)" R™" (yn — Hun>] (18)

most weights are nearly zero and this decreases the effective number of particles. This leads to the need for a large number
of particles (Ne) that increases exponentially with the dimension of the state space (M) and the observation space (D).
Several variants including the implicit PF, the equivalent weights PF, and optimal proposal PF have been developed (see, e.g.,
[33]) to overcome weight degeneracy and the curse of dimensionality in PFs.

Modern DA procedures employ spatial localization and covariance inflation techniques. Localization can be done either
through a Schur product (also known as a Hadamard or element-wise product) with the covariance matrix, resulting in
observations having little or no effect on distant nodes. It can also be done through domain localization, where the domain is
broken into subdomain and the observations of each subdomain only affects the variables supported within that subdomain.
Inflation (either additive or multiplicative) increases the entries of the covariance matrix, preventing degeneracy of the
procedure.

and c is chosen so that Z,Ne1 wi = 1. The standard particle filter and many variants suffer from weight degeneracy in which

4. Development of adaptive moving mesh methods for DA

In this section we develop techniques for DA with adaptive moving meshes. These techniques are based upon the use of a
metric tensor that describes the mesh. In particular, a non-uniform mesh is uniform with respect to the metric tensor being
employed. The use of metric tensors is applicable not only in one spatial dimension, but also in higher spatial dimensions.
We first describe the development of metric tensors using the so-called equidistribution and alignment conditions. Metric
tensor intersections are introduced next and are used to combine meshes (e.g., the meshes of ensemble members) and
potentially the locations of observations into what is in some sense an “averaged” mesh. We develop techniques for defining
metric tensors that will concentrate mesh points near observation locations or other locations of interest and develop
adaptive localization techniques based upon the use of metric tensors. A rough outline of the overall algorithm is given in
Fig. 2.
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4.1. Metric tensors and adaptive meshes

In one dimension, a mesh can be defined by determining the size of each of the elements of a mesh. In higher spatial
dimensions, however, it is necessary to have conditions to also determine the shape and orientation of each element in
addition to its size. For this and following discussions of adaptive mesh techniques, we follow the approach of [20].

Consider a polyhedral domain  c R? (d > 1), and let K be a reference element such that it is an equilateral d-simplex
with unit volume. Then, given a simplicial mesh 7y, for any element K € 7, there is a unique invertible affine mapping
Fi : K — K such that K = F,<(k). The size, shape, and orientation of K € 7, can be obtained from F;(.

One way to create adaptive meshes is through the use of a given symmetric positive definite (SPD) matrix-valued monitor
function, M = Mi(x), which is also sometimes called a metric tensor. This monitor function defines a metric, and a mesh
that is uniform in this metric is said to be an M-uniform mesh. That is, a mesh 7, is M-uniform if and only if all elements
have a constant volume and are equilateral in the metric Ml. These conditions are called the equidistribution and alignment
criteria ([20], section 4.1.1). To be specific, let M to be the average of Mi(x) over the element K, that is,

1
M[( = W/M(x)dx (19)
K

Then the equidistribution condition is given by
Oh
Vdet(Mg) Kl= YKeT (20)

where o = ZKE’E |K|y/det(Mg) and N is the number of simplexes/elements in 7. The alignment condition is equivalent
to

1 -1 -1 -T -1 -1 -T %

ot ((F) ™™g (Fio) ™" ) =dee (Fi) ™" ™! (F) )" vKeTs (21)
where det(-) and tr(-) denote the determinant and trace of a matrix, respectively. The equidistribution condition (20) re-
quires all elements to have the same volume while the alignment condition (21) requires the elements to be similar to the
reference element, both in the metric Ml. Given a user-prescribed monitor function Ml = Mi(x), equations (20) and (21) can
be used to define an energy functional, which in turn generates mesh movement; see detail in Section 5.1.

4.2. Forming the common mesh

At each DA step, the common mesh is calculated by taking the metric tensor intersection of the monitor functions for
each ensemble member; see, e.g., [35]. The metric tensor intersection is better understood in geometry as the intersection
of unit balls in different norms that are associated with symmetric and positive definite (SPD) matrices. Mathematically, if
A and B are SPD matrices of the same dimension, then their intersection is denoted by “N” and defined as

AN B =P~ !diag (max(1, by), --- ,max(1, bg)) P7T, (22)

where P is a nonsingular matrix such that

PAPT =1, PBPT =diag(by, - - - , bg). (23)

It is not difficult to show that the unit ball in the norm associated with A N B is contained in the unit balls in the norms
associated with A and B. As a consequence, when A and B are two metric tensors (meaning they are SPD-matrix-valued
functions), the mesh associated with A N B will combine concentration patterns of the meshes associated with A and B.
Consider a DA scheme with N, ensemble members u®, i =1, ..., No which are defined on different, independent meshes
7]16", i=1,..., Ne. Assume that the ensemble meshes 7719" and the common mesh 7, have the same number of mesh elements
and vertices (denoted N and M, respectively), as well as the same connectivity, i.e. the edges between specific mesh points
that form sides of the finite element triangles remain fixed although the location of the vertices may change. At each
observational time step, first interpolate the ensemble members from their ensemble meshes ’7;;"" to the common mesh
T from the previous observation time. Then compute the metric tensor for each of the ensemble members (supported

on the previous common mesh 7,), denoted M‘,’}' and obtain a single metric tensor M} by matrix intersection, M} =

M‘,”g N M‘;(Z n..N M;’VE which is used to generate the common mesh at the current observation time. In practice, this
computation is done sequentially. In 1D, the order does not matter since the metric tensor intersection corresponds to
finding the maximum value. However, the order does matter in multi-dimensions and different orderings lead to different
final metric tensors. While the examples we present in Section 6 are robust with respect to the different orderings, we
have used the Greedy Algorithm based on minimizing the determinant (which is equivalent to maximizing the area of the
ellipsoid from the intersection) to determine an optimal ordering.
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4.3, Concentration of mesh points near observation locations

Using metric tensors to define a common mesh gives some amount of control over the location of the mesh points.
Specifically, the common mesh can be concentrated near specific points of interest, such as observation locations. In the
context of DA, it may be beneficial to have more mesh points near the observation locations {x‘}(t)}?’;], where N, is the
number of observation locations. Note the distinction between the dimension of the observation space D and the number
of observation locations N,. These would be the same except when there are multiple observations at a single location, e.g.,
with a multi-component model. The locations of the observations do not need to be fixed, as long as the location is known
at the observational time t.

One strategy for ensuring that there are common mesh points near the observation locations is to simply fix the obser-
vation locations as points in the common mesh. However, this can lead to meshes that are ill-conditioned when the mesh
points are not allowed to move freely with the dynamics of the solution. Instead of fixing the observation location as a
point in the common mesh, a monitor function M,? can concentrate the mesh near the observation locations. Ideally, M,?
is comparable to M} in some measure at the locations where the mesh requires more points, and quickly decays away

from these locations. One such choice is (see [8])

No
MR =1+ x (Ix=x5©1) 1.

j=1
where

-1
2

+ .
mKax /det(M)

We define the metric tensor for the combined common mesh as

x(w) = edw? _q

Mg = M2 M. (24)

If the ensemble meshes alone determine the common mesh, set My = M']g Conversely, if the locations of the observations
alone determine the common mesh, set My = Mg. Note that this last scenario is similar to [9], where a fixed, non-uniform
common mesh is employed based on the observation locations.

4.4. Adaptive localization

A localization scheme can ensure that observations only affect nearby mesh points. There are broadly two categories of
localization schemes: domain localization and covariance localization. For a covariance localization scheme, the covariance
matrix is adjusted so that the analysis update is less affected by observations that are farther away. Several works explore
this type of R-localization scheme, including in an adaptive sense [28,30,34]. The second category of localization schemes
is domain localization, where the domain is decomposed into several subdomains. Domain localization ensures that an
observation only affects the solution at mesh points within the same subdomain. It will not affect the solution outside of
the given subdomain. One common domain localization scheme is that used in [22].

We define a metric tensor localization scheme (MT localization) as a domain localization scheme of [22] (cf. Section 5.5)
but with the localization radii calculated for all mesh node as a function of the determinant of the monitor function as
follows. Instead of having one predetermined radius of localization r, at each timestep we compute the localization radius
for each node:

d;

r,-:Leim, i=1,..,.M (25)

where d; = min(det(M¥ (x;)), ¢), dmin = min;d;, and ¢ > 0 and L > 0 are the parameters offering some control over the
localization regime. It is not difficult to see that
__c L
Le 2min <r; < ﬁ (26)
This shows that the larger the value of L, the larger the localization radius can be. A smaller cutoff value ¢ will increase the
lower bound of the localization radius, ensuring that localization can still happen, even given a sharp front. The parameters
c and L for the MT localization scheme are optimized through tuning experiments.

When combining the concentration of mesh points with the MT localization scheme, the localization radius should be
calculated solely based on the meshes from the previous time-step and the ensemble solutions. This is done before the
common mesh is concentrated near the observations. If not, the localization radius would be incorrectly computed from the
concentration scheme instead of the ensemble solutions to the PDE.
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4.5, Remeshing ensemble members

At the beginning of each observational timestep, the ensemble members u® reside on their corresponding meshes 7;’)
The analysis is computed on the common mesh, and the updated ensemble members are interpolated back to their individ-
ual meshes. Sometimes the analysis update is enough of a perturbation from the forecast that the meshes that worked for
the forecast are no longer suitable for the analysis meshes.

If the perturbation is large enough, the forecast meshes might not still be appropriate for the analysis. One option is to
add extra smoothing cycles before integrating. If necessary, we can remesh to find a mesh suitable for the analysis ensemble.
The new meshes for ensemble members must satisfy the equidistribution and alignment criteria for the updated ensemble,
and the result is the analysis ensemble u®-? residing on the updated meshes 77f"’a.

4.6. Algorithm for DA on adaptive meshes

The technique that has been developed here for DA with an adaptive moving mesh is summarized in Algorithm 1. Here
we assume that all meshes have the same number of elements and nodes and the same connectivity. A main advantage
of this is that those meshes can be viewed as deformations to each other and conservative interpolation schemes can be
developed relatively easier between those meshes; e.g., see [36] or Section 5.3. It is important in the DA computation to
conserve ensemble members at the interpolation steps 7 and 8 in Algorithm 1 since, otherwise, the mean zero assumption
for the model error in (1) will be violated.

We note that it is not a requirement for meshes to have the same number of elements and nodes and the same connec-
tivity for the metric tensor approach to ensemble DA with adaptive meshing. This approach can also be used with a meshing
scheme where mesh points may be added or eliminated based on some pre-defined criteria and/or ensemble meshes and
the common mesh can have different numbers of elements and nodes. However, precaution should be taken for interpo-
lation between ensemble meshes and the common mesh to ensure conservation of the ensemble members and therefore
mean zero of the model error.

Algorithm 1 EnKF on adaptive moving meshes.

1: procedure DA UPDATE ON MOVING MESH

2:  Compute M™

Compute M°

Take M =M™, M© or M™ N M©

Compute common mesh 7

(Optional) Adapt localization scheme based on M™
Interpolate u®, i =1, ..., N, and observations to common mesh 7
DA update on common mesh 7

Interpolate u™*“ to individual meshes

10:  (Optional) Remesh ensemble meshes

11:  Integrate solutions forward in time until next observation
12: end procedure

LReN2U AW

5. Implementation details
5.1. Defining mesh movement

The following is a summary of the moving mesh PDE (MMPDE) approach developed in [14,16,18-20]. The central idea
of the MMPDE moving mesh method is to view any nonuniform mesh as a uniform one in some metric M; that is, the
elements have a constant volume and are equilateral in the metric M. These conditions are called the equidistribution and
alignment criteria; see (20) and (21). It has been shown that if a mesh begins as nonsingular (that is, the elements have
positive volume), it will remain nonsingular for all time under the MMPDE method. Furthermore, the altitudes and the
volumes of the triangular mesh elements stay bounded below by positive constants that depend only on the metric tensor
M, the number of elements, and the initial mesh [17, Theorem 4.1].

The metric tensor M = Mi(x) is used to control the size, shape, and orientation of the elements of the mesh to be
generated. Various metric tensors have been developed in [21]. For this paper, we consider a Hessian-based metric tensor
defined for each element K € 7, as

1 ~T 1
M1<=d6t<1+—|HK(u)|> <1+—|HK(U)|>, (27)
Op Op

where Hg(u) is the Hessian or a recovered Hessian of the state vector u € RY on the element K; |Hg(u)| =
Qdiag(|A1], .., A QT with Qdiag(A1,...,Aq)QT being the eigen-decomposition of H (u); and «y, is a regularization pa-
rameter defined through the following algebraic equation:

10
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1 ﬁ 2
> K| det (1+—|HK<u)|> =2 > |K| det(|Hxk u))) .
Qp

KeTh KeTh

The metric tensor given by equation (27) is known to be optimal for the LZ-norm of linear interpolation error [21]. We note
that the mesh developed in this way with a recovered Hessian is based upon the assumption of single-component/scalar
PDE. In the case of a multi-component/vector PDE, the metric tensors of the different components could be combined, e.g.,
using metric tensor intersection, or by using the metric tensor of a single, dominant component. It is also useful to note
that an error estimate of any type, including powerful adjoint-based error estimates, can be used to define a metric tensor
that may be used to control mesh movement and adaptation or combined with other metric tensors to do so.

To generate the M-uniform mesh 7, we use here an approach different from (6) where the coordinators of the mesh
nodes are evolved directly. Instead, we evolve the coordinators of the nodes of an intermediate mesh and obtain the new
mesh through this intermediate mesh and interpolation. An advantage of this approach is that its formulation is simpler
than that of the direct approach (cf. [16]). To start with, we introduce the reference computational mesh 7¢ which is uni-
form in the Euclidean metric, and the computational mesh 7¢. The reference computational mesh 7AZ = {éj}?”: ; has the same
connectivity and the same number of vertices and elements as 7, and stays fixed in the computation. The computational
mesh 7; = {g,-}?”;l serves as an intermediate variable. In this setting, for any element K in 7y, there is a unique correspond-
ing element K¢ in 7c. The affine map between K. and K and its Jacobian matrix are denoted by Fx and Fj, respectively.
With this new setting, the equidistribution and alignment criteria for M-uniform meshes have a similar form as those in
equations (20) and (21). To generate a mesh satisfying these conditions as closely as possible, define an energy functional
as

w

d

4

1
(T T =5 Y IKIdetM)* (er((Fo "My (Fio ™))

KeTp
o (28)

3
2

1 3 1 , 1
+5d 1<EZ7; |K|det(Mg)? (det(FK)det(MK)2> ,

which is a Riemann sum of a continuous functional developed in [13] based on mesh equidistribution and alignment. Note
that 1,(7n, 7¢) is a function of the coordinates of the nodes of 7, and 7¢.
Taking 7y as the current mesh 7;17“ the MMPDE approach defines the mesh equation as a gradient system of I, (7p, 7¢),

1 T
dgj _ det(M(x;))? (81h(7w,72)> L j=1..M (29)

da T IEj
where 81,/0&; is considered as a row vector, T > 0 is a parameter used to adjust the response time of mesh movement to

the changes in M.
Define the function G associated with the energy (28) as

3
1 1 det(J :
G, det(d)) = —det(My) 2 (tr(IM ' I7) % + —d* det(M)? 7()1 (30)
3 3 det(M)?
where J = (Fj,)~' = E E,! and the edge matrices of K and K. are Ex = [xK —xK, ... XK —xK1 and Eg, = [£f -
£X, -+, EX—£[, respectively. Using the notion of scalar-by-matrix differentiation [16], it is not difficult to find the deriva-
tives of G with respect to J and det(J) as
oG d
ﬁ:5det(MK)%(tr(JMfJT))%*lM;lJT, (31)
G 1 3d 1 1
——— = —d% det(Mg) ™4 det(J)2. 32
adety) 2% detMx)H det(J) (32)
Substituting (30)-(32) into (29) yields
1
d%’j det(M(xj))i K .
T o X K j=1..M (33)

Kewj

where wj is the element patch associated with the vertex x;, ji is the local index of xj on K, and va is the local velocity
contributed by the element K to the vertex jg. The local velocities vﬁ, jk=1,---,d are given by

11
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wHT
vHT 3G 3G  det(E d
-1 KC) -1 K K
: K 397~ adet(d) det(Ex) K@ O jZ1 Vik (34)
: =
kT

Integrating the mesh equation (33) over a physical time step, with the proper modifications for boundary vertices and
with the initial mesh 7¢, yields the new computational mesh 7" which forms a correspondence with the current mesh
T, ie, T," = ®p(Tc). The new common mesh 7" is defined as 7" = @h(’fz), which can be computed using linear
interpolation.

It is common practice in moving mesh computation to smooth the metric tensor for smoother meshes. To this end, we
apply a low-pass filter [20] to the metric tensor several sweeps every time it is computed.

5.2. DG discretization

Numerical results will be presented in Section 6 to illustrate the DA procedure using the 1D and 2D inviscid Burgers
equations. Since Burgers’ equation is hyperbolic, we use the discontinuous Galerkin method (DG) for its spatial discretiza-
tion. Standard finite element, finite difference, and finite volume methods lead to unstable discretization for hyperbolic
equations unless some sort of upwinding, numerical viscosity, or stabilization is used. The DG method has upwinding nat-
urally built into its discretization (via the choice of numerical fluxes and limiters) and results in stable computation for
hyperbolic problems. DG is a type of finite element method with the trial and test function spaces consisting of discon-
tinuous, piecewise polynomials. It is known to be a particularly powerful numerical tool for the simulation of hyperbolic
problems and has the advantages of high-order accuracy, local conservation, geometric flexibility, suitability for handling
mesh-adaptivity, extremely local data structure, high parallel efficiency, and a good theoretical foundation for stability and
error estimates. Over the last few decades, the DG method has been used widely in scientific and engineering computation.

Specifically, we use a quasi-Lagrangian moving mesh DG method (MMDG) to solve Burgers’ equation on moving meshes
[36]. The method treats the mesh movement continuous in time and leads to an extra convective term (cf. equation (5)) in
the resulting discrete equations to reflect the mesh movement. Importantly, the method is (mass) conservative so that the
model error has mean 0. In our computation, we use piecewise linear polynomials (P!-DG) for spatial discretization and a
third-order Strong Stability Preserving (SSP) Runge-Kutta scheme for temporal discretization. The reader is referred to [36]
for details of the MMDG method.

5.3. DG interpolation

From Algorithm 1, we see that interpolation is needed between the ensemble meshes and the common mesh. Since these
meshes are assumed to be deformations to each other, we can perform interpolation by solving a differential equation.

To be specific, we consider the deforming meshes Th‘”d and 7,"" and the state variable u that needs to be interpolated.
We define a deforming mesh 7y (¢) (with ¢ € [0, 1]) from ’771""1 to 7" as a mesh with the nodal positions and velocities
as

xi(Q)=1—OxM+ X, i=1,...,M (35)
X =x"" —xM i=1,... M. (36)

Then the interpolation can be viewed as solving the following linear convective PDE on the moving mesh 7,(¢) over
celo,1]:

u
&(x, £)=0, (x,¢)eQx(0,1] 37)

with the initial values u(x, 0) as those of u on 7,

A DG-interpolation scheme has been studied in [36] where DG and a SSP Runge-Kutta scheme are used to discretize (37)
in space and time, respectively. The scheme is conservative and positivity-preserving and can be high-order. As mentioned
before, the mass conservation is important for interpolation between ensemble meshes and the common mesh to maintain
the mean zero feature of the model error. Like for the PDE solver, we use this scheme for interpolation with piecewise
linear polynomials (P'-DG) for spatial discretization and a third-order SSP Runge-Kutta scheme for temporal discretization;
see [36] for detail.

5.4. DA implementation

For our numerical experiments we employ a Local Ensemble Transform Kalman Filter (LETKF) based on [22]. In general,
an ETKF code uses a linear transform to have control over the resulting sample covariance so that the covariance of the
analysis update, P%, exactly satisfies the identity P?H =~ Kj+1H)P?H.

12
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Let my,.; be the ensemble mean at time t,.1, and let a? = 1,...N, be the ensemble forecast. Then define the

n+1’

perturbation matrix

% (1 S A2 S A (N X

Xnt1 = T [u,(w:1 — My, ur(wgl —Myt1, - -, u,(lJfl) — mn+1] , (38)

. —
and the sample covariance is given by Pﬁ = )A(,,+1)A(; +1- Consider the following transformation:
. T . -1
Tni1= [1 + (HXn+1> R (HXn+1>} , (39)
- 1

and set Xpy1 = Xn+1Tn2+1. Then

Py = Xnp1 Xppg = (I = Knpt D) PR (40)

as desired.
5.5. Localization techniques

We will compare the metric tensor based localization scheme developed in Section 4.4 with some commonly used
localization schemes. Recall from (4) the Kalman gain Kpi1. R-localization modifies the Kalman gain through the Schur
product of a localization matrix p with the covariance matrix. One of the most common ways to define p is through the
Gaspari-Cohn (GC) correlation function, which is a fifth order polynomial that decays to zero.

o LR TR T L B 0=r=1
Cr={Hrr—art+3r3+3r2—5r+4-2r1, 1<r<2 4D
0, 2<r.

GC localization can be applied to either the model space or the observation space. In the model space, the localization
matrix is given by

pij =C(x; —xj|/L), i,j=1,.,M (42)

where x; and x; are the positions of the ith and jth nodes and L > 0 is a pre-determined localization radius. This matrix is
Schur-multiplied with the ensemble covariance matrix, resulting in the Kalman update

Kecmod = (p ° Pb) HT (H (p o Pb> HT + R)f1 . (43)

For localization in the observation space, the localization matrix must be Schur multiplied to both (P?HT) and (HPPHT).
Therefore, two localization matrices are needed,

(o1l j=C(xi —yjl/L), i, j=1,..M (44)
[o2li j=Cyi —yjl/L), i, j=1,..,M. (45)

Then the Kalman gain is given by

Kccons = o1 0 (PbHT) (pz ° (HPbHT) + R)f1 . (46)

We next outline the domain localization scheme developed in [22]. Define r to be the radius of localization. Then for
every mesh point x;, if there is an observation y located at the point x° such that ||x; — x°||, <, the analysis is given by
the EnKF update in equation (4). If not, then the analysis update is equal to the forecast predicted by the model.

In many implementations, this radius of influence is predetermined and constant over time and space. However, there
may be instances where this should be dynamic in time and space. For example, if the solution has a traveling front or
shock that travels across the domain, there should be a smaller radius of localization near the region where the gradient
is large and a larger radius where the solution is relatively constant, and this localization scheme should move across the
domain with the traveling front or shock.

To see this, consider a solution u,(x) € R with a single observation at x° and a large gradient beginning at x; just
past this observation location; that is, 0 < X, — x° < 1. For Xx; outside of the localization radius, the observation does not
affect the analysis, so upy1(X;) = Up11(X;). For x; close to the observation, consider the EnKF update for a single ensemble
member, omitting the ensemble superscripts and time subscripts:

13
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u(xj) = (I — KH)u(x;) + Ky, (47)

where K = PPHT (HPbHT + R)il. For the sake of simplicity, assume R =«l and H = e[, where e, denotes the kth unit
vector. Then the analysis update at the point x; close to the observation gives us

u(x) =ul (%) + puPh with p= [P,Ek + ﬂ (v — uf (x).
In particular, the larger the value of Pf’k is, the greater the difference will be between the analysis and the forecast. This can
be especially problematic if Pf’k is large for i <k, that is, after the shock. In that case, the analysis will be changed to be
much closer to the observations, and the steep front will be smoothed out.

This problem is avoided by using a smaller radius of localization near the shock and a larger radius of localization farther
away from it. Fortunately, the monitor function obtained in the adaptive moving mesh algorithm determines where mesh
points will be closer together and where they will be spread far apart; by proxy, this shows where the shock or other
feature of interest exists. In this way, the monitor function can inform what the localization parameter should be over time
and space, enabling a dynamic update of the localization variable.

LETKF employs localization within the ensemble transform Kalman filter so that only model variables located at mesh
points within a predetermined radius of an observation will assimilate that observation. This not only localizes the in-
fluence of observations but also provides a dimension reduction by creating reduced dimensional subproblems on which
assimilation is performed independently.

A covariance-based localization scheme, which uses a Schur product applied to the covariance matrix, is problematic
when working in this reduced dimension. For example, the reduced dimension implementation uses )A(n+1, taken from the
Cholesky decomposition of the covariance matrix P,’; 1, rather than PZ 41 itself. Covariance localization would use a Schur
product to adjust this covariance matrix, but in doing so, it could result in a matrix with negative eigenvalues. Therefore, a
covariance localization scheme is not easily implemented into the LETKF code. For the experiments where we compare the
MT localization scheme to covariance localization schemes like Gaspari-Cohn, we use a traditional ETKF code.

6. Numerical results

The following presents the application of these methods to the one and two dimensional inviscid Burgers equations.
We generate synthetic observations by sampling from a truth run, obtained by solving this equation on an adaptive moving
mesh. The ensemble members are initialized as perturbations of the initial conditions. Efficacy of the DA scheme is measured
by the root mean squared error (RMSE), which is calculated as

1 _
RMSE := T lutrt _ g, (48)

where u is the analysis mean. In all the experiments presented here, the RMSE is calculated on the common mesh being
employed using the DG based interpolant of the truth from the truth mesh to the common mesh. A DA procedure is
generally considered stable if its asymptotic behavior is on the order of the square root of the norm of the observation
error. The RMSE in the experiments that follow is averaged over 10 runs.

6.1. Common experimental set-up

The next two sections explore the use of the LETKF on the one- and two-dimensional inviscid Burgers equation. We
perform identical twin experiments where the truth is generated using no model noise and observations are formed from
the truth by applying the observation operator and adding noise using the observation error model with covariance matrix
R =0.011. Among the parameters to be tuned are the number of mesh points and the number of ensemble members.
Generally speaking, more mesh points correspond to more accurate numerical solutions, lowering the RMSE. However,
moving mesh methods generally require fewer mesh points than a fixed, uniform mesh. For the 1D Burgers experiments,
we use M = 50 mesh points, and for the 2D Burgers experiments, we use a M = 15 x 15 mesh. Increasing the number
of mesh points beyond the values chosen had little impact on the RMSE. For ensemble-based DA schemes the number of
ensemble members should be large enough to span the unstable subspace, e.g., see in particular the relationship established
in [7] between the skill of the DA and the angle between ensemble space and the unstable/neutral subspace. For both the
1D and 2D experiments, we found N, =5 ensemble members to be sufficient. That is, for larger N, we found that there
was no substantial improvement in RMSE.

In the 1D Burgers experiments we observe the truth at N, =5 locations with an observational timestep of At = 0.5,
and then add artificial observation error (n ~ A/(0,0.01 - I)). To avoid the observations all occurring in one region of the
spatial domain, we space them linearly throughout the domain, and then perturb the locations by a small amount. These
observation locations are randomly chosen, but once chosen at the beginning of each trial, they remain fixed. The truth (and
observations) are taken from a fine mesh (100 mesh points) to ensure that it is fully resolved.
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Table 1

Summary of experiments.
Experiment Description Model I, R Inflation factor M Loc. scheme Mesh choice
1 Localization and Inflation Tuning (49) 0.01-1 varies 50 varies M™ N MP°
2 Compare Loc. schemes (49) 0.01-1 varies 50 varies M™ N M°
3 Compare Meshes (49) 0.01-1 11 50 MT varies
4 Compare Errors (49) varies 11 50 MT M™ N MO
5 Localization and Inflation Tuning (51) 0.01-1 varies 225 varies MmN MO
6 Compare Loc. schemes (51) 0.01-1 varies 225 varies M™ N M9
7 Compare Meshes (51) 0.01-1 11 225 MT varies
8 Compare Errors (51) varies 11 225 MT M™ N MO
9 Error in Data Statistical Model (51) 0.01 - I; data varies 11 225 MT M™ N M°

For the 2D Burgers experiments, we use an observational timestep of At =0.5 with N, = 16 observation locations. We
consider two observation scenarios. The first is using the observation locations that lie on the two quarter circles as in Fig. 1.
In this case 30 x 30 meshes are employed to support the ensemble members. In the second scenario the observations are
located at perturbations of a uniformly spaced (with respect to the spatial domain) 4 x 4 mesh and the ensemble solutions
are support on 15 x 15 meshes. For the 2D results each quadrilatural element is divided into 4 triangular elements. Unless
otherwise stated, the observational error covariance R, model error covariance X, and prior distribution Pl? are all set to
0.011.

For both the 1D and the 2D cases, the localization radius and inflation factors are tuned simultaneously. For MT local-
ization, this involves determining the parameter L shown in equation (25), which directly controls the maximum radius of
localization. In the 1D case, we choose not to artificially limit the minimum value of the MT localization radius by choosing
¢ larger than the maximum of Mg in (25); numerical results suggest that ¢ = 8 is sufficient. In the 2D case, we keep c =8
and note that this does affect the minimum localization radius, but that it also results in a stable DA scheme. For the GC
localization schemes, this tuning experiment involves tuning the parameter L as given in equations (42), (44), and (45).
After each of the localization schemes has been tuned, the time series RMSE of the different localization schemes is directly
compared. Finally, we compare results when choosing M™, M©, or M™ N M for the common mesh. When considering
long-run RMSE results, we consider the RMSE only after the DA scheme has stabilized so as to evaluate the asymptotic
behavior of the DA procedure. Based on numeric results, we present the RMSE for 1D Burgers on the time interval [25, 100]
and for 2D Burgers on the time interval [15, 50]. These experiments and the parameters used can be found in Table 1.

6.2. Inviscid Burgers equation - a one-dimensional example

Consider the one-dimensional inviscid Burgers equation as given by

u u
— tu-—=0, x€[0,5), te(0,T] (49)
at 0x
with initial condition
u(x,0) = ! + sin 2er (50)
T2 S

and periodic boundary conditions. As time progresses, a shock forms and propagates to the right. This travelling shock
makes the 1D inviscid Burgers equation a good candidate for an adaptive moving mesh, as more mesh points are needed
near the location of the shock to sufficiently resolve the numerical solution. For the experiments that follow, we consider
the spatial domain [0, 20) so that S = 20 over the time interval (0, 100].

6.2.1. Experiment 1: tuning localization and inflation

The localization parameters for the various localization schemes are tuned simultaneously with the inflation parameter.
Equation (41) combined with either (42) or (44)-(45) implies that choosing a GC localization parameter of L = 10 for the
GC localization would imply that the entire domain is affected by the localization scheme. Therefore, in this experiment, the
GC localization parameters vary from L =0.5 to L = 10. Similarly, a localization parameter of L =20 means that the entire
domain could potentially be affected by the MT localization scheme. For the MT localization tuning, L varies from L =0.5
to L = 20. For all three localization schemes, the multiplicative inflation factor varies from p =1 (no inflation) to p =1.5.

As seen in Fig. 3, the MT localization scheme is robust with respect to the tuning of the localization parameter. The GC
localization requires much more careful tuning in both the model space and observation space. More specifically, the GC
localization schemes work well when the localization parameter L is less than or equal to 1. If the localization parameter is
greater than 1, the Schur product of the localization matrix and the covariance matrix is no longer positive definite, and the
localization scheme performs poorly.

As explained in Section 4.4, the MT localization scheme is a domain localization scheme based on M7, the metric tensor
intersection of the metric tensors for the ensemble meshes. Since each of the ensemble meshes will have a concentration
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Fig. 3. Results for simultaneous tuning of localization and inflation for the MT, GC-mod, and GC-obs localization schemes.
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Fig. 4. Relationship between nodal distance and adaptive localization parameter. The distance between the nodes is positively correlated with the localization
radius.

Localization scheme comparison

0.12 T T T
—P—MT localization
(R —¥—GC-mod localization
—©—GC-obs localization
0.08 - - = =Obs Error ]

Fig. 5. Time series RMSE comparison for the different localization schemes for the 1D inviscid Burgers equation. Each trial uses the tuned localization
parameters found in Experiment 1.

of points near a shock or large gradient, the adaptive common mesh will also have more mesh points where the solution
requires a finer resolution. MT localization reduces the localization radius at these types of interfaces. The relationship
between the distance between nodes and the localization variable is shown in Fig. 4.

6.2.2. Experiment 2: localization scheme comparison
As shown in Experiment 1, the MT localization is much more robust with respect to the tuning parameters than either
of the GC localization schemes. Consider the following tuned localization schemes:

e MT localization with multiplicative inflation parameter 1.1 and localization parameter 1.
e GC-mod localization with multiplicative inflation parameter 1.1 and localization parameter 0.5.
e GC-obs localization with multiplicative inflation parameter 1.0 and localization parameter 0.5.

We compare the time series RMSE of each of these localization schemes in Fig. 5. In these experiments, X = 0.011, so
the localization scheme is considered a success if it is on the order of 0.1. The tuned GC-mod localization schemes and the
MT localization are successful based on this metric, but the MT localization has a consistently lower RMSE than both GC
localization schemes.

16



C. Krause, W. Huang, D.B. Mechem et al. Journal of Computational Physics 466 (2022) 111407

Comparison of Common Meshes
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Fig. 6. Time series RMSE for tuned DA with the 1D inviscid Burgers equation using different choices for the common mesh.
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Time
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Fig. 7. A comparison of meshing variations. In the leftmost plot, the mesh evolves naturally with the metric tensor intersection of the ensemble members.
In the middle plot, the observation location x = 3.8 is fixed in the mesh to reduce observation interpolation error. In the right plot, the mesh evolves
according to the metric tensor intersection, but it is also concentrated near the location x =3.8.

Table 2
Mean and variance of the number of points near (within a 0.5 radius of) the shock and observation for each of
the three meshes listed above.

Ensemble mesh Ens mesh w/ Fixed point M™ N MO
Near Shock (17.13,11.51) (14.04, 13.61) (12.13,3.16)
Near Observation (11.83, 25.28) (11.96, 23.87) (13.29,0.48)

6.2.3. Experiment 3: choice of common mesh

We consider three choices for the metric tensor associated with the common mesh M e (M9, M™ M™ N MP©}. A
comparison of these common meshes is shown in Fig. 6, using the tuned localization and inflation parameters found in
Experiment 1. While all three choices for the common mesh produce stable DA procedures, using M? or M™ N M°
will concentrate the common mesh near the observation locations, reducing the interpolation error. If the interpolation of
observations must be avoided at all costs, the user can also specify the observation locations as fixed points in the common
mesh. However, this can lead to increased skewness and potential singularity in the mesh, as shown in Fig. 7.

The time evolution of the meshes for the 1D inviscid Burgers equation are shown in Fig. 7. To better illustrate this
phenomenon, we consider a reduced spatial domain of [0,5] (§ =5) and update the initial condition accordingly. As the
shock forms and propagates to the right, the mesh points of M™ evolve with the shock, as shown in the leftmost plot of
Fig. 7. However, if an observation location, say at x = 3.8, is fixed in the common mesh, it will prohibit the nodes before it
from moving past it, as shown in the middle plot of Fig. 7. Choosing M™ N M achieves the goal of following the solution
dynamics while still concentrating the mesh near the observation location. (Note that if Ml = M° and the locations are
fixed in time, this common mesh will not change in time.)

As shown in Fig. 7, there are fewer mesh points near the observation in the ensemble mesh with or without the fixed
point than there are in the mesh that also concentrates the mesh points near the observation. Fig. 8 tallies the number
of mesh points within the radius 0.5 of the shock and of the observation for each of the above meshes. The average and
variance of these values is given in Table 2. While the meshes formed from the ensemble members, with and without the
fixed point, do have an adequate number of mesh points near the observation at times, that only coincides with the shock
passing through the observation point. At other times, there are relatively few mesh points near that observation. This is
easily seen in the large variances in Table 2.

The benefit of having mesh points concentrated near observations is evident in the case where observations are sparse
and occur in places where the mesh points would otherwise not be concentrated. For example, consider the 1D inviscid
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Fig. 8. The number of mesh points near the observations varies widely for the ensemble mesh with or without the fixed point. The number of points near
the observation has less variance when the mesh points are also concentrated near the observation location.
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Fig. 9. The common mesh based on observation locations performs better than the other choices of common mesh in the case where we have observations
that are located away from the shock.

Burgers equation with two observation locations located away from the shock. Suppose that the location of the observations
move at the same rate that the shock propagates forward in time. In that case, the observation locations may not see a
concentration of mesh points pass through unless the user specifically concentrates the mesh in that area. This is the setup
of the experiment shown in Fig. 9. Over time, the solution flattens due to numerical dissipation, and all choices of the
common mesh perform equally well. However, the mesh based on observation locations outperforms the other choices of
common mesh before the shock decays.

6.2.4. Experiment 4: comparison of error covariances

Using the tuned MT localization scheme from experiment 1, we test the robustness of this DA procedure on (49) with
different error covariances. The results in Fig. 10 show stable RMSE, especially for larger error covariances. The spikes
in the RMSE for smaller error covariance correspond to times in which the shock passes through the boundary. In this
implementation the PDE satisfies periodic boundary conditions while the mesh satisfies Dirichlet boundary conditions so
that when shock passes through the boundary, the PDE is not approximated as accurately.

6.3. Inviscid Burgers equation - a two-dimensional example
Consider the two-dimensional Burgers equation
Ur + Uty +uuy =0, (51)
with @ =(—0.5,1) x (—0.5,1), t € (0, 5], and periodic boundary conditions. Given the initial condition

u=exp(—yx*+y%),

with ¥ = —log(1071%), the solution will have a Gaussian bump that propagates diagonally to the upper right corner of the
domain and through the use of periodic boundary conditions continues to propagate from the lower left corner to the upper
right corner of the domain. We consider two observation scenarios both with N, = 16 observations. The primary scenario
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Fig. 10. Time series RMSE for tuned MT localization with different error covariances.
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Fig. 11. Results for simultaneous tuning of localization and inflation for the MT, GC-mod, and GC-obs localization schemes.

is with observations located at perturbations of 4 x 4 uniform grid while in Experiment 7 we employ observations located
on two quarter circles as in Fig. 1.

6.3.1. Experiment 5: tuning localization and inflation

Like in the 1-dimensional case, the localization parameters for the various localization schemes are tuned simultaneously
with the inflation parameter. Here we consider a reduced parameter space, using an inflation factor p € {1,1.05,1.1} and
localization parameter L € {0.5, 1.0}. The results are presented in Fig. 11. Just like in the 1D case, the MT localization scheme
is robust with respect to the tuning of the localization parameter.

6.3.2. Experiment 6: localization scheme comparison
Consider the following localization schemes, tuned in Experiment 5:

e MT localization with multiplicative inflation parameter 1.1 and localization parameter 1.0.
e GC-mod localization with multiplicative inflation parameter 1.0 and localization parameter 0.5.
e GC-obs localization with multiplicative inflation parameter 1.1 and localization parameter 1.

The time series RMSE of each of these localization schemes is shown in Fig. 12. In these experiments, ¥ = 0.011, so the
localization scheme is considered a success if it is on the order of 0.1.

6.3.3. Experiment 7: choice of common mesh and choice of interpolant

For this experiment we employ 30 x 30 grids and observations located on two quarter circles that are bounded away
from the primary support of the support of the ensemble solutions. We compare both the choice of common mesh (the
average ensemble mesh M™, the observation location based mesh M, and the combined ensemble and observation mesh
M™NMP9). We employ tuned MT localization and inflation parameters. We compare not only RMSE as a function of the
choice of common mesh but also a localized RMSEs based upon having sufficiently large local metric tensor corresponding
to mesh locations corresponding to elements in the truth mesh with det(Mg) > (maxg det(Mg) + ming det(Mlk))/2. This
corresponds to locations where there is rapid variation in the solution and the experiment shows that we not only obtain
accurate predictions overall but also in regions where the solution is changing rapidly.

In Fig. 13(a) these RMSEs are displayed when DG type interpolation is used to interpolate between the ensemble meshes
and the common mesh before and after employed EnKF to update the ensemble members. Overall, there are not huge
differences in performance although the observation and combined common meshes tend to have smaller RMSE and less
variation. That the difference is small is perhaps not surprising since the observations are concentrated in regions where
there is only small variation in the ensemble solutions. In addition, we note that results with the ensemble common mesh
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Fig. 12. Time series RMSE comparison for the different localization schemes for 2D inviscid Burgers. Each trial uses the optimal localization parameters that
were tuned in Experiment 5.
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Fig. 13. Time series RMSE for tuned DA with 2D inviscid Burgers equation using different choices for the common mesh and either DG type or Linear
interpolation.

in Fig. 13(a) were obtained using an observation time scale of At =0.25 (as opposed to At =0.5 for the other common
meshes. This is due to failures in obtaining interpolants with the ensemble common mesh with At =0.5.

In Fig. 13(b) RMSEs are displayed when linear interpolation is used between the ensemble meshes and the common
mesh. When using the ensemble mesh corresponding to M™ as the common mesh the interpolation failed when employing
observation time scales of At =0.5 and At =0.25. In the experiment shown with the ensemble mesh as the common mesh,
the observation time scale employed was At = 0.125. Not only is the choice of ensemble mesh as the common mesh not
found to be as robust but also result in large values of the RMSE. The combined mesh performs a bit better than the
observation mesh both in terms of having obtaining low RMSE uniformly in time having less variation in the RMSE. Also,
note that the RMSE performance obtained with the DG interpolant, that preserve invariants in the system such as mass, are
generally better than those obtained with a linear interpolant.

6.3.4. Experiment 8: comparison of error covariances

Using the tuned MT localization scheme from Experiment 5, we test the robustness of this DA procedure on the 2D
inviscid Burgers (51) with different error covariances. For each experiment, we set the model error, observation error, and
initial error covariances equal to a scalar multiple of the identity. The results in Fig. 14 show stable RMSE.

6.3.5. Experiment 9: 2D Burgers with errors in observational error statistical model

To test this configuration in a more difficult regime, consider (51) with errors in the observational statistical model.
That is, suppose the data error covariance is believed to be R = 0.01I, but the data is actually sampled with an error
covariance of Ryyen = %1, where o > 0.1. For large values of «, (e.g., o > 100), the analysis update causes discontinuities
in the numerical solution that the time integrator cannot overcome. For moderately large values of o (e.g., & = 50) this is
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Fig. 14. Time series RMSE for 2D Burgers with tuned MT localization and different error covariances.
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Fig. 15. Time series RMSE for 2D Burgers with errors in the observational error statistical model. It is assumed that the observation error has a normal
distribution with mean 0 and covariance matrix assumed to be R = 0.01I, but the synthetic observations are produced from the truth using an error
covariance matrix Ripyeh.

sometimes an issue, but often is not. We have found that our approach works consistently for o < 30, and produces a stable
DA algorithm for these values. Note that in these experiments, the initial perturbation and the model error continue to be
sampled from ¥ = 0.011. The results for an observational time step of At =0.5 are shown in Fig. 15.

7. Discussion and conclusions

Through the use of an adaptive common mesh, we develop an ensemble based DA scheme where each of the ensemble
members evolve independently on their own adaptive meshes. At each observational timestep, the ensemble members are
interpolated to the adaptive common mesh, updated according to the DA scheme, and then interpolated back to their
individual meshes.

We follow the MMPDE adaptive meshing strategy where the mesh of each ensemble member is determined by a
matrix-valued monitor function, also called a metric tensor, so that the mesh is viewed as uniform in that metric. At
each observational timestep, an adaptive common mesh is calculated. There are several choices for this common mesh. One
choice, M™, is obtained by taking the intersection of the ensemble members’ metric tensors. This results in a common
mesh that in some sense satisfies all of the ensemble members. Another option is to concentrate the common mesh near
observation locations or observation trajectories. Concentrating the mesh near the observation locations reduces the amount
of interpolation error at each observational timestep. A third choice is to intersect M™ with M. Using the observational
mesh M9 in a DA scheme reduces the transient time in converging to the asymptotic behavior, but regardless of which
is employed as the common mesh, all choices M™, M©°, and M™ N MP? produce stable results. The efficacy of several
techniques developed in this work is illustrated using sharp interface problems, in particular 1D and 2D inviscid Burgers
equations, under a discontinuous Galerkin discretization.

We develop a new adaptive localization algorithm based on the metric tensor of the common mesh M™. The MT
adaptive localization scheme uses the metric tensor to define a domain localization strategy that is dynamically updated
in time and space. For the 1D and 2D inviscid Burgers equations, the MT localization scheme compared favorably with the
GC localization schemes. One of the benefits of the MT localization scheme is that it is robust with respect to the tuning
parameters and requires less precise tuning than GC localization in either the model space or in the observation space. This
metric tensor approach to DA on adaptive moving meshes, as well as the MT localization scheme, is applicable in higher
spatial dimensions.

The interpolation that is used at each observational timestep can have a significant impact on the performance of the
DA scheme. Using a DG discretization for the PDE together with a DG-based interpolant allows the ensemble members to
maintain the advantages of DG discretization independent of their supporting mesh. For the 1D inviscid Burgers problem,
there was no significant difference in RMSE between linear and DG interpolation. For the 2D inviscid Burgers equation,
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however, using a DG-based interpolation scheme improved the overall performance of the DA scheme as compared to linear
interpolation.

There are several interesting avenues for further investigation. These include the development of adaptive meshes in
which a single (average) mesh supports all ensemble members over an observation cycle and further development of adap-
tive meshing techniques to minimize error due to uncertainties in the location of observations. Also interesting is the
development of goal-oriented meshing functionals specifically designed to increase the skill of the DA scheme, e.g., by
finding optimal combinations of metric tensors from different sources. Further testing of these ideas will be performed
with multi-component systems such as different configurations of Shallow Water Equations and coupled ocean-atmosphere
models, to move toward operational models.
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Appendix A. Notation glossary

Variable  Description

Gaspari-Cohn localization function
dimension of observation space

spatial dimension of PDE

it" ensemble member

affine mapping between elements in mesh and reference element
Mesh function

(nonlinear) observation operator
linearization of H

refers to spatial discretization, as a subscript
identity

spatial discretization index

Kalman gain matrix

element in mesh

reference element

function whose gradient gives mesh equation
localization parameter

dimension of state space

predicted ensemble mean

metric tensor

metric tensor at element K

=

ZZIICORRARS TSI ROTS 200

M metric tensor of i'" ensemble member at element K

My metric tensor of mesh obtained from metric tensor intersection of
ensemble meshes at element K

Ml‘g metric tensor of observation mesh at element K

n time index

N normal distribution

Ne number of ensemble members

N, number of observation locations

N number of simplicial complexes in mesh

pb background error covariance matrix

R observation error covariance matrix

S length of spatial domain for 1D Burgers

t time variable
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(continued)

Variable  Description

At observation time scale
T matrix transpose, as a superscript
T time index at final time

i it ensemble mesh

common mesh

state variable

state forecast

background state

numerical solution

state vector augmented with mesh locations
node location in 1D

observation location

observation variable

continuous time DA observation variable
physical model for discrete time dynamical system
model noise

observation noise

model error covariance matrix

scalar to determine mesh velocity
polyhedral domain

9D« M:m,er\lk ><O><<c=c~=)=rﬁr~\l
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