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a b s t r a c t

This paper is devoted to the study of spatial propagation dynamics of species
in locally spatially inhomogeneous patchy environments or media. For a lattice
differential equation with monostable nonlinearity in a discrete homogeneous
media, it is well-known that there exists a minimal wave speed such that a
traveling front exists if and only if the wave speed is not slower than this minimal
wave speed. We shall show that strongly localized spatial inhomogeneous patchy
environments may prevent the existence of transition fronts (generalized traveling
fronts). Transition fronts may exist in weakly localized spatial inhomogeneous
patchy environments but only in a finite range of speeds, which implies that it
is plausible to obtain a maximal wave speed of existence of transition fronts.
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1. Introduction

Front propagation occurs in many applied fields such as population dispersals in biology, combustion

in chemistry, neuronal waves in neuroscience, fluid dynamics in physics and more. Since the pioneer-

ing work of Fisher [1] and Kolmogorov–Petrovskii–Piskunov [2], front propagation dynamics of classical

reaction–diffusion equation

ut(t, x) = uxx + f(x, u)u, x ∈ R (1.1)

and lattice differential equation

u̇j(t) = uj+1 − 2uj + uj−1 + fj(uj)uj , j ∈ Z. (1.2)
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have been studied extensively. In biology (1.1) is used to model the spread of population in non-patchy

environment with random internal interaction of the organisms and (1.2) is for species in patchy environment

with nonlocal internal interaction of the organisms. Here we focus on (1.2). For nonlinearity term fj(uj), we

assume that

(H1) fj ∈ C2([0,∞),R), −L < inf
j∈Z,v≥0

{f ′
j(v)} ≤ sup

j∈Z,v≥0
{f ′

j(v)} < 0 for all (j, v) ∈ Z×R+ with some L > 0

and fj(v) < 0 for all (j, v) ∈ Z × R+ with v > L0 for some L0 > 0.

In the literature, (H1) is called Fisher–KPP type nonlinearity due to Fisher [1] and Kolmogorov–

Petrovskii–Piskunov [2]. However, most existing works are concerned with the propagation dynamics in

homogeneous or spatially periodic media. Fisher [1] and Kolmogorov–Petrovskii–Piskunov [2] considered a

homogeneous case of (1.1), that is, f(x, u) = f(u) = 1 − u. Fisher conjectured and Kolmogorov–Petrovskii–

Piskunov proved that there exist traveling fronts of speeds not less than the minimal wave speed c∗ = 2,

which is a solution of (1.1) of form u(t, x) = φ(x−ct), φ(−∞) = 1 and φ(∞) = 0. Later, existence of periodic

traveling waves of (1.1) or more general reaction–diffusion equations with Fisher–KPP nonlinearity has been

studied by researchers including B. Zinner and his collaborators in 1995 [3], H.F. Weinberger in 2002 [4], and

H. Berestycki et al. in 2005 [5]. For the case in non-periodic inhomogeneous media, we cannot expect wave

profiles that take the form of constant or periodic front profiles. The notation of traveling waves has been

extended to generalized traveling waves or transition fronts by several authors (e.g., [6,7]). In the past decade,

transition fronts in non-periodic inhomogeneous media have attracted much attention (e.g., [6,8–11]). For

instance, J. Nolen et al. considered in [10] the KPP equation of one dimension with random dispersal (classic

reaction–diffusion equation) in compactly supported inhomogeneous media. More precisely, they considered

(1.1) in the media which are localized perturbations of the homogeneous media. They showed that localized

KPP inhomogeneity may prevent the existence of transition fronts and provided some examples.

The discrete system (1.2) has also been the subject of much research attention. The past two decades

have seen vigorous research activities on applications to dynamics on lattice differential equations [12–19].

In numerical simulations, lattice differential equations have some advantages over classical reaction–diffusion

equations in applications. For example, (1.2) can be viewed as the spatial discretization of (1.1). On the other

hand, lattice differential equations are of interest as models in their own right. It is more reasonable to model

some problems with spatial discrete structure such as population dispersal in a patchy environment by lattice

differential equations. The main concerns include also the properties of spreading speed and propagation of

waves such as traveling fronts, periodic(pulsating) traveling waves and transition fronts. For homogeneous

or periodic discrete media with monostable or bistable nonlinearities, we refer the readers to [12–15,18,19].

The simplest case of transition fronts are traveling waves whose profiles are time-independent, that is, there

exists some function φ such that

uj(t) = φ(j − ct), φ(∞) = 0 and φ(−∞) = 1, (1.3)

where c is the wave speed. For the homogeneous case with fj(uj) = 1 − uj , it is almost trivial that there

exists a minimal wave speed c∗ such that a traveling wave exists if and only if the wave speed c ≥ c∗.

Later, periodic traveling wave solutions have been investigated in [20,21] for the Fisher–KPP equation in

periodically inhomogeneous media, where the periodic traveling wave solutions uj(t) to lattice differential

equations such as (1.2) satisfy the following

uj(t+ p/c) = uj−p(t), lim
j→−∞

uj(t) = 1 and lim
j→∞

uj(t) = 0 locally in t ∈ R. (1.4)

Work on entire solutions or transition fronts for bistable reaction–diffusion equations in discrete media

includes [19,22]. However, less is known to the spreading dynamics to (1.2) with Fisher–KPP nonlinearity

in non-periodic inhomogeneous media.
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Kong and Shen [23] considered the KPP equations in higher space dimension with nonlocal, random

or discrete dispersal in localized perturbations of the homogeneous media and investigate in [24] the KPP

equations with nonlocal, random or discrete dispersal in localized perturbations of the periodic media. They

showed that the localized spatial inhomogeneity of the medium preserve the spatial spreading in all the

directions. The lower bound of mean wave speed of (1.2) can be obtained due to the spreading properties

proved in [24] and in [23] for the particular case in localized perturbations of the homogeneous media.

However, the existence and (general) non-existence of transition fronts have not yet been investigated for

discrete dispersals.

We will focus on the study of existence and non-existence of transition fronts of (1.2) with Fisher–

KPP type nonlinearity in localized perturbations of spatially homogeneous patchy environments or media.

Hereafter, we assume the following:

(H2) fj(0) > 0 for all j and fj(0) = 1 for any |j| ≥ N with some positive integer N .

Throughout the paper, we assume (H1)–(H2). Let Λ : D(Λ) ⊂ X → X be defined by

(Λu)j := uj+1 − 2uj + uj−1 + fj(0)uj ,∀u ∈ X, (1.5)

where X = {u||uj | < L, for someL¿0and allj ∈ Z} with norm ‖u‖X = sup
j∈Z

{|uj |}.

Let λ = sup
{

Re µ | µ ∈ σ(Λ)
}

. Let {u∗
j }j∈Z be the unique positive stationary solution of (1.2), where

the existence of {u∗
j }j∈Z was proved in Theorem 2.1 of [23] by Kong and Shen under the assumptions of

(H1) and (H2). To study the propagation wave solutions in localized perturbations in patchy media, we will

extend the traveling front of (1.3) in homogeneous media and the periodic traveling front of (1.4) in periodic

media and define transition fronts of (1.2) and their mean speeds as follows:

Definition 1.1 (Transition Front). A global-in-time solution {uj(t)}j∈Z of (1.2) is called a transition front

if 0 ≤ uj(t) ≤ u∗
j and there is a continuous function X(t) : R → R such that lim

j−X(t)→−∞
(uj(t) −u∗

j ) = 0 and

lim
j−X(t)→∞

uj(t) = 0 uniformly in t ∈ R.

Definition 1.2 (Mean Wave Speed). A transition front is said to admit a mean wave speed if the following

limit exists: c = lim
|tj−tk|→∞

j − k

tj − tk
, where ti is the first time such that ui(ti) =

1

2
inf

j
{u∗

j } for i ∈ Z and

ul(ti) <
1

2
inf

j
{u∗

j } for all l > i.

Remark 1.1.

(1) The analogous notion for continuous reaction–diffusion equation in [10] was referred to in [7,25];

(2) By Theorem 2.1 in [23], there exists a positive r such that inf
|j|>r

{u∗
j } > 0. Thus, inf

j
{u∗

j } > 0 in

Definitions 1.1 and 1.2.

In the current study, our main result shows conditions for both existence and nonexistence of transition

fronts of (1.2) for lattice differential KPP equation in patchy environment with a localized perturbation

in media. There are several essential differences between classic reaction–diffusion equations and lattice

differential equations. Among these are the use of fundamental PDE techniques including heat kernel

estimates, Poincaré inequality, Harnack inequality and principal eigenvalue theory. We shall introduce

discrete versions of these fundamental tools in later sections. Because of those significant differences, the

approaches for classical reaction–diffusion equations in [10] cannot be applied directly to (1.2), that is a

continuous-time discrete in space lattice differential equation. In this paper, we consider transition fronts in
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the localized perturbed homogeneous patchy media, and provide the variational formulas for both the upper

bound and the lower bound of the wave speeds that transition fronts exist.

Principal eigenvalue theory plays a central and important role in studying transition fronts. Let Xµ =

{u ∈ X : sup
j

|ej·µuj | < ∞}. Consider the following linear difference equation for ψ ∈ Xµ,

Λψj = γψj , (1.6)

where j ∈ Z, Λ is as in (1.5).

Note that letting ψj = e−µjφj , we have the following equivalent problem for φ ∈ X,

e−µφj+1 − 2φj + eµφj−1 + ajφj = γµφj , (1.7)

where j ∈ Z with aj = fj(0).

Let Λµ : D(Λµ) ⊂ X → X be defined by (Λµφ)j := e−µφj+1 − 2φj + eµφj−1 + ajφj . Λµ are of so called

Jacobi operators in [26]. The positive principal eigenvectors to (1.7) play important roles in constructions of

transition fronts to (1.2). We refer readers to [26] for spectral theory of Jacobi operators in a Hilbert space.

For the particular case of periodic media, we refer readers to [20]. Due to lack of compactness, we apply an

extension of Krein–Rutman theorem [27], Theorem 2.2 in [28] to prove that (1.5) has a principal eigenvalue

λ (see Lemma 3.1). We investigate the positive solutions to (1.7)(see Lemma 3.3). If aj ≡ 1 in (1.7), the

principal eigenvalue is equal to eµ − 1 + e−µ associated with constant eigenvector 1. We define one auxiliary

function λ(µ) = eµ − 1 + e−µ for µ > 0 and another auxiliary function for the wave speed, c(µ) = λ(µ)
µ

for µ > 0. Let (c∗, µ∗) be such that c∗ =
λ(µ∗)

µ∗ = inf
µ>0

λ(µ)

µ
. It is well-known that if aj ≡ 1, then c∗ is so

called spreading speed, that is the minimal speed such that a traveling front solution of (1.2) may exist. The

existence of transition fronts of (1.2) relies on the constructions of super/sub-solutions with valid positive

principal eigenvectors to (1.7). Let λ∗ = λ(µ∗) and (ĉ, µ̂) be such that λ(µ̂) = λ and ĉ = c(µ̂). We find that

the parameter values of µ of valid positive principal eigenvectors to (1.7) must locate in [µ̂, µ∗) when λ > 1

and µ̂ < µ∗ (See Section 3). Due to the spreading properties of c∗ proved in [23], the parameter values of

µ of valid positive principal eigenvectors to (1.7) must be less than µ∗. We explore the minimal speed c∗ in

Section 4.1. On the other hand, the principal eigenvalue λ of (1.5) plays another important role that may

prevent the existence of transition fronts. The ĉ is corresponding to the maximal speed such that a traveling

solution may exist (see Section 4.3). The following Fig. 1 shows the existence intervals of transition fronts

to (1.2) with parameter values (c, µ) ∈ [c∗, ĉ] × [µ̂, µ∗].

We state the main theorem in the following.

Theorem 1.1 (Existence and Non-Existence of Transition Fronts). Assume (H1)–(H2).

(1) If λ ∈ [1, λ∗) and ĉ > c∗, then transition front exists for any speed c ∈ [c∗, ĉ]. Moreover, if c ∈ (c∗, ĉ],

then for any ǫ > 0, there exist C1, C2, T > 0 such that for t > T and j > ct,

C1e
−(µ+ǫ)(j−ct) ≤ uj(t) ≤ C2e

−(µ−ǫ)(j−ct). (1.8)

(2) No transition front with speed c exists for the following cases: (i) λ > λ∗; (ii)c < c∗ and (iii) c > ĉ.

Remark 1.2. Throughout the paper, we consider the existence and nonexistence of transition front with

a mean wave speed. The uniqueness of a transition front remains an open question. It is unknown whether

there is some transition front without a mean speed. However, for nonexistence, in general there are no

transition fronts if X(t)/t < c∗ or X(t)/t > ĉ as t → ∞.
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Fig. 1. The solid curve is for speed auxiliary function c(µ) =
λ(µ)

µ
. The dashed curve is for principal eigenvalue λ(µ). The parameter

values of existence region of transition fronts are located on [c∗, ĉ] × [µ̂, µ∗], where c∗ = inf
µ>0

c(µ) and ĉ = c(µ̂) with µ̂ satisfying

λ(µ̂) = λ.

This paper is organized as follows. In Section 2, we provide the discrete analogs of fundamental tools

in classical reaction–diffusion equations, including semigroup theory, comparison principles, discrete heat

kernel, discrete parabolic Harnack inequality and many others. In Section 3, we investigate the principal

eigenvalue theory and construct the super/sub-solutions. Then we show the existence of transition fronts

and also the asymptotic behaviors of transition fronts (1.8), that is, proof of Theorem 1.1 (1). In Section 4,

we show nonexistence of transition fronts under λ > λ∗, the lower bound of wave speeds (minimal wave

speed c∗), and the upper bound of wave speeds (maximal wave speed ĉ), that is proof of Theorem 1.1 (2).

In Section 5, we provide a particular example with the simplest case: a perturbation at a single location.

Finally, we provide some concluding remarks in Section 6.

2. Foundations of lattice differential equations

2.1. Initial value problem

Let X+ = {u ∈ X|uj ≥ 0,∀j ∈ Z}. Let Λ be as in (1.5). It follows from the general semigroup approach

(see [29]) that Λ generates a uniformly continuous semigroup T (t) and (1.2) has a unique (local) solution

u(t; z) with u(0) = {zj}j∈Z for every z ∈ X, that is given by

u(t) = T (t)u(0) −
∫ t

0

T (t− s)g(s)ds, t > 0, (2.1)

where gj(s) = (fj(uj) − fj(0))uj for j ∈ Z, g(s) = {gj(s)}j∈Z, and u(t) = {uj(t)}j∈Z.

2.2. Comparison principle

We introduce comparison principle in this subsection, which will play an important role in obtaining the

existence of transition fronts of (1.2). We define super/sub-solutions and state the comparison principle as

follows.
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Definition 2.1 (Super/Sub-Solution). For a given continuous-time and bounded function uj : [0, T ) → R,

{uj}j∈Z is called a super-solution (sub-solution) of (1.2) on [0, T ) if for all j, u̇j(t) ≥ (≤)uj+1 −2uj +uj−1 +

fj(uj)uj .

Proposition 2.1 (Comparison Principle).

(1) If u(t) and v(t) are sub-solution and super-solution of (1.2) on [0, T ), respectively, uj(0) ≤ vj(0), then

uj(t) ≤ vj(t) for t ∈ [0, T ).

Moreover, if uj(0) 6= vj(0) for some j, then for all j,

uj(t) < vj(t) for t ∈ (0, T ).

(2) If z, w ∈ X and z ≤ w, then uj(t; z) ≤ uj(t;w) for t > 0 at which both u(t; z) and u(t;w) exist. Moreover,

if zj 6= wj for some j, then for all j, uj(t; z) < uj(t;w) for t > 0 at which both u(t; z) and u(t;w) exist.

Proof. The proof follows from arguments in Lemma 2.1 in [15]. �

With the comparison principle, we have that if z ∈ X+, u(t; z) ∈ X+.

In next two subsections, we introduce the discrete heat kernel and the discrete parabolic Harnack

inequality, which play critical roles in studying the asymptotic behaviors and the bounds of wave speeds

of transition fronts.

2.3. Discrete heat kernel

Discrete heat kernel is highly related to I-Bessel functions. The I-Bessel function Ix(t) is defined as a

solution to the differential equation

t2
d2y

dt2
+ t

dy

dt
− (t2 + x2)y = 0.

In [30], the author derived an upper bound and lower bound for Ix(t), for all t > 0 and x ≥ 0,

e
− 1

2
√

t2+x2 ≤ Ix(t)
√

2π(t2 + x2)
1
4 e−ς0(t,x) ≤ e

1

2
√

t2+x2 ,

with ς0(x, t) =
√
t2 + x2 + xln( t

x+
√

t2+x2
).

By Proposition 3.1 in [31], the heat kernel on a 2-regular graph is given by

K(t, r) = e−2tIr(2t), for (t, r) ∈ (0,∞) × Z+.

With the help of the above bounds of Ir(t), we have the bounds of K(t, r):

1√
2π

(4t2 + r2)− 1
4 e

−2t− 1

2
√

4t2+r2
+ς0(2t,r)

≤ K(t, r) ≤ 1√
2π

(4t2 + r2)− 1
4 e

−2t+ 1

2
√

4t2+r2
+ς0(2t,r)

.

The authors in [31] showed that
√
te−tIx(t) ≤ (1 + x

t )− x
2 , thus K(t, r) ≤ 1√

2t
(1 + r

2t )− r
2 .

By Theorem 2.3 in [32], hZt (j) ≍ F (t, j), that is, there exist positive real constants ǫ > 0 and Mǫ > 0 such

that

(1 − ǫ)F (t, j) ≤ hZt (j) ≤ (1 + ǫ)F (t, j), (2.2)
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for j2 + t2 > Mǫ, where hZt (j) is the heat kernel associated with Lf(j) = f(j) − f(j+1)+f(j−1)
2 and F (t, j) is

given by if j = 0,

F (t, j) =
1√
2π

1

(1 + t2)
1
4

,

else if j 6= 0,

F (t, j) =
1√
2π

exp[−t+ |j|ς(t/|j|)]
(1 + t2 + j2)

1
4

,

where ς(t/|j|) := ς0(1, t/|j|).
Recall the nonlinear equation (1.2),

u̇j = uj+1 − 2uj + uj−1 + fj(uj)uj , j ∈ Z.

Consider also the linearized equation

u̇j = uj+1 − 2uj + uj−1 + ajuj , j ∈ Z, (2.3)

where aj = fj(0)

Let Λs : D(Λs) ⊂ X → X be defined by

(Λsu)j := uj+1 − uj + uj−1,∀u ∈ X. (2.4)

Let S(t) be the semigroup generated by Λs. Note that (S(t)z)j = et
∑

k

hZ2t(j−k)zk for z := {zj}j∈Z ∈ X.

Then the solution of (1.2) is given by

u(t) = S(t− T )u(T ) −
∫ t

T

S(t− s)g(s)ds, t > T,

where gj(t) = (1 − fj(uj))uj(t). More precisely, we have the following, for t > T ,

uj(t) = et−T
∑

k

hZ2(t−T )(j − k)uk(T ) −
∫ t

T

e(t−s)
∑

k

hZ2(t−s)(j − k)gk(s)ds. (2.5)

We should point out that the solution form with (2.5) is slightly different with that given by (2.1). With

heat kernel hZ2t in (2.5), we can use the heat kernel estimate (2.2). Then there would be some advantages

over (2.1) while exploring some estimates, such as the exponential tail estimates of transition fronts.

2.4. Discrete parabolic Harnack inequality

In this subsection, we shall introduce the discrete parabolic Harnack inequality for the solution to our

main equation (1.2). Harnack inequalities have many significant applications in both elliptic and parabolic

differential equations such as exploring boundary regularity, heat kernel estimate, and other solution

estimates. Moser in [33] proved a parabolic Harnack inequality for classical parabolic PDEs. For discrete

parabolic Harnack inequalities, we will adopt Definition 1.6 and apply Theorem 1.7 in [34] to prove that the

discrete parabolic Harnack inequality holds on a 2-regular graph. Readers are referred to [34] for further

information about parabolic Harnack inequality on graphs. For convenience, we recall necessary graph

theory, and state the Definition 1.6 of [34] as the following Definition 2.2.

Let Γ be an infinite set and µxy = µyx a symmetric nonnegative weight on Γ × Γ . We call x and y

neighbors, denoted by x ∼ y, when µxy 6= 0. Vertices are measured by m(x) =
∑

x∼y

µxy. The “volume” of

subsets E ⊂ Γ by V (E) =
∑

x∈E

m(x). We can further define d(x, y) as the distance of x and y in Γ , that is,

7
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the shortest number of edges between x and y. Let Br(x) be the closed ball {y ∈ Γ |d(x, y) ≤ r}. We say

that u(t, x) satisfies continuous-time parabolic equation on (t, x) if

m(x)ut(t, x) =
∑

y

µxy(u(t, y) − u(t, x)). (2.6)

We remark that for a 2-regular graph, x has only two neighbors y− := x−1 and y+ := x+1. If we consider

the same weight for µxy− = µxy+ , then

∑

y

µxy(u(t, y) − u(t, x)) = µxy−(u(t, x− 1) − 2u(t, x) + u(t, x+ 1)),

that is the exactly same type equation as (1.2) we consider in the paper. In [34], Delmotte defines Harnack

inequality of (2.6) on the graph as follows.

Definition 2.2 (Harnack Inequality [34]). Set η ∈ (0, 1) and 0 < θ1 < θ2 < θ3 < θ4. (Γ , µ) satisfies the

continuous-time parabolic Harnack inequality H(η, θ1, θ2, θ3, θ4, C) if for all x0, s, r and every nonnegative

solution on Q = [s, s+ θ4r
2] ×Br(x0) we have

sup
Q−

u ≤ C inf
Q+

u,

where Q− = [s+ θ1r
2, s+ θ2r

2] ×Bηr(x0) and Q+ = [s+ θ3r
2, s+ θ4r

2] ×Bηr(x0).

By Theorem 1.7 in [34], the discrete parabolic Harnack inequality holds if and only if the following three

conditions are satisfied:

Definition 2.3 (∆∗(α) Condition). Let α > 0, the weighted graph satisfies ∆
∗(α) if

x ∼ y =⇒ µxy ≥ αm(x);

Definition 2.4 (“Doubling Volume” Property). There exists a C > 0 such that

V (B2r(x)) ≤ CV (Br(x))

for any x ∈ Γ and r;

and

Definition 2.5 (Poincaré Inequality). There exists a C2 > 0 such that for all v ∈ RΓ , all x0, and r > 0,

∑

x∈Br(x0)

m(x)(v(x) − v̄)2 ≤ C2r
2

∑

x,y∈B2r(x0)

µxy(v(x) − v(y))2,

where v̄ =
1

V (Br(x0))

∑

x∈Br(x0)

m(x)v(x).

Now we claim that parabolic Harnack inequality holds on a 2-regular graph.

Theorem 2.1 (Harnack Inequality on a 2-regular Graph). The parabolic Harnack inequality H(η, θ1, θ2, θ3,

θ4, C) holds on a 2-regular graph.
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Proof. It suffices to show a 2-regular graph satisfies the ∆
∗(α) condition, the “doubling volume” property

and the Poincaré inequality. First, a 2-regular graph with 0 < α ≤ 1
2 satisfies the ∆

∗(α) condition. Second,

for a 2-regular graph, V (Br(x)) = 2(2r + 1) and V (B2r(x)) = 2(4r + 1). Choose C = 2 and then the

“doubling volume” property holds.

Finally, we prove the Poincaré inequality on a 2-regular graph. In fact, we have a strong Poincaré

inequality, that is, B2r(x0) can be reduced by Br(x0). Without loss of generality, let x0 = 0 and consider

v(x) for −r ≤ x ≤ r. Consider the same weights for all vertices, and let µxy = µxy = 1 if |y − x| = 1,

otherwise 0. Then we have

∑

x,y∈Br(x0)

µxy(v(x) − v(y))2 =
∑

x∈Br(x0)

[(v(x) − v(x+ 1))2 + (v(x) − v(x− 1))2]. (2.7)

The sequence v(x) oscillates around v̄. In other words, if v(x) moves from −r to r, it must either hit the v̄ at

some point or cross v̄ from one side to another. There exists at least one integer x̂ such that either v(x̂) = v̄

or (v(x̂) − v̄)(v(x̂+ 1) − v̄) < 0. In addition, there exists an x̂ ∈ (−r, r) such that

max{|v(x̂+ 1) − v̄|, |v(x̂) − v̄|} ≤ |v(x̂) − v(x̂+ 1)|. (2.8)

Thus, with (2.7), (2.8), Cauchy–Schwarz and triangle inequalities, we have that, for x ≤ x̂,

|v(x) − v̄| = |
x̂−1
∑

y=x

(v(y) − v(y + 1)) + (v(x̂) − v̄)|

≤
x̂−1
∑

y=x

|(v(y) − v(y + 1))| + |(v(x̂) − v̄)|

≤
x̂−1
∑

y=x

|(v(y) − v(y + 1))| + |(v(x̂) − v(x̂+ 1))|

=

x̂
∑

y=x

|(v(y) − v(y + 1))|

≤
r−1
∑

y=−r

|(v(y) − v(y + 1))|

≤ [
r−1
∑

y=−r

((v(y) − v(y + 1)))2]
1
2 [

r−1
∑

y=−r

(1)2]
1
2

= [2r

r−1
∑

y=−r

((v(y) − v(y + 1)))2]
1
2

≤ [2r
∑

x,y∈Br(x0)

µxy(v(x) − v(y))2]
1
2 .

If x = x̂ + 1, with (2.8), |v(x̂+ 1) − v̄| ≤ |v(x̂) − v(x̂+ 1)| and so we also have the above inequality. If

x > x̂+ 1, then we can do backward arguments above and have

|v(x) − v̄| = |
x

∑

y=x̂+2

(v(y) − v(y − 1)) + (v(x̂+ 1) − v̄)|

≤
x

∑

y=x̂+2

|(v(y) − v(y − 1))| + |(v(x̂+ 1) − v̄)|

9
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≤
x

∑

y=x̂+2

|(v(y) − v(y − 1))| + |(v(x̂) − v(x̂+ 1))|

=

x
∑

y=x̂+1

|(v(y) − v(y − 1))|

≤
r

∑

y=−r+1

|(v(y) − v(y − 1))|

≤ [

r
∑

y=−r+1

((v(y) − v(y + 1)))2]
1
2 [

r
∑

y=−r+1

(1)2]
1
2

= [2r
r

∑

y=−r+1

((v(y) − v(y + 1)))2]
1
2

≤ [2r
∑

x,y∈Br(x0)

µxy(v(x) − v(y))2]
1
2 .

In summary, for all x ∈ Br(x0), we have that

|v(x) − v̄| ≤ [2r
∑

x,y∈Br(x0)

µxy(v(x) − v(y))2]
1
2 .

Take the square for both sides and thus

(v(x) − v̄)2 ≤ 2r
∑

x,y∈Br(x0)

µxy(v(x) − v(y))2.

Note that m(x) =
∑

x∼y

µxy = 2. Then take the sum over Br(x0) and we have

∑

x∈Br(x0)

m(x)(v(x) − v̄)2 ≤ (m(x)(2r + 1)2r)
∑

x,y∈Br(x0)

µxy(v(x) − v(y))2

= (8r2 + 4r)
∑

x,y∈Br(x0)

µxy(v(x) − v(y))2

≤ (12r2)
∑

x,y∈Br(x0)

µxy(v(x) − v(y))2.

Hence, Poincaré inequality holds for C2 = 12. �

2.5. Some auxiliary functions

We recall some auxiliary functions. One is for the function ς(z) in the heat kernel estimate (2.2).

Recall that ς(z) =
√

1 + z2 + ln z

1+
√

1+z2
for z ∈ R+. Another is for the wave speed, c(µ) = λ(µ)

µ with

λ(µ) = eµ − 1 + e−µ for µ > 0. The properties of these auxiliary functions play important roles throughout

later sections. We group them in the following lemma and their proofs are straightforward.

Lemma 2.1. Let g(z) = −1 + 2 ς(z)+µ
z for µ > 0 and z > 0.

(1) ς(z) is strictly increasing in z on (0,∞) and then there exists a l0 > 0 such that ς(l0) = 0.

(2) g(z) is concave down and obtains an absolute maximum at z0 = csch(µ) = 2
eµ−e−µ for z ∈ (0,∞) and

g(z0) = λ(µ).

(3) For fixed µ > 0, c(µ) is concave up and has a unique critical point at µ∗, that is, c(µ) strictly decreasing

in (0, µ∗] and strictly increasing in (µ∗,∞).

10
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(4) For µ ∈ (0, µ∗), c(µ) > 2
z0

, for µ = µ∗, c(µ) = 2
z0

and for µ > µ∗, c(µ) < 2
z0

, where z0 = csch(µ).

(5) ς(z)
z is strictly increasing in z on (0,∞) and lim

z→∞
ς(z)

z
= 1.

Proof.

(1) By direct computation,

ς ′(z) =
z

1 +
√

1 + z2
+

1

z
=

√
1 + z2

z
> 0.

Therefore ς(z) is strictly increasing on (0,∞). Since ς(z) → −∞ as z → 0 and ς(z) → ∞ as z → ∞,

there exists a l0 > 0 such that ς(l0) = 0.

(2) By direct computation, g′(z) = 2 zς′(z)−ς(z)−µ

z2 = 2
ln

1+
√

1+z2

z −µ

z2 for µ > 0. Then there exists a unique

critical point z0 = 2
eµ−e−µ such that g′(z0) = 0. We can verify that g(z) obtains an absolute maximum at

z0 by first derivative test. Since ln
1+

√
1+z2

z is a strictly decreasing function with the range from positive

infinity to 0, g′(z) > 0 for z < z0 and g′(z) < 0 for z > z0. Plugging z0 into ς(z)+µ
z ,

ς(z0) + µ

z0
=
ς(z0)

z0
+
µ

z0

=
ς(csch(µ))

csch(µ)
+

µ

csch(µ)

=

√

1 + csch2(µ) + ln csch(µ)

1+
√

1+csch2(µ)

csch(µ)
+

µ

csch(µ)

=

√

coth2(µ) + ln csch(µ)

1+
√

coth2(µ)

csch(µ)
+

µ

csch(µ)

=
coth(µ) + ln csch(µ)

1+coth(µ)

csch(µ)
+

µ

csch(µ)

=
coth(µ) + ln 1

sinh(µ)+cosh(µ)

csch(µ)
+

µ

csch(µ)

=
coth(µ) − µ

csch(µ)
+

µ

csch(µ)

= cosh(µ)

Thus, g(z0) = −1 + 2cosh(µ) = eµ + e−µ − 1 = λ(µ).

(3) We can prove it by direct computation of solving c′(µ) = 0 and verifying c′′(µ) > 0.

(4) Let h(µ) = c(µ) − 2
z0

. Then h(µ) = λ(µ)
µ − (eµ − e−µ) = λ(µ)−µ(eµ−e−µ)

µ = −µc′(µ) and so h(µ) has an

opposite sign as c′(µ). By (3), c′(µ) < 0 for µ ∈ (0, µ∗), c′(µ∗) = 0 and c′(µ) > 0 for µ > µ∗, as required.

(5) Since ( ς(z)
z )′ = ς′(z)z−ς(z)

z2 = − 1
z2 ln

z

1+
√

1+z2
> 0, ς(z)

z is a strictly increasing function on (0,∞). The

limit lim
z→∞

ς(z)

z
= 1 follows easily. �

3. Existence of transition fronts and their asymptotic behaviors

This section is devoted to investigating the existence of transition fronts of (1.2) for wave speed c ∈ [c∗, ĉ]

when λ ∈ [1, λ∗) and c∗ < ĉ. By Lemma 2.1(3), the wave speed interval c ∈ [c∗, ĉ] corresponds to the interval

of µ ∈ [µ̂, µ∗]. To prove the existence of transition fronts, we apply fundamental tools such as comparison

principles and constructions of super- and sub-solutions. First we introduce principal eigenvalue theory for

Jacobi operators, that will play a central and important role in these processes.

11
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3.1. Principal eigenvalue theory for Jacobi operators

Sometimes we want to consider the truncated eigenvalue problem of (1.6):

φj+1 − 2φj + φj−1 + ajφj = λMφj , (3.1)

where j ∈ [−M,M ], and φM+1 = φ−M−1 = 0 for M > N . If we write it in a matrix form, and let AM be












a−M − 2 1 0 ... 0
1 a−M+1 − 2 1 ... 0
... ... ... ... ...
0 ... 1 aM−1 − 2 1
0 ... 0 1 aM − 2













,

then

AMφM = λMφ(M), (3.2)

where φ(M) = (φ−M , . . . , φM )T . By Perron–Frobenius theorem, there exists a principal eigenvalue and an

associated positive eigenvector. We let (λM , φ
(M)
j ) be the pair of corresponding l∞ normalized principal

eigenvalue and eigenvector, that is, (λM , φ
(M)
j ) satisfies (1.7) with ‖φ(M)‖∞ = 1 and φ

(M)
j > 0 for

j ∈ [−M,M ]. Let M go to infinity and the limit of λM exists. If λ > 1, λ is a principal eigenvalue of

(1.5) with λ = lim
M→∞

λM .

Lemma 3.1. If λ > 1, λ is a principal eigenvalue of (1.5). Moreover, λ = lim
M→∞

λM .

Proof. Without loss of generality, let both M and N be even and M > N . We let ÃM be an 2M + 3 by

2M + 3 matrix:












0 0 0 ... 0
0 a−M − 2 1 ... 0
... ... ... ... ...
0 ... 1 aM − 2 0
0 ... 0 0 0













.

Then we have that AM+1 ≥ ÃM and so ρ(AM+1) ≥ ρ(ÃM ) = ρ(AM ), where ρ(#) is the spectral radius of the

matrix #. Thus, λM = ρ(AM ) is non-decreasing in M . On the other hand, ‖AM ‖max = max
i,j

|AM (i, j)|, where

AM (i, j) is the element of AM at the ith row and jth column. Then 0 < λM ≤ ‖AM ‖max ≤ max
j

{|aj | + 2},

that is, λM is uniformly bounded. Therefore, the limit lim
M→∞

λM exists and it is denoted by λ∞ = lim
M→∞

λM .

Let φ(M) be the positive eigenvector of AM with ‖φ(M)‖∞ = 1. For each j, there exists a subsequence Mj

of M such that lim
Mj→∞

φ
(Mj)

j exists and let φ
(∞)
j = lim

Mj→∞
φ

(Mj)

j . For each M ≫ N , let jM be such that

φ
(M)
jM

= 1. We claim that there exists a jM ∈ [−N,N ]. For j < −N , we write (3.1) as the following,

φj+1 = (1 + λM )φj − φj−1. (3.3)

Let c1 = 1 + λM and c2 = −1. We can solve a recursive sequence φj+1 = c1φj + c2φj−1. To this end,

we use an auxiliary equation x2 − c1x − c2 = 0. Then solve it to have two roots d1 =
1+λM +

√
(1+λM )2−4

2

and d2 =
1+λM −

√
(1+λM )2−4

2 . Note that d1d2 = 1 and so d1 ≥ 1 and d2 ≤ 1. Therefore, we have either

d1 = d2 = 1 or 0 < d2 < 1 < d1. Moreover,

φj+1 − d1φj = d2(φj − d1φj−1),

φj+1 − d2φj = d1(φj − d2φj−1).

12
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Thus, for −M ≤ j < −N , we have

φj+1 − d1φj = (d2)j+M+1(φ−M − d1φ−M−1),

φj+1 − d2φj = (d1)j+M+1(φ−M − d2φ−M−1).

Recall Eq. (3.1) that φ−M−1 = 0 and φ−M > 0. Consider 0 < d2 < 1 < d1 first. Subtract the above

equations, divide by d2 − d1 and then with d1d2 = 1, for −M ≤ j < −N , we have

φj =
(d2)j+M+1(φ−M − d1φ−M−1) − (d1)j+M+1(φ−M − d2φ−M−1)

d2 − d1

=
(d2)j+M+1 − (d1)j+M+1

d2 − d1
φ−M

=
(d1)−(j+M+1) − (d1)j+M+1

d2 − d1
φ−M

Note that d1 > 1, and −(d1)−x + (d1)x is increasing for x > 0. Thus the φj is increasing for j < −N .

If d1 = d2 = 1, we must have φj+1 − φj = φ−M − φ−M−1 = φ−M for M ≤ j < −N . We also have

that φj is increasing for j < −N . Therefore it implies that max
−M≤j<−N

φj = φ−N−1. Similarly, we have

max
N<j≤M

φj = φN+1. Then we have one jM ∈ [−N,N ]. There exists a subsequence Mk of M such that

j̄ = lim
Mk→∞

jMk
for some j̄ ∈ [−N,N ]. Thus, φ

(∞)

j̄
= 1. Moreover, by taking the limit, we have that

Λφ(∞) = λ∞φ(∞). By the strong positivity of the semigroup generated by Λ, φ
(∞)

j̄
= 1 > 0 implies that

φ
(∞)
j > 0 for all j.

Next we will apply an extension of the Krein–Rutman theorem, Theorem 2.2 in [28], to show that λ is a

principal eigenvalue of (1.5). To this end, we introduce the Kuratowski measure of non-compactness as for

any B ⊂ X,

κ(B) = inf{d > 0 : there exist finitely many sets of diameter at most d which cover B}.

Let Λ̂ = Λ + sI with s ≥ 2 + |ai| for all i ∈ Z such that Λ̂ ≥ 0. Denote σ(Λ̂) the spectrum and

σess(Λ̂) the essential spectrum of Λ̂. Their respective spectral radii are r(σ(Λ̂)) and r(σess(Λ̂)). Rewrite

Λ̂ = Λ̂1 + Λ̂2 with Λ̂1φ = φj+1 − φj + φj−1 + sφj and Λ̂2 = diag{aj − 1, j ∈ Z}, that is a diagonal

matrix with 0 for all |j| > N . Then Λ̂2(B) is a subset of R2N+1 that implies κ(Λ̂2(B)) = 0. Therefore,

κ(Λ̂(B)) ≤ κ(Λ̂1(B)) + κ(Λ̂2(B)) = κ(Λ̂1(B)) ≤ ‖Λ̂1‖κ(B) = (s + 1)κ(B). Thus κ(Λ̂(B)) ≤ (s + 1)κ(B),

that is, Λ̂ is an (s+1)-set-contraction according to [28]. Let

α(Λ̂) = inf{c ≥ 0 : Λ̂ is a c-set-contraction}.

By the definition of (2.23) in [28], r(σess(Λ̂)) = lim
n→∞

(α(Λ̂n))
1
n . Thus r(σess(Λ̂)) ≤ s + 1. Since r(σ(Λ̂)) =

λ + s, λ > 1 implies that r(σ(Λ̂)) > r(σess(Λ̂)). Therefore, by Theorem 2.2 in [28], λ + s is a (principal)

eigenvalue of Λ̂ with a nontrivial nonnegative eigenvector φ and thus λ is a (principal) eigenvalue of (1.5)

with the identical eigenfunction φ. Moreover, φ must be strictly positive. If not, suppose there is a φk = 0.

Then φk±1 > 0 otherwise φ ≡ 0. Then 0 = (λ+2−ak)φk = φk+1 +φk−1 > 0, which leads to a contradiction.

Now let v(t) = φ(∞) − tφ, t ≥ 0. There exists t0 > 0 such that vk(t0) = 0 for some k ∈ Z, while v(t) � 0 for

t > t0. Moreover,

0 ≤ Λ̂(φ(∞) − t0φ) = (λ∞ + s)(φ(∞) − λ+ s

λ∞ + s
t0φ),

which implies that λ + s ≤ λ∞ + s due to the definition of t0. Thus, λ ≤ λ∞. By interchanging (λ, φ) and

(λ∞, φ(∞)), we have λ ≥ λ∞. To conclude, λ = λ∞ = lim
M→∞

λM . �

13
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Then we consider Eq. (1.7), Λµφ = γµφ for γµ ∈ R. It is easy to see that a solution φ is uniquely

determined by the values φk and φk+1 at two consecutive points k0, k0 +1. This results in a two-dimensional

space of fundamental solutions Span{u, v}, where u and v satisfy (1.7) with the initial conditions uk =

vk+1 = 1 and vk = uk+1 = 0 for k = k0. In applications, we are interested in a positive solution φ ∈ X to

(1.7). Before showing the existence of a positive solution of (1.7), we prove a lemma first.

Lemma 3.2. Every solution of (1.7) can change sign at most once for any γµ > λ.

Proof. We modify the arguments in section 2.3 of [26] where they are concerned with Jacobi operators in

a Hilbert space. Let (δn)n∈Z be the standard unit vectors of X, where (δn)i = 1 if i = n otherwise zeros. We

define the following restrictions Λ
+
µ,k0

and Λ
−
µ,k0

of Λµ on (k0,∞) and (−∞, k0) respectively:

(Λ+
µ,k0

φ)j =

{

e−µφj+1 − 2φj + ajφj , j = k0 + 1,

e−µφj+1 − 2φj + eµφj−1 + ajφj , j > k0 + 1,

and

(Λ−
µ,k0

φ)j =

{

eµφj−1 − 2φj + ajφj , j = k0 − 1,

e−µφj+1 − 2φj + eµφj−1 + ajφj , j < k0 − 1.

For λ ∈ ρ(Λµ), the matrix G := (λ− Λµ)−1 is called Green’s function with matrix elements

Gij = (λ− Λµ)−1
ij .

Let
−→
G j be the jth column vector of (λ− Λµ)−1 and then

(λ− Λµ)
−→
G j = δj .

Let

u(λ, ·) = (λ− Λµ)−1δ0(·), λ ∈ ρ(Λµ).

Let u±(γµ, k) denote the solutions that coincide with u(γµ, k) for k > 0 and k < 0 respectively. We

complete the proof of the lemma in a couple of steps.

Step 1. We have that (k − k0)s(γµ, k, k0) > 0, k 6= k0, where s(γµ, k, k0) is the solution with initial

conditions s(γµ, k0, k0) = 0 and s(γµ, k0 + 1, k0) = 1. Denote

G+
ij = (γµ − Λ

+
µ,k0

)−1
ij .

and

Ḡ+
ij =







eµu+(γµ,i)s(γµ,j,k0)

u+(γµ,k0)
, i ≥ j

eµu+(γµ,j)s(γµ,i,k0)

u+(γµ,k0)
, i ≤ j.

We claim that G+
ij = Ḡ+

ij . We note that the Wronskian of u+ and s is a constant and

W (u+, s) = e−µ(u+(γµ, k)s(γµ, k + 1, k0) − u+(γµ, k + 1)s(γµ, k, k0)) = e−µu+(γµ, k0).

Let φ =
−→̄
G+

j = (Ḡ+
ij)i∈Z. For k < j, we have

((γµ − Λ
+
µ,k0

)
−→̄
G+

j )k = γµφk − (e−µφk+1 − 2φk + eµφk−1 + akφk)

=
eµu+(γµ, j)

u+(γµ, k0)
((γµ − Λ

+
µ,k0

)s(γµ, ·, k0))k

= 0.

14
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Similarly, for k > j we also have ((γµ − Λ
+
µ,k0

)
−→̄
G+

j )k = 0 by interchanging u+ and s in the above arguments

for k < j. For k = j, we have

((γµ − Λ
+
µ,k0

)
−→̄
G+

j )k = γµφk − (e−µφk+1 − 2φk + eµφk−1 + akφk)

=
eµu+(γµ, k)

u+(γµ, k0)
((γµ − Λ

+
µ,k0

)s(γµ, ·, k0))k

+
[u+(γµ, k)s(γµ, k + 1, k0) − u+(γµ, k)s(γµ, k, k0)]

u+(γµ, k0)

=
W (u+, s)

e−µu+(γµ, k0)

= 1.

Therefore, (γµ − Λ
+
µ,k0

)
−→̄
G+

j = δj and thus G+
ij = Ḡ+

ij .

Thus,

0 < (γµ − Λ
+
µ,k)−1

k+1,k+1 =
eµu+(γµ, k + 1)

u+(γµ, k)
.

Then u+(γµ, k) and u+(γµ, k + 1) have the same signs. We can assume that u+(γµ, k) > 0. On the other

hand, by similar arguments above, for k > k0

0 < (γµ − Λ
+
µ,k0

)−1
k,k =

eµu+(γµ, k)s(γµ, k, k0)

u+(γµ, k0)
.

Hence, (k − k0)s(γµ, k, k0) > 0, k > k0. We can show the case of k < k0 similarly.

Step 2. Suppose uj(γµ, k), j = 1, 2, are two solutions of (1.7) with u1(γµ, k0) = u2(γµ, k0) for some

k0 ∈ Z. Then u1(γµ, k) − u2(γµ, k) = cs(γµ, k, k0) for some c ∈ R. Therefore, by Step 1, either

(k − k0)(u1(γµ, k) − u2(γµ, k)) > 0 for k 6= k0 or u1(γµ, k) = u2(γµ, k) for all k. The solutions u(γµ, k)

can change sign at most once since s(γµ, k, k0) does. �

Now we are in a position to prove a lemma that there exists a positive solution φ ∈ X to (1.7) for

γµ = λ(µ) for µ ∈ [µ̂, µ∗), and φk = 1 for k = n0, n0 + 1 and n0 > N .

Lemma 3.3. There exists a positive solution φ ∈ X to (1.7) for γµ = λ(µ) for µ ∈ [µ̂, µ∗), and φk = 1

for k = n0, n0 + 1 and n0 > N . Moreover, φj = 1 for j > N and there is a positive number l such that

lim
j→−∞

φj = l.

Proof. For |j| > N , aj = 1. Thus, recalling (1.7), for |j| > N , we have

e−µφj+1 − φj + eµφj−1 = λ(µ)φj .

Thus, recalling λ(µ) = eµ − 1 + e−µ, for |j| > N , we have

e−µφj+1 + eµφj−1 = (eµ + e−µ)φj . (3.4)

Since φk = 1 for k = n0, n0 + 1, with (3.4), for j > N , φj = 1. On the other hand, for j < −N , we write

(3.4) as the following,

φj−1 = (1 + e−2µ)φj − e−2µφj+1.

Let c1 = 1 + e−2µ and c2 = −e−2µ. We can solve a recursive sequence φj−1 = c1φj + c2φj+1. To this end,

we use an auxiliary equation x2 − c1x − c2 = 0. Then solve it to have two roots d1 = 1 and d2 = e−2µ.

Therefore, we have

φj−1 − d1φj = d2(φj − d1φj+1),

φj−1 − d2φj = d1(φj − d2φj+1).
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Thus, for j < −N , we have

φj−1 − d1φj = (d2)−N+1−j(φ−N − d1φ−N+1),

φj−1 − d2φj = (d1)−N+1−j(φ−N − d2φ−N+1).

Subtract the above equations, divide by d2 − d1 and then for j < −N , we have

φj =
(d2)−N+1−j(φ−N − d1φ−N+1) − (d1)−N+1−j(φ−N − d2φ−N+1)

d2 − d1

=: C1 + C2e
2µj .

(3.5)

Since lim
j→−∞

(d2)−N+1−j = lim
j→−∞

e−2µ(−N+1−j) = 0 and (d1)−N+1−j = 1,

lim
j→−∞

φj =
−(φ−N − d2φ−N+1)

d2 − d1
:= l.

Thus, φ ∈ X. Next, we prove that φ > 0. Suppose that φk0 ≤ 0 for some k0 < N while φj > 0 for

j > k0 (i.e. k0 is the first oscillation point around 0 from the right). Let φ̂ be a solution with φ̂k = e2µk for

k = n0, n0+1 and n0 > N . Then for j > N , φ̂j = e2µj for all j > N . There is an ǫ > 0 small enough such that

k0 is also an oscillation point for φ− ǫφ̂. Then φ− ǫφ̂ > 0 for N < j < − ln(ǫ)
2µ and φ− ǫφ̂ < 0 for j > − ln(ǫ)

2µ .

Thus there exists another oscillation point for φ− ǫφ̂. This causes a contradiction with oscillation theory,

every solution can change sign at most once (Lemma 3.2), and so φj > 0. �

3.2. Sub/super-solutions

In this subsection, we construct a super-solution and a sub-solution with Lemma 3.3. By Lemma 3.3, the

principal eigenvalue pair, denoted by (λµ, φ
µ
j ), exists for Eq. (1.7), where λµ = λ(µ) for µ ∈ [µ̂, µ∗).

Let

ūj = e−µ(j−ct)φµ
j . (3.6)

Lemma 3.4. {ūj}j∈Z is a super-solution of (1.2).

Proof. By (H1), we have fj(ūj) − fj(0) ≤ 0. Recall that aj = fj(0). By direct calculation, we have

(ūj)t − [ūj+1 − 2ūj + ūj−1 + fj(ūj)ūj ]

≥(ūj)t − [ūj+1 − 2ūj + ūj−1 + aj ūj ]

=0. �

Let

uj = e−µ(j−ct)φµ
j − d1e

−µ1(j−ct)φµ1
j . (3.7)

for µ̂ ≤ µ < µ1 < min{2µ, µ∗}.

Lemma 3.5. {uj}j∈Z is a sub-solution of (1.2) for any d1 > max

{ sup
j
φµ

j

inf
j
φµ1

j

,

L(sup
j
φµ

j )2

(µ1c−λ(µ1)) inf
j
φµ1

j

}

.

Proof. Let fj(uj) = fj(0) if uj ≤ 0. By Lemma 2.1(3), for µ̂ ≤ µ < µ1 < min{2µ, µ∗},

c(µ1) =
λ(µ1)

µ1
≤ λ(µ)

µ
= c. (3.8)
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Then if uj ≤ 0, we have

(uj)t − [uj+1 − 2uj + uj−1 + fj(uj)uj ]

= (uj)t − [uj+1 − 2uj + uj−1 + fj(0)uj ]

= −(µ1c− λ(µ1))d1e
−µ1(j−ct)φµ1

j

≤ 0.

By Lemma 3.3 and µ̂ ≤ µ < µ1, both sup
j
φµ

j and inf
j
φµ1

j are positive. Let

d0 = max

{ sup
j
φµ

j

inf
j
φµ1

j

,

L(sup
j
φµ

j )2

(µ1c− λ(µ1)) inf
j
φµ1

j

}

.

Note that d1 > d0. If uj > 0, we have e−µ(j−ct)φµ
j − d1e

−µ1(j−ct)φµ1
j > 0 and then

e−(µ−µ1)(j−ct) > d1

φµ1
j

φµ
j

≥ d1

d0
≥ 1,

that implies that j− ct ≥ 0. For uj > 0, u2
j ≤ e−2µ(j−ct)(φµ

j )2. Then together with (3.8), for uj > 0, we have

(uj)t − [uj+1 − 2uj + uj−1 + fj(uj)uj ]

= (uj)t − [uj+1 − 2uj + uj−1 + ajuj ] + fj(0)uj − fj(uj)uj

= (uj)t − [uj+1 − 2uj + uj−1 + ajuj ] − f ′
j(y)u2

j

≤ −(µ1c− λ(µ1))d1e
−µ1(j−ct)φµ1

j − f ′
j(y)e−2µ(j−ct)(φµ

j )2

≤ e−µ1(j−ct)[−(µ1c− λ(µ1))d1φ
µ1
j − f ′

j(y)e−(2µ−µ1)(j−ct)(φµ
j )2]

≤ e−µ1(j−ct)[−(µ1c− λ(µ1))d1φ
µ1
j − f ′

j(y)(φµ
j )2],

where y is such that fj(0) − fj(uj) = −f ′
j(y)uj . Recall that µ < µ1 < min{2µ, µ∗} and in (H1),

−L < inf
j∈Z,uj≥0

{f ′
j(uj)} ≤ sup

j∈Z,uj≥0
{f ′

j(uj)} < 0 for some L > 0. Since d1 > d0 ≥
L(sup

j
φµ

j )2

(µ1c−λ(µ1)) inf
j
φµ1

j

, we

have [−(µ1c− λ(µ1))d1φ
µ1
j − f ′

j(y)(φµ
j )2] ≤ 0 and thus

(uj)t − [uj+1 − 2uj + uj−1 + fj(uj)uj ] ≤ 0

for uj > 0. This completes the proof of the proposition. �

Remark 3.1. For µ = µ∗, Lemma 3.4 holds. However, Lemma 3.5 does not hold for µ = µ∗, because valid

positive eigenvector must locate in (0, µ∗] and there is no room for the choice of µ1 that has to be bigger

than µ. For another critical number µ = µ̂, it is fine to be included because µ1 can be chosen as long as

µ̂ ≤ µ < µ1 < min{2µ, µ∗}.

3.3. Existence of transition fronts

In the last subsection we constructed the super/sub-solutions on the interval [µ̂, µ∗) of µ. In this

subsection, we can obtain the existence of transition fronts to (1.2) for c ∈ (c∗, ĉ] by the comparison principle.

After that, with the limiting argument, we can have the existence of transition fronts to (1.2) of c = c∗. The

proof of existence of transition fronts in part (1) of main theorem is completed by the following proposition.
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Proposition 3.1. Assume (H1)–(H2). If λ ∈ [1, λ∗) and ĉ > c∗, then transition fronts exist for any speed

c ∈ [c∗, ĉ]. Moreover, for c∗ < c < ĉ, the constructed transition front uj(t) satisfy

lim
j−ct→∞

uj(t)

e−µ(j−ct)
= φµ

j . (3.9)

To prove Proposition 3.1, we will apply the following lemma. Let (λM , φM ) be principal eigenvalue and

eigenvector pair of (3.1) with ‖φM ‖∞ = 1 and ũ = δφM for δ > 0.

Lemma 3.6. For any given M ≫ 1, there is a small enough δ0 > 0 such that ũ is a sub-solution of (1.2)

for any δ ∈ (0, δ0).

Proof. Recall that aj = fj(0). Choose δ0 small enough such that

fj(0) − fj(ũj) ≤ fj(0) − fj(δ0) < λM ,∀δ ∈ (0, δ0).

By direct calculation, we have

(ũj)t − [ũj+1 − 2ũj + ũj−1 + fj(ũj)ũj ]

=(ũj)t − [ũj+1 − 2ũj + ũj−1 + aj ũj ] + (fj(0) − fj(ũj))ũj

=(−λM + (fj(0) − fj(ũj)))ũj

≤0. �

Proof of Proposition 3.1. As long as we have the required super/sub-solutions, the existence of transition

fronts can be obtained by the standard “squeeze” techniques. Indeed, if λ ∈ [1, λ∗) and ĉ > c∗, then we have

a positive principal eigenvector to (1.7) for any speed c ∈ (c∗, ĉ]. Let ū and u be chosen as in (3.6) and (3.7),

v = min{ū, u∗} and w = max{u, 0}. Following arguments similar to [20], we have an entire solution that is

sandwiched between v and w. In fact, for each n ∈ N, let {un
j }j∈Z be a solution of (1.2) with initial condition

un
j (−n) = vj(−n). With the comparison principle, we have that for any n ∈ N, and (t, j) ∈ (−n,∞) × R,

0 ≤ wj(t) ≤ un
j (t) ≤ vj(t) ≤ u∗

j .

In particular, letting t = −n+1, we have un
j (−n+1) ≤ vj(−n+1) = un−1

j (−n+1), for all n ∈ N and j ∈ Z.

With the comparison principle again, we have that for any n ∈ N, and (t, j) ∈ (−n+ 1,∞) × R,

0 ≤ un
j (t) ≤ un−1

j (t) ≤ u∗
j .

Note that |un
j (t)| ≤ u∗

j and |u̇n
j (t)| ≤ C‖Λ‖ + max

0≤v≤u∗
j

|fj(v)| max
j
u∗

j because Λ is a bounded operator with

operator norm ‖Λ‖. By Arzelà−Ascoli theorem, there exists a subsequence {unk
j (t)}j∈Z with nk > |t|+1, such

that it converges uniformly on bounded sets. Letting nk → ∞, uj(t) := lim
nk→∞

u
nk
j (t) for all (t, j) ∈ R × Z.

Integrating (1.2) over [0, t] with each un
j (t) for n ∈ N, we have

un
j (t) = un

j (0) +

∫ t

0

[un
j+1 − 2un

j + un
j−1 + fj(un

j )un
j ]ds.

Letting n → ∞, we have

uj(t) = uj(0) +

∫ t

0

[uj+1 − 2uj + uj−1 + fj(uj)uj ]ds,
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which implies that uj ∈ C1 and also satisfies (1.2). Moreover, we also have that

0 ≤ wj(t) ≤ uj(t) ≤ vj(t) ≤ u∗
j .

Thus, it yields lim
j→∞

uj(t) = 0. It remains to show that lim
j→−∞

uj(t) = u∗
j . By strong comparison principle,

we have uj(τ) > 0 for τ > 0. Let ũ be as in Lemma 3.6. Since ũ is compactly supported on [−M,M ], there

exists a δ ∈ (0, δ0), such that uj(τ) > ũ. With the comparison principle again, uj(t) ≥ uj(t − τ ; ũ) for

t > τ , where {uj(t− τ ; ũ)}j∈Z is the solution of (1.2) with initial ũ at t = τ . Due to uniqueness of positive

stationary solution of (1.2), we must have lim
t→∞

uj(t− τ ; ũ) = u∗
j . Then for all j ∈ Z,

lim inf
t→∞

uj(t) ≥ lim
t→∞

uj(t− τ ; ũ) = u∗
j ,

that implies that lim
t→∞

uj(t) = u∗
j . By the definition of w(t) (sub-solution), there exist positive large L and

small σ such that, for j − ct > L,

w(t) ≥ σe−µ(j−ct) > σe−µL ≥ ũ.

In particular, let t̃ = j−L
c and we have uj(t̃) ≥ w(t̃) ≥ σe−µL ≥ ũ. Since lim

t→∞
uj(t; ũ) = u∗

j , for any ǫ > 0,

there exists a T0 > 0 such that uj(t; ũ) > u∗
j − ǫ, for all t > T0 and j ∈ Z. Note that as j → −∞, t− t̃ → ∞

for given t ∈ R. Then for t− t̃ > T0,

uj(t) = uj(t− t̃+ t̃) ≥ uj(t− t̃; ũ) > u∗
j − ǫ,

thus implies that lim
j→−∞

uj(t) = u∗
j .

For c = c∗ (µ = µ∗), we claim that the transition front also exists and shall prove it by limit arguments

due to the invalid sub-solutions in Remark 3.1. To prove the case with c = c∗, pick a sequence ĉ > cn̄ > c∗

such that cn̄ → c∗. We simply denote the transition fronts of speed cn̄ by {un̄
j (t)}j∈Z. By similar limiting

arguments above for {un
j (t)}j∈Z, let the transition front of speed c∗ be u†

j(t) := lim
n̄k→∞

u
n̄k
j (t).

Finally, for c∗ < c < ĉ, the limit (3.9) follows from wj(t) ≤ uj(t) ≤ vj(t) for all j and t > 0 with the

comparison principle. This completes the proof. �

By Proposition 3.1, we have the following exponential tail estimates for the constructed transition fronts.

Corollary 3.1. For the constructed transition fronts of c∗ < c < ĉ in Proposition 3.1, they own exponential

tail estimates: for any ǫ > 0, there exist C1, C2, T > 0 such that for t > T and j > ct,

C1e
−(µ+ǫ)(j−ct) ≤ uj(t) ≤ C2e

−(µ−ǫ)(j−ct). (3.10)

Remark 3.2. If λ = 1, ĉ = ∞ (µ̂ = 0). This includes the case of homogeneous equation with fj(uj) = 1−uj .

In these cases, the required positive eigenvectors to (1.7) are always available for any µ ∈ (0, µ∗). For c = c∗,

since comparison principle does not work due to invalid sub-solutions, the tail estimate remains an open

question and we should pay special attention to the critical speed c∗.

3.4. Asymptotic behaviors of transition fronts

In the last subsection, for any constructed transition fronts, they satisfy an exponential tail estimate

(3.10). In this subsection, we will prove that if transition fronts exist, then they must own similar exponential

tail estimates, that completes the proof of part (1) of main theorem. Recall that λ(µ) = eµ − 1 + e−µ and

c(µ) = λ(µ)
µ for µ > 0, then we have the following propositions about the asymptotic behaviors of transition

fronts.
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Proposition 3.2. Let c > c∗, and uj(t) be a transition front of (1.2) with speed c. Then for any ǫ > 0,

there exists a K̂ǫ > 0 such that

uk(tj) ≤ K̂ǫe
−(µ−ǫ)(k−j),

for k ≥ j with j, tj as in Definition 1.2 of Mean Wave Speed.

Proof. Suppose not, then there exist ǫ, jn, tjn , kn and xn := kn − jn → ∞ such that

ukn(tjn) ≥ K̂ǫe
−(µ−ǫ)xn . (3.11)

For simplicity, we denote T = tjn .

Recall (2.5) that for T ≥ 0,

uj(t) = et−T
∑

k

hZ2(t−T )(j − k)uk(T ) −
∫ t

T

e(t−s)
∑

k

hZ2(t−s)(j − k)gk(s)ds

:= A(t) −B(t),

and gj(t) = (1 − fj(uj))uj .

Let z0 = csch(µ). Recall that c > 2
z0

by Lemma 2.1 (4). Let t̃ be such that xn = (c − 2
z0

)t̃ and

j = kn + 2
z0
t̃ = jn + ct̃ > N . Choose t = t̃ + T , that is, t̃ = t − T . Then as xn → ∞, t̃ → ∞ and

thus t → ∞. By Lemma 2.1 (2), g(z0) = λ(µ) and thus −1 + 2 ς(z0)+µ
z0

= µc. By heat kernel estimate (2.2)

and with (3.11), we have

A(t) = et̃
∑

k

hZ2t̃(j − k)uk(T )

≥ Cet̃
∑

k

F (2t̃, j − k)uk(T )

= C
1√
2π

(
et̃

(1 + 4t̃2)
1
4

uj(T ) +
∑

k 6=j

exp[−t̃+ |j − k|ς(2t̃/|j − k|)]
(1 + 4t̃2 + |j − k|2)

1
4

uk(T ))

≥ C
1√
2π

exp[−t̃+ |j − kn|ς(2t̃/|j − kn|)]
(1 + 4(t̃)2 + (j − kn)2)

1
4

ukn(T )

≥ CK̂ǫ
1√
2π

exp[−t̃+ |j − kn|ς(2t̃/|j − kn|)]
(1 + 4(t̃)2 + (j − kn)2)

1
4

e−(µ−ǫ)xn

= CK̂ǫ
1√
2π

exp[−t̃+ 2t̃
z0
ς(z0) − (µ− ǫ)(c− 2

z0
)t̃]

(1 + 4(t̃)2 + (j − kn)2)
1
4

= CK̂ǫ
1√
2π

exp[−t̃+ 2t̃
z0
ς(z0) − µ(c− 2

z0
)t̃]

(1 + 4(t̃)2 + (j − kn)2)
1
4

e
ǫ(c− 2

z0
)t̃

= CK̂ǫ
1√
2π

exp[ǫ(c− 2
z0

)t̃]

(1 + 4(t̃)2 + (j − kn)2)
1
4

≥ eǫ̃t̃,

where ǫ̃ is chosen such that ǫ(c − 2
z0

) > ǫ̃ > 0 for µ ∈ (0, µ∗) and the above inequality holds as t̃ is chosen

large enough. On the other hand, we have that

B(t) =

∫ t

T

et−s
∑

k

hZ2(t−s)(j − k)gk(s)ds

=

∫ t̃

0

et̃−s
∑

k

hZ2(t̃−s)(j − k)gk(s)ds
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≤ C

∫ t̃

0

et̃−s
∑

k

F (2(t̃− s), j − k)gk(s)ds

= C

∫ t̃

0

et̃−s

(

∑

k≤−c(t̃−s)+cs+jn

+
∑

−c(t̃−s)+cs+jn<k≤cs+jn

+
∑

k>cs+jn

)

F (2(t̃− s), j − k)gk(s)ds

:= B1 +B2 +B3.

Since uj is bounded, there exists a positive M such that

|gj(s)| = |fj(uj)uj − uj | < M. (3.12)

For k > cs + jn > N , fk(0) = ak = 1. For any given positive η, there exists an n0 such that for n > n0,

we have uk(s) < η whenever k > cs+ jn. This can be done because lim
k−cs→∞

uk(s) = 0 and jn ≈ ctjn large.

Then for any δ ∈ (0, ǫ̃), there exists an η such that fk(0) − fk(uk) < δ and then

gk(s) = (1 − fk(uk))uk(s) < δuk(s). (3.13)

Without loss of generality, let jn = 0 by translation and so j = ct̃. Recall that, in Lemma 2.1 (1), numerical

computation shows that l0 > 0.66. On the other hand, we have c ≥ c∗ = inf
µ>0

eµ − 1 + e−µ

µ
≈ 2.073, and

thus 1
c < 0.5 < l0. Therefore by Lemma 2.1 (1), ς( 1

c ) < ς(l0), that is, ς( 1
c ) < 0. For k ≤ −c(t̃− s) + cs,

ς(
2(t̃− s)

|j − k| ) ≤ ς(
1

c
) < 0. (3.14)

Therefore, with (3.12) and (3.14), for B1 we have

B1 = C

∫ t̃

0

et̃−s(
∑

k≤−c(t̃−s)+cs

F (2(t̃− s), j − k)gk(s))ds

≤ CM

∫ t̃

0

et̃−s
(

∑

k≤−c(t̃−s)+cs

F (2(t̃− s), j − k)
)

ds

= C1

∫ t̃

0

∑

k≤−c(t̃−s)+cs

e
−(t̃−s)+|j−k|ς(

2(t̃−s)
|j−k|

)

√
2π(1 + 4(t̃− s)2 + (j − k)2)

1
4

ds

≤ C1

∫ t̃

0

∑

k≤−c(t̃−s)+cs

e−(t̃−s)+|j−k|ς( 1
c )

√
2π(1 + 4(t̃− s)2 + (j − k)2)

1
4

ds

≤ C1

∫ t̃

0

∑

k≤min{−c(t̃−s)+cs,0}

e−(t̃−s)+|j−k|ς( 1
c )

√
2π(1 + 4(t̃− s)2 + (j − k)2)

1
4

ds

+ C1

∫ t̃

0

∑

0<k≤|−c(t̃−s)+cs|

e(−1+2cς( 1
c ))(t̃−s)

√
2π(1 + 4(t̃− s)2 + (j − k)2)

1
4

ds

≤ C1

∫ t̃

0

∑

k≤0

e−(t̃−s)+|j−k|ς( 1
c )

√
2π(1 + 4(t̃− s)2 + (j − k)2)

1
4

ds+ C1

∫ t̃

0

∑

0<k≤c(t̃+2s)

1ds

≤ C1

∫ t̃

0

(

∑

k≤0

e(−k)ς( 1
c ) + c(t̃+ 2s)

)

ds, by − (t̃− s) + jς(
1

c
) < 0

21



E.S. Van Vleck and A. Zhang Nonlinear Analysis 217 (2022) 112748

= C1

∫ t̃

0

( eς( 1
c )

1 − eς( 1
c )

+ c(t̃+ 2s)
)

ds

≤ P1(t̃),

where C1 = CM and P1(t̃) = C1(2ct̃2 + (
eς( 1

c )

1 − eς( 1
c )

)t̃) that is a quadratic equation.

Let −σ = −1 + 2
ς(z1)

z1
= max

−c(t̃−s)+cs<k≤cs
−1 + 2

ς(z)

z
with z = 2(t̃−s)

|j−k| and z1 = 2
c . We remark that

c ≥ c∗ ≈ 2.073 and z1 ≤ 2
c∗ ≈ 0.9648. Thus,

σ = 1 − 2
ς(z1)

z1
≥ 1 − 2

ς(0.9648)

0.9648
≈ 0.0355793 > 0.

Then, for B2 we have that

B2 = C

∫ t̃

0

et̃−s(
∑

−c(t̃−s)+cs<k≤cs

F (2(t̃− s), j − k)gk(s))ds

≤ CM

∫ t̃

0

et̃−s
(

∑

−c(t̃−s)+cs<k≤cs

F (2(t̃− s), j − k)
)

ds

= C1

∫ t̃

0

∑

−c(t̃−s)+cs<k≤cs

e
−(t̃−s)+|j−k|ς(

2(t̃−s)
|j−k|

)

√
2π(1 + 4(t̃− s)2 + (j − k)2)

1
4

ds

≤ C1

∫ t̃

0

∑

−c(t̃−s)+cs<k≤cs

e(−1+cς( 2
c ))(t̃−s)

√
2π(1 + 4(t̃− s)2 + (j − k)2)

1
4

ds

≤ C1

∫ t̃

0

∑

−c(t̃−s)+cs<k≤cs

e−σ(t̃−s)

√
2π(1 + 4(t̃− s)2 + (j − k)2)

1
4

ds

≤ C1

∫ t̃

0

∑

−c(t̃−s)+cs<k≤cs

1ds

= C1

∫ t̃

0

c(t̃− s)ds

≤ P2(t̃),

where C1 = CM and P2(t̃) = C1( c
2 t̃

2) that is a quadratic equation.

Finally, with (3.13), for B3 we have that

B3 = C

∫ t̃

0

et̃−s(
∑

k>cs

F (2(t̃− s), j − k)gk(s))ds

≤ δC

∫ t̃

0

et̃−s(
∑

k>cs

F (2(t̃− s), j − k)uk(s))ds

≤ δC

∫ t̃

0

et̃−s(
∑

k

F (2(t̃− s), j − k)uk(s))ds.

Note that

A−B3 ≥ (S(t− T )u(T ))j − δ(

∫ t

T

S(t− s)u(s)ds)j

= e−δt̃(S(t− T )u(T ))j
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= e−δt̃A(t)

≥ e(ǫ̃−δ)t̃,

which is an exponential equation. On the other hand, B1 +B2 ≤ P1(t̃)+P2(t̃), which is a quadratic equation.

Thus, uj(t) → ∞ as t → ∞ which contradicts that uj(t) is bounded. �

Proposition 3.3. Let uj(t) be a transition front of (1.2) with speed c larger than c∗. Then for any ǫ > 0,

there exists a K̃ǫ > 0 and T > 0 such that

uk(tj) ≥ K̃ǫe
−(µ+ǫ)(k−j),

for tj > T and k ≥ j with j, tj as in Definition 1.2 of Mean Wave Speed.

Proof. We prove this lemma by contradiction. Assume the proposition to be false. Then for given ǫ, there

exist sequences tjn ∈ R+, kn ∈ Z+ and jn ∈ Z+ such that kn ≥ jn and

ukn(tjn) ≤ K̃ǫe
−(µ+ǫ)(kn−jn). (3.15)

By applying Harnack inequality and shifting the origin of time and space, we can have a q > 0 such that

uk(tjn) ≤ Ce−(µ+ ǫ
2 )(kn−jn),∀k ∈ [(1 − qǫ)kn, (1 + qǫ)kn]. (3.16)

Let j = ctjn > N , where tjn ∈ R+ is chosen such that j ∈ Z+ and N is as in (H2). For simplicity, we let

t = tjn . We remark that t is a sequence and n → ∞ implies that t → ∞. Recall (2.5) that for T = 0,

uj(t) = et
∑

k

hZ2t(j − k)uk(0) −
∫ t

0

e(t−s)
∑

k

hZ2(t−s)(j − k)gk(s)ds

:= A(t) −B(t),

where gj(t) = (1 − fj(uj))uj , and















A(t) = et
∑

k

hZ2t(j − k)uk(0)

B(t) =
∫ t

0
e(t−s)

∑

k

hZ2(t−s)(j − k)gk(s)ds.
.

We claim that uj(t) = A(t) −B(t) < 0 as t → ∞, which causes a contradiction.

For any δ > 0, there exists a l, jδ > 0, such that uk(s) ≥ l for N < k ≤ (c− δ)s− jδ and s ≥ 0. Then for

N < k ≤ (c− δ)s− jδ and s ≥ 0,

gk(s) = (fk(0) − fk(uk))uk(s) ≥ (1 − sup
k
fk(l))l := l̂. (3.17)

Thus, letting k̂ = (c− δ)s− jδ and 0 < σ2 < σ1 ≪ 1, let

C(s, t) = −(t− s) + |ct− k̂|ς(2(t− s)/|ct− k̂|).

For 0 < (1 − σ1)t ≤ s ≤ (1 − σ2)t, choosing δ = σ1, we have

C(s, t) = −(t− s) + |ct− k̂|ς(2(t− s)/|ct− k̂|)
= −(t− s) + (c(t− s) + δs+ jδ)ς(2(t− s)/(c(t− s) + δs+ jδ))

≥ −σ1t+ (c(t− s) + δs+ jδ)ς(
2

c+ δ( s
t−s ) + jδ

t−s

)

≥ −σ1t+ (cσ2t+ δ(1 − σ1)t+ jδ)ς(
2

c+ δ( 1−σ2
σ1

) + jδ
σ2t

)
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= −σ1t+ (cσ2t+ σ1(1 − σ1)t+ jδ)ς(
2

c+ 1 − σ2 + jδ
σ2t

)

= (−σ1 + (cσ2 + σ1(1 − σ1))ς(
2

c+ 1 − σ2 + jδ
σ2t

))t+ jδς(
2

c+ 1 − σ2 + jδ
σ2t

).

For t > jδ
σ2

2
, we have

C(s, t) ≥ (−σ1 + (cσ2 + σ1(1 − σ1))ς(
2

c+ 1 − σ2 + jδ
σ2t

))t+ jδς(
2

c+ 1 − σ2 + jδ
σ2t

)

≥ (−σ1 + (cσ2 + σ1(1 − σ1))ς(
2

c+ 1
))t+ jδς(

2

c+ 1
)

:= −σ̂1t− σ̂2.

(3.18)

We remark that as σ1 → 0, σ̂1 → 0, that is, σ̂1 can be chosen as small as required by choosing small enough

σ1,2. Let

C̃B : = lim
t→∞

(Cl̂
(σ1 − σ2)

√
t

(1 + 4σ2
1t

2 + ((δ − σ1(c− δ))t+ jδ)2)
1
4

)

= Cl̂
(σ1 − σ2)

(1 + 4σ2
1 + ((δ − σ1(c− δ)))2)

1
4

and CB = C̃B/2. Then, there exists a TB such that for t > TB ,

Cl̂
(σ1 − σ2)

√
t

(1 + 4σ2
1t

2 + ((δ − σ1(c− δ))t+ jδ)2)
1
4

≥ CB .

Therefore, with (2.2), (3.17) and (3.18), for t > max{ jδ
σ2

2
, TB}, we have

B(t) =

∫ t

0

et−s
∑

k

hZ2(t−s)(j − k)gk(s)ds

≥ C

∫ t

0

et−s
∑

k

F (2(t− s), j − k)gk(s)ds

≥ C

∫ t

0

et−sF (2(t− s), j − k̂)gk̂(s)ds

≥ Cl̂

∫ t

0

exp[−(t− s) + |j − k̂|ς(2(t− s)/|j − k̂|)]
(1 + 4(t− s)2 + |j − k̂|2)

1
4

ds

≥ Cl̂

∫ (1−σ2)t

(1−σ1)t

exp[−(t− s) + |j − k̂|ς(2(t− s)/|j − k̂|)]
(1 + 4(t− s)2 + |j − k̂|2)

1
4

ds

≥ Cl̂e−σ̂1t−σ̂2

∫ (1−σ2)t

(1−σ1)t

1

(1 + 4(t− s)2 + |j − k̂|2)
1
4

ds

≥ Cl̂e−σ̂1t−σ̂2

∫ (1−σ2)t

(1−σ1)t

1

(1 + 4σ2
1t

2 + ((δ − σ1(c− δ))t+ jδ)2)
1
4

ds

= Cl̂e−σ̂1t−σ̂2
(σ1 − σ2)t

(1 + 4σ2
1t

2 + ((δ − σ1(c− δ))t+ jδ)2)
1
4

= (Cl̂
(σ1 − σ2)

√
t

(1 + 4σ2
1t

2 + ((δ − σ1(c− δ))t+ jδ)2)
1
4

)
√
te−σ̂1t−σ̂2

≥ CB

√
te−σ̂1t−σ̂2 .
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On the other hand, we have that

A(t) = et
∑

k

hZ2t(j − k)uk(0)

≤ C1e
t
∑

k

F (2t, j − k)uk(0)

= C1e
t
[(

∑

k≤−ct

+
∑

−ct<k≤0

+
∑

1≤k≤(1−qǫ)kn

+
∑

(1−qǫ)kn<k≤(1+qǫ)kn

+
∑

(1+qǫ)kn<k≤j−1

+
∑

k=j

+
∑

j<k≤3j

+
∑

k>3j

)

F (2t, j − k)uk(0)
]

:= A1 +A2 +A3 +A4 +A5 +A6 +A7 +A8.

For k ≤ −ct, we have that ς( 2t
|j−k| ) ≤ ς( 1

c ) < 0. Then for A1 and t large, we have

A1 : = C1e
t

∑

k≤−ct

F (2t, j − k)uk(0)

= C1

∑

k≤−ct

e
−t+|j−k|ς( 2t

|j−k|
)

√
2π(1 + 4t2 + (j − k)2)

1
4

uk(0)

≤ C1
e−t

√
2π(1 + 4t2 + j2)

1
4

∑

k≤0

e|j−k|ς( 1
c )uk(0)

≤ C1 sup
k≤0

{u∗
k} e−t

√
2π(1 + 4t2 + j2)

1
4

∑

k≤0

e(−k)ς( 1
c )

= C̃1
e−t

√
2π(1 + (4 + c2)t2)

1
4

≤ C̃1e
−t/2,

where C̃1 = C1
eς( 1

c )

1 − eς( 1
c )

sup
k≤0

{u∗
k}.

Let −σ = −1 + 2
ς(z1)

z1
= max

−ct<k≤0
−1 + 2

ς(z)

z
with z = 2t

|j−k| and z1 = 2
c . We remark that c ≥ c∗ ≈ 2.073

and z1 ≤ 2
c∗ ≈ 0.9648. Thus,

σ = 1 − 2
ς(z1)

z1
≥ 1 − 2

ς(0.9648)

0.9648
≈ 0.0355793 > 0.

Then, for A2 and large t, with z = 2t
|j−k| and σ above we have

A2 : = C1e
t

∑

−ct<k≤0

F (2t, j − k)uk(0)

= C1

∑

−ct<k≤0

e
−t+|j−k|ς( 2t

|j−k|
)

√
2π(1 + 4t2 + (j − k)2)

1
4

uk(0)

= C1

∑

−ct<k≤0

e(−1+2
ς(z)

z )t

√
2π(1 + 4t2 + (j − k)2)

1
4

uk(0)

≤ C1
e−σt

√
2π(1 + 4t2 + j2)

1
4

∑

−ct<k≤0

uk(0)

≤ C1 sup
k≤0

{u∗
k} cte−σt

√
2π(1 + (4 + c2)t2)

1
4

≤ C1e
− σ

2 t.
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For A3, on [1, (1 − qǫ)kn], −t+ |j − k|ς(2t/|j − k|) obtains a maximum at k = (1 − qǫ)kn. Therefore, by

Proposition 3.2, there exists a positive real Cδ such that uk(0) ≤ Cδ
C1
e−(µ−δ)k for δ > 0 and for kn = (c− 2

z0
)t

and j = ct, j−k ≥ j−(1−qǫ)kn for k ∈ [1, (1−qǫ)kn]. Then, letting z = 2t
|j−k| we have z ≤ 2

c−(1−qǫ)(c− 2
z0

)
=

2
2

z0
+qǫ(c− 2

z0
)

:= z2 < z0. By Lemma 2.1(2), with z2 < z0 and −1 + 2 ς(z0)+µ
z0

− µc = λ(µ) − µc = 0, then we

can let

ǫ̃3 = −(−1 + 2
ς(z2) + µ

z2
− µc) > 0.

Thus, for A3

A3 = C1e
t

∑

1≤k≤(1−qǫ)kn

F (2t, j − k)uk(0)

≤ Cδ

∑

1≤k≤(1−qǫ)kn

F (2t, j − k)e−(µ−δ)k

= Cδe
t

∑

1≤k≤(1−qǫ)kn

1√
2π

exp[−t+ |j − k|ς( 2t
|j−k| ) − (µ− δ)k]

(1 + 4t2 + (j − k)2)
1
4

≤ Cδ
1√
2π

1

(1 + 4t2 + ( 2
z0
t)2)

1
4

∑

1≤k≤(1−qǫ)kn

exp[−t+ |j − k|ς( 2t

|j − k| ) − (µ− δ)k]

= Cδ
1√
2π

1

(1 + 4t2 + ( 2
z0
t)2)

1
4

∑

1≤k≤(1−qǫ)kn

exp[(−1 + 2
ς(z) + µ

z
)t− µj + δk]

≤ Cδ
1√
2π

1

(1 + 4t2 + ( 2
z0
t)2)

1
4

∑

1≤k≤(1−qǫ)kn

exp[(−1 + 2
ς(z2) + µ

z2
)t− µj + δk]

= Cδ
1√
2π

1

(1 + 4t2 + ( 2
z0
t)2)

1
4

exp[(−1 + 2
ς(z2) + µ

z2
− µc)t]

∑

1≤k≤(1−qǫ)kn

eδk

≤ Cδ
1√
2π

1

(1 + 4t2 + ( 2
z0
t)2)

1
4

exp[(−1 + 2
ς(z2) + µ

z2
− µc)t](1 − qǫ)kne

δ(1−qǫ)kn

= Cδ
1√
2π

(1 − qǫ)(c− 2
z0

)t

(1 + 4t2 + ( 2
z0
t)2)

1
4

exp[(−ǫ̃3 + δ(1 − qǫ)(c− 2

z0
))t]

≤ Cδe
−ǫ3t,

where ǫ3 = ǫ̃3/2 and choose δ such that δ(1 − qǫ)(c− 2
z0

) < ǫ̃3/2.

For A4, with k ∈ ((1 − qǫ)kn, (1 + qǫ)kn], recalling that (3.16), ukn(0) ≤ e−(µ+ ǫ
2 )kn ,

A4 = C1e
t

∑

(1−qǫ)kn<k≤(1+qǫ)kn

F (2t, j − k)uk(0)

= C1

∑

(1−qǫ)kn<k≤(1+qǫ)kn

1√
2π

exp[−t+ |j − k|ς(2t/|j − k|)]
(1 + 4t2 + (j − k)2)

1
4

uk(0)

≤ C1

∑

(1−qǫ)kn<k≤(1+qǫ)kn

1√
2π

exp[−t+ |j − k|ς(2t/|j − k|)]
(1 + 4t2 + (j − k)2)

1
4

e−(µ+ ǫ
2 )kn

= C1

∑

(1−qǫ)kn<k≤(1+qǫ)kn

1√
2π

exp[−t+ |j − k|ς(2t/|j − k|) − (µ+ ǫ
2 )kn]

(1 + 4t2 + (j − k)2)
1
4

≤ C1

∑

(1−qǫ)kn<k≤(1+qǫ)kn

exp[−t+ |j − k|ς(2t/|j − k|) − (µ+
ǫ

2
)kn]

= C1e
− ǫ

2 kn
∑

(1−qǫ)kn<k≤(1+qǫ)kn

exp[(−1 + 2
ς(z2) + µ

z2
− µc)t+ µ(k − kn)]
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≤ C1e
− ǫ

2 kn
∑

(1−qǫ)kn<k≤(1+qǫ)kn

exp[(−1 + 2
ς(z2) + µ

z2
− µc)t+ µqǫkn]

≤ C1e
(− 1

2 +µq)ǫkn
∑

(1−qǫ)kn<k≤(1+qǫ)kn

exp[(−1 + 2
ς(z2) + µ

z2
− µc)t]

≤ C1e
−( 1

2 −µq)ǫ(c− 2
z0

)t

= C1e
−ǫ4t,

where ǫ4 = ( 1
2 − µq)ǫ(c− 2

z0
) and choose q < 1

2µ .

For A5 with k ∈ ((1 + qǫ)kn, j), by Proposition 3.2, there exists a positive real Cδ such that uk(0) ≤
Cδ
C1
e−(µ−δ)k for δ > 0. Recall that kn = (c − 2

z0
)t, j = ct, j − k > 0 for k ∈ ((1 + qǫ)kn, j). Then, letting

z = 2t
|j−k| , z3 := 2

c−(1+qǫ)(c− 2
z0

)
= 2

2
z0

−qǫ(c− 2
z0

)
> z0 for ǫ small and we have z ≥ z3 for k ∈ ((1+qǫ)kn, j). Let

ǫ̃5 = −(−1 + 2 ς(z3)+µ
z3

− (µ− δ)c). Choose δ such that ǫ̃5 > 0, which can be done because of Lemma 2.1(2)

with z3 > z0 and −1 + 2 ς(z0)+µ
z0

− µc = λ(µ) − µc = 0. Then, letting z = 2t
|j−k| we have

A5 = C1e
t

∑

(1+qǫ)kn<k<j

F (2t, j − k)uk(0)

≤ Cδ

∑

(1+qǫ)kn<k<j

F (2t, j − k)e−(µ−δ)k

= Cδe
t

∑

(1+qǫ)kn<k<j

1√
2π

exp[−t+ |j − k|ς( 2t
|j−k| ) − (µ− δ)k]

(1 + 4t2 + (j − k)2)
1
4

≤ Cδ

∑

(1+qǫ)kn<k<j

exp[−t+ |j − k|ς( 2t

|j − k| ) − (µ− δ)k]

= Cδ

∑

(1+qǫ)kn<k<j

exp[(−1 + 2
ς(z) + µ

z
)t− µj + δk]

≤ Cδ

∑

(1+qǫ)kn<k<j

exp[(−1 + 2
ς(z3) + µ

z3
)t− µj + δk]

≤ Cδ

∑

(1+qǫ)kn<k<j

exp[((−1 + 2
ς(z3) + µ

z3
) − (µ− δ)c)t]

≤ Cδcte
−ǫ̃5t

≤ Cδe
−ǫ5t,

where ǫ5 = ǫ̃5/2.

By Proposition 3.2, there exists a positive real Cδ such that uj(0) ≤ Cδ
C1
e−(µ−δ)j for δ > 0. Let

ǫ̃6 = −(1 − (µ − δ)c) = λ(µ) − 1 − δc. δ can be chosen such that ǫ̃6 > 0 since λ(µ) > 1 for µ > 0. For

A6, we have

A6 = C1e
t 1√

2π

1

(1 + t2)
1
4

uj(0)

≤ Cδe
t 1√

2π

1

(1 + t2)
1
4

e−(µ−δ)j

≤ Cδ
1√
2π

1

(1 + t2)
1
4

e(1−(µ−δ)c)t

= Cδ
1√
2π

1

(1 + t2)
1
4

e−ǫ̃6t

≤ Cδe
−ǫ6t,
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where ǫ6 = ǫ̃6/2. By similar arguments of A3 and A1 respectively, we have A7 ≤ C7e
−ǫ7t and A8 ≤ C8e

−ǫ8t.

Finally, we have that

uj(t) = A(t) −B(t)

≤ (C̃1e
− t

2 + C1e
− σ

2 t + Cδe
−ǫ3t + C1e

−ǫ4t + Cδe
−ǫ5t

+ Cδe
−ǫ6t + C7e

−ǫ7t + C8e
−ǫ8t) − CB

√
te−σ̂1t−σ̂2 .

As σ1,2 → 0, σ̂1 → 0. Thus, σ̂1 can be chosen such that σ̂1 < min{ 1
2 ,

σ
2 , ǫ3, ǫ4, ǫ5, ǫ6, ǫ7, ǫ8}. Therefore, as

t is large enough, A(t) −B(t) < 0, which causes a contradiction. �

4. Nonexistence of transition fronts

In this section, we shall investigate the conditions under which transition fronts do not exist. We shall

prove part (2) of the main theorem (Theorem 1.1) in the following proposition.

Proposition 4.1. Transition fronts do not exist under the following conditions:

(1) λ > λ∗;

(2) for λ ∈ [1, λ∗), either [i] c < c∗ or [ii] c > ĉ.

It is known that there is a minimal speed (spreading speed) c∗ such that transition fronts may exist, that

is, transition fronts do not exist for c < c∗ (See Proposition 4.2). Thus, all µs of valid positive eigenvectors

are located in (0, µ∗). However, if λ ∈ (1, λ(µ∗)), there are also no valid positive eigenvectors for µ ∈ (0, µ̂).

Proposition 4.1 shows that there is a maximal speed ĉ = λ
µ̂ to prevent the existence of transition fronts, that

is, transition fronts do not exist for c > ĉ or µ < µ̂. If λ > λ(µ∗), then µ̂ > µ∗ and there are none valid

positive eigenvectors at all.

From Fig. 1 and Propositions 3.1–3.3, we have the following facts for transition fronts if they exist:

(1) For any ǫ > 0, there exists a T > 0 such that for t > T and j > ct,

C1e
−(µ+ǫ)(j−ct) ≤ uj(t) ≤ C2e

−(µ−ǫ)(j−ct)( see Propositions 3.2–3.3).

(2) Due to the spreading properties of transition fronts, the lower bound of speed (minimal wave speed) is

c∗, corresponding to the upper bound of µ (i.e. µ∗). Then we must have uj(t) ≥ Ke−µ∗(j−ct) for t large

and some K > 0.

(3) The upper bound of speed (maximal wave speed) is given by ĉ, corresponding to the lower bound of µ

(i.e. µ̂). Thus, we must have uj(t) ≤ Ke−µ̂(j−ct) for t large and some K > 0, that is controlled by the

spectral bound λ = λ(µ̂).

We see that if λ > λ∗ and µ̂ > µ∗, this causes a contradiction of (2) and (3). If c > ĉ and µ < µ̂, this

causes a contradiction of (1) and (3).

4.1. Spreading speeds and the lower bound of wave speeds c∗

First, we shall show that c∗ is the lower bound of the speeds (minimal wave speed) in this subsection. For

simplicity, we write uj(t) for uj(t; z) if no confusion occurs with the initial z. Define

X̂+ = {vj ≥ 0 | lim inf
r→−∞

inf
j≤r

vj > 0, vj = 0 for j ∈ Z with j > N0, for some N0 > 0}. (4.1)
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Definition 4.1. A number c∗ is called the spreading speed of (1.2) if for any z ∈ X̂+,

lim inf
j≤ct,t→∞

uj(t) > 0,∀c < c∗,

and

lim sup
j≥ct,t→∞

uj(t) = 0,∀c > c∗,

where uj(0) = zj is the initial condition.

We remark that for homogeneous and periodically heterogeneous KPP–Fisher equations, the spreading

speed exists. For (1.2), we have the following:

Lemma 4.1 (See Theorem 2.2 in [23,24]). The spreading speed of (1.2) c∗ exists. Moreover, c∗ of (1.2) with

localized periodic inhomogeneity coincides with that of (1.2) with corresponding periodic inhomogeneity.

Lemma 4.2 (See Theorem 2.3 in [23,24]). For each δ > 0, r > 0, and z ∈ X+ satisfying that zj ≥ δ for

|j| ≤ r,

lim sup
|j|≤ct,t→∞

(uj(t) − u∗
j ) = 0,∀0 < c < c∗,

We remark that, in particular, for our main equation (1.2), the spreading speed coincides with the

definition c∗ =
λ(µ∗)

µ∗ = inf
µ>0

λ(µ)

µ
in the introduction of the current paper.

Proposition 4.2 (Minimal Wave Speed). There does not exist a transition front of (1.2) with speed less than

c∗.

Proof. We prove this lemma by contradiction. Suppose that there is a transition front with speed c < c∗.

Pick c < c1 < c∗. Choose tn such that jn = c1tn ∈ Z. By Lemma 4.1, lim inf
jn≤c1tn,tn→∞

ujn(tn) > 0. On the

other hand, jn − ctn = (c1 − c)tn → ∞, by the definition of transition front, lim
jn−ctn→∞

ujn(tn) = 0, which

causes a contradiction. �

4.2. Nonexistence of transition fronts for λ > λ∗

In this subsection, we will show that if λ > λ(µ∗), there are no transition fronts. In biological sense,

transition fronts will not exist in strongly localized spatial inhomogeneous environments. We shall prove the

following proposition.

Proposition 4.3. If λ > λ(µ∗), any entire solution uj(t) of (1.2) such that 0 < uj(t) < u∗
j satisfies that

for any c < ĉ, there exists a K > 0 such that for all (t, j) ∈ R− × Z,

uj(t) ≤ Ke−µ∗(|j|−ct),

where µ∗ is such that c∗ = λ(µ∗)
µ∗ = inf

µ>0

λ(µ)

µ
. In particular, no transition fronts exist if λ > λ∗.

To prove Proposition 4.3, we show the following Lemmas 4.3 and 4.4.

Lemma 4.3. For each m ∈ Z and ǫ > 0 there exist kǫ, δ > 0 such that if uj(t) solves (1.2) with uj0(0) ≥ γ,

for any given j0 and γ ≤ δ
2 , then for t ≥ 0 and j ≤ j0 +m− c∗t,

uj(t) ≥ kǫγe
(1−ǫ)tF (2t, j − j0).
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Proof. Without loss of generality, set j0 = 0. Let l = min
j

{aj} ≤ 1. Note that vj(t) = γkǫe
(l−ǫ)thZ2t(j) is a

solution of

v̇j(t) = vj+1(t) − 2vj(t) + vj−1(t) + (l − ǫ)vj(t),

with initial vj(0) = γkǫ for j = 0 and vj(0) = 0 for j 6= 0. Since ‖v(t)‖∞ ≤ γkǫe
(1−ǫ)t, we have ‖v(t)‖ < γ

if kǫ = e−2tǫ for t ≤ tǫ. Let j̄ = −c̄t + 2m for some c̄ < c∗. Since by Lemma 2.1 (2) and (4), c∗ satisfies

−1 + 2 ζ(2/c∗)
2/c∗ = 0, there are c̄ ∈ (0, c∗) and tǫ such that for t > tǫ,

− 1 + 2
ζ(2t/|j̄|)

2t/|j̄|

= −1 + 2
ζ(2t/|c̄t− 2m|)

2t/|c̄t− 2m|

= −1 + 2
ζ(2/|c̄− 2 m

t |)
2/|c̄− 2 m

t |

≤ −1 + 2
ζ(2/|c̄− 2 |m|

tǫ
|)

2/|c̄− 2 |m|
tǫ

|
< ǫ/2.

Then for t > tǫ, −(1 + ǫ) + 2 ζ(2t/|j̄|)
2t/|j̄| < −ǫ/2. Therefore, for t > tǫ, with (2.2)

vj̄(t) = γkǫe
(1−ǫ)thZ2t(j̄)

≤ (1 + ǫ)γkǫe
(−(1+ǫ)+2

ζ(2t/|j̄|)

2t/|j̄|
)t

≤ (1 + ǫ)γkǫ.

Then for t ≥ tǫ, replace kǫ with 1
(1+2ǫ) if the original kǫ is bigger than 1

(1+2ǫ) , and thus (1 + ǫ)kǫ < 1, that

is, we also have vj̄(t) ≤ γ. Furthermore, for t > tǫ ≥ 2|m|
c̄ such that j̄ < 0, vj(t) ≤ γ holds for all j ≤ j̄,

because vj(t) ≤ γ(1 + ǫ)kǫe
(1−ǫ)tF (2t, j) and F (2t, j) is increasing in j ∈ (−∞, j̄) by Lemma 2.1 (5). Thus

we have either

vj(t) ≤ γ,∀t ∈ [0, tǫ), j ∈ Z,

or

vj(t) ≤ γ,∀t ≥ tǫ, j < −c̄t+ 2 m.

Let Ω =
{

(t, j) ∈ R × Z|t ∈ [0, tǫ) × Z ∪ [tǫ,∞) × (−∞,−c̄t+ 2 m)
}

.

By spreading properties in Lemma 4.2, for any given 0 < γ < min{u∗
j }, there exists a tǫ (if necessary,

replace the original tǫ with the larger number) such that uj̄(t) ≥ γ and thus vj̄(t) ≤ γ ≤ uj̄(t). Moreover,

for any given ǫ, there exists a γ such that fj(γ) − l > 0 and thus v is a sub-solution of (1.2) on Ω . Indeed,

v̇j(t) − [vj+1(t) − 2vj(t) + vj−1(t) + f(vj(t))vj(t)]

= v̇j(t) − [vj+1(t) − 2vj(t) + vj−1(t) + (l − ǫ)vj(t)] + (−f(vj(t)) + l − ǫ)vj(t)

= (−f(vj(t)) + l − ǫ)vj(t)

≤ (−f(γ) + l − ǫ)vj(t)

≤ 0.

Since vj(0) ≤ uj(0) for j ∈ Z, by comparison principle (Lemma 2.1 in [15]), vj(t) ≤ uj(t) on Ω̄ . Note

that t ≥ 0 and j ≤ j0 +m− c∗t is a subset of Ω̄ and this completes the proof. �

Let (λM , φ(M)) be the principal eigenvalue and eigenvector to (3.2) with ‖φ(M)‖∞ = 1.
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Lemma 4.4. For every ǫ ∈ (0, 1), there exists a Kǫ > 1 such that

uj(t) ≤ Kǫu0(0)
√

|t|eµ̂j+(λM −ǫ)t,

for all t ≤ −1 and j ∈ [M,−cǫt], with cǫ = λM −ǫ
µ̂ .

Proof. Suppose the lemma to be false. Then there exist t̄ ≤ −1 and j0 ∈ [M,−cǫt̄] such that

uj0(t̄) ≥ Kǫu0(0)
√

|t̄|eµ̂(j0+cǫ t̄). (4.2)

Let ũ = δφ(M) be a sub-solution of (1.2) as in Lemma 3.6, where φ(M) is the principal eigenvector to (3.2)

with ‖φ(M)‖∞ = 1. Let vj be given by

vj = min{δ, Ae(λM −ǫ)t}φ(M)
j (4.3)

Thus there exists a δ such that v is also a sub-solution of (1.2) for any A > 0. Indeed, if ṽj :=

Ae(λM −ǫ)tφ
(M)
j < δφ

(M)
j , choosing a δ such that fj(0) − fj(δ) < ǫ, we have

(ṽj)t − [ṽj+1 − 2ṽj + ṽj−1 + fj(ṽj)ṽj ]

=(ṽj)t − [ṽj+1 − 2ṽj + ũj−1 + aj ṽj ] + (fj(0) − fj(ṽj))ṽj

=(λM − ǫ− λM + (fj(0) − fj(ṽj)))ṽj

=(−ǫ+ (fj(0) − fj(ṽj)))ṽj

≤(−ǫ+ (fj(0) − fj(δ)))ṽj

≤0.

For ṽ ≥ δφ(M), the above inequality holds for vj = ũj by the calculation in Lemma 3.6.

With a possible translation, we assume that u0(0) < ũ0 and fj(0) > 1 for j = 0. Let β be chosen later

such that 0 < β < 1. For −M ≤ j ≤ M , let z1 = 2β|t̄|/|j − j0| and z = 2β|t̄|/j0, we have z1 > z and

then by the monotonicity of ς(z)
z in Lemma 2.1, we have ς(z1)

z1
> ς(z)

z . By Heat Kernel Estimate (2.2)

hZt (j) ≍ F (t, j), there exist positive C1 and C2 such that C1F (t, j) ≤ hZt (j) ≤ C2F (t, j). Therefore, together

with (4.2) and Lemma 4.3, we have

uj(t̄+ β|t̄|) ≥ C1e
(1−ǫ)β|t̄|

∑

k

F (2β|t̄|, j − k)uk(t̄)

≥ C1e
(1−ǫ)β|t̄|F (2β|t̄|, j − j0)uj0(t̄)

≥ C1e
(1−ǫ)β|t̄|F (2β|t̄|, j − j0)Kǫu0(0)

√

|t̄|eµ̂j0+(λM −ǫ)t̄

= C1e
(1−ǫ)β|t| 1√

2π

exp[−2β|t̄| + |j − j0|ς(2β|t̄|/|j − j0|)]
(1 + 4β2t̄2 + (j − j0)2)

1
4

Kǫu0(0)
√

|t̄|eµ̂j0+(λM −ǫ)t̄

= C1Kǫu0(0)
1√
2π

exp[(−2 + 2 ς(z1)
z1

)β|t̄|]
(1 + 4β2t̄2 + (j − j0)2)

1
4

√

|t̄|e(1−ǫ)β|t|+µ̂j0+(λM −ǫ)t̄

≥ C1Kǫu0(0)
1√
2π

exp[(−2 + 2 ς(z)
z )β|t̄|]

(1 + 4β2t̄2 + j2
0)

1
4

√

|t̄|e(1−ǫ)β|t|+µ̂j0+(λM −ǫ)t̄

≥ C1Kǫu0(0)
1√
2π

exp[(−2 + 2 ς(z)
z )β|t̄|]

(1 + 4t̄2 + (cǫt̄)2)
1
4

√

|t̄|e(1−ǫ)β|t|+µ̂j0+(λM −ǫ)t̄

≥ C1Kǫu0(0)
1√
2π

exp[(−2 + 2 ς(z)
z )β|t̄|]

(5 + c2
ǫ)

1
4

e(1−ǫ)β|t|+µ̂j0+(λM −ǫ)t̄
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≥ K ′
ǫu0(0)exp{(−2 + 2

ς(z)

z
+ (1 − ǫ))β|t̄| + µ̂j0 + (λM − ǫ)t̄}

:= K ′′
ǫ ,

where K ′
ǫ = C1Kǫ

1
√

2π(5+c2
ǫ )

1
4

. Thus, with Comparison Principle, choosing A = K ′′
ǫ in (4.3), we have

uj(t+ t̄+ β|t̄|) ≥ vj(t)

for t > 0. In particular, letting t = (1 − β)|t̄|, we have

uj(0) ≥ min
{

δ,K ′′
ǫ e

(λM −ǫ)(1−β)|t̄|}φ(M)
j .

By choosing β such that K ′′
ǫ e

(λM −ǫ)(1−β)|t̄| = K ′
ǫu0(0), that is,

exp
{

(−2 + 2
ς(z)

z
+ (1 − ǫ))β|t̄| + µ̂j0 + (λM − ǫ)t̄

}

× e(λM −ǫ)(1−β)|t̄| = 1.

Therefore

(−2 + 2
ς(z)

z
+ (1 − ǫ) − (λM − ǫ))β|t̄| + µ̂j0 = 0.

Recalling that z = 2β|t̄|/j0, (−2 + 2 ς(z)
z + (1 − ǫ) − (λM − ǫ))β|t̄| + 2µ̂β|t̄|/z = 0, that is,

−1 + 2
ς(z) + µ̂

z
− (λM − ǫ) − ǫ = 0.

Thus, let g(z) be as in Lemma 2.1 and we have

g(z) = λM < λ = λ(µ̂).

By the concavity of g(z) in Lemma 2.1 (2), and M ≫ 1, there exists at least one z̄ < z0 = csch(µ̂) such

that g(z̄) = 0. Recall that ĉ < 2
z0

for û > µ∗ by Lemma 2.1 (4). With cǫ < ĉ, j0 ≤ cǫ|t̄| and z̄ = 2β|t̄|/j0, we

have

β =
z̄j0

2|t̄| ≤ z0j0

2|t̄| ≤ z0cǫ

2
≤ z0ĉ

2
< 1.

Thus, β < 1 as required. Finally, by taking Kǫ large enough and j = 0,

u0(0) ≥ min{δ,K ′
ǫu0(0)}φ(M)

0 ≥ min{δφ(M)
0 , 2u0(0)},

which causes a contradiction. This completes the proof. �

Remark 4.1. Lemma 4.4 holds for fixed j and so for any j on a compact set without the assumption

λ > λ∗. Indeed, in this case, we can remove the restriction of cǫ = λM −ǫ
µ̂ and freely choose cǫ <

2
z0

in the

lemma.

Lemma 4.5. Assume that c, c1 ∈ (c∗, ĉ) with c < c1, there exists a K0 > 0 and τ > 0 such that

uj(t) ≤ K0u0(0)eµ∗(j+ct),

for all (t, j) ∈ (−∞,−1) × [M,−c1t] as well as (t, j) ∈ (−∞,−t0) × [M,∞).

Proof. Pick ǫ > 0 such that cǫ = c1. Note that λ(µ̂) = λ > λ∗ = λ(µ∗) implies that µ̂ > µ∗. With

Lemma 4.4, there is Kǫ > 0 such that for all t ≤ −1 and j ∈ [M,−cǫt],

uj(t) ≤ Kǫu0(0)
√

|t|eµ̂(j+c1t) ≤ Kǫu0(0)
√

|t|eµ∗(j+c1t) ≤ K0u0(0)eµ∗(j+ct),

where K0 = max
t≤−1

Kǫ

√

|t|eµ∗(c1−c)t. We can let t0 ≡
ln(K0u0(0)) − ln(max

j
u∗

j )

µ∗(c1 − c)
> 0 to complete the proof of

the second part. Indeed, for t < −t0, we have K0u0(0)eµ∗(j+ct) ≥ u∗
j for all j > −c1t. Since uj(t) ≤ u∗

j for

all (t, j) ∈ R × Z, the inequality holds for all (t, j) ∈ (−∞,−t0) × [M,∞). �
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Proof of Proposition 4.3. Given c, c1 ∈ (c∗, ĉ) with c < c1. Let τ1 ≡ M/c1 and so M ≤ −c1t for t ≤ −τ1.

By Lemma 4.5, for t ≤ −τ1,

uM (t) ≤ K0u0(0)eµ∗(M+ct).

Next, for t ≤ −τ0, we let

vj(t; t0) ≡ K0u0(0)[eµ∗(j+ct0+c∗(t−t0)) + eµ∗(2M−j+ct)].

Then vj(t; t0) is a super-solution on (t0,∞) × (M,∞). Moreover, for t ≤ −τ0 and j > M , we have

uj(t0) ≤ K0u0(0)eµ∗(j+ct0) ≤ vj(t0; t0).

Since c > c∗, we have uM (t) ≤ vM (t; t0) for all t ∈ (t0,−τ1). By comparison principle, uj(t) ≤ vj(t; t0) for

all t ∈ [t0,−τ1] and j ≥ M . Letting t0 → −∞, we have for all t ≤ −τ1 and j ≥ M ,

uj(t) ≤ K0u0(0)eµ∗(2M−j+ct).

Similarly, we have for all t ≤ −τ1 and j ≤ −M ,

uj(t) ≤ K0u0(0)eµ∗(2M+j+ct).

Thus, for all t ≤ −τ1 and j ≤ Z \ (−M,M),

uj(t) ≤ K0e
2µ∗Mu0(0)e−µ∗(|j|−ct).

The Harnack inequality extends this bound to all t ≤ −τ1 − 1 and j ∈ Z:

uj(t) ≤ K1u0(0)e−µ∗(|j|−ct).

Thus,

uj(t) ≤ K1u0(0)e−µ∗(|j|−c(−τ1−1))+(1+‖a‖∞)(t−(−τ1−1)),

for t ≥ −τ1 − 1, where ‖a‖∞ = max
j
aj . We note that the right-hand side is a super-solution. Thus, for t ≤ 0

and j ∈ Z, we have

uj(t) ≤ K2u0(0)e−µ∗(|j|−ct).

Finally, we have the non-existence of transition fronts if λ > λ∗, because lim
j→−∞

uj(t) = 0 under the above

inequality. �

4.3. The upper bound of wave speeds ĉ

Finally, we shall show ĉ is the upper bound of the speeds (maximal wave speed) by investigating the

nonexistence of transition fronts to (1.2) for c > ĉ, which is corresponding to µ ∈ (0, µ̂) where no valid

positive eigenvectors of (1.7) can be located.

Lemma 4.6. For all ǫ > 0, there exists Kǫ > 0 such that

uj(t) ≤ Kǫe
λ(µ̂−ǫ)t−(µ̂−ǫ)j , for all j ≥ 0 and t ≤ 0. (4.4)

Proof. First, there exist M and ǭ such that λ(µ̂ − ǫ) = λM − ǭ. By Remark 4.1 of Lemma 4.4, we have

that (4.4) holds for fixed j and thus also for j in a bounded set [0,M0] of Z+, where M0 > N . Second, we

show that (4.4) holds for j > M0. To this end, we claim that

uj(t) ≤ Cet for all j ≥ M0 and t ≤ 0. (4.5)
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Let ρ(t) =
∑

j≥M0

uj(t), which is well-defined due to Proposition 3.2. Then

ρ̇(t) =
∑

j≥M0

u̇j(t)

=
∑

j≥M0

(uj+1 − 2uj + uj−1 + fj(uj)uj(t))

= uM0−1(t) − uM0(t) +
∑

j≥M0

(fj(uj)uj(t))

Therefore,

ρ̇(t) − ρ(t) = uM0−1(t) − uM0(t) +
∑

j≥M0

(fj(uj) − 1)uj(t).

For j > M0 and t ≪ −1, fj(uj) − 1 = fj(uj) − fj(0) < 0 and thus
∑

j≥M0

(fj(uj) − 1)uj(t) < 0.

Then,

d

dt
(−e−tρ(t)) = −e−t(ρ̇(t) − ρ(t))

= −e−t(uM0−1(t) − uM0(t) +
∑

j≥M0

(fj(uj) − 1)uj(t))

≤ −e−t(uM0−1(t) − uM0(t))

≤ e−t(uM0(t) + uM0−1(t))

≤ e−tKǫ(1 + e(µ̂−ǫ))eλt−(µ̂−ǫ)M0

= Kǫ(1 + e(µ̂−ǫ))e(λ−1)t−(µ̂−ǫ)M0 .

Integrate both sides from t(≤ 0) to 0, and we have e−tρ(t) − ρ(0) ≤ Kǫ(1+e(µ̂−ǫ))
(λ−1) e−(µ̂−ǫ)M0 . Let

C = ρ(0) + Kǫ(1+e(µ̂−ǫ))
(λ−1) e−(µ̂−ǫ)M0 . For t ≤ 0, ρ(t) ≤ Cet. Therefore, (4.5) holds for j ≥ M0. We let

wj(t) = e−tuj(t) −Kǫe
(λ(µ̂−ǫ)−1)t−(µ̂−ǫ)(j−M−1). (4.6)

Then, for j > N , we have

ẇj(t) = e−tu̇j(t) − e−tuj(t) − (λ(µ̂− ǫ) − 1)Kǫe
(λ(µ̂−ǫ)−1)t−(µ̂−ǫ)(j−M−1)

= e−t(uj+1 − 2uj + uj−1 + (fj(uj) − 1)uj(t))

− (λ(µ̂− ǫ) − 1)Kǫe
(λ(µ̂−ǫ)−1)t−(µ̂−ǫ)(j−M−1)

= e−t(uj+1 − 2uj + uj−1) − (λ(µ̂− ǫ) − 1)Kǫe
(λ(µ̂−ǫ)−1)t−(µ̂−ǫ)(j−M−1)

+ e−t(fj(uj) − 1)uj(t).

On the other hand, we have

wj+1 − 2wj + wj−1 = e−t(uj+1 − 2uj + uj−1) − (λ(µ̂− ǫ) − 1)Kǫe
(λ(µ̂−ǫ)−1)t−(µ̂−ǫ)(j−M−1)

Thus,

ẇj(t) − (wj+1 − 2wj + wj−1)

= e−t(fj(uj) − 1)uj(t)

≤ 0.

(4.7)
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Note that wM0(t) ≤ 0 for t ≤ 0 because (4.4) holds for fixed j = M0 that has been proved previously.

By (4.5), wj(t) < e−tuj(t) < C for all j ≥ 0 and t ≤ 0. For t ≤ 0 and j ≥ M0, choose ǫ such that

λ(µ̂ − ǫ) > 1, then wj(t) is bounded. Furthermore we claim that for j > M0 and t ≤ 0, wj(t) cannot

attain a positive maximum, and there cannot be a sequence (tn, jn) such that wjn(tn) tends to a positive

supremum. Suppose that it obtains a positive maximum at (t0, j0) and for M0 ≤ j < j0, wj(t0) < wj0(t0).

Then ẇj0(t0)−(wj0+1 −2wj0 +wj0−1) > 0, which contradicts (4.7). Suppose that there is a sequence (tn, jn)

such that wjn(tn) tends to a positive supremum for j > M0. Then jn → ∞ as n → ∞, otherwise jn goes

to some fixed ĵ as n → ∞ that contradicts with (4.4) holds for fixed ĵ. And then t → −∞ as n → ∞.

Otherwise, t → −T as n → ∞ for some T > 0. With (4.6), we have lim
n→∞

wjn(T ) = 0. Therefore, wj(t) ≤ 0

for all j ≥ M0 and t ≤ 0, which implies that (4.4) holds for all j ≥ M0 and t ≤ 0. This completes the

proof. �

Proof of Proposition 4.1. First, we proved the case with λ > λ∗ by Proposition 4.3. Next, it has been

shown in Proposition 4.2 that there are no transition fronts for c < c∗ due to the properties of spreading

speeds. Finally we prove the nonexistence for c > ĉ. Assume there exists a transition front uj(t) for c > ĉ.

Let µ and µ̂ be such that c = λ(µ)
µ and ĉ = λ(µ̂)

µ̂ . Then we have that 0 < µ < µ̂ < µ∗. By Proposition 3.3,

we have

uj(t) ≥ Kǫe
−(µ+ǫ)(j−ct), for all j ≥ ct+M0 and t ≥ 0. (4.8)

By Lemma 4.6, in particular for t = 0, we have that

uj(0) ≤ Kǫe
−(µ̂−ǫ)j , for all j ≥ 0. (4.9)

Consider the linear periodic equation restricted on [M0,M0 + p] for p ≫ 1 (i.e. p is as large as required),

that is, vj+p = vj for any j ∈ Z.

v̇j = vj+1 − vj + vj−1, M0 ≤ j ≤ M0 + p. (4.10)

Let v̄j(t) = Kǫe
−(µ̂−ǫ)(j−ct) for j ∈ [M0,M0 + p) and vj(t) = uj(t) for j ∈ [M0,M0 + p). Then by (4.9)

vj(0) ≤ v̄j(0).

By direct calculation, we have

(v̄j)t − [v̄j+1 − v̄j + v̄j−1]

= v̄j((µ̂− ǫ)c− (e(µ̂−ǫ) − 1 + e−(µ̂−ǫ)))

= v̄j(µ̂− ǫ)
(

c− (e(µ̂−ǫ) − 1 + e−(µ̂−ǫ))

(µ̂− ǫ)

)

= v̄j(µ̂− ǫ)
(

c− c(µ̂− ǫ)
)

≥ 0.

Choose ǫ = (µ̂−µ)/3 and we have c > c(µ̂− ǫ) = (e(µ̂−ǫ)−1+e−(µ̂−ǫ))
(µ̂−ǫ) . Thus, v̄ is a super-solution of (4.10).

In addition, for j ≥ M0, we have

u̇j − (uj+1 − 2uj + uj−1) = (fj(uj) − fj(0))uj ≤ 0.

Thus, v is a sub-solution of (4.10). By the comparison principle and letting p → ∞, for j > M0 + ct, we

have that

uj(t) ≤ Kǫe
−(µ̂−ǫ)(j−ct). (4.11)

However, this contradicts with (4.8) by choosing ǫ = (µ̂− µ)/3. �

Proof of Theorem 1.1.

(1) Existence of transition fronts and asymptotic behaviors (1.8) have been shown in Propositions 3.1–3.3.

(2) Non-existence of transition fronts follows by Proposition 4.1. �
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5. Example

In this section, we provide an example for localized perturbations in homogeneous media of (1.2) with

fj(uj) = aj(1 − uj) and aj = 1 for j 6= 0. Thus (1.2) becomes the following,

u̇j = uj+1 − 2uj + uj−1 + ajuj(1 − uj), j ∈ Z, (5.1)

with aj = 1 for j 6= 0. It is easy to see that u∗
j = 1. The corresponding linearized equation is given by

u̇j = uj+1 − 2uj + uj−1 + ajuj , j ∈ Z. (5.2)

The eigenvalue problem is given by

λ(µ)uj = eµuj+1 − 2uj + e−µuj−1 + ajuj , j ∈ Z. (5.3)

For homogeneous case, all ajs are ones. By observation, λ(µ) = eµ − 1 + e−µ with constant eigenvector

1. It is easy to verify that uj(t) = e−µ(j−ct) is a solution of (5.2) with c = λ(µ)
µ . Next we investigate the

existence of the positive eigenvectors of (5.3) for the localized perturbation case a0 6= 1. We assume that one

solution to localized perturbation case coincides with homogeneous case at the right with uj(t) = e−µ(j−ct)

for j ≥ 0. From (5.2), we have

uj−1 = u̇j + (2 − aj)uj − uj+1, j ∈ Z. (5.4)

Thus, by induction, for j < 0,

u−1 = u̇0 + (2 − a0)u0 − u1 = (1 + (1 − a0)e−µ)e−µ(−1−ct),

u−2 = u̇−1 + u−1 − u0 = (1 + (1 − a0)e−µ + (1 − a0)e−3µ)e−µ(−2−ct),

u−3 = u̇−2 + u−2 − u−1 = (1 + (1 − a0)(e−µ + e−3µ + e−5µ))e−µ(−3−ct),

...

uj = (1 + (1 − a0)e−µ 1 − e2µj

1 − e−2µ
)e−µ(j−ct).

Therefore, the eigenvector to (5.3) is given by φj = (1 + (1 −a0)e−µ 1−e2µj

1−e−2µ )e−µj for j < 0 and φj = e−µj

for j ≥ 0. Note that if a0 ≤ 1, φj > 0 for all j ∈ Z. That means the positive eigenvectors always exist

for a0 ≤ 1 and so do the transition fronts of speed c no less than c∗. The minimal speed c∗ is given by

c∗ =
eµ∗

+ e−µ∗ − 1

µ∗ = inf
µ>0

eµ + e−µ − 1

µ
≈ 2.073 at µ∗ ≈ 0.9071.

For a0 > 1, φj > 0 for all j ∈ Z whenever a0 ≤ eµ−e−µ+1, which implies that µ ≥ ln[
−(1−a0)+

√
(1−a0)2+4

2 ]

that gives the µ̂ = ln[
−(1−a0)+

√
(1−a0)2+4

2 ]. By λ = λ(µ̂), we have λ =
√

(1 − a0)2 + 4 − 1. On the interval

[µ̂, µ∗] whenever µ̂ ≤ µ∗, the speed is well defined by c = λ(µ)
µ = eµ+e−µ−1

µ and we can have both a minimal

and a maximal speed on this closed interval. Outside this interval for µ < µ̂, since the components of the

eigenvector are mixed with negative and positive signs, we fail to obtain the transition fronts. If µ̂ > µ∗,

that is, a0 > eµ∗ − e−µ∗
+ 1, then the existence interval [µ̂, µ∗] will be empty.

In summary, we have the following facts,

(1) If a0 ≤ 1, then λ = 1. In this case, ĉ = ∞, that is, the existence interval of speeds for transition fronts

is [c∗,∞).
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(2) If a0 > 1, then λ > 1. If λ < λ∗, then transition front exists for any speed c ∈ [c∗, ĉ]. However,

transition fronts do not exist under three cases: c < c∗, c > ĉ and λ > λ∗. The c∗, ĉ, λ and λ∗ are given

by as follows:

[i] The minimal wave speed c∗ is given by

c∗ =
eµ∗

+ e−µ∗ − 1

µ∗ = inf
µ>0

eµ + e−µ − 1

µ
≈ 2.073 at µ∗ ≈ 0.9071.

[ii] The maximal wave speed ĉ is given by

ĉ =
eµ̂ + e−µ̂ − 1

µ̂
at µ̂ = ln[

−(1 − a0) +
√

(1 − a0)2 + 4

2
].

Note that a0 > 1, ĉ depending on a0 is finite, that is, ĉ < ∞.

[iii] λ =
√

(1 − a0)2 + 4 − 1 and λ∗ = eµ∗
+ e−µ∗ − 1 ≈ 1.8808. No transition fronts exist for

λ > λ∗. Under this case, we must have a0 > eµ∗ − e−µ∗
+ 1 ≈ 3.073.

6. Concluding remarks

We studied the existence and non-existence of transition fronts for monostable lattice differential

equations in locally spatially inhomogeneous patchy environments. We collected fundamental tools such as

discrete heat kernel estimates and discrete parabolic Harnack inequality. We proved that Poincaré inequality

holds on a 2-regular graph and so does a discrete parabolic Harnack inequality. Under the assumptions

(H1)–(H2), there is a positive principal eigenvector for λ∗ > λ(µ) > λ. This positive principal eigenvector is

the main ingredient in constructions of super/sub-solutions. The right end (i.e. j > N) of positive principal

eigenvector is one, that coincides with the principal eigenvector in homogeneous media. There are significant

differences on the middle localized perturbation part (i.e, j ∈ [−N,N ]) and the left end (i.e. j < −N).

However, this impact declines to 0 for j < −N as |j| → ∞. With comparison principles and the super/sub-

solutions, we obtained the transition fronts of mean wave speed on a finite range (c∗, ĉ] and then pass the

limit to have the case of c = c∗. For c ∈ (c∗, ĉ], the profiles of transition fronts are highly related to the graphs

of super-solutions e−µ(j−ct)φµ
j . Note that, in the right end for j > N , we have e−µ(j−ct) that is moving at

the exact speed c. For j < N , the profiles will change with amplitude φµ
j . If c ∈ (c∗, ĉ] and j ≪ −N ,

lim
j→−∞

φµ
j = l > 0, that means they are essentially constant profiles le−µ(j−ct).

We proved transition fronts if they exist must possess the exponential tail properties. There are no

transition fronts at all if λ > λ∗, the mean wave speed is slower than the minimal speed c∗, or faster

than the maximal wave speed ĉ. The strongly localized spatial inhomogeneous patchy environments prevent

the existence of transition fronts. The proof of minimal wave speed c∗ follows from the work of Shen and

Kong [23,24], where they also studied the localized perturbation with periodic media for both nonlocal

problem and lattice differential equations. The proof of maximal wave speed ĉ relies heavily on discrete heat

kernel estimates, comparison principles and discrete parabolic Harnack inequality. We leave the uniqueness

and stability of transition fronts to (1.2) and transition fronts to lattice differential equations with the

localized perturbation of periodic media for future study.
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