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1. Introduction

Front propagation occurs in many applied fields such as population dispersals in biology, combustion
in chemistry, neuronal waves in neuroscience, fluid dynamics in physics and more. Since the pioneer-
ing work of Fisher [1] and Kolmogorov—Petrovskii-Piskunov [2], front propagation dynamics of classical
reaction—diffusion equation

ut(t, ) = gy + f(z,u)u,xz €R (1.1)

and lattice differential equation

’LLj(t) = Uj41 — 2Uj + Uj—1 + fj(Uj)Uj, ] € Z. (12)
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have been studied extensively. In biology (1.1) is used to model the spread of population in non-patchy
environment with random internal interaction of the organisms and (1.2) is for species in patchy environment
with nonlocal internal interaction of the organisms. Here we focus on (1.2). For nonlinearity term f;(u;), we
assume that

(H1) f; € C*([0,00),R), =L < ian>O{fj{(v)} < sup {fj(v)} <O forall (j,v) € ZxR" with some L > 0
JELv> JEZw>0
and f;(v) <0 for all (j,v) € Z x RT with v > Lo for some Ly > 0.

In the literature, (H1) is called Fisher-KPP type nonlinearity due to Fisher [1] and Kolmogorov—
Petrovskii-Piskunov [2]. However, most existing works are concerned with the propagation dynamics in
homogeneous or spatially periodic media. Fisher [1] and Kolmogorov—Petrovskii-Piskunov [2] considered a
homogeneous case of (1.1), that is, f(z,u) = f(u) = 1 — u. Fisher conjectured and Kolmogorov—Petrovskii—
Piskunov proved that there exist traveling fronts of speeds not less than the minimal wave speed c* = 2,
which is a solution of (1.1) of form u(t, ) = ¢p(z—ct), p(—00) = 1 and ¢(o0) = 0. Later, existence of periodic
traveling waves of (1.1) or more general reaction—diffusion equations with Fisher-KPP nonlinearity has been
studied by researchers including B. Zinner and his collaborators in 1995 [3], H.F. Weinberger in 2002 [4], and
H. Berestycki et al. in 2005 [5]. For the case in non-periodic inhomogeneous media, we cannot expect wave
profiles that take the form of constant or periodic front profiles. The notation of traveling waves has been
extended to generalized traveling waves or transition fronts by several authors (e.g., [6,7]). In the past decade,
transition fronts in non-periodic inhomogeneous media have attracted much attention (e.g., [6,8-11]). For
instance, J. Nolen et al. considered in [10] the KPP equation of one dimension with random dispersal (classic
reaction—diffusion equation) in compactly supported inhomogeneous media. More precisely, they considered
(1.1) in the media which are localized perturbations of the homogeneous media. They showed that localized
KPP inhomogeneity may prevent the existence of transition fronts and provided some examples.

The discrete system (1.2) has also been the subject of much research attention. The past two decades
have seen vigorous research activities on applications to dynamics on lattice differential equations [12-19].
In numerical simulations, lattice differential equations have some advantages over classical reaction—diffusion
equations in applications. For example, (1.2) can be viewed as the spatial discretization of (1.1). On the other
hand, lattice differential equations are of interest as models in their own right. It is more reasonable to model
some problems with spatial discrete structure such as population dispersal in a patchy environment by lattice
differential equations. The main concerns include also the properties of spreading speed and propagation of
waves such as traveling fronts, periodic(pulsating) traveling waves and transition fronts. For homogeneous
or periodic discrete media with monostable or bistable nonlinearities, we refer the readers to [12-15,18,19].
The simplest case of transition fronts are traveling waves whose profiles are time-independent, that is, there
exists some function ¢ such that

wy(t) = 6(j — ct), é(00) = 0 and §(—00) = 1, (13)

where c is the wave speed. For the homogeneous case with f;(u;) = 1 — uj, it is almost trivial that there
exists a minimal wave speed ¢* such that a traveling wave exists if and only if the wave speed ¢ > c*.
Later, periodic traveling wave solutions have been investigated in [20,21] for the Fisher- KPP equation in
periodically inhomogeneous media, where the periodic traveling wave solutions u;(t) to lattice differential
equations such as (1.2) satisfy the following

u;(t+p/c) = uj_p(t),jgrgloo uj(t) =1 and Jlgrolo u;(t) =0 locally in t € R. (1.4)
Work on entire solutions or transition fronts for bistable reaction—diffusion equations in discrete media
includes [19,22]. However, less is known to the spreading dynamics to (1.2) with Fisher—KPP nonlinearity
in non-periodic inhomogeneous media.
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Kong and Shen [23] considered the KPP equations in higher space dimension with nonlocal, random
or discrete dispersal in localized perturbations of the homogeneous media and investigate in [24] the KPP
equations with nonlocal, random or discrete dispersal in localized perturbations of the periodic media. They
showed that the localized spatial inhomogeneity of the medium preserve the spatial spreading in all the
directions. The lower bound of mean wave speed of (1.2) can be obtained due to the spreading properties
proved in [24] and in [23] for the particular case in localized perturbations of the homogeneous media.
However, the existence and (general) non-existence of transition fronts have not yet been investigated for
discrete dispersals.

We will focus on the study of existence and non-existence of transition fronts of (1.2) with Fisher—
KPP type nonlinearity in localized perturbations of spatially homogeneous patchy environments or media.
Hereafter, we assume the following:

(H2) £;(0) > 0 for all j and f;(0) =1 for any |j| > N with some positive integer N.

Throughout the paper, we assume (H1)-(H2). Let 4 : D(A) C X — X be defined by

(Au)j = ujp1 — 2uj +uj_1 + fj(0)uy, Vu € X, (1.5)

where X = {u||u;| < L,for someL;0and allj € Z} with norm ||u||x = sup{|u,|}.
JEL

Let A = sup{Re p | u € o(A)}. Let {u}};cz be the unique positive stationary solution of (1.2), where
the existence of {u}};ez was proved in Theorem 2.1 of [23] by Kong and Shen under the assumptions of
(H1) and (H2). To study the propagation wave solutions in localized perturbations in patchy media, we will
extend the traveling front of (1.3) in homogeneous media and the periodic traveling front of (1.4) in periodic
media and define transition fronts of (1.2) and their mean speeds as follows:

Definition 1.1 ( Transition Front). A global-in-time solution {u;(t)};ez of (1.2) is called a transition front
if 0 < u;(t) < u} and there is a continuous function X (¢) : R — R such that X%ign (uj(t) —uj) =0 and
j—X(t)——o0

ijh(I;I)lﬁoo u;(t) = 0 uniformly in ¢ € R.

Definition 1.2 (Mean Wave Speed). A transition front is said to admit a mean wave speed if the following

— 1
limit exists: ¢ =  lim -2 , where t; is the first time such that w;(t;) = - inf{u;} for i € Z and

1
w(t;) < = inf{u?} for all I > .
25 -

Remark 1.1.

(1) The analogous notion for continuous reaction—diffusion equation in [10] was referred to in [7,25];
(2) By Theorem 2.1 in [23], there exists a positive r such that lil‘nf {u;} > 0. Thus, inf{uj} > 0 in
jl>r J
Definitions 1.1 and 1.2.

In the current study, our main result shows conditions for both existence and nonexistence of transition
fronts of (1.2) for lattice differential KPP equation in patchy environment with a localized perturbation
in media. There are several essential differences between classic reaction—diffusion equations and lattice
differential equations. Among these are the use of fundamental PDE techniques including heat kernel
estimates, Poincaré inequality, Harnack inequality and principal eigenvalue theory. We shall introduce
discrete versions of these fundamental tools in later sections. Because of those significant differences, the
approaches for classical reaction—diffusion equations in [10] cannot be applied directly to (1.2), that is a
continuous-time discrete in space lattice differential equation. In this paper, we consider transition fronts in

3
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the localized perturbed homogeneous patchy media, and provide the variational formulas for both the upper
bound and the lower bound of the wave speeds that transition fronts exist.
Principal eigenvalue theory plays a central and important role in studying transition fronts. Let X, =

{u € X :sup |ed Huj| < oo}. Consider the following linear difference equation for ¢ € X,
J

A = vy, (1.6)

where j € Z, A is as in (1.5).
Note that letting ¢; = e M ¢;, we have the following equivalent problem for ¢ € X,

e Hpjp1 —20; +el'oi_1 +ajd; = V.95, (1.7)

where j € Z with a; = f;(0).

Let A, : D(A,) C X — X be defined by (A,¢); = e "pjr1 —2¢; + e opj_1 + a;p;. A, are of so called
Jacobi operators in [26]. The positive principal eigenvectors to (1.7) play important roles in constructions of
transition fronts to (1.2). We refer readers to [26] for spectral theory of Jacobi operators in a Hilbert space.
For the particular case of periodic media, we refer readers to [20]. Due to lack of compactness, we apply an
extension of Krein—-Rutman theorem [27], Theorem 2.2 in [28] to prove that (1.5) has a principal eigenvalue
A (see Lemma 3.1). We investigate the positive solutions to (1.7)(see Lemma 3.3). If a; = 1 in (1.7), the
principal eigenvalue is equal to e* — 1+ e~ * associated with constant eigenvector 1. We define one auxiliary

function A(p) = e#* — 1+ e # for p > 0 and another auxiliary function for the wave speed, c(u) = ¥
A(p* A
for p > 0. Let (¢*, u*) be such that ¢* = # = ir;t;) M It is well-known that if a; = 1, then ¢* is so
"

called spreading speed, that is the minimal speed such that a traveling front solution of (1.2) may exist. The
existence of transition fronts of (1.2) relies on the constructions of super/sub-solutions with valid positive
principal eigenvectors to (1.7). Let A* = A(p*) and (¢, i) be such that A() = A and é = ¢(fi). We find that
the parameter values of u of valid positive principal eigenvectors to (1.7) must locate in [fi, u*) when A > 1
and i < p* (See Section 3). Due to the spreading properties of ¢* proved in [23], the parameter values of
w of valid positive principal eigenvectors to (1.7) must be less than u*. We explore the minimal speed ¢* in
Section 4.1. On the other hand, the principal eigenvalue A of (1.5) plays another important role that may
prevent the existence of transition fronts. The ¢ is corresponding to the maximal speed such that a traveling
solution may exist (see Section 4.3). The following Fig. 1 shows the existence intervals of transition fronts
to (1.2) with parameter values (¢, u) € [¢*, ¢] x [fi, u*].
We state the main theorem in the following.

Theorem 1.1 (Ezistence and Non-FEzistence of Transition Fronts). Assume (H1)-(H2).
(1) If X € [1,X*) and & > c¢*, then transition front exists for any speed ¢ € [c*, é]. Moreover, if ¢ € (c*,¢,
then for any € > 0, there exist Cy, Co, T > 0 such that fort > T and j > ct,
Cle—(u+e)(j—ct) < u]»(t) < 026—(u—6)(j—ct)_ (1.8)

(2) No transition front with speed c exists for the following cases: (i) A > \*; (ii)c < ¢* and (iii) ¢ > ¢.

Remark 1.2. Throughout the paper, we consider the existence and nonexistence of transition front with
a mean wave speed. The uniqueness of a transition front remains an open question. It is unknown whether
there is some transition front without a mean speed. However, for nonexistence, in general there are no
transition fronts if X (¢)/t < ¢* or X(¢)/t > ¢ as t — 0.

4
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3
Fig. 1. The solid curve is for speed auxiliary function c(u) = Lj‘) The dashed curve is for principal eigenvalue A(u). The parameter
values of existence region of transition fronts are located on [c*,¢&] X [f, u*], where ¢* = inf ¢(u) and é = c(4) with g satisfying
>0
A() = A

This paper is organized as follows. In Section 2, we provide the discrete analogs of fundamental tools
in classical reaction—diffusion equations, including semigroup theory, comparison principles, discrete heat
kernel, discrete parabolic Harnack inequality and many others. In Section 3, we investigate the principal
eigenvalue theory and construct the super/sub-solutions. Then we show the existence of transition fronts
and also the asymptotic behaviors of transition fronts (1.8), that is, proof of Theorem 1.1 (1). In Section 4,
we show nonexistence of transition fronts under A > A\*, the lower bound of wave speeds (minimal wave
speed ¢*), and the upper bound of wave speeds (maximal wave speed ¢), that is proof of Theorem 1.1 (2).
In Section 5, we provide a particular example with the simplest case: a perturbation at a single location.
Finally, we provide some concluding remarks in Section 6.

2. Foundations of lattice differential equations
2.1. Initial value problem
Let Xt = {u € X|u; > 0,Vj € Z}. Let A be as in (1.5). It follows from the general semigroup approach

(see [29]) that A generates a uniformly continuous semigroup T'(¢) and (1.2) has a unique (local) solution
u(t; z) with u(0) = {z;},ez for every z € X, that is given by

u(t) = T(t)u(0) — /075 T(t — s)g(s)ds,t > 0, (2.1)
where g;(s) = (f;(u;) — f;(0))u; for j € Z, g(s) = {g;(s)}jez, and u(t) = {u;(t)};ez-
2.2. Comparison principle
We introduce comparison principle in this subsection, which will play an important role in obtaining the

existence of transition fronts of (1.2). We define super/sub-solutions and state the comparison principle as
follows.
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Definition 2.1 (Super/Sub-Solution). For a given continuous-time and bounded function u; : [0,T) — R,
{u;} ez is called a super-solution (sub-solution) of (1.2) on [0,T) if for all j, @;(¢) > (<)ujy1 —2uj +uj_1+
[i(ws)u;.

Proposition 2.1 (Comparison Principle).

(1) If u(t) and v(t) are sub-solution and super-solution of (1.2) on [0,T), respectively, u;(0) < v;(0), then
u;(t) <wj;(t) for tel0,T).
Moreover, if u;(0) # v;(0) for some j, then for all j,
u;(t) <wvj(t) for te (0,T).

(2) If z,w € X and z < w, then u;(t; z) < uj(t;w) fort > 0 at which both u(t; z) and u(t; w) exist. Moreover,
if z; # w; for some j, then for all j, w;(t;z) < u;(t;w) fort > 0 at which both u(t; z) and u(t;w) exist.

Proof. The proof follows from arguments in Lemma 2.1 in [15]. O

With the comparison principle, we have that if z € X+, u(t;2) € X .

In next two subsections, we introduce the discrete heat kernel and the discrete parabolic Harnack
inequality, which play critical roles in studying the asymptotic behaviors and the bounds of wave speeds
of transition fronts.

2.8. Discrete heat kernel

Discrete heat kernel is highly related to I-Bessel functions. The I-Bessel function I, (t) is defined as a
solution to the differential equation

2y d
tzﬁgf +td—?t/ — (2 +2?)y =0.

In [30], the author derived an upper bound and lower bound for I, (t), for all ¢ > 0 and = > 0,

1

_ 1
VA < L ()VR(E 4 a?) e 0] < 2V,

with ¢o(x,t) = V2 + 22 + xln( m)
By Proposition 3.1 in [31], the heat kernel on a 2-regular graph is given by

K(t,r) = e 21I.(2t), for (t,r) € (0,00) x Z™.

With the help of the above bounds of I,.(t), we have the bounds of K (t,r):

—2t———L  4¢y(2t,r) 2t —=L

L (4% + 7“2)_%6 2/ 42412 < K(tr) < L (4* + T2)_%e 2\ 412412

V2T V2r

The authors in [31] showed that v/fe ™', (t) < (1 + %)~ 2%, thus K(t,7) < \/—127(1 + )75,
By Theorem 2.3 in [32], hZ(j) < F\(t,7), that is, there exist positive real constants ¢ > 0 and M, > 0 such

that

+s0(2t,7)

(1= F(t,§) <hi(j) < (1+e)F(t,]), (2.2)
6
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for j2 +1t2 > M., where hZ(j) is the heat kernel associated with Lf(j) = f(j) — w and F(t,j) is
given by if j =0,

1 1
F(t,j) = ——=—""7,
(t,7) Var Ly )
else if j # 0, ‘ .
Fit,j) = — exp[—t + |jls (/1))

V2r (142 4 j2)1

where (¢/j]) := <o(1,/1j1)-
Recall the nonlinear equation (1.2),

Uj = Ujp1 — 2uy +uj—q1 + fj(uj)uj, JjEZ.
Consider also the linearized equation
L'Lj = Uj+1 — 2’1.Lj —+ ’I.Lj_l + ajuj, j S Z, (23)

where a; = f;(0)
Let As : D(As) € X — X be defined by

(/lsu)j = Ui — UjF uj_l,Vu e X. (24)
Let S(t) be the semigroup generated by /As. Note that (S(t)z); = e’ Z h5,(j—k)zy, for 2 == {z;}jez € X.

Then the solution of (1.2) is given by

u(t) =St —T)u(T) — /T S(t—s)g(s)ds,t > T,

where g¢;(t) = (1 — f;(u;))u;(t). More precisely, we have the following, for ¢t > T,

()= T S (= RuslT) / 4 Y i~ D). (2.5)

We should point out that the solution form with (2.5) is slightly different with that given by (2.1). With
heat kernel hZ, in (2.5), we can use the heat kernel estimate (2.2). Then there would be some advantages
over (2.1) while exploring some estimates, such as the exponential tail estimates of transition fronts.

2.4. Discrete parabolic Harnack inequality

In this subsection, we shall introduce the discrete parabolic Harnack inequality for the solution to our
main equation (1.2). Harnack inequalities have many significant applications in both elliptic and parabolic
differential equations such as exploring boundary regularity, heat kernel estimate, and other solution
estimates. Moser in [33] proved a parabolic Harnack inequality for classical parabolic PDEs. For discrete
parabolic Harnack inequalities, we will adopt Definition 1.6 and apply Theorem 1.7 in [34] to prove that the
discrete parabolic Harnack inequality holds on a 2-regular graph. Readers are referred to [34] for further
information about parabolic Harnack inequality on graphs. For convenience, we recall necessary graph
theory, and state the Definition 1.6 of [34] as the following Definition 2.2.

Let I' be an infinite set and pzy = fty, & symmetric nonnegative Weight on I' x I'. We call x and y

neighbors, denoted by = ~ y, when p,, # 0. Vertices are measured by m(x Z Hay- The “volume” of
Ty
subsets E C I' by V(E) = Z m(x). We can further define d(x,y) as the distance of x and y in I', that is,
rel

7
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the shortest number of edges between z and y. Let B,.(z) be the closed ball {y € I'|ld(x,y) < r}. We say
that u(t, ) satisfies continuous-time parabolic equation on (¢, x) if

x)ug(t, ) Z“W —u(t,x)). (2.6)

We remark that for a 2-regular graph, x has only two neighbors y_ := x—1 and y := x+1. If we consider
the same weight for p;y_ = pizy, , then

Zﬂwy (t,y) —u(t, @) = pay_(u(t,z —1) = 2u(t,z) + u(t,z + 1)),

that is the exactly same type equation as (1.2) we consider in the paper. In [34], Delmotte defines Harnack
inequality of (2.6) on the graph as follows.

Definition 2.2 (Harnack Inequality [34]). Set n € (0,1) and 0 < 61 < 63 < 03 < 04. (I', u) satisfies the
continuous-time parabolic Harnack inequality H (7, 01, 02,605,604, C) if for all g, s, and every nonnegative
solution on Q = [s, s + 047%] x B,.(x) we have

supu < Cinf u,
Q_ Q+

where Q_ = [s + 0172, s + 021%] X B, (x9) and Q4+ = [s + 0372, s + 047%] X By, (o).

By Theorem 1.7 in [34], the discrete parabolic Harnack inequality holds if and only if the following three
conditions are satisfied:

Definition 2.3 (A*(«) Condition). Let a > 0, the weighted graph satisfies A*(«) if
T~Y = flgy > am(x);

Definition 2.4 (“Doubling Volume” Property). There exists a C' > 0 such that
V(Bar(x)) < CV(By(x))

for any x € I" and r;

and

Definition 2.5 (Poincaré Inequality). There exists a Cy > 0 such that for all v € RT, all zg, and 7 > 0,

Yo o m@)(v@) =0 <Cor® Y gy (v(@) —v(y)?

z€Br(xzqg) z,y€Bar(z0)
here @ ! Y m@)()
wnere v —m ——————— mix)vix).
V(B,.(afo)) 2E€Br(z0)

Now we claim that parabolic Harnack inequality holds on a 2-regular graph.

Theorem 2.1 (Harnack Inequality on a 2-reqular Graph). The parabolic Harnack inequality H(n, 61, 62,03,
04,C) holds on a 2-regular graph.
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Proof. It suffices to show a 2-regular graph satisfies the A*(«) condition, the “doubling volume” property
and the Poincaré inequality. First, a 2-regular graph with 0 < a < % satisfies the A*(«) condition. Second,
for a 2-regular graph, V(B,(z)) = 2(2r + 1) and V(Bar(z)) = 2(4r + 1). Choose C' = 2 and then the
“doubling volume” property holds.

Finally, we prove the Poincaré inequality on a 2-regular graph. In fact, we have a strong Poincaré
inequality, that is, Ba,(z) can be reduced by B, (z). Without loss of generality, let o = 0 and consider
v(z) for —r < o < r. Consider the same weights for all vertices, and let gy = pzy = 1if [y — 2| = 1,
otherwise 0. Then we have

Yo @) —v)? = Y (@) —vle+ 1) + (v(z) — vz - 1))°]. (2.7)

,y€ By (z0) 2€By(z0)

The sequence v(z) oscillates around v. In other words, if v(z) moves from —r to r, it must either hit the v at
some point or cross v from one side to another. There exists at least one integer & such that either v(&) = v
or (v(Z) —v)(v(& + 1) —v) < 0. In addition, there exists an & € (—r,r) such that

max{|v(z + 1) — 3], [u(@) — 7|} < [0(@) — v(& + 1)|. (2.8)

Thus, with (2.7), (2.8), Cauchy—Schwarz and triangle inequalities, we have that, for x < 7,

—vl—lz y) —oly+1)) + (v(2) - )]
<Z| y) — oy + 1)) +[(v(2) - v)|
<Z| y) —oly+ 1))+ (&) —v(@ + 1))

—ZI y) —v(y+1))]

r—1
< 3 [(ol) —vly + 1)
<13 (@) — o+ DS (1)
—2r 3 (o) — oy + 1)
<2r > pay(o(@) —o(y)?]E
z,y€Br(z0)

If 2 =2+ 1, with (2.8), [v(@+1) — 9| < |v(2) —v(&+1)| and so we also have the above inequality. If
x > % + 1, then we can do backward arguments above and have

v(z) —v| = | Z )—v(y—1) + (v(@ +1) - )|

y=x+2

Z [(v(y) —v(y = D)+ |(v(2 + 1) — 0)]

y=z+2

IN
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x

< > 1) —vly = D) + () — o(@ + 1))
y==T+2

Y ) — oy = 1)l

y=x+1

S () - oly - 1))

y=—r+1

IA

T T

[>T () —vy+ D)2 S (122
y=—r+1 y=—r+1

=2r 3 ((vly) - oy + 1))

y=—r+1

2r Y ey (o(@) —v(y)?t.

z,y€Br ()

IN

IN

In summary, for all € B,(z¢), we have that

_ 1
(@) =3[ <25 D pay(v(z) —v(y)?]2.
"EﬂyeBT(CEO)
Take the square for both sides and thus

(v(z) —0)* <2r Y ey (v(z) —o(y))*.

CE,yEBr(IEO)

Note that m(z) = Z Hay = 2. Then take the sum over B, (zo) and we have

Z m(z)(v(z) —v)* < (m(x)(2r +1)2r) Z fay (V(T) — v(y))?
z€Br(x0) x,y€Br(z0)
= (8% + 4r) Z fhay (v(z) — U(y))2
x,y€Br(z9)
<12 > py(v(e) —v(y)*
m7y€BT(IO)

Hence, Poincaré inequality holds for Co = 12. 0O
2.5. Some auxiliary functions

We recall some auxiliary functions. One is for the function ¢(z) in the heat kernel estimate (2.2).

_ 2 z + : (7))
Recall that ¢(z) = vV1+ 22 + m1+\/1+7 for z € RT. Another is for the wave speed, c¢(u) = .~ with

A(p) = et — 14 e # for p > 0. The properties of these auxiliary functions play important roles throughout
later sections. We group them in the following lemma and their proofs are straightforward.

Lemma 2.1. Letg(z) = -1+ 2@ for p >0 and z > 0.

(1) s(2) is strictly increasing in z on (0,00) and then there exists a lp > 0 such that s(lp) = 0.

(2) g(z) is concave down and obtains an absolute mazrimum at zo = csch(p) = ﬁ for z € (0,00) and
9(20) = ).

(3) For fixed pn > 0, c(u) is concave up and has a unique critical point at p*, that is, c(p) strictly decreasing
in (0, u*] and strictly increasing in (p*,00).

10
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(4) For pp € (0,p%), c(u) > 2, for p=p*, c(u) = 2 and for p > p*, c(u) < %, where zo = csch(p).

(5) g(z) is strictly increasing in z on (0,00) and lim s2) =1.
z—o00 2

Proof.

(1) By direct computation,
1 V1 2
J)= L VEEE
1+V1+22 =z z
Therefore ¢(z) is strictly increasing on (0, 00). Since ¢(z) — —oco as z — 0 and ¢(z) — 00 as z — o0,
there exists a lp > 0 such that ¢(ly) = 0.

, 14+4/1422
(2) By direct computation, ¢g'(z) = 2= (Z);g(z)_” — ol z % for ;1 > 0. Then there exists a unique

z
such that ¢’'(z9) = 0. We can verify that g(z) obtains an absolute maximum at

1+\/7

critical point zg = ﬁ

zo by first derivative test. Since In————— is a strictly decreasing function with the range from positive

infinity to 0, ¢’(z) > 0 for z < zp and g '(z) < 0 for z > zg. Plugging 2 into @,
(o)t _ s(z0) 1
20 20 A
_ s(esch(p)) 1
csch(w) csch( )
\/1 + csch?(p) + In L(“)
1+csch?(u) 17
esch(p ) csch(p)
COthQ +Z cs('h(u
v o)
csch(p ) csch(p)
csch(p)
_ coth(u) + lnil-i-cot}:zu) M
esch(p) csch(p)
1
. COth(,U) +1n stnh(p)+cosh(u) + 1
csch(p) csch(p)
_ coth(p) —p p
csch() csch()
= cosh(p)
Thus, g(z0) = —1 + 2cosh(u) = e* + e * —1 = A(p).
(3) We can prove it by dlrect computation of Solvmg () = 0 and verifying ¢’ (u) > 0.
(4) Let h(p) = c(p) — %. Then h(u) = ¥ (et —eH) = M = —uc' (1) and so h(p) has an
opposite sign as ¢/(u). By (3), /(i) < 0 for pu € ( w), () = O and ¢ () > 0 for p > p*, as required.
(5) Since (@)’ = w = fz%lnﬁ > 0, —Z is a strictly increasing function on (0, 00). The
limit lim M =1 follows easily. O
zZ—o0  Z

3. Existence of transition fronts and their asymptotic behaviors

This section is devoted to investigating the existence of transition fronts of (1.2) for wave speed ¢ € [¢*, ¢]
when A € [1, A*) and ¢* < é. By Lemma 2.1(3), the wave speed interval ¢ € [¢*, ¢] corresponds to the interval
of u € [f1, p*]. To prove the existence of transition fronts, we apply fundamental tools such as comparison
principles and constructions of super- and sub-solutions. First we introduce principal eigenvalue theory for
Jacobi operators, that will play a central and important role in these processes.

11
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3.1. Principal eigenvalue theory for Jacobi operators

Sometimes we want to consider the truncated eigenvalue problem of (1.6):

Git1 — 205 + dj_1 + ajd; = Apdy, (3.1)

where j € [-M, M], and ¢pr11 = ¢p_p—1 = 0 for M > N. If we write it in a matrix form, and let Ay, be

a_pr — 2 1 0 0
1 aA_M+1 — 2 1 O
0 1 apy-1-2 1
0 0 1 apy — 2
then
And™ = o™, (3.2)
where ¢(M) = (b_nry---,ba)T. By Perron—Frobenius theorem, there exists a principal eigenvalue and an

associated positive eigenvector. We let ()\M,QS;M)) be the pair of corresponding [*° normalized principal
eigenvalue and eigenvector, that is, ()\M,QS;M)) satisfies (1.7) with ||| = 1 and ¢;M) > 0 for
j € [-M,M]. Let M go to infinity and the limit of Ap; exists. If A > 1, A is a principal eigenvalue of
(15) with A = lim A

Lemma 3.1. If A > 1, A is a principal eigenvalue of (1.5). Moreover, A= lim Ap.

M—o0

Proof. Without loss of generality, let both M and N be even and M > N. We let Ay be an 2M + 3 by
2M + 3 matrix:

0 0 0 0
0 a_py—2 1 0
0 1 apnr -2 0
0 0 0 0

Then we have that Ay;y1 > Ay and so p(Anry1) > p(Arr) = p(Anr), where p(#) is the spectral radius of the
matrix #. Thus, Apr = p(Ajy) is non-decreasing in M. On the other hand, || Aps||maz = max |A (4, f)|, where
i

A (2, 7) is the element of Ay at the ith row and jth column. Then 0 < Ay < ||Ars||maz < max{|a;| + 2},
J

that is, Aps is uniformly bounded. Therefore, the limit hm A exists and it is denoted by Ao, = Mhm AM -
—00
Let ¢(™) be the positive eigenvector of Ay, Wlth ||¢(M || = 1 For each j, there exists a subsequence M,
of M such that Mhm ¢( 7 exists and let (b = hm ¢ M;) . For each M > N, let jy; be such that
J—>OO

qﬁgﬁ\;) = 1. We claim that there exists a jp; € [-N, N]. For j < —N, we write (3.1) as the following,

i1 = (L+An)d; — @51 (3.3)

Let ¢; = 1+ Ay and ¢ = —1. We can solve a recursive sequence ¢;11 = c1¢; + ca¢;j_1. To this end,
.1 . 1+ Vv (14+A )2 -4
we use an auxiliary equation z2 gt (2 M)

and dy = SAMZYV (21+/\M)2_4. Note that didy = 1 and so d; > 1 and dy < 1. Therefore, we have either
di =dy=10r 0<dy <1< dy. Moreover,

Gjr1 — d1gj = d2(¢j — didj-1),

Gjr1 — dagj = di(¢j — dacpj—1)-
12
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Thus, for —M < j < —N, we have
Gjr1 — dig; = (do)’ MM G_pr — drd_p—1),
Gjp1 — dadyy = (dr)? ™M (¢_pr — dagp_pr—1).

Recall Eq. (3.1) that ¢_pr—1 = 0 and ¢_p; > 0. Consider 0 < dy < 1 < dj first. Subtract the above
equations, divide by ds — d; and then with d1ds = 1, for —M < j < —N, we have

(do)I*MAL(p_pr —dip_pr—1) — (d1) MY (p_ps — dap—pr—1)
do — dy

b; =

(dg)j+M+1 _ (dl)j+M+1

= & — d, ¢—m

(dy)~UFMFY) _ (gy)i+M+1

= & d, ¢—m

Note that di > 1, and —(dq1)™" + (d1)" is increasing for & > 0. Thus the ¢; is increasing for j < —N.
If di = dy = 1, we must have ¢j11 — ¢; = ¢d_p — p—_m—1 = ¢_p for M < 7 < —N. We also have

that ¢; is increasing for j < —N. Therefore it implies that jFax Ngbj = ¢_n—1. Similarly, we have

e ¢; = ¢n41. Then we have one jy € [—N,N]. There exists a subsequence Mj, of M such that
<J=

j = Mlim jm,, for some j € [N, N]. Thus, qS;OO) = 1. Moreover, by taking the limit, we have that
Jo—> 00

Ap(®) = A ¢(>). By the strong positivity of the semigroup generated by 4, ¢§°°) = 1 > 0 implies that
qbg-oo) > 0 for all j.

Next we will apply an extension of the Krein—-Rutman theorem, Theorem 2.2 in [28], to show that X is a
principal eigenvalue of (1.5). To this end, we introduce the Kuratowski measure of non-compactness as for
any B C X,

k(B) =inf{d > 0 : there exist finitely many sets of diameter at most d which cover B}.

Let A = A+ sI with s > 2+ |ag| for all i € Z such that 4 > 0. Denote o(/A) the spectrum and
0ess(A) the essential spectrum of A. Their respective spectral radii are 7(0(4)) and 7(0ess(4)). Rewrite
A = A + Ay with A9 = Pjt1 — ¢; + ¢j—1 + s¢; and Ay = diag{a; — 1,7 € Z}, that is a diagonal
matrix with 0 for all [j| > N. Then A3(B) is a subset of R2V+! that implies x(A3(B)) = 0. Therefore,
R(A(B)) < w(1(B)) + n(1a(B)) = x(1(B)) < |4 [(B) = (s + D(B). Thus s(A(B) < (s + Ui(B).
that is, 4 is an (s+1)-set-contraction according to [28]. Let

a(A) =inf{c>0: Ais a c-set-contraction}.

By the definition of (2.23) in [28], r(0ess(4)) = nlgrgo(a(;l"))% Thus 7(0ess(A)) < s + 1. Since 7(o(A)) =
A+ s, A > 1 implies that r(o(4)) > 7(0ess(4)). Therefore, by Theorem 2.2 in [28], A + s is a (principal)
eigenvalue of A with a nontrivial nonnegative eigenvector ¢ and thus A is a (principal) eigenvalue of (1.5)
with the identical eigenfunction ¢. Moreover, ¢ must be strictly positive. If not, suppose there is a ¢ = 0.
Then ¢g11 > 0 otherwise ¢ = 0. Then 0 = (A+2—ag)dr = drt+1+ dr—1 > 0, which leads to a contradiction.
Now let v(t) = ¢(>) — t¢, t > 0. There exists ty > 0 such that vg(to) = 0 for some k € Z, while v(t) £ 0 for

t > to. Moreover,
A+ s

t
)\oo T 0¢)7
which implies that XA + s < A\, + s due to the definition of ¢y. Thus, A < Aw. By interchanging (A, ¢) and
(Moo, #(%)), we have X > Aso. To conclude, A = Aoo = N}im Ayv. O
—00

0< A3 —top) = (Moo + 5) (6> —

13
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Then we consider Eq. (1.7), 4,¢ = 7y,¢ for v, € R. It is easy to see that a solution ¢ is uniquely
determined by the values ¢ and ¢x11 at two consecutive points kg, kg + 1. This results in a two-dimensional
space of fundamental solutions Span{u,v}, where v and v satisfy (1.7) with the initial conditions uy =
Vp+1 = 1 and vy = ug+1 = 0 for k = ky. In applications, we are interested in a positive solution ¢ € X to
(1.7). Before showing the existence of a positive solution of (1.7), we prove a lemma first.

Lemma 3.2. Ewvery solution of (1.7) can change sign at most once for any v, > .

Proof. We modify the arguments in section 2.3 of [26] where they are concerned with Jacobi operators in
a Hilbert space. Let (d,,)ncz be the standard unit vectors of X, where (d,,); = 1 if i = n otherwise zeros. We

define the following restrictions A:’ko and A, of 4, on (ko,00) and (—o0, ko) respectively:

0

(AT, ¢); = e i — 205+ a;d5,) = ko + 1,
ko /I e*l‘(;sj_i_l — 2¢j +€”¢j_1 +aj¢j7j > ko + 1’

and

_ _ e“¢j_1—2¢j—|—aj¢j,j:k:0—1,
(Ap,koqs)j - —p o .
e i —2¢; +eloj1 +ajds, g < ko— 1.

For A € p(4,), the matrix G := (A — 4,) ! is called Green’s function with matrix elements
Gij = (A — /lu)i_jl.
Let 8j be the jth column vector of (A — 4,,)~" and then
(A= 4,)C; =4;.

Let
u(A, ) = (A= 4,) 7160 (-), X € p(4,).
Let u®(v,,k) denote the solutions that coincide with u(v,,k) for k& > 0 and k < 0 respectively. We
complete the proof of the lemma in a couple of steps.
Step 1. We have that (k — ko)s(vu, k, ko) > 0,k # ko, where s(v,,k, ko) is the solution with initial
conditions (v, ko, ko) = 0 and s(v,, ko + 1, ko) = 1. Denote

G = (= A1)

wyko/ig
and . _
etu (v i)s(ywsdiko) s
_ F v 2]
G+ — u™t (Yu,ko)
[ e”u+('y‘u,j)s('y#,i,k0) i <
ut (vu,ko) =

We claim that G;;- = é;; We note that the Wronskian of vt and s is a constant and
W(u+, 5) = eiﬂ(u+ ('Y/Lv k)s(%u k+1, kO) - u+(’y#, k + 1)5(7‘,“ k, kO)) = eiour('Y/n k'O)-

= _
Let ¢ = Gj = (G:;)Z-ez. For k < j, we have

g
(v — A:ka)G}L)k =Y.k — (e Hopt1 — 20, + e o1 + ardy)

eﬂu+(’yuvj) —+
= m((w = AL k) ko))
=0.

14
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—_—
Similarly, for k > j we also have ((vy, — A: ko)Gj_) & = 0 by interchanging u* and s in the above arguments
for k < j. For k = j, we have

—
(e = A1 )Gk = Y0 — (€7 Pri1 — 20k + e dr—1 + ardy)
e”u*('y#, k) +
= u+('7u7 kO) ((’Yﬂ - Amko)s(’ﬁn ) kO))k
+ [u+(7w k)s(’y#, k+ 1» kO) - UJF(’W“ k)s(%“ kv kO)]
u+(7,uak0)
 W(ut,s)
B e_'uu-i_(’)/ua kO)
=1.
e _
Therefore, (v, — A;kO)Gj = 6; and thus G;; = G;;
Thus, .
_ Put (v, k+ 1)
k1)
0< (W ;L,k)k+1,k+1 “+(’Vua k)

Then u™t(y,, k) and u*(v,,k + 1) have the same signs. We can assume that u*(v,,k) > 0. On the other
hand, by similar arguments above, for k > kg
eﬂu"!‘(/y/“ k‘)s(’Y;u ka kO)
U+ (’Y,u.a kO) .
Hence, (k — ko)s(vu, k, ko) > 0,k > ko. We can show the case of k < k¢ similarly.

0<(vu— AIkO)Ei =

Step 2. Suppose u;(vu, k), 7 = 1,2, are two solutions of (1.7) with wi(yu, ko) = u2(Vyu, ko) for some
ko € Z. Then ui(yu, k) — ua(vu, k) = cs(yu, k, ko) for some ¢ € R. Therefore, by Step 1, either
(k — ko)(ui (Y, k) — ua(yu, k)) > 0 for k # ko or ui(yu, k) = ua(yu, k) for all k. The solutions u(v,, k)
can change sign at most once since s(vy,, k, ko) does. O

Now we are in a position to prove a lemma that there exists a positive solution ¢ € X to (1.7) for
Yu = A(p) for p € [f1, p*), and @5, =1 for k = ng,ng + 1 and ng > N.

Lemma 3.3. There exists a positive solution ¢ € X to (1.7) for v, = A(u) for p € [, n*), and ¢, = 1
for k = ng,no + 1 and ng > N. Moreover, ¢; = 1 for j > N and there is a positive number | such that
lim ¢; =1

j——o00
Proof. For |j| > N, a; = 1. Thus, recalling (1.7), for |j| > N, we have

e pjr1 — g5 teldj_1 = ANp)g;.
Thus, recalling A\() = e* — 1+ e™#, for |j| > N, we have

67'u¢j+1 + e"qﬁj_l = (e + 67#)¢j. (3.4)
Since ¢ = 1 for k = ng,np + 1, with (3.4), for j > N, ¢; = 1. On the other hand, for j < —N, we write
(3.4) as the following,

¢j*1 = (]. + 672M)¢j — 672M¢j+1.

Let c; = 1+ e 2* and ¢p = —e 2#. We can solve a recursive sequence Pj—1 = c1¢; + cadjy1. To this end,

2

we use an auxiliary equation 22 — c;x — co = 0. Then solve it to have two roots d; = 1 and dy = e~ 2~.

Therefore, we have

¢j—1 — di1pj = da(d; — d1djq1),

¢j—1 —dagj = di(pj — d2pjy1)-
15
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Thus, for j < —N, we have

¢j—1 — did; = (do) VT (¢_n — drp_n11),
¢j—1 — day; = (d1) N (¢_n — dap_n1a).

Subtract the above equations, divide by do — d; and then for j < —N, we have
_(dy) TN (g N —dip_ny1) — (di) VT (b y — dadp_n1)

% = dy — dy (3.5)
= Cl + C2€2Mj.
Since lim (dp) N1 = lim e 2#"NH1=9) — 0 and (d;)" N1 =1,
Jj——o00 j——o0
—(¢_nN — dao—
lim ¢; = (v = d2d-nir)

j——o0 d2 — d1

Thus, ¢ € X. Next, we prove that ¢ > 0. Suppose that ¢, < 0 for some kg < N while ¢; > 0 for
j > ko (i.e. ko is the first oscillation point around 0 from the right). Let ¢ be a solution with ¢ = e?** for

k =ng,no+1and ng > N. Then for j > N, gf;j = ¢4 for all j > N. There is an € > 0 small enough such that
ko is also an oscillation point for ¢ — er,zAS. Then ¢ — quS >0for N <j< f% and ¢ —ed < 0 for j > 717526).

Thus there exists another oscillation point for ¢ — ecﬂ This causes a contradiction with oscillation theory,

every solution can change sign at most once (Lemma 3.2), and so ¢; > 0. O

3.2. Sub/super-solutions

In this subsection, we construct a super-solution and a sub-solution with Lemma 3.3. By Lemma 3.3, the
principal eigenvalue pair, denoted by (A, #}), exists for Eq. (1.7), where A, = A(u) for pu € [f1, i*).
Let
;= e Mgl (3.6)

Lemma 3.4. {u,},ecz is a super-solution of (1.2).

Proof. By (H1), we have f;(u;) — f;(0) < 0. Recall that a; = f;(0). By direct calculation, we have

() = [Uj41 — 2U; + uj—1 + f;(u;)u;]
>(ug)e — [Uj1 — 2uj + Uj—1 + ajuy]

=0. O

Let
w, = efu(jfct)qg;% _ dlefm(jfct)qggl. (3.7)

for i < p < pp < min{2pu, p*}.

sup¢/  L(sup¢/))?

Lemma 3.5. {w,}icz is a sub-solution of (1.2) for any di > max< —2——, R T (-
e} sez #(1:2) for any da {ugfaﬁ}l <mc—x<m>>n}f¢§l}

Proof. Let f;j(u;) = f;(0) if u; < 0. By Lemma 2.1(3), for fit < p < puy < min{2p, p*},

H1 M
16
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Then if u; < 0, we have
(w;)e = [wjpq — 2u; + ;g + fi(u;)uy]
= (uj)e — (w41 — 2u; +u; g + £5(0)y,]

—(pre = A(p))die™ 1= g
<0.

By Lemma 3.3 and fi < p < p1, both sup ¢/ and inf ¢ are positive. Let
i i

sup ¢ L(sup ¢//)?
J

o J
do = maX{1?f¢51’ (’ulc _ A(Ml)) Hjlfgb;l }

Note that dy > do. If u; > 0, we have e‘“(j_c’f)@-‘ — dle_‘”(j_d)qb;‘l > 0 and then

oo
e~ (r—n1)(—ct) 5 dli > 1>,
¢y~ do

that implies that j —ct > 0. For u; > 0, Q? < e_QM(j_Ct)(¢§L)2. Then together with (3.8), for u; > 0, we have

(ﬂg) [u Wipy —2u;+u, 1—|—fj(u-)u-]
= (u)e — [wjq — 2uj +u;_y +aju;] + £0)u; — fi(w;)y;
(u)e = [y — 2u; +u;_y + ajuy] = fi(y)u

—(pac— (Nl))dlefﬂl(jfc”@” — fi(y)e Q#Q <t) (¢§L)

| /\

< e G (y — A(u))dolt — f(y)e” GG ()
< e MU= (pre — ANm))di g — fi(y)(@5)],
where y is such that f;(0) — fj(u;) = —fj(y)y;. Recall that p < w1 < min{2p,p*} and in (H1),
L(sup ¢)?
— i " (ag J
L < jezlggzo{fj(uj)} < 362171}]) O{f (uj)} < 0 for some L > 0. Since dy > dy > (mc—)\(m))iljlf(b?l’ we

have [~ (e — ()i 6 — F1(y)(@)?] <0 and thus
(!j)t - [Hjud - QMJ‘ +Mj,1 + fj(@j)!j] <0

for w; > 0. This completes the proof of the proposition. [

Remark 3.1. For p = p*, Lemma 3.4 holds. However, Lemma 3.5 does not hold for u = u*, because valid
positive eigenvector must locate in (0, u*] and there is no room for the choice of p; that has to be bigger
than p. For another critical number p = fi, it is fine to be included because p; can be chosen as long as

fo< < pn < min{2p, gt}
3.3. Existence of transition fronts

In the last subsection we constructed the super/sub-solutions on the interval [fi,u*) of u. In this
subsection, we can obtain the existence of transition fronts to (1.2) for ¢ € (¢*, ¢] by the comparison principle.
After that, with the limiting argument, we can have the existence of transition fronts to (1.2) of ¢ = ¢*. The
proof of existence of transition fronts in part (1) of main theorem is completed by the following proposition.

17
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Proposition 3.1. Assume (H1)-(H2). If X € [1,X*) and é > c*, then transition fronts exist for any speed
¢ € [¢*,€]. Moreover, for ¢* < ¢ < ¢, the constructed transition front u;(t) satisfy

lim  —%®)
j—ct%oo efﬂ(jfct)

= . (3.9)

To prove Proposition 3.1, we will apply the following lemma. Let (Aps, ¢ar) be principal eigenvalue and
eigenvector pair of (3.1) with ||¢nr||co = 1 and @ = d¢ps for 6 > 0.

Lemma 3.6. For any given M >> 1, there is a small enough 69 > 0 such that @ is a sub-solution of (1.2)
for any 6 € (0,d).

Proof. Recall that a; = f;(0). Choose §y small enough such that

£30) = f3(@;) < £3(0) = f3(60) < Awr, V6 € (0, 0p).
By direct calculation, we have

()¢ = [Uj41 — 205 + -1 + f;(;)Ty]
=(iy)¢ — [Uj41 — 205 4 51 + ajis) + (f5(0) — f;(@;)),
=(=Anm + (£;(0) — f;(@y)))a;
<0. O

Proof of Proposition 3.1. As long as we have the required super/sub-solutions, the existence of transition
fronts can be obtained by the standard “squeeze” techniques. Indeed, if A € [1,\*) and é > ¢*, then we have
a positive principal eigenvector to (1.7) for any speed ¢ € (¢*,¢]. Let u and u be chosen as in (3.6) and (3.7),
v = min{u, v*} and w = max{u,0}. Following arguments similar to [20], we have an entire solution that is
sandwiched between v and w. In fact, for each n € N, let {u] };ez be a solution of (1.2) with initial condition
n

U -

#(—n) = v;j(—n). With the comparison principle, we have that for any n € N, and (¢, j) € (—n,00) X R,

0 <wj(t) <uf(t) <wvit) <uj.

In particular, letting t = —n +1, we have u}} (—n+1) < v;(-n+1) = u;”_l(—n+ 1), foralln € Nand j € Z.
With the comparison principle again, we have that for any n € N, and (¢,j) € (—n + 1,00) x R,

0 <wj(t) < u?_l(t) < uj.

Note that [uf](¢)] < uj and [0} ()] < C||A]| + max |f;(v)| maxu; because A is a bounded operator with
0<v<u* J
- —J

operator norm || A]|. By Arzela—Ascoli theorem, there exists a subsequence {u;”C (t)}jez with ng > |t|+1, such
that it converges uniformly on bounded sets. Letting n, — oo, u;(t) = lim u;*(t) for all (¢,5) € R x Z.
N —00

Integrating (1.2) over [0,] with each u(t) for n € N, we have

¢
uf (t) = uj(0) +/O [wfi g —2uj +uf_y + f(u])uj]ds.

Letting n — oo, we have

ui(t) = u;(0) + /0 [Ujr1 — 2uy +uj—1 + fi(uy)uylds,

18



E.S. Van Vleck and A. Zhang Nonlinear Analysis 217 (2022) 112748

which implies that u; € C' and also satisfies (1.2). Moreover, we also have that

0 <w;(t) <wuy(t) <vi(t) <uj.

Thus, it yields lim wu;(t) = 0. It remains to show that lim wu;(¢) = uj. By strong comparison principle,
—00 j——o00
we have u;(7) > 0 for 7 > 0. Let @ be as in Lemma 3.6. Since @ is compactly supported on [—M, M], there
exists a § € (0,0d), such that u;(r) > @ With the comparison principle again, wu;(t) > u;(t — 7;4) for
t > 7, where {u;(t — 7;4)};ez is the solution of (1.2) with initial @ at ¢t = 7. Due to uniqueness of positive
stationary solution of (1.2), we must have tlim u;(t — 7;@) = uj. Then for all j € Z,
— 00

Ce : (b o

htrgégf u;(t) > tlgrolo uj(t —7;4) = uj,

that implies that tlim u;(t) = uj. By the definition of w(t) (sub-solution), there exist positive large L and
— oo

small o such that, for j —ct > L,

w(t) > ge Pi=ct) 5 gemrl > g

In particular, let £ = % and we have u;(t) > w(f) > oe "L > 4. Since tlim uj(t; @) = uj, for any € > 0,

— 00 -
there exists a Ty > 0 such that u;(t; @) > uj — ¢, for all t > Ty and j € Z. Note that as j — —o00, t —t — 00
for given t € R. Then for t — t > Ty,

thus implies that lim wu;(t) = u;.
j——o0

For ¢ = ¢* (1 = p*), we claim that the transition front also exists and shall prove it by limit arguments
due to the invalid sub-solutions in Remark 3.1. To prove the case with ¢ = ¢*, pick a sequence ¢ > cz > ¢*
such that ¢; — ¢*. We simply denote the transition fronts of speed ¢ by {u?(t)}jez. By similar limiting
arguments above for {u} (t)};ez, let the transition front of speed c* be u;r(t) = _lim u;lk (t).

N —>00

Finally, for ¢* < ¢ < &, the limit (3.9) follows from w;(t) < w;(t) < v;(t) for all j and ¢t > 0 with the

comparison principle. This completes the proof. [

By Proposition 3.1, we have the following exponential tail estimates for the constructed transition fronts.

Corollary 3.1. For the constructed transition fronts of ¢* < ¢ < é in Proposition 3.1, they own exponential
tail estimates: for any € > 0, there exist Cy, Ca, T > 0 such that fort > T and j > ct,

Cle—(u-i-e)(j—ct) < uj(t) < 026—(M—€)(j—075). (3.10)

Remark 3.2. If A =1, ¢ = oo (1 = 0). This includes the case of homogeneous equation with f;(u;) = 1—u;.
In these cases, the required positive eigenvectors to (1.7) are always available for any u € (0, u*). For ¢ = ¢*,
since comparison principle does not work due to invalid sub-solutions, the tail estimate remains an open
question and we should pay special attention to the critical speed c*.

3.4. Asymptotic behaviors of transition fronts

In the last subsection, for any constructed transition fronts, they satisfy an exponential tail estimate
(3.10). In this subsection, we will prove that if transition fronts exist, then they must own similar exponential
tail estimates, that completes the proof of part (1) of main theorem. Recall that A(u) = e* — 14 e #* and
c(p) = ¥ for g > 0, then we have the following propositions about the asymptotic behaviors of transition
fronts.

19



E.S. Van Vleck and A. Zhang Nonlinear Analysis 217 (2022) 112748

Proposition 3.2. Let ¢ > ¢*, and u;(t) be a transition front of (1.2) with speed c. Then for any e > 0,
there exists a K’e > 0 such that
ur(ty) < Kee~=a(h=i),

for k > j with j,t; as in Definition 1.2 of Mean Wave Speed.

Proof. Suppose not, then there exist €, jy,t;,, kn and x,, =k, — j, — oo such that
U, (t;,) > K~ (H=97n, (3.11)

For simplicity, we denote 7' = t;,,.
Recall (2.5) that for T' > 0,

=Ty h_gy (G — R)ur(T) - / 7Y Mgy (G = k)gn(s)ds
k r k
= A(t) — B(t),

and g;(t) = (1 — f; (u;))uy.
Let zp = csch(p). Recall that ¢ > = Z by Lemma 2.1 (4). Let f be such that =, = (c — %)f and
=k, + 2t = j,+ct > N. Chooset = t+ T, that is, f = ¢t — T. Then as z, — o0, t — oo and
thus t — o0o. By Lemma 2.1 (2), g(z0) = A(1) and thus —1 + 2§(223+“ = pc. By heat kernel estimate (2.2)
and with (3.11), we have

(t) = e > h;(j — k)ux(T)
k

> Ce N F (21§ — k)ug(T)
k

L 675 j(T> + Z exp[ t+ |] - k|§(2t/|j 1_ k')] (T))

W(1+4t2) 7 (44— k)T
2

1 exp[—t + |j - kn|§(2£/|] — kn')]uk (T)
Va1 A+ G- k)t
o1 expl—t+ |7 — kals(2t/|7 — knl)]
> CK., i

V2r (1 +4( £)2 + (j — kn)?)7

1 expl—i+ Z(z0) — (- €)(c — 2)i]
WVIn o (142 + (- k)T
il eap|—t + Zs(z) — plc — 2)i] Jele= 2T
VT (LA + (G - k)T

1 exple(c — 2)i]

V2T (14 A2+ (G — ko))

V

o~ (n—e)zn

=

=C

I
Q

where € is chosen such that e(c — %) > &> 0 for u € (0,u*) and the above inequality holds as £ is chosen
large enough. On the other hand, we have that

= / et=s Zhg(t_s) (J — k)gr(s)ds
:/ - "D = Bo(s)ds
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< C/{ef‘s ZF(2(E— 5),7 — k)gr(s)ds
—C/ ( + > + > ) 2(F — ), — k)gr(s)ds

k<—c(i— s)+cs+]n —c(t—s)+cs+in<k<cs+jn k>cstjn
= B; + By + Bs.

Since u; is bounded, there exists a positive M such that
|gj(8)| = |fj(Uj)’LLj — Uj| < M. (312)

For k > ¢s+ jn > N, fr(0) = ar, = 1. For any given positive 7, there exists an ng such that for n > ng,

we have uy(s) < n whenever k > c¢s + j,,. This can be done because i lim wg(s) =0 and j, = ct;, large.
—CS5—00

Then for any § € (0, €), there exists an 7 such that fi(0) — fx(ug) < ¢ and then

gk(8) = (1 — fr(ugr))ur(s) < dug(s). (3.13)
Without loss of generality, let j,, = 0 by translation and so j = ct. Recall that, in Lemma 2.1 (1), numerical
B 14 e M
computation shows that [j > 0.66. On the other hand, we have ¢ > ¢* = ir;%ﬂ ~ 2.073, and
"

thus 1 < 0.5 < ly. Therefore by Lemma 2.1 (1), (1) < <(l), that is, ¢(1) < 0. For k < —¢(f — s) + cs,

20=9)y Ly <, (3.14)

“H ¢

Therefore, with (3.12) and (3.14), for By we have

<CcM [ (Y F@(-s)j—k)ds
k<—c(t—s)+cs

—(-s)+i—kls(3E2)

_Cl/ 2 \/ﬁ(1+4(575)2+(j7k)2)id8

—c(t—s)+cs

e—(F=8)+li—kls(1)

<Cl/ > - ' ds

—c(t—s)+es ¥ 27T(1 + 4(t - 3)2 + (] - kj)2)%

o= (F=s)+li—Kls(L)

gcl/t > . : -ds
0

k<min{—c(t—s)+cs,0} v 271'(]. + 4(t - 8)2 + (] - k)2)4

o(—1H2es(1))(F-s)

+Cl/ > . _ ds

0<k<|—c(t—s)+cs| v 27T(1 + 4(t - 8)2 + (.] - k)Q)

i

—(f—s)+1j—kls(%) ¢
<01/ lds—i—Cl/ > 1ds
0 k<o Vor(L+4(t = 5)2 + (j — k)?)1 O 0<k<c(i+2s)

. - 1
écl/ ()" 0@ e+ 25))ds, by — (I —s) +j<(Z) <0
0 k<o ¢
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t es(d) _
:C’1/ (—— +c(f+2s))ds
0

1—es(2)
< Pl (f)v
- es()
where C; = CM and Py (f) = Oy (2ct* + (ﬁ)t) that is a quadratic equation.
1—elc
Let —o0 = -1+ ZM = max -1+ Zg(—z) with z = 2‘(.{:,;) and z; = % We remark that
21 —c(t—s)+ecs<k<cs z J

¢c>c*~2073 and z; < 2 ~ 0.9648. Thus,

§(21) (0.9648)
=198 5 g 98U 0355793 > 0.
o P 0.9648 -
Then, for Bs; we have that
By=C / F(P—5),j — k)gi(s))ds

7c(t s)+cs<k<cs

<CM/ = *( F(2(t—s),j—k))ds
7c(t s)+cs<k<cs

—(i-s)+li—kls (2=

_CI/ 2 VIR A Gl

c(t s)+es<k<cs
o~ Ltec(2)(F-s)

<C’1/ Z — . Tds

—c(t s)+es<k<cs v 27T(1 + 4(t - 8)2 + (j - k)2)4

efa(t_fs)
< Cl/ o : ) I
0 —c(t— s)+cs<k<cs 27T(1 + 4(t - 8)2 + (] - k)2)4

< Cl/ Z 1ds

7c(t s)+es<k<cs

= / c(t — s)ds
< Pz(fg),

ds

where C) = CM and P»(f) = C;(££?) that is a quadratic equation.
Finally, with (3.13), for B3 we have that

By =C [ 5 (3 P2Ai=s). — Rs)ds

k>cs

< 50/0 (N F(2(i - 5),j — k)ug(s))ds

k>cs
< 50/0 (O FQ( - 5),j — k)ui(s))ds.
k

Note that

t

A= By > (S(t = T)u(T); = 3( | St = s)u(s)as),
— IS (- TYu(T));
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which is an exponential equation. On the other hand, By + By < Py (t)+ P (%), which is a quadratic equation.
Thus, u,;(t) — oo as t — oo which contradicts that u;(t) is bounded. O

Proposition 3.3. Let u;(t) be a transition front of (1.2) with speed c larger than c*. Then for any e > 0,
there exists a K. > 0 and T > 0 such that

up, (tj) > f(ee—(lt-if)(k—j))

fort; > T and k > j with j,t; as in Definition 1.2 of Mean Wave Speed.

Proof. We prove this lemma by contradiction. Assume the proposition to be false. Then for given ¢, there
exist sequences t;, € R, k, € Z" and j, € Z" such that k,, > j, and

g, (tj,) < Kot kn=in), (3.15)
By applying Harnack inequality and shifting the origin of time and space, we can have a ¢ > 0 such that
uk(ty,) < Ce” D=0 vk € [(1 - ge)kn, (1+ qe)kn). (3.16)

Let j = ct;, > N, where t;, € R is chosen such that j € Z* and N is as in (H2). For simplicity, we let
t =t;,. We remark that ¢ is a sequence and n — oo implies that ¢ — co. Recall (2.5) that for T' = 0,

—ech%J— ur(0 / - S)thu o (U = k)gr(s)ds

— A - BO)

—eZth]— (0)
B(t ét”}:%tsy k)gu(s)ds.

We claim that u;(t) = A(t) — B(t) < 0 as t — oo, Wthh causes a contradiction.
For any § > 0, there exists a [, j5 > 0, such that ug(s) > 1 for N < k < (¢ —d)s — js and s > 0. Then for
N <k<(c—d)s—jsand s >0,

gr(s) = (fx(0) — fu(ur))ur(s) > (1 — sup el = 1. (3.17)

where g;(t) = (1 — f;(u;))u;, and

Thus, letting k= (c—d)s—jsand 0 < 09 < 01 K 1, let
Cls,t) = —(t — ) + |ct — k|s(2(t — ) /|ct — k|).
For 0 < (1 — o)t <s < (1 —o02)t, choosing ¢ = o1, we have

C(s,t) = —(t — s) + |ct — k|s(2(t — s)/|ct — k|)
=—(t—5)+ (c(t —8) + s+ js)s(2(t — s)/(c(t — 8) + d5 + js))
2

e

2

—oit + (c(t — s) + 0s + js)s(

> —o1t + (coat + 6(1 — o1)t + js)s(

c+6(= 2)-1-]%‘5)

oot
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. 2
= —o1t + (coat + o1(1 — o1)t + js)s (—
c+1—02—|—02t
2 . 2
= (=01 + (cog +0o1(1 — 01))§(—))t —|—]5§(—j .
ctl—op+ 2% ctl—o2+ 7k
For t > % 45 we have
2 ) 2
C(s,t) = (o1 + (cox + 01(1 — o) )s (—————5 Nt + s (————~
C—‘rl—O’g—l—th C+1—0'2+02t
3.18
Z(—01+(002+01(1—01))<(C+1))t+35<( le) (3.18)

= —61t — 6’2.

We remark that as o1 — 0, 61 — 0, that is, 51 can be chosen as small as required by choosing small enough
01,2- Let

Cp = lim (CI (01 = 02) V' T
t=oot (144022 + ((§ — o1(c — )t + js)?)1
=i (01 = 02)

(14407 + (6 = o1(c - 9)))) ¥
and Cg = C'B/Q. Then, there exists a Tg such that for ¢t > Tg,

CZ (0’1 —0'2)\/£
(144022 + (6 = oa(c = 9)t + js)?)

> Cp.

Therefore, with (2.2), (3.17) and (3.18), for ¢ > max{i—‘;,TB}, we have
2
¢
B = [ 3 Wy~ Bgn()ds
0 k
¢
> c/ et ZF(2(t —8),7 — k)gr(s)ds

>C/ =sp(2 (t—s)j—k)gk( s)ds

>Cl/ exp[—(t — s) -|-|J—k|§( (t_s)/U_]%D]d

D) S

(1+4(t—s)2 +1j — k| )7
>Ci/(1 o2)t exp[—(t—s)+|j—if|<(2( S)/U_ffmd
(

S
1ot (1+4(t— )2+ |j — k)7
R . . (170‘2)1& 1
> Cle—91t=02 / ——ds
(-o)t (14+4(t—s)2+]j—kl )1
R . . (1—0‘2)t 1
> (Cle 91t=02 / —ds
(-ont (1440262 + (6 — o1 (c — 0))t + js)2)1
— Cie—é'lt—é'g (01 — 02)t
(1+ 40262 + (6 — o1(c— 0))t + jg)?)
_ (ClA (0’1 - 0'2)\/E )\/ie_&lt_&g

(1+ 40262 1+ (6 — o1(c — 8)t + js)2) 4
> Opie 7172,
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On the other hand, we have that
= Z h2t J— (0)

< CletZF 2t, 5 — k)ug(0)

SO >RID VRS VIR »

— —ct<k<0 1<k<(1—ge&)kn (1—qe€)kn<k<(1+ge)kn
I SIS i SRS LES R
(1+ge)kn<k<j—1 k=j j<k<3j k>3j
::A1+A2+A3+A4+A5+A6+A7+A8.

For k < —ct, we have that q(‘ ) <<(1) <0. Then for A; and t large, we have

k|
Ay :=Cret Y F(2t,j — k)ur(0)

k<—ct

*t“’lj*k‘g( ‘]ztm)

Cy Z 1 uk(o)

ke et V2 (1 + 482+ (j — k)?)1
—¢

<C ¢ . e\j—klc(%)uk(o)
V2 (1 + 4¢2 +j2)z
< Cy sup{uj} (=S (D)
k<o /2w (1+4t2+] ,;J
—t
-G € .
V2m(1+ (44 2)t?)x
S éleit/{
- es(3)
where Cy = 017 sup{uj}.
— es(2) k<o
Let —o = -1+ 2u = max -1+ 2@ with z = ka and z; = 2. We remark that ¢ > ¢* ~ 2.073
21 —ct<k<0 z lj—kl ¢
and z; < c% ~ 0.9648. Thus,
s(z1) ¢(0.9648)
=1-2—"—"+>1-2—-———>=0.0355793 > 0.
7 n - 0.9648
Then, for A; and large ¢, with z = T 2 7 and o above we have
=Cre' Y F(2t,j — k)ug(0)
—ct<k<0

e*t+|J*/€\§(|J k‘)

=C1 Y - T (0)

—etah<o V2m(1+ 412 + (j — k)?)2

=G Y e(—1+252)
=01
—ct<k<0 V 2r(1+ 42 + (j — k)?)

efat

< — i (0)
V2 (1 + 42 + j2)1 —ct<k<0

NG

ctet

< C sup{uj,
k<o{ 2 V2 (1 + (4 + 2)t2)1

< 01€_7t
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For As, on [1,(1 — qe)ky], —t + |5 — k|s(2t/|j — k|) obtains a maximum at k = (1 — ge)k,,. Therefore, by
Proposition 3.2, there exists a positive real Cs such that uy(0) < & C‘S e~ (= 5)’“ for 6 > 0 and for k,, = (c— l)t

20
and j =ct, j—k > j—(1—qe)ky, for k € [1, (1 —qge)k,]. Then, lettlng z = \J* ; we have z < m
20

2 = 23 < zp. By Lemma 2.1(2), with 23 < zp and —1 + 2“2272)"'“ — pe = A(p) — pe = 0, then we

Z5tae(e—25)
can let (22) +
€3 =—(—1 po TR pe) > 0.
22
Thus, for Aj

Az =Cyet Y F(2t,§ — k)uk(0)

1 eapl—t+ | — kls(2) — (u— k]

= Cjet -

1<k<(1—qe)kn Var (1 +482 4 (j — k)?)a
< Cs lﬁ T i Tt Kk}que)kn exp[—t+|j — k|<(|j2_—tk|) — (u— )k
=Cs \/127 T (L1 i ( t)2)‘it 1Sk§(21;qe)kn exp[(—1+ ZM%)t — pj + Ok]
<Cs \/; (142 1 1 e t)z)% 1<k<(z1:q6)kn exp[(—1+ 2§(222)2+ /‘,)t — pj + 0k]
_ 05\/12?(1“752 i( e _cap|(— ”2@% — ] ISkg(lz—qe)kn ook
e \/127 (1(1;;)(0(0 :)3; capl(~&a +6(1 — ge)(c = )
< Cse™ 3,

where €3 = €3/2 and choose ¢ such that §(1 — ge)(c — %) < €3/2.
For A4, with k € ((1 — qe)kn, (1 4 ge)ky], recalling that (3.16), ug,, (0) < e~ (#F5)kn

Ay = Crél > F(2t,§ — k)ui(0)
(1—qe)kn<k<(l+qe)kn
1 exp|l—t+|7—Fk|s(2t/|7 — k
oy plt+1i = K@U/l — kD], o

Vom (14482 4 (- k)24
1 expl—t+|j—kls(2t/|j — k)] e~ (Ht5)kn

(1—qe)kn<k<(1+qe)kn

S Cl Z — K 1
(1—qe)kn<k<(l+ge)kn 2 (1 + 412 + (] - k)2)4
_¢, 3 1 exp[—t +|j — k[s(2t/]7 — kl) — (1 + 5)kn]
- / . 1
(1—qe)kn<k<(1+ge)kn 2 (1 + 412 + (] - k)2)4
. . €
<G > eapl—t+|j = kls(2t/1j = k|) = (1 + 5)ka]
(1—qe)kn <k<(1+qe)kn
€ +
= Qe 3kn Z ea:p[(—l—!—?m — pe)t + p(k — k)]
2

(1—qe)kn<k<(1+qe)kn
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< Oye 5kn Z exp[(—1+ QW — pe)t + pgeky]
(1—qe)kn <k<(14+qe)kn #2
1 +u
< Cpel=3Hna)ein PG Ve
< Cre > emplre2

(1—qe)kn<k<(1+4ge)kn
< Che” (5—pa)e(c—2)t
= 01€_€4t,
where 4 = (§ — pq)e(c — %) and choose ¢ < ﬁ
For A5 with k& € ((1 + g€)kn,j), by Proposition 3.2, there exists a positive real Cs such that ug(0) <

g% =0k for § > 0. Recall that k, = (¢ — —)t j=ct, j—k>0fork e ((1+qge)ky,7). Then, letting

2t 2 .
Z= o 8= o (qu)(ki) I e D > zp for e small and we have z > z3 for k € ((1+¢e€)ky,j). Let

& =—(—-1+ 2% — (u — d)c). Choose § such that € > 0, which can be done because of Lemma 2.1(2)
with z3 > zp and —1 + 2% — pe = M) — pe = 0. Then, letting z = 24 we have

[7—k|
A5 =Cyet Y F(2t,5 — k)ui(0)
(14-qe)kn<k<j
<Cs Y. F(2tj—k)e w0k
(14qe)kn<k<j

B . 1 exp[—t+][j— k|§(\j k|) (1 — 6)k]
S Var (14482 + (j — k)?)1

(14+qe)kn<k<j
. 2t
<Cs Z exp[—t + | *k|<(m) — (k= 0)k]
(I+qe)kn <k<j J
= Cs Z e:cp[(—l+2w)t—uj+5k}
z
(14qe)kn<k<j
¢(2z3) + p .
< Cs Z exp[(—1+2—=———)t — pj + k]
(14-qe)kn <k<j %
S(z3) + 1
<Cs Z €$P[((*1+227) — (k= 0)c)t]
(I+ge)kn<k<j 3
< Cscte %t
S 066765)&7

where €5 = €5/2.
By Proposition 3.2, there exists a positive real Cs such that u;(0) < g—fe*(”"m for § > 0. Let
€6 = —(1 — (u—19)c) = AM(p) — 1 — de. 6 can be chosen such that & > 0 since A(u) > 1 for p > 0. For

Ag, we have

1 1
Ag = C1é' ——u;(0
0= Cre o ul0)
1 1 ,
< Cset e~ (n=0)j
V2T (14 42)1
1 1
< Cy——=———relm =90t
V2T (14 t2)7
B 1 1 gt
"Vor (1412)%
< 056 ce! )
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where €5 = &5/2. By similar arguments of A3z and A; respectively, we have A7 < Cre™ 7t and Ag < Cge™ 8¢,
Finally, we have that

u;j(t) = A(t) — B(t)
< (Cre™% + Cre~ 5t + Cse8t + Cre“at + et

+ Cse™ 6! 4 Cre 7t 4 Cge™8Y) — Cpy/te 911792,

As 012 =+ 0, 61 — 0. Thus, &; can be chosen such that §; < min{%, %, €3, €4, €5, €6, €7, €3 }. Therefore, as
t is large enough, A(t) — B(t) < 0, which causes a contradiction. O

4. Nonexistence of transition fronts

In this section, we shall investigate the conditions under which transition fronts do not exist. We shall
prove part (2) of the main theorem (Theorem 1.1) in the following proposition.

Proposition 4.1. Transition fronts do not exist under the following conditions:

(1) X > \*;
(2) for X € [1,\*), either [i] c < c* or [ii] ¢ > é.

It is known that there is a minimal speed (spreading speed) ¢* such that transition fronts may exist, that
is, transition fronts do not exist for ¢ < ¢* (See Proposition 4.2). Thus, all us of valid positive eigenvectors
are located in (0, u*). However, if A € (1, A(u*)), there are also no valid positive eigenvectors for u € (0, fi).
Proposition 4.1 shows that there is a maximal speed ¢ = ﬁ to prevent the existence of transition fronts, that
is, transition fronts do not exist for ¢ > é or u < fi. If A > A(p*), then g > p* and there are none valid
positive eigenvectors at all.

From Fig. 1 and Propositions 3.1-3.3, we have the following facts for transition fronts if they exist:

(1) For any € > 0, there exists a T > 0 such that for ¢ > T and j > ct,
Cre=Hal=et) <y (t) < Cae™ =9~ (see Propositions 3.2-3.3).

(2) Due to the spreading properties of transition fronts, the lower bound of speed (minimal wave speed) is
c*, corresponding to the upper bound of p (i.e. ©*). Then we must have u;(t) > Ke # (G=<) for ¢ large
and some K > 0.

(3) The upper bound of speed (maximal wave speed) is given by ¢, corresponding to the lower bound of
(i.e. f1). Thus, we must have u;(t) < Ke =< for ¢t large and some K > 0, that is controlled by the
spectral bound A = A(f).

We see that if A > A* and /i > p*, this causes a contradiction of (2) and (3). If ¢ > ¢ and p < fi, this
causes a contradiction of (1) and (3).

4.1. Spreading speeds and the lower bound of wave speeds c*

First, we shall show that ¢* is the lower bound of the speeds (minimal wave speed) in this subsection. For
simplicity, we write u;(t) for u;(¢; z) if no confusion occurs with the initial z. Define
Xt = {v; > 0| liminf mf nf v > 0,v; = 0 for j € Z with j > Ny, for some Ny > 0}. (4.1)

T——00 j
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Definition 4.1. A number ¢* is called the spreading speed of (1.2) if for any z € X+,

liminf w;(¢) > 0,Ve < ¥,

j<ct,t—o0

and
limsup wu;(t) =0, Ve > ¢*,

j>ct,t—o0

where u;(0) = z; is the initial condition.

We remark that for homogeneous and periodically heterogeneous KPP—Fisher equations, the spreading
speed exists. For (1.2), we have the following:

Lemma 4.1 (See Theorem 2.2 in [23,2/]). The spreading speed of (1.2) ¢* exists. Moreover, ¢* of (1.2) with
localized periodic inhomogeneity coincides with that of (1.2) with corresponding periodic inhomogeneity.

Lemma 4.2 (See Theorem 2.3 in [23,24]). For each § > 0, r > 0, and z € X satisfying that z; > 0 for
gl <r,
limsup (u;(t) —uj) =0,Y0 <c<c”,
|7 <ct,t—o00

We remark that, in particular, for our main equation (1.2), the spreading speed coincides with the
Apr) _ e A

= in the introduction of the current paper.
wr p>0

definition ¢* =

Proposition 4.2 (Minimal Wave Speed). There does not exist a transition front of (1.2) with speed less than

c*.

Proof. We prove this lemma by contradiction. Suppose that there is a transition front with speed ¢ < c*.
Pick ¢ < ¢1 < ¢*. Choose t,, such that j, = c1t, € Z. By Lemma 4.1, = liminf  w;,(¢,) > 0. On the

Jn<citn,tn—00

other hand, j, — ct, = (¢1 — ¢)t, — o0, by the definition of transition front, litm uj, (tn) = 0, which
Jn—Ctn—00

causes a contradiction. [

4.2. Nonexistence of transition fronts for A > A\*

In this subsection, we will show that if A > A(u*), there are no transition fronts. In biological sense,
transition fronts will not exist in strongly localized spatial inhomogeneous environments. We shall prove the
following proposition.

Proposition 4.3. If A > A(u”), any entire solution u;(t) of (1.2) such that 0 < u;(t) < uj satisfies that
for any ¢ < ¢, there exists a K > 0 such that for all (t,j) € R~ X Z,

u; (t) < Kefﬂ*(\ﬂ*‘?t),

. In particular, no transition fronts exist if A > \*.

* A
where p* is such that ¢* = AL‘i ) = inf Lu)

1>0
To prove Proposition 4.3, we show the following Lemmas 4.3 and 4.4.
Lemma 4.3. For eachm € Z and € > 0 there exist ke, § > 0 such that if uj(t) solves (1.2) with wu;,(0) > =,
for any given jo and v < g, then fort >0 and j < jo+m — c*t,

u;(t) > keye'"UF (2L, 5 — jo).
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Proof. Without loss of generality, set jo = 0. Let [ = min{a;} < 1. Note that v;(t) = vk.e(!=9thZ,(5) is a
solution of !

(1) = w1 (t) = 205(t) + 01 () + (L = €)v;(2),
with initial v;(0) = vk, for j = 0 and v;(0) = 0 for j # 0. Since [|[v(t)||oo < Yk =, we have |Jv(t)| < v

if ke = e7% for t < t.. Let j = —¢ét + 2m for some ¢ < c*. Since by Lemma 2.1 (2) and (4), ¢* satisfies
-1+ 24(22/; ) = 0, there are ¢ € (0,c¢*) and ¢, such that for ¢ > ¢,
2t/|j
NI
2t/1j1
14 2{(2t/\fct —2m]|)
2t/|ct — 2m)|
92/|c — 2m
Ly gSle2%)
2/|c— 2%
oSl =28
2/|c — 2]
< €/2.

Then for ¢t > t., —(1+¢) + 2%/‘%” < —€/2. Therefore, for t > t., with (2.2)

vy (t) = 'Ykee(l_e)thgt (5)

. ETED
(SO

(1+€)vkee

<

Then for t > t., replace k. with ﬁ if the original k. is bigger than (Hilk), and thus (1 + €)ke < 1, that
is, we also have v;(t) < 7. Furthermore, for t > ¢, > 2'%" such that j < 0, v;(t) < 7 holds for all j < j,
because v;(t) < y(1 + €)k.e(1=9 F(2t,5) and F(2t, ) is increasing in j € (—oc,) by Lemma 2.1 (5). Thus
we have either

vi(t) <7, Vt €10,te),5 € Z,

or
vi(t) <y, YVt >te,j < —ct+2m.
Let 2= {(t,j) € RX Z[t € [0,tc) X ZU [t.,00) x (—o0,—ct +2m)}.
By spreading properties in Lemma 4.2, for any given 0 < v < min{uj}, there exists a t. (if necessary,

replace the original ¢, with the larger number) such that u;(t) > v and thus v;(t) < v < u;(t). Moreover,
for any given e, there exists a v such that f;(y) — 1 > 0 and thus v is a sub-solution of (1.2) on 2. Indeed,

05 (t) = [vj41(t) = 205 () +vj-1(t) + f(v;(t)v; (1))

0; (1) — [vj+1(t) — 20 () +vj—1 () + (= v ()] + (= f (v (1) + 1 — €)v;(¢)
(vj (1) + 1 = €)v;(t)

() + 1= e)v;(t)

I
<

[VARVAN
.CD —

-
-
Since v;(0) < u;(0) for j € Z, by comparison principle (Lemma 2.1 in [15]), v;(#) < u;(t) on £2. Note
that t > 0 and j < jo +m — ¢*t is a subset of £ and this completes the proof. [

Let (Ayr, #™)) be the principal eigenvalue and eigenvector to (3.2) with [|¢™)| . = 1.
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Lemma 4.4. For every € € (0,1), there exists a K. > 1 such that

< K uo \/ |t 6”j+ Aar =

forallt < —1 and j € [M, —ct], with c. = )‘”{e.
Proof. Suppose the lemma to be false. Then there exist ¢ < —1 and jo € [M, —c.t] such that

;o (1) > Koug(0)y/ |EefGoteed), (4.2)

Let @ = §¢™) be a sub-solution of (1.2) as in Lemma 3.6, where ¢(*) is the principal eigenvector to (3.2)
with [|¢)| o = 1. Let v; be given by

v; = min{d, Ae(AM*E)t}qS;M) (4.3)

Thus there exists a § such that v is also a sub-solution of (1.2) for any A > 0. Indeed, if 7; =
Ae(’\M*E)tqﬁgM) < 5¢§M), choosing a d such that f;(0) — f;(6) < €, we have

(D) = [Oj41 — 205 + 01 + f(0;)0;]

() = [Oj41 — 205 + @51 + a;0;] + (f;(0) — f3(95))7;
(A — €= Au + (£5(0) = £(95)))7;
(-
(

Il
@r

e+ (f;(0) = £5(9;)))v;
e+ (f;(0) — £;(9)))7;

I/\ \/\

For o > 6¢™) the above inequality holds for v; = u; by the calculation in Lemma 3.6.

With a possible translation, we assume that uo(0) < @ and f;(0) > 1 for j = 0. Let 8 be chosen later
such that 0 < 8 < 1. For —M < j < M, let z1 = 28|t|/|j — jo| and z = 28|t|/jo, we have z; > 2z and
then by the monotonicity of @ in Lemma 2.1, we have %11) > @ By Heat Kernel Estimate (2.2)
h%(j) < F(t, ), there exist positive C; and Cq such that Cy F(¢, j) < h¥(j) < CoF (¢, j). Therefore, together
with (4.2) and Lemma 4.3, we have

uj(t+ Blt) = Cre PN F 2|t 5 — k)un(?)
k

> Cye=INE28I#), 5 — jo)uo (?)
> Crel VIR (2B]1), § — jo) Keuo(0)/[t]eMo ot

1 —2BJE + |5 — jols(28l¢/| — j )
— 0ye1-98l 27T€;Ep[ ([jIJFIIﬁIth ]0<|§( 5|)I/lj ]0|)]KEUO(O) o+ O =t

v Jo

_ s(z1)

— O K g (0)— copl(Z2 427 )mt‘]l4/|{|6(1—6)ﬁ|t\+ﬂjo+(/\M—€)f

V27 (1445262 + (j—j )?)1

§

> Cy Koo (0) 1 exp[(—2+2> )mt”\/ﬁe(l_e)thﬂjOH)\M_e)g

V2m (1+452t2+]0)4

1 —2 4+ 25Ehgi] = . ]
> 0y Keuo(0) czpl(=2+277)5) ”4/|t|e(1_€)5\t|+/ﬂ0+()\M_f)t

V2T (14422 + (cd)2)1

1 eap[(—2+ 2522 S8l o+ O —)F

V2r (5—1—62)l

Z ClKEUO(O)

IN
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s(2)

> Klug(0)exp{(-2 + 2=+ (1 —€)BIt] + ftjo + (Aar — €)t}

— K//
where K! = C; K.——2——. Thus, with Comparison Principle, choosing A = K/ in (4.3), we have
m(5+c2) 1

uj(t + 1+ BIt]) > v;(t)
for ¢t > 0. In particular, letting t = (1 — 3)|¢|, we have
u;(0) > min{4, Ké’e()‘M*f)(lfﬁ)lﬂ}ngM).
By choosing 3 such that K”ePm=90=Bl = K7y4(0), that is,
s(2)

exp{ (=2 + 22 4 (1 — ) BlE| + figo + (Anr — €)t} x ePu=90=PlH — 1
z
Therefore (2)
(S ¥4 I ~ .
(=2+2==+ (1~ ¢) = (An — €))Blt] + f1jo = 0.

Recalling that z = 28|t|/jo, (—2 + 2% +(1—¢)— (An —€)B|t] + 2a8]t] /2 = 0, that is,

—-1+2

M—()\M—G)—EZO.

Thus, let g(z) be as in Lemma 2.1 and we have

9(z) = A < A= A(h).

By the concavity of g(z) in Lemma 2.1 (2), and M > 1, there exists at least one z < zy = e¢sch(fi) such
that g(z) = 0. Recall that é < % for @& > p* by Lemma 2.1 (4). With ¢, < ¢, jo < cc|t| and z = 28[t|/jo, we
have

3= Zjo _ Zojo _ ZoCe _ Z0¢
2 — 21t — 2 — 2
Thus, 8 < 1 as required. Finally, by taking K. large enough and j = 0,

<1

uo(0) > min{, K ue(0)}¢™ > min{5o™, 2u0(0)},

which causes a contradiction. This completes the proof. [

Remark 4.1. Lemma 4.4 holds for fixed j and so for any j on a compact set without the assumption

A > A*. Indeed, in this case, we can remove the restriction of ¢, = % and freely choose ¢, < % in the

lemma.
Lemma 4.5. Assume that ¢,c1 € (¢*,¢) with ¢ < ¢, there exists a Ko > 0 and 7 > 0 such that
u;(t) < Koug(0)et U+,

for all (t,j) € (—oo,—1) x [M, —c1t] as well as (t,j) € (—o0, —tg) X [M, 00).
Proof. Pick € > 0 such that ¢. = ¢;. Note that A(2) = A > A\* = A(p*) implies that g > p*. With
Lemma 4.4, there is K, > 0 such that for all t < —1 and j € [M, —ct],

u; (1) < Keug(0)y/[tle0+e1) < K ug(0)4/]t]e 0+t < Koug(0)er 0+et),
In(Koup(0)) — ln(maxu )

)

where Ky = max K/Jtle” 179t We can let ty = > 0 to complete the proof of
t<—

wr(er —c¢
the second part. Indeed, for ¢ < —t(, we have Kouo(O)e"*(JJrCt) > uj for all j > —cqt. Since u;(t) < uj for
all (t,7) € R x Z, the inequality holds for all (¢,5) € (—o0, —tg) X [M,00). O
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Proof of Proposition 4.3. Given ¢,¢; € (¢*,¢) with ¢ < ¢;. Let 71 = M /¢y and so M < —¢;t for t < —7y.
By Lemma 4.5, for ¢t < —7q,
’LLM(t) S KoUo(O)eH*(M+Ct).

Next, for t < —7g, we let
v(tito) = Kouo(o)[eu*(j+cto+0*(t—to)) + eu*(2M—j+ct)}_
Then v;(t;t) is a super-solution on (tg,00) x (M, c0). Moreover, for t < —7y and j > M, we have
uj(to) < Kouo(0)e! U+0) < v (to; to).

Since ¢ > ¢*, we have up(t) < var(t;to) for all ¢ € (tg, —71). By comparison principle, u;(t) < v;(t;%o) for
all t € [tg,—71] and j > M. Letting tg — —oo, we have for all t < —7y and j > M,

u;(t) < Koug(0)et GM—i+et),
Similarly, we have for all t < —7; and j < —M,
uy (1) < Koug(0)e M+t
Thus, for all t < —7; and j < Z\ (—M, M),
uj(t) < Ko Mug(0)e#" (l=eb),
The Harnack inequality extends this bound to all ¢t < —7; — 1 and j € Z:
u;(t) < Kiug(0)e# (l=ct)

Thus,
uj(t) < KluO(O)e*”*(m*C(*Tl*1)”(1*”“”“)(’5*(*71*1)),
for t > —1 — 1, where ||a|]| = max a;. We note that the right-hand side is a super-solution. Thus, for ¢ <0
J
and j € Z, we have
’U,j(t) S KQU(](O)E_M (lj‘_Ct).
Finally, we have the non-existence of transition fronts if A > A*, because lim wu;(t) = 0 under the above

j——00

inequality. [
4.8. The upper bound of wave speeds ¢

Finally, we shall show ¢ is the upper bound of the speeds (maximal wave speed) by investigating the
nonexistence of transition fronts to (1.2) for ¢ > &, which is corresponding to p € (0, i) where no valid
positive eigenvectors of (1.7) can be located.

Lemma 4.6. For all e > 0, there exists K. > 0 such that
u;(t) < K MA=)=(=91 - forqll § >0 and t < 0. (4.4)
Proof. First, there exist M and € such that A(4 — €) = Ay — € By Remark 4.1 of Lemma 4.4, we have

that (4.4) holds for fixed j and thus also for j in a bounded set [0, Mg] of Z*, where My > N. Second, we
show that (4.4) holds for j > Mj. To this end, we claim that

u;(t) < Ce! for all j > My and t < 0. (4.5)
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Let p(t) = Z u;(t), which is well-defined due to Proposition 3.2. Then
Jj=Mo

plt) =D ()

Jj=Mo

= > (w1 — 25 +ujo + fi(uy)u;(t))
Jj=Mpy

= ungy—1(t) — un (t) + Z (f5(uj)u;(t))

j=Mo

Therefore,

p(t) = o) = untg-1(t) = uary () + D (fi(uy) = Duy(2).

j=Mo
For j > My and t < —1, f;j(uj) — 1= fj(u;) — f;(0) < 0 and thus
> (f(ug) = Duy() < 0.
j=Mo

Then,

L (et p(0) =~ (4(1) — (1)

—e  (unr—1(t) = ungy (8) + > (f5(uy) = Duy (1))
j=Mo

—e ™ N(unry—1(t) — unry(t))

e (ungy (1) + ungy—1(t))

e 'K (1+ e(ﬂ*ﬁ))ekt*(ﬂ*E)Mo

K (1 + eli=)eO=Dt=(i=) Mo

IN AN IA

Integrate both sides from ¢(< 0) to 0, and we have e 'p(t) — p(0) < M%T;E))e’(ﬂ*)]%. Let

C = p(0) + M%T;Q)e_(ﬂ_e)Mo. For t <0, p(t) < Cet. Therefore, (4.5) holds for j > My. We let
w;(t) = e fuj(t) — K eMAm 9= (ma=a=1), (4.6)
Then, for j > N, we have
1y (1) = ¢ty (1) — e~ (8) — (M — ) — 1) Ke =0 =i (pm=n1)

= e (ujyr — 2u; +ujy + (f5(uy) — Duy(t))
—(Mp—e) — 1)K€€(A(ﬂ—e)—1)t—(ﬂ—e)(j—M—1)

= g — 205+ 151) — (A — €) — K eM-0 D621
+e " (fi(uy) — Duy (1)
On the other hand, we have
w1 = 2wj +wjo1 = e (ujp1 = 205+ ujo1) — (A(f — ) = 1) KA AN (Em9U=a=D
Thus,

w;(t) — (wj41 — 2w; + wj—1)

"(fi () = Duy (1) (4.7)

o=
0.

IN
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Note that wag,(t) < 0 for t < 0 because (4.4) holds for fixed j = M that has been proved previously.
By (4.5), wj(t) < e tu;(t) < Cforall j > 0and t < 0. For t < 0 and j > My, choose € such that
At —€) > 1, then w;(t) is bounded. Furthermore we claim that for j > My and ¢ < 0, w;(¢) cannot
attain a positive maximum, and there cannot be a sequence (., j,) such that w;, (¢t,) tends to a positive
supremum. Suppose that it obtains a positive maximum at (o, jo) and for My < j < jo, w;(to) < wj,(to).
Then w;, (to) — (wjy+1 — 2wj, +wj,—1) > 0, which contradicts (4.7). Suppose that there is a sequence (t,, jn)
such that wj, (t,) tends to a positive supremum for j > My. Then j, — oo as n — oo, otherwise j,, goes
to some fixed j as n — oo that contradicts with (4.4) holds for fixed 7. And then t — —oco as n — .
Otherwise, t — —T as n — oo for some T' > 0. With (4.6), we have HILH;O wj,, (T') = 0. Therefore, w;(t) <0
for all j > My and ¢ < 0, which implies that (4.4) holds for all j > My and ¢ < 0. This completes the
proof. O

Proof of Proposition 4.1. First, we proved the case with A > A\* by Proposition 4.3. Next, it has been
shown in Proposition 4.2 that there are no transition fronts for ¢ < ¢* due to the properties of spreading
speeds. Finally we prove the nonexistence for ¢ > ¢é. Assume there exists a transition front u,(t) for ¢ > ¢é.
Let p and i be such that ¢ = ¥ and ¢ = % Then we have that 0 < p < i < p*. By Proposition 3.3,
we have
uj(t) > KemWHaU=et) for all j > ¢t + My and t > 0. (4.8)
By Lemma 4.6, in particular for ¢ = 0, we have that
uj(0) < Kee™A=99 for all j > 0. (4.9)

Consider the linear periodic equation restricted on [My, My + p] for p > 1 (i.e. p is as large as required),
that is, v, = v; for any j € Z.
’l.}j = Vj41 — Uy +’Uj_1, MO SJ S MO +p. (410)
Let ;(t) = Keem(#=90=<) for j € [Mo, Mo + p) and v;(t) = u;(t) for j € [Mo, My + p). Then by (4.9)
1,(0) < 1(0).
By direct calculation, we have

() = [Vj41 — V5 + V1]

(= €)e — (e(ﬁ—e) — 14 e—(ﬁ—f)))
(e(ﬂ—f) — 1+ e—(ﬂ—ﬁ))
(f—e¢)

i —e)(c—c(p—e)

<

(i — )~

Il
=1
<

Il
<

v
o

_ (e(ﬂ_e) —1+e

~(a—e)
=) ), Thus, v is a super-solution of (4.10).

Choose € = (fi—pu)/3 and we have ¢ > ¢(ji—¢€)
In addition, for j > My, we have

Uy — (ujp1 — 2uy +uj—1) = (fj(uy) — f;(0))u; <0.

Thus, v is a sub-solution of (4.10). By the comparison principle and letting p — oo, for j > My + ct, we
have that

uj(t) < K~ (Amelli—ct), (4.11)
However, this contradicts with (4.8) by choosing e = (i — u)/3. O

Proof of Theorem 1.1.

(1) Existence of transition fronts and asymptotic behaviors (1.8) have been shown in Propositions 3.1-3.3.
(2) Non-existence of transition fronts follows by Proposition 4.1. O
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5. Example

In this section, we provide an example for localized perturbations in homogeneous media of (1.2) with
fi(u;) = a;(1 —u;) and a; =1 for j # 0. Thus (1.2) becomes the following,

Uj = Ujt1 — 2uj +uj—1 +aju;(l —w;), jEZ, (5.1)
with a; =1 for j # 0. It is easy to see that u; = 1. The corresponding linearized equation is given by
Uj = ujp1 — 2uj +uj_1 +aju;, JjEZ. (5.2)
The eigenvalue problem is given by
Ap)uy = efujpn — 2uj + e Huj_y +ajuy, jE L (5.3)

For homogeneous case, all a;s are ones. By observation, A(u) = e/ — 14 e~# with constant eigenvector

1. Tt is easy to verify that u;(t) = e #=) is a solution of (5.2) with ¢ = ¥ Next we investigate the
existence of the positive eigenvectors of (5.3) for the localized perturbation case ag # 1. We assume that one
solution to localized perturbation case coincides with homogeneous case at the right with u;(t) = e HU—ct)

for 7 > 0. From (5.2), we have
Uj—1 = 7:Lj + (2 — aj)uj — Ujt1, j € Z. (54)
Thus, by induction, for j < 0,

u_y = 1o + (2 — ag)ug — uy = (14 (1 — ag)e H)e #-1=eb),
Ug =1_1 +u_1 —ug=(1+ (1 —ag)e ™+ (1 —ag)e 3H)e H=2=ct)

U3 =1_o+u_o—u_1=(1+(1—ap)le ™+ e 31 4 €—5u))e—u(—3—ct)7

1 — 21

m)e—u(j—ct).

uj =1+ (1 —ag)e ™

Therefore, the eigenvector to (5.3) is given by ¢; = (1+ (1 — ao)e_”%)e_“j for j < 0and ¢; = e 1

l—e—
for j > 0. Note that if ag < 1, ¢; > 0 for all j € Z. That means the positive eigenvectors always exist
for ag <1 and* so do the transition fronts of speed ¢ no less than ¢*. The minimal speed c¢* is given by
b -u* 1 I |
o e T ol e T Tl o073 at i~ 0.9071.
I >0 H
—(1— A (1— 2
For ag > 1, ¢; > 0for all j € Z whenever ag < e¥—e~#+1, which implies that y > In] (1—ag)+ 2(1 20) +4]

that gives the g = ln[_(l_a0)+ VQ(l_a0)2+4]. By A = A(f1), we have A = /(1 — ag)? + 4 — 1. On the interval
Aw) _ efte t-1
? n

[fi, p*] whenever fi < p*, the speed is well defined by ¢ = and we can have both a minimal
and a maximal speed on this closed interval. Outside this interval for u < fi, since the components of the
eigenvector are mixed with negative and positive signs, we fail to obtain the transition fronts. If g > u*,
that is, ag > e#” — e # 4 1, then the existence interval [, 1*] will be empty.

In summary, we have the following facts,
(1) If ag < 1, then A = 1. In this case, ¢ = oo, that is, the existence interval of speeds for transition fronts
is [¢*, 00).
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(2) If ap > 1, then A > 1. If A < X*, then transition front exists for any speed ¢ € [c¢*,¢]. However,
transition fronts do not exist under three cases: ¢ < ¢*, ¢ > ¢ and A > \*. The ¢*, ¢, A and \* are given
by as follows:

[i] The minimal wave speed ¢* is given by
R | et +e -1

= = inf ~ 2.073 at p* ~ 0.9071.
w p>0 H

[ii] The maximal wave speed ¢ is given by

I - _1
PO i

—(1—agp) ++/(1 —ap)2+4

i 2 }

Note that ag > 1, ¢ depending on ay is finite, that is, ¢ < co.
i) A = /(1 —ag)2+4—1and \* = e* + e —1 ~ 1.8808. No transition fronts exist for
A > X\*. Under this case, we must have ag > et — e 41 ~3.073.

6. Concluding remarks

We studied the existence and non-existence of transition fronts for monostable lattice differential

equations in locally spatially inhomogeneous patchy environments. We collected fundamental tools such as
discrete heat kernel estimates and discrete parabolic Harnack inequality. We proved that Poincaré inequality
holds on a 2-regular graph and so does a discrete parabolic Harnack inequality. Under the assumptions
(H1)—(H2), there is a positive principal eigenvector for \* > A(x) > A. This positive principal eigenvector is
the main ingredient in constructions of super/sub-solutions. The right end (i.e. 7 > N) of positive principal
eigenvector is one, that coincides with the principal eigenvector in homogeneous media. There are significant
differences on the middle localized perturbation part (i.e, j € [—-N,N]) and the left end (i.e. j < —N).
However, this impact declines to 0 for j < —N as |j| — co. With comparison principles and the super/sub-
solutions, we obtained the transition fronts of mean wave speed on a finite range (c¢*, ¢ and then pass the
limit to have the case of ¢ = ¢*. For ¢ € (¢*, ¢], the profiles of transition fronts are highly related to the graphs
of super-solutions e‘“(j_”)qb?. Note that, in the right end for j > N, we have e #(U=¢) that is moving at
the exact speed c. For j < N, the profiles will change with amplitude ¢/. If ¢ € (¢*,¢] and j < —N,
Hrﬁnoo ¢ = 1> 0, that means they are essentially constant profiles le~nli=et),
! We proved transition fronts if they exist must possess the exponential tail properties. There are no
transition fronts at all if A > A*, the mean wave speed is slower than the minimal speed c¢*, or faster
than the maximal wave speed ¢é. The strongly localized spatial inhomogeneous patchy environments prevent
the existence of transition fronts. The proof of minimal wave speed c¢* follows from the work of Shen and
Kong [23,24], where they also studied the localized perturbation with periodic media for both nonlocal
problem and lattice differential equations. The proof of maximal wave speed ¢ relies heavily on discrete heat
kernel estimates, comparison principles and discrete parabolic Harnack inequality. We leave the uniqueness
and stability of transition fronts to (1.2) and transition fronts to lattice differential equations with the
localized perturbation of periodic media for future study.
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