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Abstract

In this paper we consider an adaptive spatial discretization scheme for the Nagumo PDE.
The scheme is a commonly used spatial mesh adaptation method based on equidistributing
the arclength of the solution under consideration. We assume that this equidistribution is
strictly enforced, which leads to the non-local problem with infinite range interactions that
we derived in Hupkes and Van Vleck (J Dyn Differ Equ 28:955, 2016). For small spatial
grid-sizes, we establish some useful Fredholm properties for the operator that arises after
linearizing our system around the travelling wave solutions to the original Nagumo PDE.
In particular, we perform a singular perturbation argument to lift these properties from the
natural limiting operator. This limiting operator is a spatially stretched and twisted version
of the standard second order differential operator that is associated to the PDE waves.
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1 Introduction

In this paper we continue the program initiated in [4] to construct travelling wave solutions
to adaptive discretization schemes for scalar bistable systems such as the Nagumo PDE

Up = Uxy + geub(u; @), (1.1)
with the cubic nonlinearity

geb@) =u(l —u)(u —a), 0<a<l. (1.2)
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In particular, we study schemes that aim to equidistribute the arclength of a solution profile
equally between gridpoints in order to improve the resolution inside the regions of interest.
The main goal here is to understand the linear operators that underpin the dynamics by
transferring Fredholm properties from the continuous to the discrete regime.

Sturm—Liouville theory Substituting the travelling wave Ansatz u(x,t) = ®(x + ct) into
(1.1), we obtain the travelling wave ODE

@ = & + geur (P; ). (1.3)

Using a now standard phase-plane analysis [2], one readily shows that (1.3) coupled with the
boundary conditions

P(—00) =0, P(+o0)=1 (1.4)

admits a unique solution pair (®, ¢) = (P, ¢x) = (P (a). cx(a)), with

. . 1
sign(c,(a)) = sign (E — a) , @ >0. (1.5)

The latter strict monotonicity result is especially useful when using classical Sturm-Liouville
theory to study the linear operator

[Loyv](€) = =0 (§) + V" (§) + 8o (Px(§); )0 (§) (1.6)

associated to the linearization of (1.3) around (®,, ¢,). Indeed, this theory immediately
implies that the spectrum of Ly, : H> — L? lies strictly to the left of the imaginary axis,
with the exception of a simple eigenvalue at zero [9].

This result can subsequently be leveraged to conclude that the waves (P, cs) are non-
linearly stable [10] and depend smoothly on the parameter a. In addition, it can be used to
show that the corresponding planar waves u(x, y, ) = ®,(x + c4t) are nonlinearly stable
[8] for the two-dimensional Nagumo PDE

Ur = Uyyx + Uyy + gCub(u; a) (17)

and can be ‘bended’ to form travelling corners [3]. All these results do not use the comparison
principle, allowing the techniques to be readily generalized to multi-component reaction-
diffusion equations.

Uniform spatial discretizations We recall the lattice differential equation (LDE)

. 1
Ujt) = 7 WU0j—1 (0 + Upn (1) = 2U; (01 + geub(U;(1); a) (1.8)

that arises by applying a standard nearest-neighbour discretization to the second derivative
in (1.1). Travelling wave solutions U (1) = ®(jh + ct) must now satisfy the system

1
c®'(§) = P E - h) + @@ +h) = 29E)] + geun (P(6); a). (1.9)

In the continuum regime 0 < 7 < 1, a natural first step is to construct spatially-discrete
waves as small perturbations from the PDE waves (®., c,). However, a short inspection
shows that the transition between (1.3) and (1.9) is highly singular. Nevertheless, Johann [7]
developed a version of the implicit function theorem that can achieve this in some settings.
Our inspiration for the present paper however comes from the spectral convergence approach
developed by Bates and his coauthors in [1].
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A key role in this approach is reserved for the linear operator

1
[Lh;unitv](§) = —cv'(§) + hj[v(é +h) +v(E — h) — 20(E)] + 8oy (P (§); @) (E),
(1.10)

which can be seen as the linearization of (1.9) around the PDE wave ®,,. In fact, it is a singu-
larly perturbed version of the linear operator Ly, introduced in (1.6). The main contribution
in [1] is that Fredholm properties of Ly are transferred to Lj.nir. The latter operator can
then be used in a standard fashion to close a fixed-point argument and construct a solution
to (1.9) that is close to (D, c4)-

Stated more precisely, the authors fix a constant § > 0 and use the invertibility of Ly, + &
to show that also L, ynir 46 is invertible for small 2 > 0. In particular, they consider bounded
weakly-converging sequences {v;} C H Land {w it C L? with (Lp:unif +8)vj = w; and set
out to find a lower bound for w; that is uniform in § and /. This can be achieved by picking
a large compact interval K and extracting a subsequence of {v;} that converges strongly in
L?(K). Special care must therefore be taken to rule out the limitless transfer of energy into
oscillatory or tail modes, which are not visible in this strong limit. Spectral properties of
the (discrete) Laplacian together with the bistable structure of the nonlinearity g provide the
control on {v;} that is necessary for this.

The results in [1] are actually strong enough to handle discretizations of the Laplacian
that have infinite range interactions. In addition, this approach was recently generalized
[11] for use in multi-component reaction-diffusion problems such as the FitzHugh—Nagumo
system. We emphasize that this generalization also allows one to establish the stability of the
constructed waves, which is an important reason for us to pursue this line of thought in the
present paper.

Uniform spatial-temporal discretizations Applying the backward Euler discretization to the
remaining derivative in (1.9), we see that fully discretized front solutions

U;(nAt) = ®(j +ncAt), ®(—o0) =0, d(+o0) =1 (1.11)
to the coupled map lattice
2 [Uj(nAr) = Uj((n — DAL)] = 5 [Uj—1(nAD) + Ujpi (n A1) — 2Uj (nAn)]

+gcub(Uj(nAt); a).
(1.12)

must satisfy the difference equation

A[DE) — PE—cAD] = ,1%[<I>($ —h)+ @&+ h) —29(E)] + geub(P(€): a).
(1.13)

Inspired by the approach above, one can set out to understand the fully discrete operator

[Ln,av](E) = —3:[0(E) — v(E — AN+ 5 [vE = D+ vE + 1) —20()]
+8L (D (E); A)v(E),

in which (@, ¢) is the spatially-discrete travelling wave (1.9).

The main contribution in [6] is that we modified the approach of [1] that was discussed
above in such a way that Fredholm properties can be transferred from the spatially-discrete
operators L. ynif to the fully-discrete operators L, a;. Besides the singular transition from
a first-order derivative to a first-order difference, there is also a structural transition in play

(1.14)
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here. Indeed, for cAr € hQ the natural spatial domain for the function v in (1.14) is only
a discrete subset of R. The ability to handle such structural bifurcations is a second strong
indicator of the versatility of the spectral convergence approach.

Continuum regime In [4] we introduced the continuous arclength coordinate & = 6(x, ) that
satisfies 6, = /1 + u2. Upon passing to the (6, 1) coordinate system by writing

w®, 1) =u(x@.0).1), y©@.1)=v1—we(0,1)>, (1.15)

we transformed (1.1) into the fully nonlinear non-local system
we =y w0+ ¥ geun(wi @)+ wo [ (vt + gean(ui @) ). (116

Here we recall the notation [[_ f1(0) = [*_ f(0)d#’.
Let us now write W, for the arclength reparametrization of the PDE waveprofile @, and

introduce the expression
yu(r) = /1= W (0)2. (1.17)

In Sect. 3 we show that this stretched profile W, satisfies the ODE
ey WL = Tt 4 geun (Wi a). (1.18)

In particular, the useful identity

/ (N 4 gean (W )W) = e / yIW = e(l— ) (L19)

allows us to conclude that

W =y W 4 vl g (Wai @) + W, / (W] + g (Wi @)W/, (1.20)
which means that w(8, t) = W.(0 + c4t) satisfies (1.16).
Linearizing the stretched travelling wave ODE (1.18) around W,., we obtain the operator

Lempt = —Cy¥y V' + 7, + 4y, S0 W + gl (W a)v (1.21)

that acts with respect to the computational coordinate 7. In Sect. 3.2 we analyze this operator
in some detail and recast it back into the original physical coordinates. In fact, we show that
it is not equivalent to the standard linearization L introduced in (1.6). It contains an extra
term related to the stretching procedure that vanishes when applied to ds ®.. On the other
hand, in the limits T — 4-oc the differences between Lcpp and Ly disappear. The essential
spectrum hence remains unchanged. In addition, we explicitly show that the kernel of Lemp
is also one-dimensional.

On the other hand, the linear operator L. associated to the linearization of (1.20) is given
by

Lov = —cV + y 20 + 2y WY + p2 gl (Wa: @) — 2W, geup (Vs @)/

P[4y LD L gl (W @) W] (122)
+W f_ (y**4lll¥ + geub (W a))v” +v f_ (y*74lp>/k/ + geub (W a))\I/:k/,

Using (1.18)—(1.19), together with 3, [y, ' W.] = 3w/, this definition can be conveniently
rewritten as

L0 =y} Lompv + W, / W) Lempv- (1.23)
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In Sect. 3.3 we study the integral transform present in (1.23), which allows us to transfer key
properties of the operator Lemp to Ly. Let us emphasize once again that this twisted structure
is a direct consequence of the procedure that we used in [4] to eliminate the mesh-speed x;
from our system.

The singular perturbation In this paper we study the linear operators £, that arise by recasting
the integral in (1.23) as a sum and replacing all the derivatives except —c4v’ by their appro-
priate discrete counterparts. The precise expression is provided in Sect. 2, but conceptually
this procedure is similar to the transitions

Ly — Eh;unif, [’h;unif - ﬁh,At (1.24)

that we discussed above.

Our main goal here is to establish Fredholm properties for the operators £j,. In particular,
we generalize the spectral convergence approach described above to understand the singular
transition from L, to L. This is a delicate task, since the structure of the operators £y, is
significantly more complicated than that of L. ypi¢. In particular, the integral transform and
the non-autonomous coefficients generate several new terms that were not present in [1]. In
addition, we extend the techniques to gain control on the second and third discrete derivatives
of solutions to the system Ljv = f.

Our approach hinges on the fact that the new terms can all be shown to be localized in
an appropriate sense. Nevertheless, recalling the sequences {v;} C H Uand {w it C L? with
(Lyp + 8)v; = wj, we need to extract subsequences for which the discrete derivatives of
v; also converge strongly on compact intervals. We accomplish this by carefully controlling
the size of the second-order discrete derivatives. This requires frequent use of a discrete
summation-by-parts procedure to isolate this derivative from the convoluted expressions.

Although we do not pursue this here, we do believe that the techniques developed in [11]
could be merged with the tools developed in this paper. In this way we would also be able to
handle systems of reaction-diffusion equations in the bistable regime. We are less confident
about possible generalizations to monostable equations, but passing to suitably weighted
function spaces would be the first step to take.

Overview This paper is organized as follows. Our main results are formulated in Sect. 2. In
Sect. 3 we discuss the impact on the PDE wave (®,, c,) caused by the transition from the
physical coordinates to the computational coordinates. We develop some basic tools that link
discrete and continuous calculus in Sect. 4. We continue in Sect. 5 by obtaining preliminary
estimates concerning some of the terms appearing in £;,. We conclude in Sect. 6 by analyzing
the full structure of the operators £;. This allows us to generalize the spectral convergence
method to establish Fredholm properties for these operators.

2 Main Results

The main results of this paper concern adaptive-grid discretizations of the scalar PDE
ur = txx + gu). 2.1

Throughout the paper, we assume that the nonlinearity g satisfies the following standard
bistability condition.
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(Hg) The nonlinearity g : R — R is C3-smooth and has a bistable structure, in the sense
that there exists a constant 0 < @ < 1 such that we have

g(0) =gla) =g(1) =0, ¢'0) <0, g'(1) <0, (2.2)
together with
gu) <O0foru € (0,a)U(l,00), g(u)>O0foru € (—oo,—1)U(a,l). (2.3)

It is well-known that the PDE (2.1) admits a travelling wave solution that connects the
two stable equilibria of g [2]. The key requirement in our next assumption is that this wave
is not stationary, which can be arranged by demanding fol g(u)du # 0.

(H®,) There exists a wave speed ¢, 7# 0 and a profile &, € C S(R, R) that satisfies the
limits

lim ®,(¢6)=0, lim ®.¢&)=1 24)
E—>—00 E—>+o0
and yields a solution to the PDE (2.1) upon writing
u(x,t) = Ou(x + cyt). (2.5)

2.1 Computational Coordinates

The physical wave coordinate & = x + ¢4t appearing in (H®,,) is not well-suited for our
purposes here, since we wish to work in the computational frame induced by the adaptive
grid described in [4]. In order to compensate for this, we introduce the arclength

3
A@) = fo 1+ [ DL (BN . 2.6)

Lemma 2.1 Forevery t € R, there is a unique &, (t) for which
A(g(m) =T 2.7)
Proof The existence of the right-inverse &, for A follows from

I AE) = /1 + [ P(5))* = L. 2.8)

O

We are now in a position to introduce the stretched waveprofile W, : R — R that is given
by

V. (1) = Q*(E*(r)) (2.9)

This profile W, can be seen as the arclength parametrization of the graph of the physical
wave ®,.. Upon introducing the notation

Ye(1) = V1= [3: W 1(0)2 = /1 — W (1), (2.10)
we will see in Sect. 3 that W,, satisfies the ODE

ey WL =y 4 g (). (2.11)
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It is hence natural to consider the linearized operator Lemp : H 2 5 L2 associated to this
system, which is given by

LempV = —Cx¥y V' + y, " + 4y, SW WY + g/ (W), (2.12)
The formal adjoint Ecmp H? — L? of this operator acts as
Laow = e[y 3wl + deely*wl — 3[4y OW W/ w] + ¢/ (Wow.  (2.13)
Indeed, one may easily verify that for any pair (v, w) € H> x H> we have
(Lempv, w2 = (v, LA w) 2. (2.14)

As we have see in Sect. 1, the linearization of (1.16) leads naturally to a twisted version
of Lemp. To account for this, we introduce the notation

[/_f](f):/_;fﬁ’)df” [Lf](f)=ffoo fhar 2.15)

for the bounded continuous functions that arise after integrating a function f € L'. For any
f € L2, this allows us to define the integral transform

Tf =y’ [f = vVl [y W], 2.16)
which can be inverted (see Sect. 3.3) by writing
T 'w= 2w+, [ W/ w. (2.17)

Finally, we introduce the function

3 T/ _l T
\I/id](f) — [/ )/*_l(f/)‘l/;(‘[/)e_fo C*V*(s)dsw;(r/) dr/:l e—fo Cx Y (S) ds\l’;(‘l,’),

(2.18)
which in view of the computation
T, = 72V = vV [y W]
=y, (W - nily ' - 1] (2.19)
=y
yields the non-standard normalization condition
i Twy =1 (2.20)

This choice is motivated by the following result, which allows us to interpret A = 0 as a
simple eigenvalue for the twisted eigenvalue problem

Lempv = ATov. 2.21)

Proposition 2.2 (see Sect. 3.2) Suppose that (Hg) and (H® ) both hold. Then the operators

Lemp : H?* - L% and Lg,ﬂp H?* — L2 are both Fredholm with index zero. In addition, we
have the identities

Ker(ﬁcmp) = span{W.}, Ker(ﬁcmp> = span{\IJ::dj}. (2.22)
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2.2 Adaptive Linearization

As a preparation, for any v € H' we introduce the first-order differences

[ah v](z) = h~! [v(r +h) — ()],
vl(r) = hu(x) —v(r — h)], (2.23)
6 vl(r) = @) v +h) —v(x = )],

together with the second-order counterpart
[0\ 2 v](r) = [0+ vl(z) = h 2[v(z + ) + v(z — h) = 20(1)]. (2.24)

In addition, we introduce the sums

[D - v]@ =nD> v —kh). [Z () =hY vt +kh) (2.25)

—h k>0 k>0

v =1 @2, (2.26)

Finally, for any v € H! and & > 0, we introduce the function

and the notation

_ _ 2 2.0
My[v] = —c.yy 0w + 4y 9P [0,7 w.]ofv + v, 20,7 v + g/ (Wav. (2.27)

With this notation in hand, we are now ready to introduce the linear operators £, : H! —
L?. These operators act as

Lo = =0 + v + Mol + 800, Y, v 210y Wa My ] (2.28)

and are the main focus of this paper. We will show in [5] that these operators can be seen in an
appropriate sense as linearizations of the full adaptive mesh problem [4, Eq. (2.25)] around
the stretched wave profile W,. Taking the limit 2 | 0, we see that M), formally reduces to
y*zﬁcmp. In particular, this means that £, formally reduces to I[lﬁcmp when taking 4 | O.

Our main result provides a quasi-inverse for £, that bifurcates off a twisted version of the
operator Lemp discussed in Sect. 2.1. This accounts for the presence in (iii) of the integral
transform 7. The crucial point in (i) is that we also obtain control on the L?-norm of the
second discrete derivative of v. This is slightly weaker than full H2-control of v, but turns
out to be sufficient to bound our nonlinear terms. In addition, item (ii) allows us to control
an extra discrete derivative of v provided one is available for f.

Theorem 2.3 (see Sect. 6) Suppose that (Hg) and (H®,) are satisfied. Then there exist
constants K > 0 and ho > 0 together with linear maps

Bi:L* - R, Vi:L*>— H' (2.29)
defined for all h € (0, ho), so that the following properties hold true.
(i) Forall f € L? and 0 < h < hg, we have the bound
B A1+ Vil + 195705V F e = KA L2 (2.30)
(ii) Forall f € L? and 0 < h < hg, we have the bound

[0 Vi s + (0505 Vi f e < KLU + [0 7] 2] @3D)
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(iii) Forall f € L> and 0 < h < ho, the pair

B.v) =B f.Vif)eRx H' (2.32)
is the unique solution to the problem
Lyv = f+ BY, (2.33)

that satisfies the normalization condition
(Wi, Tv)2 = 0. (2.34)
(iv) We have BV, = —1 forall h € (0, ho).

3 Stretched PDE Waves

We recall the functions A(§) and &, introduced in Lemma 2.1, which are related to the
arclength parametrization of ®,. We also recall the pair (W, y,) introduced in (2.9) and
(2.10). Our first main result shows that y, is well-defined and that it can be used to translate
the travelling wave equation for the continuum model (2.1) into the stretched computational
coordinates.

Proposition 3.1 Suppose that (Hg) and (H®..) are satisfied. Then we have W, € C (R, R)
and there exists k > 0 so that the bounds

0<VW.(r) <l—k, Vk<w)<l 3.1)

hold for all T € R. In addition, there exists a constant K > 0 together with exponents
n— > max{0, c,} and n+ > max{0, —c.} for which the bound

W@+ [ W] + W @)] + |97 @] + [0 + [0 @) < ke 32)
holds whenever T < 0, while the bound
11— W (O + |V, + | W/ (@] + v/ ()] + ‘\yf”)(f)‘ + |xp§v>(r)| < Ke el
(3.3)
holds for all t > 0. Finally, for every T € R we have the identity
cxyy (OWL(T) = v (O WD) + g (Pa(D), (3.4
together with the differentiated version

ey (O () =y OW) (1) + 4y ()W (D)WL ()W (1)
+¢' (W, (1)) WL (7).

The second main result in this section is an extended version of Proposition 2.2. In par-
ticular, we recall the linear operators (2.12)—(2.13) and obtain an essential estimate on the
behaviour of [Lemp — 8T:1 'as & | 0. This will allow us to transfer the Fredholm properties
of Lemp to its discrete twisted counterpart in Sect. 6. As a preparation, we introduce the

(3.5)

adjoint integral transform 7' U that acts as
dj — - -
TV = v [f = v [ v L] (3.6)

forany f € L2.
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Proposition 3.2 The assumptions (Hg) and (H®.) imply the following properties.

(i) The operators Lemp : H 25 L?and Eiﬁgp . H? — L2 are both Fredholm with index
zero and satisfy the identities

Ker(ﬁcmp> — span{¥/}, Ker(ﬁiﬁip) — (widy, (3.7)

(i) The linear maps Lemp — 67y and Lf}ﬂ{p — Sﬂadj are both invertible from H 2 jnto L? for
all sufficiently small § > 0.
(ii1) There exists K > 0 so that the bounds

|(amp = 8T07 f + 87 Wi (w2, )0
ity — 5T 5w, g |

L <KIfle. 58
<K|flp '

H? —

hold for all f € L? and all sufficiently small § > 0.

3.1 Coordinate Transformation

Consider two functions femp : R — R and fppys : R — R. We introduce the stretching
operator S and the compression operator S, ! that act as

[Se fonys) (D) = fonys(8«(D)), 185" fempl(€) = femp(A(©)). (3.9
In particular, for any T € R and § € R we have the identities
[Ss:l fcmp](é%*('f)) = fcmp(T), [S« fphys] (-A(f)) = fphys(g)-
(3.10)

In order to understand the effect of these coordinate transformations on integrals and deriva-
tives, we first need to understand ;.

Lemma 3.3 Suppose that (Hg) and (H®,.) are satisfied. Then we have &, € C!R;R). In
addition, for any T € R we have

—-1/2
50 = [1+10:0:6@)F] 7 = n. G.11)

Proof The first identity in (3.11) follows by differentiating T = A(&, (7)) with respect to .
Using the chain rule we compute

W (1) = 3 [Py (64(D))]
= [0 D] (&(0))EL(T) i (3.12)
= [0 D] (5: (D)1 + 8 s (5: ()] %

Squaring this identity yields

V(D)2 =1 —[1+8:D.(5:()°] (3.13)

which gives
[1+0:0, (6.0)°] 7" = 1= WL(0)? = pu(0)?, (3.14)
as desired. O
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Corollary 3.4 Suppose that (Hg) and (H®,) are satisfied. Then for any femp € C(R, R)N L?
and fphys € C(R,R) N L? we have the identity

(fphys, S*_l fcmp)L2 = (S*fphys, J/>c<f(:mp)L2 , (315)
together with

(S fohys: femp)r2 = (fohyss S5 [ ! femp ] 2- (3.16)

In particular, Sy and S*_l can be interpreted as elements of L(L*; L?).

Proof The substitution rule allows us to compute

(fphys’ S fcmp L2 = ffphys(g)fcmp(A(g)) d§
ffphys(S*(T))fcmp(A(S*(f)))éi(f) dt (3.17)
= ffphys(s*(f))fcmp(f)y*(f) dt '
= (S*fphySa V*fcmp)LZ-

The second identity follows in a similar fashion. O

Corollary 3.5 Suppose that (Hg) and (H®,.) are satisfied. Then for any femp € H', we have
S;lfcmp S H' with

IS fempl = S [y 0c femp)- (3.18)
In addition, for any fpnys € H!, we have S, JSphys € H with
0t [Sx fohys] = vSx[0¢ fonys]- (3.19)

Proof For fomp € C '(R; R) we may use the chain rule to compute

1

3 [ fomp (AE))] = [0r fempl (A©)) 9 AE) = [97 fempl (AE®))[EL(A®))]” . (3.20)

In addition, for fynys € C'(R; R) we compute

Or [fphys (“;'_* (T))] = [0 fphys](g*(f))%—; (7). (3.21)
The desired identities now follow from (3.9), (3.10) and (3.11). The final remark in Corollary
3.4 can be used to extend these results to femp € H Land Jphys € H L O

The physical wave &, satisfies the travelling wave ODE

B @(§) = B Pu(§) + g(P(8)) (3.22)

forall £ € R. It is well known that the limiting behaviour of &, as § — oo depends on the
roots of the characteristic functions

As(n) = —csn + 1% + &/ (®i(£00)). (3.23)

\/ —4g'(0) > c* Ic*l (3.24)

1 1 1 1

— _ | = _ 2 _ / _ _
N+ = [2c* 2\/c,k dg (1)] > =56t 5 lcxl (3.25)
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and picking a sufficiently large K > 0, we have the bounds
|3 . (5)] < Ke k! (3.26)

for & € R4. In order to transfer this exponential bound to W/, we need to understand the
differences &,(t) — .

Lemma 3.6 Suppose that (Hg) and (H®..) are satisfied. Then there exists K > 0 so that the
inequality

|§«(1) — 7| < K (3.27)
holds for any t € R.

Proof For any x € R we have the standard inequality

1
Vi4x2—-1< Exz. (3.28)

In particular, we see that

AE) = &1 < 3 [y 3 <€) &’ (3.29)
< 3 [oee. .
which gives
6:(1) — 7] = |&:(1) — A(5:(D)| < % XN (3.30)
O
Proof of Proposition 3.1 Using @, = S, Ly, together with the commutation relation
g(s71w) = 57"g (W), (331)
we can apply Corollary 3.5 to the travelling wave ODE (3.22) to obtain
ex ST W] = S [ oy ] + 87 g (W)l (3.32)
Using the identity
yi=—y; ' ww] (3.33)
together with the definition y*z =1- [\IJ;]Z, this gives
ey WL =y 4y WL g(W) (3.34)

=y, L+ g ().
A further differentiation yields
ey " ey DWW = T Ay O]+ g (W)W, (3.35)

which can be simplified to (3.5).

The exponential bounds (3.2)—(3.3) now follow from Lemma 3.6 and (3.26), using (3.4)
and its derivatives to understand the derivatives of order two and higher for \Ili')(r) for
2 <i < 5. The inequality (3.1) for W, follows directly from (3.13) and the fact that 9z @, is
uniformly bounded. Finally, the inequalities (3.1) for y, follow from

1> J1—w. (@2 >V1—(1-x)?=v2 — k2> Jk. (3.36)

O
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3.2 Linear Operators

In principle, most of the statements in Proposition 3.2(i) can be obtained by an appeal to
standard Sturm-Liouville theory. We pursue a more explicit approach here in the hope that it
can play arole towards generalizing the theory developed in this paper to non-scalar systems.

Our first two results highlight the fact that our coordinate transformation does not simply
map Lemp and Liﬁ{p onto the standard linear operators

Liwy = —cx0gy + 05y + &' (P y,

3.37
Ef\?z = 4ci0gz + 022+ §(Pa)z B37)

obtained by linearizing the travelling wave ODE (3.22) around ®... Indeed, the correct oper-
ators to consider are given by

2 B d,
Lohysy = Lwy + (35 q>*) 1+(S§E<1>*)2 af[as{m]’

adj | nadj 1 2 0Dy
Lonys? = Liw 2 — %P, ¢ [(ag(b*) mz]

(3.38)

Lemma 3.7 Suppose that (Hg) and (H®..) are satisfied. Then for any v € H 2 we have the
identity

£cmpv = V*_ls*ﬁphyss*_l[y*_lv]- (3.39)
Proof We write y = S '[y'v], so that y~'v = S,.y. Using Corollary 3.5 we get

Sidey = v o[y ]

~ _ 3.40
= Vs 4\IJ>:<W>/)</U + Vs 2v/. ( )

In particular, (3.5) allows us to write

CxSedey = sy 2V H v WL v+ 4y, T (W)W 4 v, e (W) (1 — v,
(3.41)

In addition, we compute

Sidsey = vy ' 0c[Si0ey]
=4y (W20 + y (I W+ y WY (3.42)
+2y*_5 wwy + y*_3v”.
‘We hence see

V*ils*ﬁtwy = —C*]/*73U/ + y*76(\ll>/)</)zv + 3]/*76\IJ;\IJ;/U’ + ]/*747.)” + g/(\ll*)l)

4
= Lempv + V*_6(\p;/)2v _ y*_6llf;\ll;’v’. (3.43)
‘We now write
dge D e @)
Lphysy = Liwy + 0z P+ l+(53i<l>*)2 Oy — l(+5(25<1>*)2y' (3.44)
Exploiting the identities
S| 0z @ =y, W,
Sl 1+ @] = v, (3.45)
8*[355<D*] = ]/*74\1";/
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together with (3.40), we may compute
T Sellphysy = Ve, 5*£twy v WL [y 2]

-7 ”
=¥y (YY) [ 3.46
= Sulwy = Vi J(‘I'ZJ)zv +y WL (340
= l:cmpv,
as desired. O

Lemma 3.8 Suppose that (Hg) and (H®,.) are satisfied. Then for any w € H 2 \we have the
identity

Libpw = SoLoy) STy 2wl (3.47)

Proof Pick v € H?. Applying Corollary 3.4 twice, we compute

(E'cmpv, whr2 = (v, Sﬁpllyss V* U,U))Lz
(S*l:physs V* v V* )
= physS Ve :S "y, 2wl 2 (3.48)
= (87, L Sy Ty 2wl
dj
= (v, S, Lghjyss Ty 2wl 2.
The result now follows from (2.14). O

The explicit form (3.38) allows one to immediately verify that

Lphys0s Py = Liw 0z Py = 0. (3.49)
Upon defining
DY) = e 0 0.8, (3.50)
itisa standard exercise to verify that LZad]dDad] "™ — 0. We now construct a kernel element
for Ephys by writing
dj; ph; dj
PPNE) = 1+ (3 2.(6)) @1 @), 3D
Lemma 3.9 Suppose that (Hg) and (H®..) are satisfied. Then we have
adj adj;phys
L oys P =0. (3.52)

Proof We first compute

E?V(\i,j@idj:phys — 0 Dy gz D (Dadj:tw +9 [ 0z Dy gz P :|¢adj;tw

IRV ETE - Wi Sl /1@eon? ] *

o B Dy ot (3.53)
N 143 @4)2 £

Upon writing
_ 1 2 OeePx adj; phys
=33, 3&[(35%) o o, O ] (3.54)
we also compute
_ 1 2 O Ps adj;tw
I=75e. 35[(3@*) NI R ]

_ [ 3 @, Do ]q)adj;tw (3¢ Di)? it s D0 D o q)ad] Stw

- % 1+ ®,)2 NI N +«/1+(3s¢)

(3.55)
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In particular, we find

Eadj (Dadj;phys —¢c 0 Dy 0 Py < adjstw + 0 Dy 0: Dy adjitw (9 Dx)? Qadj;tw
phys = * BV ETE - i JIr@ D2 5 F @ e
(3.56)

The result now follows from the computation

3 D, 05 DY = 9 D0 [e 0 Dy ]

= _C*3é¢*q>adj;tw + d)adj:‘WBgECD*. (3.57)

O

Lemma 3.10 Suppose that (Hg) and (H®,.) are satisfied and recall the definition (2.18). Then
the identity

; T -1 i
wid = / yI oW e e O by @y ar| 28,10 (s8)

holds. In particular, the representation (3.47) implies that z:ﬁ?,ip \Ilidj =0.

Proof This follows directly from

AN =y, ',
ST+ @907 = v, !, (3:39)

together with the computation
SulE > e (1) = (D) = o= Jo ve(e)ds (3.60)
Here we used £,(0) = 0 and &, (s) = (). O
Lemma 3.11 Suppose that (Hg) and (H®,) are satisfied. Then we have
Ker Lphys = span{®’,}. (3.61)

Proof A potential second, linearly independent kernel element can be written as «dg ®.. for
some function o. We hence compute

Lohyslotd @] = —c.0e0ds P + dgecrdy Do + 20 s s + (9 ¢*)2%aga.
(3.62)
Setting the right hand side to zero, we find
g = [ — 2357 — LG Joee (3.63)
= O [c. — 213 ®.] — S In[1 4 (3 )?] 3ccr '
Choosing an integration constant «,, € R, this can be solved to yield
-2 cu !
et = oty (3 D) e EW' (3.64)
For «, # 0 it is clear that one can choose x > 0 in such a way that
lae(&)] > ke EFed (3.65)
holds for all sufficiently large & >> 1. This prevents «d; @, from being bounded. O
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Proof of Proposition 3.2(i) Viewing Lcmp, Lphys and Ly, as operators in L(H 2. L%, we
observe that their essential spectral are equal. Indeed, the differential equations arising in
the £ — +oo and T — =00 limits agree with each other. In particular, all these operators
are Fredholm with index zero. The description of Ker Lcmp follows directly from (3.61) and

the correspondence (3.39). The description of Ker Lcmp follows directly from Lemma 3.10
and the fact that

= ind(Lemp) = dim (Ker ccmp) —dim (Ker ciﬁ{p). (3.66)

O

3.3 Integral Transforms

Our goals here are to discuss the integral transforms introduced in (2.16) and (3.6) and to
prove items (ii) and (iii) of Proposition 3.2. In particular, the integral transforms can be
used to solve two integral equations that appear naturally when linearizing the adaptive grid
equations around the stretched wave W,.

Lemma 3.12 Suppose that (Hg) and (H®..) are satisfied. There exists K > 0 so that the
bound

17 fll2 = KN Flle (3.67)
holds for any f € L?, while the bound

p d
el RS = (3.68)
holds for all f € H?.

Proof The estimate (3.67) follows from the uniform bound (3.1), together with the inclusion
W, € H? and the inequality

[[roves

Writing w = '];adj f, we note that
= [y 2 f) — WL [y L+ T f
[y*—2f]// _3\11”]” f_;,_ l\p f+ [)/*_3\11//]/]/*_1‘11 f (3_70)
+[J/* 4\11”\[//] f 4 ]/*_4lIJ//\I/ f/

= 1 1 (.69

Exploiting the inclusion W, € H* and the bound

Hf Sy, fH < v, @a71)

we see that indeed w € H? and that the estimate (3.68) holds. O
Lemma 3.13 Consider any pair (w, ) € L*> x L?. Then the identity

viw + \IJ;/ Vw=f (3.72)
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holds if and only if
w=Tf =y f—y 'V, / v WS (3.73)
Proof Assuming (3.72) holds, we write
X = / v w (3.74)
and compute
X =V/'w=y 20/ f -y W W/'X. (3.75)
Recalling y, = —y W, W/, we see that
o' XY =y W f (3.76)
Using the fact that X(7) — 0 as T — —oo0, this implies
X = S 3.77
and hence
viw=f-WX=f- y*w;/ o (3.78)
On the other hand, assuming (3.73), we compute
S = [yl = [y el [yl
=Ly + [ |\v ) V*‘3‘P;’f] (3.79)
= [y Ly~ [yl
=y Ly VIS
Multiplying by W, we hence see
xp;/ W = y*xp;f v f = f —yiw, (3.80)
which yields (3.72). O
Lemma 3.14 Consider any pair (w, f) € H? x H?. Then the identity
viw + w;’/ Ww=f (3.81)
+
holds if and only if
dj — — _
w:zflf:y*2[f_y*1qx;’/y*lq/;f]. (3.82)
+
Proof Assuming (3.81) holds, we write
Y = / v w (3.83)
+
and compute
Y = —Wlw=—-Vy2f+y 20w W'y, (3.84)
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In particular, we see that
(Y] =—y WL f.
‘We hence find

Y:y*_l/ y*_llll;f’
+

which yields
— 52 —y'y] = -2 _ —1\1/// _lllll
w=y, [ f VY] =y v e I
On the other hand, assuming (3.82) we compute
/‘ \IJ w = f+ lelf f+[ SW lp//f+ l\y/f]

_ f+ le/f f+ L[y f+ ll[l/

_f+ 2\D/f+[y* ]f+ llIJ/f .[+V>)< y*lqj/f

— y* 1f+ llIJ/
Multiplying by ¥, we find

qx;’/ W=y, 1\1/”/ Ve WL f=f—yiw

+

which yields (3.81).
Proof of Proposition 3.2(ii)-(iii) We introduce the notation

el f1= (W29, £y

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

and note that the normalization (2.20) implies that «.[7, W,] = 1. In particular, the operator

e f = [ﬂw;]acf

(3.91)

is a projection on L2, Writing 7 = I — 7., the Fredholm alternative (see e.g. [9, Thm. 2.2.1])

now yields the splitting L?> = R @ R, with
R=m(L?) = Lomp(H?). R =m(L?).

Upon choosing a splitting

= span{W,} @ K.,
we note that the linear map

Lemp : Kc > R
is invertible, which implies that the perturbed operators

[ﬁcmp —6nTy] : K. — R

are also invertible for small § > 0. For any f € R, we introduce the function

Lol f1 = [Lemp = 87T] ' f = Wlae| T Lomp — 87 T.] 7' /]
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and use the identity Ecmp\ll; = 0 to compute

[Accmp - Sﬂ]Léf = [Accmp - aﬂ][ﬁcmp - 87'[7;]71 f + 57;‘1{;0[6 I:?; [[rcmp - 8777;]71][]
= f - 87767;[['cmp - 8777;]71]“ + (Sﬂqjiac[ﬂ[ﬁcmp - 6777;]71 f
= f = ST Wloe| Tu[Lemp — 87T ' £ ] (3.97)
FOTWote[ T Lomp — 87T] 7' /]
Forany f € L2, this allows us to conclude
[Lemp = 8T1[ = 67 Wlatel f1+ Lom[f1] = ToWlatel f1+ 7 f]
frd f,

which provides an inverse for Lcmp — 7. An analogous procedure can be used to obtain the

(3.98)

p
result for Ein{p. O

4 Sampling Techniques

In order to exploit the continuum theory developed in Sect. 3, we need to expand the results
developed in [4, Sect. A] in order to allow for detailed comparisons between functions and
their associated sampled sequences. In this section we collect several tools that will be useful
for these procedures.

In Sect. 4.1 we obtain several useful results that relate the discrete operators Bhi and ..,
back to their continuous counterparts. In Sect. 4.2 we introduce exponentially weighted
norms on L? and discuss their impact on the summed functions (2.25). Finally, in Sect. 4.3
we discuss sequences of differences (2.23) and sums (2.25) for which ~ | 0. Upon taking
weak limits, it is possible to recover the usual continuous derivatives and integrals.

4.1 Discrete Versus Continuous Calculus

As a reminder, we recall the sequence spaces

. 2
€2 ={V : hZ — R for which ||V||?% =Y ez | Vaj|” < ool

4.1
€° = {V : hZ — R for which |V || := sup;cz |Vij| < o) @D

that were introduced in [4, Sect. 3.3]. Our goal here is to obtain error bounds in these
spaces when applying differences and sums instead of derivatives and integrals to continuous
functions. As a preparation, we repeat the useful estimates [4, Eqs. (A.6), (A.13)] which state
that

lulle < @+h) lullgr, [5ul o = '] (4.2)
forany u € H' and ¢ € {2, o0}.
Lemma4.1 Pick g € {2, 0o} and consider any u € W1, Then the estimates
o 'y < b ] @3)

hold for all h > 0.
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Proof Fix h > 0 and write 7t € £3° for the sequences

755, = 105 ul(ih) — W' (). (4.4)

We may compute
Th, = L 0T G+ ) — ' (jh))ds
= fo W' (jh +sh) — ' (jh)]ds (4.5)
= [ 3 Gho+ 5T ds' ds.

For g = oo we hence see

< |u"|| / / ds'ds = —h (178 (4.6)

For g = 2 we obtain the estimate

||I+ ” Q= hZ]EZ [fo o u’(jh+s")ds’ ds]2
< hZJeZ.[() [f u"(jh+s')ds'*ds

‘ jh

<Y jep fy sh 3" G+ )1 ds’ ds 4.7)
= h2 jez fo [’ (jh +s)1?ds’
2
=2 "7
Similar computations can be used for Z~. O

Corollary 4.2 Pick q € {2, oc} and consider any u € W9, Then the estimates

Ha(z)u " <2hn ”u/// ”Lq i
(4.8)
@)
o7 uc hy = g 520
hold for all h > 0.
Proof We first compute
@ 4o
0, u—u" =099, u—u" 4.9)
= 0,70, u— 0, u' + 0, u —u.
Applying Lemma 4.1 and (4.2) to 9, u shows that
+ — — —
(AT ”/”z;{ <hfo g <nfu”], (4.10)
Similarly, applying Lemma 4.1 to u’ shows that
logu —u"l g = n ] o @.11)
from which the first estimate follows. Upon writing
2) +q+
8, u(-+h)y—u" =09,9,"u—u" 4.12)
=0, u—ofu + 9 u —u’
the second estimate can be obtained in a similar fashion. O
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Corollary 4.3 Pick q € {2, oc} and consider any u € W*9, Then the estimate

oo u—u"|, =30 |a] | 4.13)
h
holds for all h > 0.
Proof Splitting up
8 8y u —u" = OO o u—u
= 0y 0y 9 u =0y 9, u (4.14)
+8h 8’}/ ! _///ah !
+0, u” —u",
we can apply Lemma 4.1 to obtain
2 - -
o ou =], < nloForu], +nloru ], + 0w, @as)
h
We can now repeatedly apply (4.2) to obtain the desired estimate. O

‘We recall the definitions (2.15). Our final result here is a standard approximation bound
for discrete integration.

Lemma4.4 Forany f € W' and h > 0, we have the bounds

=11 sl =h|F|.- (4.16)
xel. L

b0
Proof Fixing T € R, we compute

[ f = [0 F1@® = Sioo JELf @ +kh) = f(z + (k= Dh +0)]do
= Y0 Jo LF (T + Gk + Dh) — f(x +kh + 0)]do

4.17
:Zkzof(f’f:f’(r+kh+a’)do/d0 @17)
=Yoo i J§ [z +kh+0")do do.
In particular, we obtain the estimate
[ S /= [y F1@] = Sisoh [ 17/ + ki + 0] do’
SthOC f/(_(+o_/)| do,/ (418)
<h|f]-
O
4.2 Weighted Norms
For any n > 0 we define the exponential weight function
en(t) = e~ (4.19)
This allows us to define an inner product
(a, b)L% = (eya, eyb) 2 = (eya, b) 2, (4.20)
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together with the associated Hilbert space
Ly =1f € Lige : Iz =Af, fpz < o0}, “.21)
Since 0 < ¢, < 1, we see that
(a,a)p2 < {a,a) (4.22)
for every a € L%, In particular, we have the continuous embedding
L*cL;. (4.23)

In addition, for any pair (a, b) € L% x L2, we have epa € L? and hence also eya € L2
This allows us to estimate

(€20, b 12| = (@, )12 | < lallzz 1812 (4.24)
This weighted norm is very convenient when dealing with sampling sums.

Lemma4.5 Fixn > 0. There exists K > 0 so that for any [ € L,27 andany 0 < h < 1, we
have the estimate

IXneanfl, = KNIz (4.25)
Proof Using Cauchy—Schwartz, we compute
HZ—:h 6217f| i% = f 62'7(1)[ Z—;h ezﬂf](‘[)z dt

2
= jezn(f)[h Yoo € —kh) f(x — kh)] dr
< [ex@|h Ly ean(t =k || oo e2n(x = ki) £ (x = kh)? | d.

(4.26)
‘We note that there exists C; > 0 so that forall 0 < 4 < 1 and all T € R we have
hY g€ (t —kh) = h Yo e” ek
S Y oy e 2NNt kA 4.27)
< (.
Using the substitution t/ = 7 — kh, this allows us to compute
2
I eanf 17, = €1 f en(@h Spmgern( = k) f = kh)? | dr
—c [h S oo e (T + kh)]ez,](r’)f(f’)z de’ 428
< szezg(f’)f(f’)2 dr’
= C] ”f”L]z) -
]

4.3 Weak Limits
Our results here show how weak limits interact with discrete summation and differentia-

tion. The first result concerns sequences that are bounded in H' and have bounded second
differences, as described in the following assumption.
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(hSeq) The sequence
{(hj, vj)}j=0 C (0, 1) x H' (4.29)

satisfies #; — 0 as j — oc. In addition, there exists K > 0 so that the bound

a+

hj

<K (4.30)

+.
8/1jv/‘

ol +|

holds for all j > 0.

The control on the second differences allows one to show that the weak limit is in fact in H2.
In addition, the first differences converge strongly on compact intervals.

Lemma 4.6 Consider a sequence
{(hj,vj)} C(0,1) x H' 4.31)

that satisfies (hSeq). Then there exists V.. € H? so that, after passing to a subsequence, the
Jollowing properties hold.

(i) We have the weak limit

vi—~V,e H'. (4.32)

(i) We have the weak limits
a,fj vV, e L% (4.33)

(iii) We have the weak limit
0, v~V e L”. (4.34)

(iv) For any compact interval T C R, we have the strong convergences
vj = Vi e L’(D), 9 v; = V) e LXD) (4.35)
as j — oo.
Proof Using (4.2) we obtain the uniform bound

for all j > 0. In particular, after passing to a subsequence we can find a triplet

+
a/ij v./ ‘

2= K (4.36)
Vi VE V) e H' x L? x L? (4.37)
so that we have the weak convergences
N 1 + .yt 2 @, _ ye 2
v—=VieH', 8 v—=Viel’ 9 v~VPelL (4.38)

as j — oo.
Pick any test function ¢ € C2°. We note that

_ 2
e I e I (4.39)

L2

as j — oo by Lemma 4.1 and Corollary 4.2.
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‘We now compute

(%vj, Oz = —(v), 9 )y
:—<Uj,§/)L2+(Uj’§/—8h_j§)L2 (4.40)
= (W}, O+ (v, ¢ = 0 )y,
together with
(03 v, §) 12 = (v, 9y §) 2
= (0, ¢+ (07, 8 =8 4.41)

2
=~ ¢+ ), 0,08 = 1) e

The weak convergences v}—\V*’ € L? and (4.38) imply that

(aj;i_-vj’ {)L2 - <V>):7§)L2’ (8}_:_-1)]";-)L2 - (V*+’§)L27
&) o 6) @ (4.42)
(311,- Vj, O = —(Vi, &) o, <3h,- Vj, Ohpr = (Ve )2

as j — oo. The density of C%° in L? now implies that V;} = V/ and that V] € H' with
V! = V2. This yields (i), (i) and ().

Turning to (iv), we pick a compact interval Z C R. The compact embedding H'(Z) C
L2(T) allows us to pass to a subsequence for which

lvj = il ro 0 (4.43)

as j — oo. We compute

R 744
a/ijvJ V*

= (8 vj = Vi oy v = VD2

+ + + + +

LX(D)

- —(ah—]_a;;vj =3 Viovi = Vi
+(a,jjvj -V, a,jj Vi = V) 127)-

(4.44)
Using (4.2) we see that
lonvi] =12l (4.45)
Together with (4.30), (4.36) and the identity
- ot 2)
8/1]' 8/1]' vj = a/‘lj vj ’ (446)
this implies the uniform bound
lomoios| L+ o) L +lonve] . +1Vipg < @4
hithi Nz T 2y T T T L@ '
for some C > 0. In particular, using Lemma 4.1 and (4.43), we see that
+ +
‘ ahj 'Uj - V>I: LZ(I) S 2Cl|: H Uj - V* HLZ(I) + ‘ ahj V* - V#: LZ(I)]
< 201 oy = Vel oy 5 [V 2] 449)

— 0

as j — 00, as desired. A standard diagonalization argument now completes the proof. O
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Lemma 4.7 Consider a bounded sequence
{(hj, fj arj e @3 )} j=0 C (0, 1) x L2 x H' x H' x H! (4.49)

that satisfies the following properties.
(a) There exists C > 0 and n > 0 so that

lovt:j ()] + |or2: j ()] < Ceny (1) (4.50)
forall t > 0.
(b) There exists a triplet (o];x, 002.5, Q3:5) € H' x H' x H' so that we have the strong
convergence
(@1, @2, @3 ) = (@14, @24, @34) € H' x H' x H' (4.51)
as j — oo.

(c) We have hj — 0 as j — oo.

Then, after passing to a subsequence, there exists f, € L? so that we have the weak conver-
gences

fi—fe€ L% a3 fi—as. € L2, (4.52)
together with
o1 Z “2:jfjéal:*/ s fr € L7 (4.53)
—:hj -
as j — oo.
Proof Writing
gj=arj Y wjf) (4.54)
we see that
”gj HL2 =c? H€2'I Zf;hj €2 |f|j 2
2
< C ey Yoy e lfly]

=C? HD;h,— e |f|j‘ (4.55)

< &£l
s

In particular, after passing to a subsequence we have the weak convergences f;— fi € L?
and g;j—g. € L%
Pick any ¢ € C2° and write

2
L;

Igij = o Z ar; ¢ —012:*/ ar;«¢, (4.56)
+

+ihj
which can be expanded as
Tpj = [omj — o] X, @1t
+o; Z+;hj [“l;j - “l;*k 4.57)
+012;>)<|:Z+;hj apxg — f_,. al;*f]-
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Using the general observation that || )" +ih ab || o < llall 2 4] @ the estimates (4.2) and
(4.16) imply that

“ICJ HL2 =9 H“Z;j - 0‘2;*”L2 Hal;j” 1l g
9 a2 e s =t 1 1 1 4.58)
+ Ha22*||1,2 |hj| H [alz*g]/”u .

Observing that

‘Ll + ||a1;*§/||u
) ISl + Hal;*|
AP

/
al;*g

oo, < |
|

all;* é-/”Lz (4.59)

S L2
=<

we see that | Z; ;|| ,» — O as j — oc. In addition, we see that

” (a3;j —a34)¢ HLz = ”0’3;]‘ - a3;>k||Loo ¢l < ”0’3;]‘ - a3;*HH1 ¢l L2 — 0 (4.60)

as j — oo.
‘We now compute

(gj’é')LZ = (al;jzf;hj‘XZ:jfj’E)Lz
= (fj, a2 Z+;hj061;j§)L2 4.61)
= (fj, @ [ a1l) 2 4+ (fi L j) 12

together with

(a3, fj: €)p2 = (fj, @3,;¢) 2
= (fj, O(3;*C)L2 + (fj, (a3;j —a3;4)8) 2. (4.62)

In particular, the weak convergence f;— f; implies that

(gj1 é‘)LZ - (f*’a22* f+(xl;*§)]‘2

4.63
= (a1« f, 05 [ E)p2 ¢ )
together with
(@3, fs €2 = (far @3;58) 12
' ’ 4.64
= (WS;*f*,g)LZ ( )
as j — oo. The density of C2° in L? now implies the desired weak limits. O

5 Linear Building Blocks

In this section we are interested in several useful linear operators that act on the sequence
spaces ¢2 introduced in Sect. 4. We use the notation 3%, 3%, 3 for the restriction of the
discrete derivatives (2.23)—(2.24) to these sequence spaces. In addition, we recall the expres-
sions

1
[T%aljn = agj+iyn. STa= 5(“ +T*a), yy=+1-(3°U)? (5.1)
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that were introduced in [4], together with the higher order norms
v, 21 = Vil + H8+VHZ%,
uvn[zz =Vl + 07V ], +[0%0% V], (5.2)
||V||[23 = ”V”g2 + H3+VH£2 + ||3+8+VH£2 + ||8+8+8+VH[2,

and their counterparts

IVllgor = 1V llgge + 94V ] oo

h
IVlle2 = 1Vl + [047 o+ [970%V | (5-3)

Finally, we recall that Upt, . € CZ(R, [0, 1]) stands for a reference function that satisfies the
properties

Uref;*((_OO, _2]) =0, Uref:*([Z, 00)) =1, 0= Uret % | ref: *| <1l (54)
For any k > 0, we subsequently write
Uret;xc(T) = Uref;+(kT) (5.5

and introduce an open subset
Vie =V € 6 IVIl22 + VIl + (AR PP sc~land 9TV <1 -2}
h g
(5.6)
This allows us to recall the affine subset [4]
Qh;x = Urcf;/((hZ) + V/I;K C KZC (57)

that plays an important role here and in the sequel paper [5], as it captures the admissable

states of the waves that we are interested in. We remind the reader that each U € .,

satisfies |97 U | < 1 — « and that the norms [[0* U 2.1, Ul o2 and [[g(U) ]2 are all
h h g

bounded uniformly in 2 > 0.
The linear operators that we investigate are given by

My lV] = 4y U PUIV, My.clV] = yjg (U)V.

_ _ (5.8)
My lV] = y;%0@V, My.plV] = —cuyy 'a"V.

Here we have V € E%, while U is taken from ... For convenience, we introduce the
combination

My[V] = My.alV]+ My g[V]+ My.clV]+ My.plV] (5.9)
together with the notation
Ly[V] = c.d"V + My[V1+ U ¥, v 210 UIMy [V]. (5.10)
Picking any v € H' and recalling the discrete evaluation operator
levo fljn = f(@ + jh), (5.11)
we note that our construction implies that the identities

evy Mp[v] = Mevmll*[evﬁv]a Evy [C*v/ + Eh[v]] = Lev,;\ll*[evﬂv] (5.12)
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hold for all ¥ € [0, h]. We remark that the right-hand sides above are continuous in 02 hasa
function of ¥ as a consequence of (4.2) and the continuity of the translation operator on H',
We recall from item (iii) of [4, Lem. A.4] that if

leva fll2 < IIeVovllllz;z (5.13)
holds for all 9 € (0, h) and some v € H!, then in fact fe L? with

1flz2 < Mol + 85700 - (5.14)

We are specifically interested in the differences 9+ My[V] and 8T Ly [V], as they will
help us to apply a discrete derivative to the equation £;v = f and its nonlinear counterpart
that will appear in [5]. To this end, we introduce the approximate differences

M (V] = 4y ° = 3y HIaPUP8V + 4y U9+ a @ U190V

U;A;apx
+4y, 4 0U19P UV,
M3 poaonl V1 = 215 0" UTOPUIIPV + 20+ 0 @V, (5.15)

M s V1 = =20°U18P UL )V + y58" WDIUTV + 58" )V
M gV 1 = =y 0OUIPUNOV — ey 9PV

and write
+ +
MU apx[v] MU A; apx[ ] + MU B; apx[v] +M U C; apx[ ]+ MU D; apx[ ] (5'16)

Proposition 5.1 Assume that (Hg) is satisfied and fix k > 0. There exists K > 0 so that for
anyh > 0,U € Q. and V € E% we have the a-priori bounds

IMuIV1Ie < KV,
[o*Myvi| 2 < KIVllzs + K 0797070 | oo [0V ]2 (5.17)
[o% MutV1 = Myla* V1| 5 < K IVI22 + K %7070 047 ] 2.

together with the estimate

o aotvy—wag v,

MV 3 < KRNVl i+ K [9F0707U o IV 22 (5.18)

In addition, for any h > 0, any pair (UV, UP) € Q,zm and any V € Zh, we have the
Lipschitz bound '

HMU(2)[V]_MU(1)[V]”5% <K ||U(2)—U(1)||£2:2 ||V||Z;o:1+K HU(Z)—U(I)Hﬁzo;l ”V”Kiz
(5.19)

Corollary 5.2 Assume that (Hg) is satisfied and pick 0 < k < é Then there exists a constant
K > 0 so that forany h > 0, U € Q. and V € Z% we have the estimate

2
(5.20)

[t [Lo1] = Lotor |, < k[1+ Jororatu . + [oto ot U] TV
h

@ Springer



Journal of Dynamics and Differential Equations (2022) 34:1679-1728 1707

Proof Systematically applying the product rule 3*[ab] = dtaT b+ ad™b and the identity
379 = 519 described in [4, §3.1], we compute

IT[LulV]] = exST0P V] + 8T [My[V]]
+SHRQUITT Y L, v 1P UIMy[V]
+00U ., 0% [y T [0 UMy V] | (5.21)
FOUY vy 0t 00T Myt V1]
+30U Y., vy PaP U1t [ My [V]].
On the other hand, a direct substitution yields
Ly[3tV] = e.STROVI+ My[0tV] +8°U Y _, v, 209 UMy [8+V]. (5.22)
Comparing these two expressions, we obtain the bound
[0+ [Lotv1] = Lolo* V1| 2 < €] 0¥ [MylVI] - Myla* V]|,
+C |o* %ot U | o IMuLVIIL -

+ CrIMyVIlle

(5.23)

The desired estimate now follows from (5.17). O

Corollary 5.3 Assume that (Hg) is satisfied and pick 0 < k < é There exists a constant
K > 0 so that the estimate

||LU(2)[V]—LU<1)[V le <K HU(Z) U(l)”£22 ||V|| g0l + K ”U(Z) U(I)H o1 ||V|| 22
+K HU(Z) U(I)H22||V||27

(5.24)
holds forallh > 0, all V € E,zl and all pairs (UMD, UP) € Qfm.
Proof We compute
[Lya1V]- LU(I)[V]HG My 1v]- ¢ +C [8°U® — 30
+C| ” Yy@dPU® — )/U(l)a(z)U(l)” 2 ”MU7
+C} [ My V1= Myo V1] -
(5.25)

Exploiting the a-priori bound (5.17) together with the Lipschitz bounds (A.7) and (5.19), this
yields the desired estimate. ]

Corollary 5.4 Assume that (Hg) is satisfied. Then there exists a constant K > 0 so that the
estimate

|6;7 £alvl = £ald; 01| ;2 < K[ vl + |9, 05 v] 12 ] (5.26)

holds for all h > 0 and all v € H".

Proof The result follows from Corollary 5.2 and the bound (5.14). O
In the sequel we will also encounter the expressions

My .4lV] = yJZM;;# apel V1 2y U TP UIMy 4V ] (5.27)
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for# € {A, B, C, D}, together with
My.g[V] = 4y;%8°U 078D U1V + y *a @y, (5.28)
The relevant combinations are evaluated explicitly in the final main result of this section.

Proposition 5.5 Foranyx > 0,h >0, U € Q. andV € Zh, we have the identities

My.AIV1+ My.s[V1+ My.cIV] = 46y, " — 5y, 0P UV
+8y, U 9P U1V
+¢"(NIUIV + g (U)d°V + My. e[V,
My plV1 = =3¢y, 3°UP UV — ey, 0@ V.
(5.29)

5.1 Proof of Propositions 5.1 and 5.5

We first set out to establish Proposition 5.1. We will treat each of the four components
separately, using the estimates (A.8) to approximate the 97 [y, k] terms.

Lemma5.6 Fix« > 0. There exist K > 0 so that forany h > 0, U € Q. and V € E,l we
have the bound

|8+ My, alV] — My;al

o< K[otv]s+ K]

(5.30)

together with the estimate

o My atv1 -

< K[ |97 V]p + [0+97 V] o + [0+oa* V] s ]
ki [o*a*ta+ U], o+ V]

U Ajapx
|ez ’
(5.31)

Proof We compute

0t My alV] = 40 [y 1T [0 U 1P U1V
+4yJ:S+[3(2)U]T+[3(2)U]T+80V (5.32)
+ay;t%UataPUlIT a0V
+ay U P UlIstTI? V],

together with
My.Al8+V] = 4y U P UIST 0P V]. (5.33)

The estimate (5.30) now follows directly from inspection.
Upon making the replacements

Ly 1 4y %U®Ul,  THe 1, ST, (5.34)

we readily see that 8+[MU A[V]] agrees with M;" UsAsap «[V1]. In particular, applying these
replacements to each of the four terms in (5.32) separately, we may write

0 [My;alV1] = M. g0 lV1 = Ta + T + Te + T (5.35)
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in which
Ty = 4[8+[y54] - 4y5630US+[a<2>U]]T+[30U[a<2)U]a°V]
+8hygﬁa°Ua+[a<2)U]T+[aOU[a<2)U]a°V]
+16hy; %8 UBPUIST 9P UITHIPUITH[3"V]

+16hy; %8 U@ U13UdT[9PUITH[OV]
+16hy;%8°U P U1U P UISHBP V],

(5.36)

together with

Tp = 2hy 9+ 0P UITH [P UITH[3°V]
+ahy 9P UI 0P UITH V] (5.37)
+4hy AP U UISTP V]

and finally

Je = dhy;*0Ud+ 8P U1STR@ V],

5.38
Ja = 2y U9 U9+ 9P V], 5-38)
The desired estimate (5.31) follows from (A.8) and inspection of the above identities. O

Lemma 5.7 Fix k > 0. There exist K > 0 so that forany h > 0, U € Qp.,, and 'V € E% we
have the bound

[0 My:pIV]— My:p[0* V1| o < K [040FV ] 5. (5.39)

= Kh[ |o+otv ], + ootV |
Fatat +a+
+KR |9 9T0MU | oo 070+ V]| o

h

together with the estimate

[0 My 51V = My IV

2
Kh

(5.40)
Proof We compute
I My.plV] = at [y, 1T 0P V] + y, 20T 9@V, (5.41)
together with
My g[8+ V] =y, 20TV, (5.42)
The estimate (5.39) now follows directly from inspection.
Upon making the replacements
vy 1 2p U P U, Tt 1, (5.43)
we readily see that 9+ [My. g[V]] agrees with M;;B;apx[V]. In particular, we may write
3t [My.pIV]] - MlJ};B;aPX[V] = T, (5.44)
in which
o = [a+[yl;2] - 2yl;4aOUS+[a(2>U]]T+[a<2>V]
+11;/J480U8+[8(2)U]T+[8(2)V] (5.45)
+2hy *0U8P U1 [0P V],
The desired estimate (5.40) follows from (A.8) and inspection of the above identity. O
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Lemma 5.8 Assume that (Hg) is satisfied and fix k > 0. There exist K > 0 so that for any

h>0U¢€Qp,andV € E% we have the bound
[0% My.clV]— My.clo* V1] o < K1V (5.46)

together with the estimate

|9 Mu.clVI = M IV

< Kh[IVIg +[0+V] e + |0%ot v,z |

&
" tkh [o¥ 0% % U] o VIl -

(5.47)
Proof We compute
3T My.clV] = T[T W)V + yZoT g WITTV + 28 )TV, (5.48)
together with
My.c[otV] = y}g' (U)atV. (5.49)

The estimate (5.46) now follows directly from inspection.
Upon making the replacements

vy 21 2y UPulL, T 1, 3T W) e ' )U (5.50)

we readily see that 8+[MU;C[V]] agrees with M[J]r: c: apx[V]. In particular, applying these

replacements to each of the three terms in (5.48) separately, we may write
0 [My,clVI] = M. . [V1 = Ta + Tp + e, (5.51)
in which
g = [ 081+ 20Us @0 |1+ g W)V |
~hU OV W)V ] (552)

—2r3°UdP U g (UNT TV
—2r3%UTdP U1 (U)d 1V,

together with

Ty = v§[0%e' (U) — ") UITHV
+ydg"(W)latU — °UITV (5.53)
+hygg"(U)[8°UTdTV

and finally

Je =yje W)tV — V]
5.54
= Lhylg )a?V. (5.54)

In order to estimate ||~7b||z,3’ we recall that 9TU — 39U = %ha(z)U and compute

[0Tg'(U) — g"W)datU| =h"|g'(U +hd*tU) — g/ (U) — g"(U)hdTU|
< $[supuizet g7 G| [ [no* Ul (5.55)
= Lh[supyy < ¢ @] [ [o* U

The desired estimate (5.47) now follows from (A.8) and inspection of the above identities. O
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Lemma5.9 Fix« > 0. There exist K > 0 so that forany h > 0, U € Q). and V € E% we
have the bound

|0+ My.p[V]— My.platV] IIZ% <K ||8+V||[§, (5.56)

together with the estimate

HB“LMU;D[V] = M V] P Kh[ [a* V], + 070 V] + ||a+a+a+v||[%]
+Kh 07070 U | o [0V 2 - (5.57)
h h
Proof We compute
0t My, pIV1 = —c,dtly, 1TV — cuy, ' STV, (5.58)
together with
My.p[d*V] = —coyy; ' STV, (5.59)

The estimate (5.56) now follows directly from inspection.
Upon making the replacements

S lyg 1 v 2UPU)l, T 1, ST (5.60)
we readily see that 8+[MU;D[V]] agrees with MJ;D;QPX[V]. In particular, applying these
replacements to each of the two terms in (5.48) separately, we see that

0 [Mu;pIV1] = My 1y oo [V = Ta + T, (5.61)
in which
To = —e.[0* vy "1 =y U SHIOUI| THV )
—Lehy 20Ut 9P UIT T8OV ] (5.62)
—cihy 30U 8P USSP V],
together with

Ty = —5c:hdT[3PV]. (5.63)

The desired estimate (5.57) now follows from (A.8) and inspection of the above identities. O

Proof of Proposition 5.1 The bound for | My[V]|| e and the Lipschitz bound (5.19) follow

directly by inspecting the definitions (5.8). The remaining bounds follow from Lemma’s
5.6-5.9. u]

Proof of Proposition 5.5 Direct computations yield

My, alV] = 4y, =3y, O18PU POV + 4y, %900 [918P U190V
+4y, 00U 8P U1dPV + 8y, U 9P U1 UdP U0V

5.64
= 4(6y, " — 5y, O[8PU20°V 564
+4y, 20U [9t8P U180V + 4y UaP U1 PV,
together with
MU;B[V] _ 2}/17630[][3(2)[]]3(2)‘/ + y§48+8(2)V + 2),[7630(][3(2)[]]3(2)1/ (5.65)

=4y, % UP U1V +y,*8t9PV
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and finally

My.clV] = =2y, 29U 0P U1 (U)V + ¢"(U)[°UTV + ¢/ (U)3°V
+2y, 20U [P U1g (U)V (5.66)
=g (U)[BUV + g'(U)3V.

The first identity follows directly from these expressions. To obtain the second identity we
compute

My.plV] = =2y 08U 8P UV — ey 9@V
—2¢.y, U 9P U1V (5.67)
=3¢,y UTIPUIV — ey 20 V.

6 The Full Linear Operator

In this section we set out to construct solutions to the inhomogeneous problem £;v = f and
establish Theorem 2.3. Taking v € H' and f € L?, we first recall (5.12) and emphasize that
this problem should be interpreted as the statement that

Levyw,[evyv] = evylesv' + f] (6.1)

holds for almost all ¢ € [0, 2]. Throughout the sequel we simply use the notation (2.28) and
keep this interpretation in mind.

Our strategy is to apply the spirit of the ideas in [1] to our present more convoluted setting.
In particular, in Sect. 6.1 we analyze the structure of the terms contained in the definition £j,
and its adjoint and provide a decomposition that isolates the crucial expressions. In Sect. 6.2
we show how our result can be established provided that a technical lower bound related to
the sets {[L, — 8]v}jv),, =1 can be obtained. We set out to derive this bound in Sect. 6.3,
using a generalized version of the arguments in [1].

6.1 Structure

From now on, we simply write 9E, 8% and 9@ for the discrete derivatives if the value for A
is clear from the context. For any w € L? and h > 0, we introduce the function

MITw] = 0y w] = 00 [yt 00w, 0P w, Jw] + 0@ [y 2w] + vEg (ww,
6.2)

together with the formal adjoint dej : H' — L2 that acts as
dj dj dif -
£w = e’ = 00w + MyIwl + MOy P Ly, ww, | 63)
Indeed, one readily checks that for any pair (v, w) € L? x L? we have

(My[v], w2 = (v, M w]) 2. (6.4)
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In addition, the computation

@O0, [ 0PI | w)ye = (20 WIM ], T, w0 2
= (Mylvl. y, 210 W] X wdWs) 2

= (0. MOy 20w Xy, w0 )
(6.5)
allows us to verify that
(Lhv.w) 2 = (v, L0 w) 2 6.6)

for any pair (v, w) € H! x H', _

Our goal here is to establish the following structural decomposition of £; and Ezdj.
Roughly speaking, this decomposition isolates all the terms that cannot be exponentially
localized. In addition, it explicitly describes how the formal 2 | O limit can be related to

twisted versions of the operators Lemp and Léﬁp that were discussed in §3.

Proposition 6.1 Suppose that (Hg) and (H®..) are satisfied and pick n > 0 sufficiently small.
There exists a constant K > 0 together with linear maps

Lep:H' — L2 1™

whiH' > L7, 6.7)
defined for all 0 < h < 1, so that the following properties hold true.

(i) ForeveryQ < h < 1 the identities

Ly = —cv' + yh*Za(Z)v + y}?g’(\y*)v + Lenlvl, 68)
2% = cow’ + v, 20w + v (W)w + L [w] '
hold forallv € H and w € H'.
(i) Forany 0 < h < 1 we have the bounds
|Lenlvl] > < K vllg
(6.9)

i
\\Liﬂwl\ﬁz < K Jwll

forallve H andw € H'.
(iii) For every O < h < 1 we have the bounds

Heinch:h[”] ;S K[Ivlz + 0% 0] 2 ] o)
Ll |, < k{1l + [o*w],; ] |

2
L;

forallve H andw € H'.

(iv) Consider two sequences {(hj, v;)} and {(h;, w;)} that both satisfy the condition (hSeq)
introduced in Sect. 4.3. )
Then there exist two pairs (Vi, W) € H?*x H? and (Fs, F:dj) e L% x szor which the
weak convergences

W), Ly [0)= Ve, Fo) € H' x L2, (wj, £33 [w; D= (Wi, F2Y) € B x 12
6.11)
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both hold, possibly after passing to a further subsequence. In addition, we have the
identity

LempVs = T, Fy (6.12)
and we have
W, = 729 H, (6.13)
for some Hy, € H? that satisfies
LiolH,) = FY. (6.14)

Decomposition for L£p

We set out to identify all the terms in £, that can be exponentially localized in the sense of
(6.9). We start by analyzing the function Mj[v], which can be treated by direct inspection.

Lemma 6.2 Suppose that (Hg) and (H®,) are satisfied and pick n > 0 sufficiently small.
There exists a constant K > 0 together with functions ao.;, € H', defined for0 < h < 1, so
that the following properties hold.

(i) Forevery0 < h < 1 and t € R we have
|eto:n (T)| < Keay(2). (6.15)
(ii) Forany0 <h < 1 andv € H' we have the identity
0% + My[v] = yh728(2)v + yhzg’(\ll*)v + 0. 8%. (6.16)

(iii) Forany sequence {(hj, v;)} that satisfies (hSeq), there exists V. € L? for which the weak
convergences

vi=Vi, My, [v;]1=y LomplVi] € L2 (6.17)
both hold as j — o0, possibly after passing to a subsequence.
Proof Writing
aon = cx(1 =y, 1) + 4y, 000,109 W, (6.18)

item (ii) follows by inspection. Item (i) follows from the exponential bounds (3.2) together
with an application of the Lipschitz bound (A.7) with U@ = 0 and y;@ = 1.

Turning to (iii), we may exploit the fact that W, € H* to apply the bounds in Sect. 4.1
and obtain the strong limits

Vit vt e H,  yid (W) - ylg (W) e HY, (6.19)
together with
a0, = el —y, )+ 2y, W] e H'. (6.20)
In particular, we may apply Lemma’s 4.6 and 4.7 to obtain the weak convergence

My [vj] = —cayy 'V + 4y, WV 4y, V] 4y 28 (W) Ve € L2 (6.21)

Inspecting the definition (2.12) yields (iii). O
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It is convenient to introduce the notation
Tulv] = 3 7y 0@ WM 0], (6.22)
which in view of (6.16) allows us to obtain the expression (6.8) for £;, by writing
Len[v] = ;090 + [0° W] T [v]. (6.23)

Lemma 6.3 Suppose that (Hg) and (H®,) are satisfied and pick n > 0 sufficiently small.
There exists a constant K > 0 so that the following properties hold.

(i) Foranyv € H' and 0 < h < 1, we have the estimate

Iutllz < K[ 1ol + %] 5 |- (6.24)

(ii) Forany sequence {(h;, v;)} that satisfies (hSeq), there exists V. € L2 Sforwhich the weak
convergences

vj—Vi, 9, Wal U [0 1—= W / W/ LompVi € L2 (6.25)

both hold as j — oo, possibly after passing to a subsequence.
Proof We make the splitting Yj,[v] = Ya.5[v] + Tp.x[v] by introducing the notation

TA;;,[U] = Z—;h yh_za(z)lp*[Mh[v] - ]/h_za(z)v:l,

40 ) (6.26)

Yealvl =3, v, 0P W 10@0.

Applying Lemma 4.5 and inspecting (6.16), we see that

Iaatol] 1z = € [ Mut1 - 2020 |
n (6.27)
= 3 Il + o]z |
Applying the summation-by-parts identity (A.5), we compute
Tealvl =Y v 0@ w109 v

’ >, ; (6.28)

=77 [y 00w oo - X010 1P .

Ttem (i) now follows from a second application of Lemma 4.5.

To obtain (ii), we set out to apply Lemma 4.7 with f; = My, [v;], a2;; = yh_jz 8,(3) W, and
arj = a,?]_ W... Exploiting the fact that W,, € H*, we may reason as in the proof of Lemma
6.2 to obtain the strong limits

ap; > V. eH', a;—y W eH. (6.29)
Item (iii) of Lemma 6.2 implies that

fe= V*zﬁcmp[v*]’ (6.30)

from which the desired weak limit follows. O
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Decomposition for L:Zdj

We set out to here to mimic the procedure above for C;lld], which has a more convoluted

structure. Special care needs to be taken to handle the fact that Mzdj acts on a discrete sum.
The identities (A.4) play a crucial role here.

Lemma 6.4 Suppose that (Hg) and (H®,.) are satisfied and pick n > 0 sufficiently small.
There exists a constant K > 0 together with a set of functions

(0> s> Ao oop) € H x HY < HY < HY, (6.31)
defined for O < h < 1, so that the following properties hold.
(i) Forevery0 < h < 1 and t € R we have
|e0: ()] + [etos:n ()| + |e—in ()| + |egn (1)] < Keay(x). (6.32)
(ii) Forany0 < h < 1and w € H' we have the identity

dj _
—cdw + M [w] = 20D w + e (Waw 633)
+aopw + aosp THw + ey 0t w + a0~ w.

(iii) For any sequence {(h;, w;)} that satisfies (hSeq), there exists Wy € L? for which the
weak convergences

w;— W, My w1~ L[ W) € L2 (6.34)
both hold as j — oo, possibly after passing to a subsequence.
Proof Applying (A.2) and (A.3), we obtain

dj — .
M, w] = 0%y, 1T Hw] + e T [y, '10%
—40° [y 10w 10D | THw — 47~ [y 0010 D W, 30w

(6.35)
+[3Py, w +y, 2P w + 87 [y, 219t w + 87 [y, 210w
+vp8 (Wow,
from which (i) and (ii) can be read off.
Turning to (iii), we note first that the identity
THwj =wj+hjdtw; (6.36)

shows that also THw;—~W, € L?. Applying Lemma’s 4.6 and 4.7 to the representation
(6.35), we obtain the weak limit

dj — —
My, Tw)] = ey 'YW + ealy 'IW;

/
—[4;/*—4\1/;\11;/] W, — [4;/*—4\11; \y;’]W,;
Hy 2V We + WA 2072V W 4yl (WO W
= cuelyy Wl = O [y WIWIWLT 4 drc 12 W | 4+ v2g (W W,

(6.37)

Inspecting the definition (2.13) now yields the result. O

@ Springer



Journal of Dynamics and Differential Equations (2022) 34:1679-1728 1717

It is convenient to introduce the notation

1wl = > walw,, (6.38)
+ih

which in view of (6.33) allows us to obtain the expression (6.8) for £Zdj by writing

Ladj

coplwl = aow + o THw+apdtw+ a9 w

s - (6.39)
+M [y 20w .

Lemma 6.5 Suppose that (Hg) and (H®,.) are satisfied and pick n > 0 sufficiently small.
There exists a constant K > 0 together with a set of functions

(@oihs @0sih @it Qs Gowi) € H' x H' x H' x H' x H', (6.40)
defined for 0 < h < 1, so that the following properties hold.

(i) Forany0 <h < 1l and w € H', we have the estimate
y

o

<K .
5= lhwllz2 (6.41)

(ii) Forevery() < h < 1 and T € R we have
|&0;h(7)| + |&0s;h(f)| + |&+;h(f)| + |&(u;h(f)| + |&a)s:h(f)| < Keyy(r). (6.42)
(iii) Forevery0 < h < 1 and w € H', we have the identity
di[ -2, dj ~ ~ ~ .
My 0@ G Wl | = o + Gocn T w + @ppdt 643
i di ~ g .
+aw;l1T;: ][w] + (st:/lT+T;: ][w]-

(iv) For any sequence {(h;j, w;)} that satisfies (hSeq), there exists W, € L? Sfor which the
weak convergences

G di odi
w—~W,, Ll R G 28y E | B N R f Wi, | € L2 (6.44)
+
both hold as j — oo, possibly after passing to a subsequence.

Proof Ttem (i) can be obtained in a similar fashion as item (i) of Lemma 6.3. Using the
identities (A.2)—(A.4), we compute

o~ [V w]] = —wo'w, (6.45)
and hence
[V w]] = —SHwa'w,],
ATV w]] = o+ o~ [T w]] (6.46)
= -3, 1T w — [8°W, 10 w.
Writing
I[w] = ;[0 w17 w, (6.47)
this gives

39 211] = [0 w, ]+ 0]

) (6.48)
=T [y, "0 W] ST wd W],
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together with

e [I[w]] = 0200w, [T ]
+[Vh—23(2)\p*][ — 3T [8W, T w — [80111*]8+w] (6.49)

+0F [y, 20D W, TH—wdw,]
+37 [y, 202w, ][~ wa W, ).

Items (ii) and (iii) can now be read off from the representation (6.33) and the exponential
bounds (3.2).
Suppose now that {(%;, w;)} satisfies (hSeq) and write

T = v, 18, W w,). (6.50)

Using the same arguments as in the proof of item (ii) of Lemma 6.3, we can apply Lemma
4.7 to obtain the weak convergence

i~y 2! / W W, e L2 (6.51)
+
In addition, using the identity

. ’
[0 = 32 [watw, +w'ow,] (6.52)
+:h

together with Lemma 4.5, we see that ||Z b ” 41 can be uniformly bounded. Finally, (6.49)

together with the fact that W, € H> implies that also || taTI; || ;2 canbe uniformly bounded.
In particular, the sequence {(;, Z;)} also satisfies (hSeq). Applying item (iii) of Lemma 6.4
now yields (iv). O

Proof of Proposition 6.1 Items (i) and (ii) follow directly from Lemma’s 6.2, 6.3, 6.4 and 6.5.
Under the assumptions of (iii), the weak limits (6.11) follow from the fact that {Ln;Tv;1} and

{Eiij[w 1} are bounded sequences in L?. Using Lemma’s 6.2 and 6.3, we see that

Fi = y*z['Cmp[V*] + \I/; / lIJj/k/l-‘rcmp[uk]- (6.53)

Applying (3.72) yields (6.12).
On the other hand, Lemma’s 6.4 and 6.5 show that

F = L [y W + Lo [ / LW, (6.54)
+

In particular, we can satisfy (6.14) by writing

H, = y; W, + W] / v, W,. (6.55)
+
Applying (3.73) we see that
W, = TH,, (6.56)
as desired. O
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6.2 Strategy

In this subsection we show that Theorem 2.3 can be established by finding appropriate lower
bounds for the quantities

En®) = infpup, =t { 1650 = 80l 2+ 8 (Wi, T Lhw — 0]y ),
dj . dj — dj
52 J((S) = mfl\wIIH1=l { Hﬁz Yw — SwHLZ 481 |(\IJ;, L?I Tw — Sw)y2 }

In particular, the required bounds are formulated in the following result, which is analogous
to[1, Lem. 6].

(6.57)

Proposition 6.6 Suppose that (Hg) and (H®.) are satisfied. Then there exists i > 0 and
8o > 0 such that for every 0 < § < 8o we have

p(8) = liminfy 0 & (8) = u,

: 6.58
124 (8) = liminfy, 10 £29(8) > p. (6.58)

We postpone the proof of this result to Sect. 6.3, but set out to explore the consequences here.
In particular, it enables us to show that the operators £, — § are invertible for small 7 > 0
and 6 > 0, providing us with the analogue of [1, Thm. 4].

Proposition 6.7 Suppose that (Hg) and (H®..) are satisfied. There exists constants K > 0
and 80 > 0 together with a map hg : (0, 8o) — (0, 1) so that the following holds true. For
any 0 < 8 < §p and any 0 < h < ho(8), the operator Ly, — § is invertible as a map from H!
onto L? and satisfies the bound

- - dj
[2h =97 f = K[ 1712+ 67 (w25, )] (6.59)
Proof Following the proof of [1, Thm. 4], we fix 0 < § < ¢ and a sufficiently small 2 > 0.
By Proposition 6.6, the operator £, — § is an homeomorphism from H' onto its range
R= (L, —8(H") c L% (6.60)

with a bounded inverse Z : R — H!. The latter fact shows that R is a closed subset of L2.
IR #£ L2, there exists a non-zero w € L? so that (w,R);2 =0,1e.,

(w, (Ly = 8)v),, =0forallv e H'. (6.61)

Restricting this identity to test functions v € CZ° implies that in fact w € H ! In particular,
we find

<(£2dj — 8w, v),, =0forallve H', (6.62)

which by the density of H'! in L? means that (L‘Zd] — §)w = 0. Applying Proposition 6.6
once more yields the contradiction w = 0 and establishes R = L2. The bound (6.59) with
the §-independent constant K > 0 now follows directly from the definition (6.57) of the
quantities &, (§) and the uniform lower bound (6.58). O

Following the ideas in [6, Sect. 3.3], we can take the § | O limit and establish our main
result concerning £;. The bounds in (ii) rely heavily on the preliminary work in Sect. 5
related to the quantity

9T Lulvl = Ll v]. (6.63)
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Proof of Theorem 2.3 For convenience, we introduce the set
Zy={veH : (WY Tv),. =0} (6.64)
Our goal is to find, for any f € L?, a solution (B, v) € R x Zj to the problem
v="Vs[fov. B] = (Ln — &7 f + BY, — 8. (6.65)

In order to ensure that the linear operator V.5 indeed maps into 2, it suffices to choose
in such a way that

B Ty — )7 ) 2 = —(W Tl =TI — 82 (6.66)
Writing
Ly =)W, =570 +5 (6.67)
we see that
[y —8]v=68""L,w, (6.68)

which shows that
[Tl 1 < Cjh8™2. (6.69)
Choosing § < 1 and recalling the normalization
(W, 7)) 0 = 1, (6.70)

we can impose a restriction & < [Cé]’IS2 to ensure that

(SR AT AT

1
> -5 L 6.71
=5 ©671)

In particular, we can find a unique solution 8 = B.s[f. v] to (6.66) for every v € Z;, and
f el
The definition of Zj, implies the bound

|Cw =" (f —sv)| = C5[67" 1 fllp2 + 8wl 2 ], (6.72)
which allows us to obtain the estimate
|Beslf 01| < Cal 1 f 12 + 8% w2 . (6.73)
This in turn leads to the estimate
Vs [ £ v Buss L 01] [ < CS[87" 1 £l 2 + 8 llvll 2 - (6.74)
By choosing § > 0 to be sufficiently small, we hence see that the linear fixed point problem
v ="Vus[f, v, Buslf vl (6.75)

posed on Zj, has a unique solution for all f € L?. Writing v = V,:‘: s for this solution
together with

Brsf = Bus[f Visf]. (6.76)

we obtain the estimates

Vs £l < C687 I 2 [BrsfI < Collfllzz (6.77)
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The remarks above show that the problem (2.33)—(2.34) is equivalent to (6.75). We can hence
fix a sufficiently small § > 0 and write 8; = B .5 and Vi = V;; s» which are well-defined for
all sufficiently small 2 > 0. This establishes (iii). [tem (iv) can be verified directly by noting
that (v, 8) = (0, —1) is a solution to (2.33)-(2.34) for f = W,.

Turning to (i) and (ii), let us pick f € L? and write

., B) = VIf1, BLLSD. (6.78)
Ttem (iii) together with the representation (6.8) implies that
V' 4 f 4BV, =y, 20PDv 4 y2¢ (Vv + Leylvl. (6.79)

The bound (i) follows from (6.77) and item (ii) of Proposition 6.1, which together provide
L?-bounds on all the terms in (6.79) that do not involve 3@ v. To see (ii), we compute

Lyld*v] = 9F[f1+ BOF[W] + Ly[dFv] — 8+ [Lalv]] (6.80)
and note that Corollary 5.4 implies that

|ato*ol = a*[Lalvl]| 12 = Gl vl + 9707012 ]

< Cglifll2- (8D

Using (i) we conclude that
[07v] g + 0700 0] o = o[ N + 07 7] 12 ], (6.82)
which establishes (ii). O

6.3 Proof of Proposition 6.6

We set out here to obtain lower bounds for the quantities (6.57). As a first step, we show
that the limiting values can be approached via a sequence of realizations for which the weak
limits described in (iv) of Proposition 6.1 hold and for which the full power of Lemma 4.6 is
available.

Lemma 6.8 Consider the setting of Proposition 6.6 and fix 0 < § < 8. Then there exist four
functions

(Vi, W) € H> x H?, (Y, Z,) € L*(R), (6.83)
together with a sequence
{(hj,vj,yj,wj,z)}jen C (0, 1) x H' x L?> x H' x L? (6.84)
that satisfies the following properties.
(i) Forany j € N, we have
loill g = Twil i =1, (6.85)
together with

Ly;lvjl=6dvj =yj,

3 6.86
Ly wyl = 8w = z;. (6.86)
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(ii) Recalling the constants (M(S), uadj(S)) defined in (6.58), we have the limits

() = timjoool ;] 2 + 87 (WY, Ty g2, 6.87)
wA9(8) = lim ool 25| 2 + 07 (WL, 250 2]
(iii) As j — oo, we have the weak convergences
vi—~VieH', w;—W,eH" (6.88)
together with
yi—~Y.eL? z;—Z.elL’ (6.89)

(iv) The pairs {(hj,v;)} and {(hj, w;)} both satisfy (hSeq).

Proof The existence of the sequences (6.84) that satisfy (i) and (ii) with 4; | O follows
directly from the definitions (6.58). Notice that (6.87) implies that we can pick C; > 0 for
which we have the uniform bound

19ill2 +1zi] 2 < € (6.90)

for all j € N. In particular, after taking a subspace we obtain (iii). In addition, item (ii) of
Proposition 6.1 implies that also

2) 2
o2, L 87w, HLz <G 6.91)
for some C, > 0 and all j > 0, which implies (iv). O

Lemma 6.9 Consider the setting of Proposition 6.6. There exists a constant K| > 0 so that
Jorany 0 < § < &, the function V, defined in Lemma 6.8 satisfies the bound

Vil g2 < K1 (). (6.92)
Proof Item (iv) of Proposition 6.1 implies that
Lompl Vil = TulYs +8V5], (6.93)
which we rewrite as
Lempl Vil = 0T [Vi] = To Y. (6.94)

The lower-semicontinuity of the L?-norm under weak limits implies that

1Vall 2 + 87 (W29, Ty | < (®), (6.95)

while Lemma 3.12 implies that
1T Y2 + 87 (WY, TY)| < Cluo). (6.96)
The desired bound hence follows directly from Corollary 3.2. O

Lemma 6.10 Consider the setting of Proposition 6.6. There exists a constant K| > 0 so that
Jorany 0 < & < &, the function W, defined in Lemma 6.8 satisfies the bound

[Well g2 < K129 (8). (6.97)
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Proof Ttem (iv) of Proposition 6.1 implies that
W, = T'YH, (6.98)

for some H, € H? that satisfies the identity

Lo = [Z, + $W,] = [Z, + 3TV H,). (6.99)
In particular, we find
ComplH,] = 8TV H,] = Z,. (6.100)
The lower-semicontinuity of the L2-norm under weak limits implies that
1Zallz2 + 871 |(WL, Z4)| < n(3), (6.101)
Proposition 3.2 hence yields
I Hill g2 < CL(d). (6.102)
The desired bound hence follows from (6.98) and Lemma 3.12. O

The next result controls the size of the derivatives (v';, w;.), which is crucial to rule out
the leaking of energy into oscillations that are not captured by the relevant weak limits. The
key novel element here compared to the setting in [1] is that one needs to include 3% v jin the
bound. Our preparatory work enables us to measure this contribution in a weighted norm,
which allows us to capture the bulk of the contribution on a compact interval.

Lemma 6.11 Consider the setting of Lemma 6.8 and pick a sufficiently small n > 0. There
exists a constant Ky > 1 that does not depend on 0 < § < 8¢ so that the inequalities

/
H Wi

2
il < m bl ol + ool )

7 2 2 2
o = K[+ s [+ s

(6.103)

hold for all j > 0.

Proof Using the representation in item (i) of Proposition 6.1, we expand the identity

(La;vj = 8vj, v Vi) e = 0y Vie, V)12 (6.104)
to obtain
cx (Vg Vi V) 2+ 0 v v 2 = =800 v )+ (0P 0, 0)) 2+ () 8/ (B ) o

. : 5
+(Len,; v, Vh, v;.)Lz.
(6.105)
Applying (4.24) together with item (iii) of Proposition 6.1, we note that
|(Lc;hj[vj]7 V/%U}>L2| = |(ez_,’l Lc:hj [Uj], le;V/,ZU})L2|
—1 . 2.7
< HeZzz Lo;hj[v,]‘L% ViV r (6.106)

/

< il + vl 21 ]

v 5
L;
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Using the identity (8@ v;, v}) 12 = 0 together with the lower bound yhzj > [Cé]’l we may
hence compute

2
leal (V) V)2 < lexl Colyy vy ) 12

= & il o)+ Dol o] o+ Dol 3]
n
ool [, |
(6.107)
Recalling the bound ||a||L% <|lall;2 fora e L? and using ¢, # 0, we find
il = ol + il + ol ). @10
L n L
Dividing through by H v} H L and squaring, we obtain
2 2 2 . 2
5], = cs[ Dusls + Dol + ovusli; | (6.109)
The same procedure works for w; O

We are now almost ready to obtain lower bounds for || Vi || ;71 and || W || 71, exploiting the
fact that our nonlinearity is bistable. The next technical result is the analogue of the inequality
(0Pu, u) 12 < O used in [1]. Due to the non-autonomous coefficient in front of the second
difference, we obtain localized correction terms that need to be controlled.

Lemma 6.12 Suppose that (Hg) and (H®..) are satisfied. There exists a constant K > 0 so
that for any v € H' and any 0 < h < 1, we have the one-sided inequality

(2P, < K[ [ v] 3, + i3, ] 6.110)

Proof Using (A.2) we compute

—(y; 70Pv,v)2 = —<y,:za—a+g, V)12
(@%v, 0% [y, vl 2
= (0%, 3 [y, AT W) 2 + (0T v, y, 20 F0) 12

6.111
— (@0, 0y, AT oD 2 + (00, (7 — Doy 1D
+(0%v, 8% V)2
> (@0, 9% [y, 21T w2 + (00, (3, 2 — Dato) 2.
The result now follows from (4.24) together with the pointwise exponential bounds
i =1+ |o* )| = Clean. 6.112)
]

Lemma 6.13 Consider the setting of Proposition 6.6. There exists constants Ky > 0 and
K3 > 0 so that for any 0 < § < &g, the functions V, and W, defined in Lemma 6.8 satisfy
the bounds

IVell2, > K3 — Kau(8)2,

Il W*”H‘ > K3 — K4,u,adj(8)2, (6-113)

@ Springer



Journal of Dynamics and Differential Equations (2022) 34:1679-1728

1725
Proof Pick m > 1 and @ > 0 in such a way that
Vi, (g (Ws(D) < — (6.114)
holds for all |t| > m. This is possible on account of the uniform lower bound th > [Ci]’1
and the fact that ¢’(0) < 0 and g’(1) < 0.
We now expand the identity
(thvj—évj,vj)Lz:(yj,vj)Lz (6.115)
to obtain the estimate
(yjsvj)2 = —C*(v;, V)2 —8(vj, vj),2
0P, v)) 2+ (1,28 (Wvj, v)) 2 (6.116)
+(Lesn,Lvjl vj) 2.
Using (v, vj);2 = 0, Lemma 6.12 and item (iii) of Proposition 6.1, we find
i = G0 v s + i[5 T+ (28 (Wovj. v))
= G [a*v, !ILz +| g !Iy ] (6.117)
—a v, ||L2 +¢5 )2 |”J(t)| dr.

Using the basic inequality

o 1
xy = (Vax)(y/v/a) < Exz + Zyz, (6.118)
we arrive at

;" o dr = o |, ||iz - <y2/', vj)p2 ,
_Cé[ H8+vj ||L,27 + ” vj HL%]
> v, - Iilee il
(6.119)
—Cz[ll8 v/||Lz+||v/||Lz]
o Hyj I

"2l + i
Multiplying the first inequality in (6.103) by 2(11 %y We find

« 12 ak,
> — ||v:
T 2(14+Ky I

2 2 2
v s Il = a3 — il

. (6.120)
Adding (6.119) and (6.120), we may use the identity
K
A S (6.121)
2 2(1+Ky) 2(1+Ky)
to obtain
2 2 2
(O |”J(T)| dt = 2(1+K2)[|| JHL2 ”;‘ ] Cs ||yj||L2

_CS[ ” 8+UJ ” L2 + H vj ||L2 ] (6.122)
2(1+K2) - G5 ”yj ”L2
=i lato |5 + i : 1
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Forany M > 0 and a € L? we may compute
||a||%% = [e~la(r)2 dr

e M a2, + [, e la(e)? dr (6.123)
e M a2, + ¥, a(0)? dr.

IAIA

/
Vj

Exploiting |3t v;| ,and [[v;] ;i = 1, we hence see

L

L? S ‘
2 _
[oill s + l%os] L < e72 + M vil@?2de + M [0t 1(0)2dr. (6.124)
In particular, by choosing M > m to be sufficiently large, we find

€5 S0 oy dr = & 7, o o] dr
ez — Cs 1 £l (6.125)
—Cé[ff"M[f’*vj](t)zdr + ™, v,-(r)2dr]_

‘We hence obtain
2
Col IMtor @ de + My v dt] 2 e — G illh. ©126)
In view of the bound

timsup [y, 7. < (8>, (6.127)
j—oo

the strong convergences v; — V; € L*([—M, M]) and dtv; —> V] e L*>([—M, M]) imply
that

Vil = 1Ce17 Ciu(8)?], (6.128)

o
4(1+ K»)

as desired. The bound for W, follows in a very similar fashion. O

Proof of Proposition 6.6 For any 0 < § < 1, Lemma’s 6.9 and 6.13 show that the function V,
defined in Lemma 6.8 satisfies

K18 = 1Vill3, = K3 — Kapu(8)?, (6.129)

which gives (K 12 + K4) ;L(S)2 > K3 > 0, as desired. The same computation works for ,uadj,
but now one uses Lemma’s 6.10 and 6.13. O
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A Auxiliary results

In this short appendix we collect several useful results from [4] that are used throughout this
paper. In particular, we recall a number of basic identities related to discrete differentiation
and integration in Sect. A.1. In addition, we formulate some useful bounds for the gridpoint
spacing function yy in Sect. A.2.

A.1 Discrete calculus

Recalling the notation introduced at the start of Sect. 5, a short computation yields the basic
identities

0%a=09%0"a, 079% = sT[0Pal, (A1)
together with the product rules

dt[ab]l = 0taTth +adth,
3°lab] = 8°aT*b + T~ ad’b, (A2)
9~ [ab] = [0~ alb + [T—a]a—b,

which hold fora, b € Zﬁo. As in [4, Sect. 3.1], these can subsequently be used to derive the
second-order product rule

3P[ab] = (0Pa)b + dFadtb 4+ 0~ad~b + adPb. (A3)

Recalling the discrete summation operators (2.25), one can read-off the identities

8+[Za]jh =ajp, 8_[251]1.,1 =—aj (A4)

—:h +;h

for a € ¢'(hZ; R). In addition, the discrete summation-by-parts identity

Zba+a =aT b— Zaa’b (A5)

—:h —:h

holds whenever a, b € Z%; see [4, Eq. (3.13)].

A.2 Bounds for yy

Forany U@, U® e Qj., the gridspace function yy defined in (5.1) admits the identity
Yo — Yy@ = —lvp@ + yyw1 1 @U@ + 30U ®)@30U® — 30U @);  (A6)

see [4, Eq. (C.4)]. This can be used [4, Cor. D.2] to obtain the Lipschitz bound

”Vwm — Yy ”Zz <K H3+U(b) _ 3+U(a) A7)

q
lh

for ¢ € {2, oo}, where K depends on k but not on A. In addition, it can be exploited to
compute the following bounds concerning discrete differences of powers of yi.
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LemmaA.1 ([4,Lem.D4]) Fix0 <k < % Then there exists K > 0 so that for any h > 0
and any U € Qp.,, we have the pointwise estimates

ot y31+ 2000 U1 < Ka[[o@U + T [0 U[ ],
ot 1+ g 0UsT@u)| < kil [s@U + T 3P Uf ],
0 1 - USR] < KAl [pPU +THpPUP ] A8
07121 = 275 400U s 10| < Kh[ [0 U + T [3PU[ |,
dl g

071y - 4y 00U st U] < ki [0 U + 1+ |9 U|
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