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Data-Driven Variable Impedance Control of a Powered Knee-Ankle
Prosthesis for Adaptive Speed and Incline Walking

T. Kevin Best, Cara Gonzalez Welker, Elliott J. Rouse, and Robert D. Gregg

Abstract—Most impedance-based walking controllers for pow-
ered knee-ankle prostheses use a finite state machine with
dozens of user-specific parameters that require manual tuning
by technical experts. These parameters are only appropriate
near the task (e.g., walking speed and incline) at which they
were tuned, necessitating many different parameter sets for
variable-task walking. In contrast, this paper presents a data-
driven, phase-based controller for variable-task walking that
uses continuously-variable impedance control during stance and
kinematic control during swing to enable biomimetic locomotion.
After generating a data-driven model of variable joint impedance
with convex optimization, we implement a novel task-invariant
phase variable and real-time estimates of speed and incline to
enable autonomous task adaptation. Experiments with above-
knee amputee participants (N=2) show that our data-driven
controller 1) features highly-linear phase estimates and accurate
task estimates, 2) produces biomimetic kinematic and kinetic
trends as task varies, leading to low errors relative to able-bodied
references, and 3) produces biomimetic joint work and cadence
trends as task varies. We show that the presented controller meets
and often exceeds the performance of a benchmark finite state
machine controller for our two participants, without requiring
manual impedance tuning.

Index Terms—Prostheses, Impedance Control, Optimization

I. INTRODUCTION

To perform activities that require net-positive energy, such
as ascending ramps and stairs, passive prosthesis users must
supply supplemental power from intact joints [1], leading to
secondary complications including increased energy expendi-
ture [2], osteoarthritis [3], [4], and lower back pain [5]. While
powered prostheses can help avoid these complications by
performing net-positive work [1], [6]–[9], designing prosthetic
control systems for diverse environments remains a challenge.

Impedance control is a common strategy in lower-limb
wearable robotics because of its simplicity and ability to
produce behaviors that are similar to human biology, such
as a compliantly controlled interaction with the ground [10]
and dynamics similar to what has been observed in skeletal
muscles [11]. Further, empirical studies have shown that ankle
joint dynamics during walking are well described with an
impedance controller [12]–[14]. A standard impedance con-
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troller calculates joint torque τ based on a joint angle θ and
joint velocity θ̇ as

τ = −K(θ − θeq)−Bθ̇, (1)

where K, B, and θeq are parameters defining the joint’s
stiffness, damping, and equilibrium angle, respectively.

Traditional methods of impedance control for lower-limb
prostheses involve segmenting the gait cycle into discrete sub-
phases, where each sub-phase has its own constant values
of K, B, and θeq. Researchers manually tune the impedance
parameters in each sub-phase until the observed gait is sat-
isfactory [6], [15]–[19]. Switching between sub-phases is
controlled by a finite state machine (FSM) with transition
criteria based on sensor readings (e.g., elapsed time, leg
loading, joint angles, etc.). Like the impedance parameters,
these transition criteria are often experimentally tuned for
an individual’s gait by a technical expert. More elaborate
impedance value representations have been suggested [19]–
[22], but these methods still required manual, expert tuning.

Joint kinematics and kinetics vary based on the ground
incline and walking speed [23], [24] (together termed the
user’s task). Therefore, the necessary impedance parameters
and state machine transition criteria also vary. For a standard
FSM impedance controller to operate over a wide array of
tasks, many tunable parameters are required. For example,
one multi-modal impedance controller required a total of 140
tunable parameters for five ambulation modes [20]. While only
a portion of these parameters were considered necessary to
tune, the device’s configuration and tuning still required the
researchers up to five hours to complete.

In contrast to the standard FSM-based impedance control
paradigm, some authors have suggested using continuous
functions to define the impedance parameters and how they
evolve over the gait cycle [25]–[28]. In general, controllers
that continually vary a robot’s output mechanical impedance
with time are known as variable impedance controllers [29].
Biomechanical principles suggest that human joints behave
like variable impedance controllers [30] and empirical studies
have observed this behavior at the ankle joint during walking
[12]–[14]. Therefore, variable impedance control may offer a
biomimetic solution for controlling powered prosthetic legs.
However, how to appropriately define the variable impedance
functions to realize walking gaits remains an open question.

A variable impedance controller was suggested in [26] using
linear functions for stiffness and damping during stance. The
linear functions were hand-tuned and held constant regard-
less of task. The variable impedance control method in [25]
eliminated tuning altogether by using able-bodied kinematic
data to generate continuous impedance parameter functions
of gait phase. However, this method was limited to the knee
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joint, did not consider joint kinetics, and was never experi-
mentally validated. Recently, [27] proposed a similar variable
impedance controller where ankle stiffness and damping were
defined as polynomials in gait phase, and the coefficients defin-
ing the polynomials were identified using constrained least
squares with an able-bodied kinematic and kinetic dataset.
The authors utilized piecewise-constant equilibrium angles and
demonstrated continuous stiffness and damping expressions
that produced satisfactory gait with a post-optimization tuning
protocol. This work was later extended to include variable
inclines and a phase variable parameterization of stiffness and
damping based on the phase portrait of the thigh angle and
its integral [28]. However, this phase variable is known to
have challenges with non-steady walking [31], and changes in
impedance associated with walking speed were not considered.
The authors of [28] also note that their method of identifying
the impedance parameters is non-convex, which does not
guarantee a globally optimal solution [32] for their controller.

This paper addresses these limitations by presenting a new
phase-based, task-adaptive walking controller built on a hy-
brid combination of continuously-variable impedance control
during stance and kinematic control during swing (Fig. 1).
First, we present a convex, data-driven framework to calculate
stance phase joint stiffness, damping, and equilibrium angle as
continuous functions of gait phase, walking speed, and incline
from an able-bodied dataset [24] (Section III). Paired with an
analogous model of swing joint kinematics [23], our hybrid
controller adapts behavior across varying tasks based on real-
time phase, speed, and incline estimates (Section IV). Next,
we present an improved phase variable that avoids kinematic
singularities and is robust to the diverse family of thigh
trajectories associated with variable-task walking. Then, we
perform validation experiments with two above-knee amputee
(AKA) participants, demonstrating that the adaptive controller
produces biomimetic trends in joint kinematics, kinetics, work,
and cadence across varying tasks (Section V). Finally, we show
that our presented controller meets or exceeds the performance
of a hand-tuned benchmark FSM impedance controller in most
tested metrics, suggesting that our optimized kinematic and
impedance models sufficiently capture the key biomechanics
of variable-task walking.

II. RELATED WORK

Many researchers have attempted to lessen the manual
tuning burden of FSM impedance controllers in previous work.
One common approach is to limit impedance control to the
stance phase of gait and use kinematic control in swing phase,
similar to our proposed architecture. Though many have used
this hybrid architecture without a phase variable [6], [33]–[40],
relatively few have used it with one [28], [41]. Phase variable
parameterization can be helpful because it allows continuous
regulation of the dynamic interaction between the user and
the ground during stance and provides the user with indirect
volitional control over foot position during swing [31].

Additionally, some researchers have used biological quasi-
stiffness curves calculated from able-bodied data [33], [37],
[38], [41], [42] in lieu of hand-tuned impedance parameters.

Se
ns

or
s

χ̂
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Fig. 1. A block diagram of the Hybrid Kinematic Impedance Controller
presented in this work. Real-time estimates of gait phase ŝ and task χ̂ define
desired joint impedance parameters K,B, θeq and joint angles θd using data-
driven models. Depending on if the user is in stance or swing, the torque
commands τ are calculated using either an impedance controller or a position
controller, respectively.

While [33], [37], [38], [42] enabled variable-speed walking
and [38] enabled obstacle crossing, these approaches were
limited to level ground and relied on an FSM to switch
between regions of the nonlinear quasi-stiffness curve during
stance. Similarly, a quasi-passive ankle prosthesis presented in
[43] enabled variable-incline walking with limited tuning by
implementing a constant external quasi-stiffness relationship
between the global shank angle and ankle torque. This external
quasi-stiffness relationship was shown to be invariant across
inclines during midstance, obviating the need for real-time
incline estimation. However, this invariant relationship was
limited to midstance and the controller relied on an FSM
with manually tuned behavior for the remainder of the gait
cycle. Further, as the control approach was developed for a
passive prosthesis, it did not provide a method to increase
net ankle work with increasing incline, which is an important
characteristic of able-bodied walking [24]. Finally, this method
was limited to ankle prostheses, and it is unclear whether
the analogous external quasi-stiffness relationship for the knee
during midstance is similarly invariant.

Other researchers have used reinforcement learning (RL)
to automatically tune the impedance parameters online while
a user walks, thus reducing the need for manual expert
tuning [44]–[46]. Reward functions have been built on knee
kinematic similarity to predefined trajectories or the observed
contralateral knee’s trajectories. However, these approaches
were limited to the knee joint only and can require several
minutes of walking before the optimal impedance parameters
are identified. Further, the RL algorithms focused on kinematic
features; the resulting kinetics and overall biomechanics were
not investigated.

Non-impedance-based tuning-free controllers have also
been developed. In [31], [47], [48], able-bodied kinematic pro-
files parameterized by a phase variable (i.e., virtual constraints)
enabled tuning-free walking. This approach was extended for
variable speed and incline walking in [49]. A similar controller
was suggested for stair ascent [50]. However, the purely kine-
matic control paradigm tended to display non-biomimetic joint
torques during stance. Additionally, the tuning-free knee-ankle
prosthesis controller presented in [22] used an electromyog-
raphy signal from the biceps femoris to control knee torque.



3

The ankle impedance controller used a constant stiffness and
damping with an equilibrium angle calculated from the knee
angle. This controller enabled walking, sitting, squatting, and
lunging, but was not demonstrated on different slopes.

Finally, our work is most closely related to the phase-
varying impedance controller derived from able-bodied data
in [28], as discussed in Section I. However, our approach
is distinct in multiple important ways. First, our convex
optimization formulation provides an approximation of the
globally optimal impedance parameter functions. In addition
to global optimality, our convex formulation can be solved
in polynomial time [32] to facilitate future work on real-
time optimization using user data or clinician preference
(e.g., [51]). Second, our variable impedance model includes
a continuous function for equilibrium angle, mirroring the
continuous progression of biological joint dynamics [12]–[14].
Third, our variable impedance model is further parameterized
by walking speed, which is critical to reproducing normative
gait energetics [48]. Fourth, we estimate the task variables
in real-time, making the system fully autonomous. Fifth, we
use a phase variable that is more robust to variable speed
and incline behavior than prior phase variable definitions [28],
[31], [48], [49]. And sixth, we demonstrate that our approach
produces biomimetic trends in joint kinematics, kinetics, work,
and cadence for two novel AKA participants over a range of
tasks without any manual impedance tuning.

III. VARIABLE IMPEDANCE MODEL FOR STANCE

A. Model Framework
To use impedance control for the stance phase of the gait

cycle in a continuous, phase-based control framework, we
require a model analogous to the kinematic model developed
in [23] that describes how the impedance parameters (K,B,
and θeq) should evolve. Specifically, we require the impedance
parameter model to be continuously parameterized by both
gait phase s and task χ = (ν, γ), where task is defined by the
current walking speed ν and ground incline γ over the ranges
0.8 ≤ ν ≤ 1.2 m/s and −10 ≤ γ ≤ 10 deg.

A model that meets these criteria can be constructed from a
linear combination of phase-varying polynomials, where the
linear combination weights vary with the task. Polynomial
functions of phase are useful to model parameter progression
during stance because they are simply parameterized and can
represent arbitrary aperiodic signals. We use fourth order
polynomials (d = 4), as they allow sufficient flexibility to
model the parameter behavior without overfitting. Once the
appropriate polynomial functions are identified for individual
tasks in a dataset, bilinear interpolation can be used to create
a unified, continuous model with task and phase inputs.

First, we define task-specific polynomial functions that
represent how the parameters vary during stance for a set of
fixed tasks. For convenience, let sst be the stance phase (i.e.,
sst = s/sTO, where sTO is the phase at toe-off). Then, the
impedance parameters for the p-th fixed task χp are

Kχp
=

d∑
i=0

kips
i
st, Bχp

=
d∑
i=0

bips
i
st, θeq,χp

=
d∑
i=0

eips
i
st,

(2)

where κχp = {(kip, bip, eip) | i ∈ {0, . . . , d}} is a set of
constant coefficients. Then, the coefficients κνγ defining the
impedance parameter trajectories for an arbitrary task (ν, γ)
are calculated through bilinear interpolation of its four nearest
neighboring tasks κνn,γn , where νn ∈ {ν1, ν2}, γn ∈ {γ1, γ2}.
For all j elements in κνγ , this interpolation is

κjνγ =

[
ν2 − ν ν − ν1

]
(ν2 − ν1)(γ2 − γ1)

[
κjν1γ1 κjν1γ2
κjν2γ1 κjν2γ2

] [
γ2 − γ
γ − γ1

]
. (3)

Finally, using κνγ and (2) evaluated at the current stance
phase sst, the impedance parameters are calculated. Therefore,
the model is fully defined once each task-specific set of
coefficients κχp is calculated.

B. Model Fitting
We use an optimization-based approach to fit the model

to a dataset of able-bodied walking [24]. The dataset con-
tains kinematic and kinetic joint trajectories recorded from
10 participants walking at steady-state at 15 distinct points
in the task space (i.e., γ ∈ {−10,−5, 0, 5, 10} deg, ν ∈
{0.8, 1.0, 1.2} m/s). Therefore, for each task χp, we construct
an optimization problem to identify the set of impedance
parameter coefficients κ∗χp

that, when used in (1)-(2), best
reproduced the mass-normalized joint torques τ in the dataset
given the dataset kinematics (θ, θ̇) over all n data points at χp:

κ∗χp
= arg min

1

n
||τ − τ̂ ||22,

where τ̂ = Kχp

(
θeq,χp

− θ
)
−Bχp

θ̇.
(4)

1) Solution Approximation: As written, (4) is difficult to
solve, as the product Kχp

θeq,χp
is nonlinear in the unknown

parameters, and the overall objective function is non-convex.
To avoid this issue, we solve a similar, convex problem and
use its solution to approximate a solution to (4). First, we
combine the product of Kχp and θeq,χp into a new, higher-
order polynomial δχp with independent coefficients δip:

Kχp
θeq,χp

=
d∑
i=0

kips
i
st

d∑
i=0

eips
i
st =

2d∑
i=0

δips
i
st = δχp

. (5)

By treating the δip terms as independent from the kip terms,
the impedance equation for τ̂ becomes linear in the unknown
parameters kip, bip, and δip. We can then write the modified
optimization problem as a standard quadratic program (QP),
defining a new argument vector x ∈ R4d+3×1 as

x =
[
k0p, . . . , kdp, b0p, . . . , bdp, δ0p, . . . , δ2dp

]>
. (6)

Let αj ∈ R4d+3×1 be defined for each data point j as

αj =
[
−θjs0

j , . . . ,−θjsdj ,−θ̇js0
j , . . . ,−θ̇jsdj , s0

j . . . , s
2d
j

]>
.

(7)

Then, the objective function L(κχp) from (4) becomes

L(κχp
) =

1

n
||τ − τ̂ ||22 =

1

n

n∑
j=1

τ2
j − f>x+

1

2
x>Hx, (8)

where

H =
2

n

n∑
j=1

αjα
>
j , f =

2

n

n∑
j=1

τjαj . (9)
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Fig. 2. Plots of the calculated impedance parameter functions, stiffness K(sst, γ, ν), damping B(sst, γ, ν), and equilibrium angle θeq(sst, γ, ν), for the knee
and ankle, projected onto a speed of ν = 1 m/s. These surfaces show the approximated solution to the original optimization problem (4).

2) Constraints and Regularization: To prevent overfitting,
we added a diagonal regularization matrix R = diag(λ) ∈
R4d+3×4d+3 to H to penalize the L2 norm of x. The n-th
diagonal entries in R corresponding to the regularization
weights on ki and bi were λn = 1e−5 while λn = 1e−2 for
the δi terms. These hyperparameters were chosen prior to the
experiments in order to produce a smooth model that captured
general behavior instead of overfitting to the training dataset.

Next, we added a constraint matrix A to ensure that Kχp
(s)

and Bχp
(s) remained within ranges that were both physi-

ologically realistic and feasible for the prosthesis to render
in a stable manner. Namely, Kχp(s) was constrained above
1.5 Nm/rad/kg and Bχp

(s) was constrained between 0.01 and
1.0 Nms/rad/kg. In addition, AKA participants in preliminary
experiments noted that a low stiffness at heelstrike was unset-
tling, as they were accustomed to a locked knee during early
stance with their take-home prostheses. Therefore, a minimum
heelstrike stiffness constraint of 3.0 Nm/rad/kg was added to
increase participants’ confidence that the prosthesis was ready
for weight acceptance at heelstrike.

To enforce these constraints, we discretized stance phase
into nj points in the range [0, 1]. We constructed a constraint
matrix A ∈ R3nj×4d+3 from sub-matrices As ∈ Rnj×d+1 as

As =

 s
0
1 . . . sd1
...

. . .
...

s0
nj

. . . sdnj

 , A =

−As 0 0
0 −As 0
0 As 0

 . (10)

A column vector b ∈ R3nj×1 contained nj copies of the min-
imum stiffness and damping and maximum damping values,
with the first term modified for the heelstrike constraint:

b = −
[
3.0, 1.5, . . . , 1.5, 0.01, . . . , 0.01,−1.0, . . . ,−1.0

]>
.

(11)
Finally, we arrived at the full QP, with the positive offset torque

(sum-of-squares) in (8) neglected without loss of generality:

minimize
x

1

2
x>(H +R)x− f>x

subject to Ax ≤ b.
(12)

We solved this QP for each subject and task χp combination
in the dataset (N = 150) using the MATLAB Optimization
Toolbox (R2021b, MathWorks, Natick, MA, USA). Then, we
approximated the solution to the original problem (4) by pro-
jecting the rational function δχp(sst)/Kχp(sst) = θeq,χp(sst)
onto a d-th order polynomial. We assumed the polynomial
order was sufficiently high to approximate the rational function
δχp

(sst)/Kχp
(sst) without significant information loss. This

assumption was validated by the model’s low reconstruction
error, detailed in the next section. Then for each task χp, the
inter-subject mean set of coefficients κ̄χp was calculated for
use as the final model. Trials that did not well-represent the
data, measured by a Variance Accounted For (VAF) below
75%, were discarded as outliers prior to averaging.

C. Modeling Results

Fig. 2 shows the calculated impedance parameter model
projected onto a speed of 1 m/s, which was produced by eval-
uating (2)-(3) with κ̄χp . To quantify the impedance parameter
model’s reconstruction error, we calculated τ̂ for the knee and
ankle over each trial in the dataset using the model:

τ̂ = K(sst, γ, ν) (θeq(sst, γ, ν)− θ)−B(sst, γ, ν)θ̇. (13)

Then, we calculated the root mean squared error (RMSE) in
joint torque over all subjects for each task χp in the dataset
and normalized by the dataset torque’s standard deviation for
χp. This dimensionless metric, which we call normalized re-
construction error Ē, describes how many standard deviations
τ̂ is from the mean dataset torque trajectories, on average.
Normalized reconstruction errors below 1.0 indicate that the
model is able to predict joint torque to accuracy levels similar



5

0 0.5 1

Phase

-20

0

20

40

T
h
ig

h
 A

n
g
le

 (
d
eg

)

(a) Average θth trajectory from [24] (b) Phase variable from [49] (c) Phase variable from this work

Fig. 3. Plots of (a) the mean able-bodied thigh trajectories reported in [24], where positive angles correspond to hip joint flexion, and (b)-(c) the resulting phase
variable trajectories at different inclines. Plot (b) shows the trajectories calculated the previous method described in [49] and Plot (c) shows the trajectories
calculated using the new phase variable presented in this work. The new method shows no phase pause near push-off and improved linearity, especially at
the point of maximum hip extension.

to able-bodied inter-subject variation. Averaged over all tasks,
the knee and ankle normalized reconstruction errors were
Ēk = 0.78± 0.11 and Ēa = 0.58± 0.09, respectively.

IV. HYBRID KINEMATIC IMPEDANCE CONTROLLER

The proposed Hybrid Kinematic Impedance Controller
(HKIC, Fig. 1) is an evolution of the purely kinematic
controller presented in [49]. In the HKIC, real-time phase
and task estimates provide inputs to the impedance model
developed in Section III during stance and the kinematic
model developed in [23] during swing to provide reference
joint behavior. Impedance and position controllers enforce the
respective model outputs, described below. Once configured
with the user’s mass and leg segment lengths, the controller
operates autonomously, requiring neither manual impedance
tuning nor external knowledge of the terrain. The following
paragraphs discuss each component of the HKIC in turn.

A. Task-Invariant Phase Estimation

An estimate of the user’s progression through the gait cycle
is required in order to synchronize the control outputs with the
user’s gait. An ideal version of this estimate (termed a phase
variable) increases from 0 to 1 at a constant rate between
each heelstrike [52]. Similar to [31], [49], the HKIC’s phase
variable ŝ is calculated using a piecewise-linear mapping of the
user’s global thigh angle θth, which has a roughly sinusoidal
trajectory (see Fig. 3a). This angle is measured directly using
an Inertial Measurement Unit (IMU, 3DM-CX5-25, LORD
Microstrain, Williston, VT) mounted to the proximal end of
the prosthesis’s knee joint. Mounting the IMU to the prosthesis
instead of the person ensures a rigid connection to prevent
slipping and vibration, which are commonly associated with
soft tissue connections. Proper alignment of the prosthesis
by a prosthetist ensures correct alignment of the IMU. The
θth-based method of phase estimation is preferable because it
allows the user to start and stop the gait cycle at will and
enables non-rhythmic behavior [31].

However, previous iterations of the θth-based phase variable
did not work well for variable-task locomotion because of
assumptions made about the shape of the θth trajectory. For
example, [31], [49] assumed that the θth trajectory could be
divided into two monotonic sections. While this assumption
holds fairly well for level ground and incline walking, it is

invalid for steep declines [24] (Fig. 3a). Previous methods
produced inaccurate, saturated phase estimates for such cases
[49]. Further, previous methods did not account for periods
of low thigh angular velocity (i.e., when the hip joint is most
extended or most flexed), leading to pauses in the phase esti-
mate and subsequent problems in the controller behavior [41],
[49]. Therefore in this work, we relax previous assumptions
and add flexibility to the phase variable to better parameterize
the gait cycle based on the diverse θth trajectories observed
in variable-task locomotion. First, we introduce short periods
of feedforward phase progression that allow ŝ to maintain
a constant positive rate even when thigh angular velocity
is low, which enables a powerful and biomimetic push-off.
Second, we add states to account for thigh trajectories that
have more than two monotonic sections (especially common
during ramp descent) to prevent excessive phase saturation
and gait desynchronization. Third, we introduce a technique
to improve the linearity of ŝ, correcting for previous steady-
state nonlinearities and thus making it closer to an ideal
phase estimate. For brevity, the mathematical details for these
improvements are presented in Appendix A.

To illustrate the benefits of the new phase variable over its
predecessor [31], [49], we conducted a simulation using thigh
kinematic data from [24] (Fig. 3a). For each trial of treadmill
walking in the dataset, we calculated the phase variable using
both the new method (Appendix A) and the previous method
described in [49]. For each incline, we averaged the phase
trajectories over all strides, participants, and walking speeds,
shown in Figs. 3b and 3c. Notably, the new phase variable
eliminated the phase estimate pause associated with maximum
hip extension that was observed with the previous phase vari-
able. The new method also reduced the early saturation seen in
the previous phase variable, which was particularly prominent
at steep ramp declines. Finally, the new method demonstrated
improved linearity, particularly during midstance. Compared
to an ideal linear phase trajectory, the new method showed
6.25% RMSE with R2 = 0.990 while the previous method
showed 7.48% RMSE and R2 = 0.976 over all tasks.

B. Task Estimation

In addition to the phase estimate, the HKIC requires an
estimate of the user’s current task χ̂, which is calculated at
each toe-off (TO) during steady walking. The estimation meth-
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ods below are based on [49], with modifications to improve
performance. Both estimates update once per stride and are
filtered with a moving average over 3 strides to account for
stride-to-stride variation. Although filtering introduces a time
delay in the task estimates, experiments in [49] demonstrated
that this limitation does not prevent the user from continuing
to walk while the estimates converge.

1) Walking Speed: The user’s speed is estimated using a
three-link leg model, comprising thigh, shank, and foot links,
similar to [33], [49], [53]–[55]. Using forward kinematics and
inputs from the joint encoders and the thigh IMU, we calculate
the Cartesian locations of the heel and toe relative to the hip
joint, respectively given by xheel and xtoe. At each TO event,
the forward progression of the hip relative to the foot’s point
of contact with the ground during the previous stance phase
is calculated as

dst = ||xtoe − xHS−
heel ||2, (14)

where xHS−
heel is the value of xheel from the previous heelstrike

(HS). Similarly by assuming a symmetric gait, the forward
progression of the hip relative to the contralateral foot’s ground
contact point over a swing phase is approximated at each HS
as

dsw = ||xheel − xTO−
toe ||2, (15)

where xTO−
toe likewise is xtoe from the previous TO. Then,

we calculate the total forward progression over the gait cycle
as dst + dsw + `foot, where `foot is a constant accounting for
the length of the prosthetic foot. Finally, walking speed is
estimated by dividing forward progression by stride time.

2) Incline: The ground inclination is estimated by the
global angle of the foot θf when the foot was flat on the
ground, similar to the methods presented in [16], [49], [54]–
[56]. As it is undesirable to add an extra inertial sensor to
the foot, we calculate this angle from the thigh IMU using
forward kinematics, along with a correction for foot bending.
Prosthetic feet are designed to deflect for energy storage [57],
so foot deflection significantly impacts the incline estimate.
Offline testing with our prosthesis’s foot [39] (Lo Rider, 1E57,
Ottobock, Duderstadt, Germany) showed that deflection was
correlated with the bending moment in the sagittal plane my .
An on-board 6-axis load cell (M3564F, Sunrise Instruments,
Nanning, China), located at the distal end of the ankle joint,
measures this moment directly. Then, θf is calculated as

θf = θth − θk + θa + θ0
f + kfmy, (16)

where kf is the linear bending coefficient, θk is the relative
knee angle, and θa is the relative ankle angle. All joint angles
are measured positive in flexion and are zero when the user
stands upright. The constant offset term θ0

f accounts for the
angular difference between the prosthetic foot, the cosmesis,
and the sole of the shoe.

To determine when the foot was flat on the ground, the
center of pressure in the foot reference frame `cop is calculated
using the load cell, similar to [49]. We consider the foot to
be flat when 7.5 ≤ `cop ≤ 12 cm from the ankle joint, which
corresponds to the ground reaction force acting between the
middle and the ball of the foot. During this period, θf is
averaged to produce the incline estimate for the stride.

C. Impedance and Kinematic Controllers

1) Stance Impedance Controller: During stance, a variable
impedance controller is used to calculate joint torques. First,
the stance phase estimate ŝst is calculated by

ŝst = ŝ/¯̂sTO, (17)

where ¯̂sTO is the expected value of the phase variable at TO
(see Appendix A for details). Using ŝst and χ̂, joint stiffness
K, damping B, and equilibrium angle θeq are calculated using
(2)-(3) and the model developed in Section III. Then, the
joint torque during stance is calculated with the following
impedance control law, scaled by user mass m:

τst = m
(
K(ŝst, χ̂)(θeq(ŝst, χ̂)− θ)−B(ŝst, χ̂)θ̇

)
. (18)

2) Swing Kinematic Controller: A proportional derivative
(PD) controller uses constant gains kp and kd to directly
track desired joint angle trajectories. This is in contrast to the
equilibrium angles of the impedance controller, which do not
necessarily align with the normative joint angles. A continuous
model of able-bodied joint kinematics [23], generated using
data from [24], provides the desired trajectories defined as

θd(s, χ) =
N∑
i=1

bk(s)ck(χ), (19)

where bk(s) are Fourier series and ck(χ) are Bernstein basis
polynomials. Similar to the impedance model, (19) is evaluated
in real-time using ŝ and χ̂. Then, the PD torque command
during swing, τsw, is given by

τsw = kp(θd − θ) + kd(θ̇d − θ̇). (20)

3) Stance to Swing Transition Smoothing: A time-varying
weight wsw ensures a smooth transition from impedance
control to position control. Because impedance control may
allow the joint angles to vary from their nominal trajectories
depending on how the user loads the prosthesis, this smoothing
is critical to avoid discrete changes in joint torque. At TO, wsw
increases from 0 to 1 over 0.25 s for the knee and 0.05 s for
the ankle. The ankle smoothing is faster because close tracking
of the ankle kinematics during early swing is important for
avoiding toe-stubbing. The actual output to the joint motors is
given by

τ =

{
τst during Stance,
wswτsw during Swing.

(21)

Because the equilibrium angles at heelstrike are close to the
kinematic references at the end of the gait cycle, no smoothing
is necessary for the swing to stance transition.

Close examination of (21) shows that for a brief period just
following TO, minimal control action is applied to the joints.
This is acceptable because the low-impedance actuators used
in our prosthesis [39] allow the joints to continue moving
along their current trajectories according to their passive
dynamics without control input. Passive early swing knee and
ankle dynamics have been shown to produce human-like gait
[58], [59], and these passive dynamics may contribute to the
biomimetic behavior of the controller.
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(a) P1: Overground acclimation (b) P1: 7 deg, 1 m/s (c) P2: 0 deg, 1 m/s (d) P2: -7 deg, 1 m/s

Fig. 4. Photos of above-knee amputee participants P1 and P2 performing various tasks with the HKIC during the experiments.

V. AMPUTEE PARTICIPANT EXPERIMENTS

Experiments with two AKA participants were performed to
investigate the ability of the HKIC to produce biomimetic gaits
over variable tasks. To benchmark the HKIC’s performance
against another well-known controller, we also implemented
a standard, piecewise-constant FSM impedance controller and
tuned it for each participant. The participants completed the
experimental protocol once with each controller, detailed be-
low. Photos of the experiment are shown in Fig. 4 and video
recordings are available for download as supplemental media.

A. Benchmark FSM Impedance Controller

A benchmark Finite State Machine controller (FSMC)
was designed based on the variable-incline FSM impedance
controller presented in [16], with an additional stance state
and modified transition criteria to improve performance (see
Appendix B for details). This controller was chosen as a
benchmark because of its simple construction, widespread
usage [1], and ability to create biomimetic walking gaits when
appropriately tuned [16]. While more sophisticated variants of
the FSM impedance control paradigm have shown stronger
results, such as those that modulate the impedance parameters
based on joint angles or prosthesis axial force [6], [20],
[21], [60], [61], the original version from [16] provides a
valuable benchmark for comparing novel controllers because
its performance and limitations are widely understood [1], [9].
Further, many modern controllers still use FSM impedance
control in some if not all sections of the gait cycle [18],
[19], [34]–[36], [44]–[47], [62], so understanding the HKIC’s
performance relative to the FSMC is scientifically relevant.

The FSMC had 5 discrete states throughout the gait cycle,
each with its own set of constant impedance parameters and
transition criteria. Similar to the methods discussed in the
Introduction, these parameters needed to be hand-tuned by
an expert researcher in order to produce the desired gait.
To enable walking at various inclines, three sets of tunable
impedance parameters and transition criteria were instantiated
for each joint (i.e., one set for level ground, one set for
declines, and one set for inclines). The controller selected
between impedance parameter sets based on the estimated
incline γ̂ (Appendix Fig. 15b). In total, the FSMC required
96 tunable parameters, including 45 impedance parameters per
joint and 6 FSM transition criteria.

TABLE I
PARTICIPANT ATTRIBUTES

ID Sex Age Mass Height Years since Etiology(yrs) (kg) (m) amputation
P1 Male 26 116 1.9 26 Congenital
P2 Male 40 84 1.8 23 Cancer

B. Experimental Methods

Two AKA individuals participated in the experiment, with
attributes shown in Table I. A third participant was enrolled but
was unable to complete the protocol due to excessive swing-
phase lateral whipping caused by prosthetic misalignment. Al-
though we worked with the prosthetist to correct the alignment
multiple times, the prosthesis would become misaligned again
after a short walking bout, possibly due to a combination of
his prosthetic socket and weak femur musculature [63]. We
suspect that the large distal mass of the robotic prosthesis also
exacerbated this problem. Due to this issue, we only present
data from the remaining two subjects in this manuscript.

The experimental protocol was approved by the In-
stitutional Review Board of the University of Michigan
(HUM00166976), and the participants wore a ceiling-mounted
safety harness while walking on the treadmill. For the ex-
periments, the presented HKIC and the comparison FSMC
were implemented on a backdrivable, powered knee-ankle
prosthesis, shown in Fig. 4 and described in depth in [39].
This prosthesis features quasi-direct drive actuators that enable
open-loop joint impedance control.

A licensed prosthetist fit the prosthesis to the participants
and ensured proper alignment. The participants were instructed
on the expected high-level behavior of both controllers and
given time to acclimate to each controller while walking
overground within parallel bars. Importantly, the participants
were not told which controller was expected to perform better
during the experiment. Following this overground acclimation,
five trials with each controller were conducted on an in-
ground treadmill (Bertec, Columbus, Ohio, USA). For safety,
instrumented handrails were provided on either side of the
treadmill. The participants were encouraged to limit body
weight support on the handrails to maximize the realism of
the experiment, which was verified by handrail force data.
Participant P1’s mean handrail usage was under 12% body-
weight and participant P2 frequently chose to use only one
handrail (Fig. 4c-d).
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Fig. 5. Diagrams indicating the locations of the task space sampled during
each trial. Each transparent marker indicates the treadmill’s task feedback,
sampled at 2 Hz. Each black dot indicates the task combination commanded
to the treadmill for a duration of 45 seconds in (a) and 20 seconds in (b).

The first three trials investigated the performance of the
HKIC and the FSMC during steady walking at different speed
and incline combinations. Each trial focused on a range of
small task deviations (±2 deg, ±0.2 m/s) around one of three
baseline tasks: χ = (0 deg, 1 m/s), χ = (5 deg, 1 m/s), and
χ = (-5 deg, 1 m/s). We refer to these steady-state task trials
as SS-Level, SS-Incline, and SS-Decline, respectively. For the
SS-Incline trial, speed was limited to 1.1 m/s to ensure that
the participants could safely perform the trial.

The steady-state task trials began with an acclimation pe-
riod, where the participants walked at the baseline task until
feeling comfortable. During this time, the FSMC was tuned by
the authors of this work to produce a natural gait, incorporating
feedback from the participants and the prosthetist. The authors
have significant experience tuning impedance controllers [21],
[47], [61]. Tuning continued until the authors, prosthetist,
and participant were satisfied with the resulting natural gait
(see Supplemental Video). The time taken to tune the FSMC
was recorded. Note that no tuning was done for the HKIC.
After tuning and acclimation, the participants walked on the
treadmill as it cycled through each of the 5 tasks near the
baseline task, each commanded for 45 seconds. In these trials,
true task feedback was provided to the controllers so that any
errors in the task estimates did not affect the results.

The tuning, acclimation and testing procedure above was
repeated for each baseline task. These baseline tasks were
chosen to be far apart in the task space in order to sample
a wide range of tasks without deviating too far from any one
of the FSMC’s tuning points. Fig. 5a shows the recorded task-
space profiles from the treadmill for each trial, where the black
dots indicate each commanded task.

The latter two trials consisted of more rapid task changes to
investigate each controller’s behavior during continuous task
variations rather than at steady-state and over a wider range
of tasks. Also during these trials, the controllers received no
real-time knowledge of the task from the treadmill, investi-
gating the autonomous capability of each controller to operate
over variable tasks. Both controllers utilized the same task
estimation methods (Section IV-B). The FSMC transitioned
between the tuned impedance parameters sets based on the

estimated incline (Appendix Fig. 15b). In these 2 trials, one
with inclines (CV-Incline) and the other with declines (CV-
Decline), the treadmill started at χ = (0 deg, 1 m/s) and
explored 8 other points within the task space in the range of
[0, 8] deg and [0.6, 1.2] m/s. Each task point was commanded
to the treadmill for 20 seconds. Because the treadmill required
time to change task, smooth task trajectories with continuous
variations were generated, shown in Fig. 5b.

C. Experimental Results

1) FSMC Tuning Time: For the two participants, the FSMC
required on average 30 min of tuning to produce normative
gaits for the three baseline tasks. On average, the level ground
task required 11 min, the incline task required 15 min, and
the decline task required 5 min. Participant-specific tuning
times and tuned FSM parameters are listed in Appendix Table
IV. Trends in the tuned parameters included higher stiffness
values during stance than in swing and highly-varying knee
equilibrium angles across tasks. The observed gait was also
noted to be quite sensitive to the tunable FSM transition
criteria. Significant variance in the required tuning time for
the different tasks was also observed.

2) Steady-State Trials: The kinematic and kinetic trajec-
tories produced by the HKIC during the steady-state trials
highlight its ability to reproduce normative biomechanics
over variable tasks (Fig. 6). Bilinear interpolation was used
to generate the able-bodied reference trajectories for tasks
between those reported in the dataset [24]. The observed
HKIC trajectories show strong similarity to the able-bodied
references, particularly at the ankle. Knee moments are the
most different relative to able-bodied for both the HKIC and
the FSMC. The separation and trends seen in the HKIC closely
resemble those observed the able-bodied data, suggesting
appropriate adaptation in response to variable-task walking.

We quantified the similarity between the observed and able-
bodied trajectories during stance and swing, showing that the
HKIC produced a low RMSE in most metrics (Fig. 7). Stance
and swing were treated separately to isolate the performance
of the novel impedance parameter model (Section III), as it
was only used during stance. The first 15 seconds at each task
were neglected to allow time for the treadmill to reach steady-
state. Unless otherwise specified, we present inter-participant
averages and calculate standard deviations using lumped par-
ticipant strides. Individual RMSE values for each participant
were similar to the inter-participant averages and are available
in the Appendix (Table V). The low RMSE values suggest
that, in addition to replicating normative trends as task varied,
the HKIC produced kinematics and kinetics that were close to
the reference values. Further, the HKIC’s performance was as
good as or better than the hand-tuned FSMC’s performance
in seven of the eight metrics. The high knee kinematic error
during swing can be attributed to the intentional early knee
extension meant to improve user confidence (see Appendix
Section A2) and it did not result in adverse gait effects.

Inter-participant spatiotemporal gait metrics also showed
similarity to able-bodied data [24]. Both controllers elicited
lower cadence gaits (equivalently longer stride length gaits)
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was ready for weight acceptance.

compared to able-bodied, but show generally similar trends of
increasing cadence with walking speed (Fig. 8). Additionally,
the stance time symmetry ratio rSTS was calculated using the
ground reaction force data, defined as the ratio between the
average prosthetic stance time and the contralateral limb stance
time. The mean and standard deviation over the steady-state
trials of both participants were rSTS = 0.902 ± 0.017 for the
HKIC and rSTS = 0.892 ± 0.016 for the FSMC. Note that
due to a recording error, symmetry data was not available
for participant P1’s HKIC SS-Decline trial. Both controllers
produced a slightly more symmetric gait than average AKA
participants with passive prostheses (rSTS = 0.784, reported in
[64]), but less symmetric gaits than able-bodied people (rSTS
= 1.02, reported in [65]).

The HKIC also produced trends in joint work across variable
tasks that were consistent with able-bodied data (Fig. 9). As
one of the benefits of impedance control is the ability to control
energy exchange with the environment [10], the HKIC should
be able to replicate this biological behavior. The HKIC showed
similar trends as the able-bodied data, with a linear increase
in net work performed with increasing incline, particularly
at the ankle (increase of 0.0337 J/kg/deg, R2 = 0.982).
For comparison, able-bodied ankle work increases linearly at
0.0335 J/kg/deg with R2 = 0.987. The HKIC also increased
total work with increasing speed in a manner consistent with
able-bodied data, though the work differences between the
slow and fast speeds are minor for the able-bodied reference.
In contrast, the net work performed by the FSMC decreased
with speed and appeared discretized to three levels with respect
to inclines, corresponding to its tuned tasks. Interestingly,
the HKIC and FSMC showed less energy absorption at the
knee during declines, which may reflect the habitual aversion
to early stance knee flexion commonly observed in AKA
populations [66], [67].

3) Continuously-Varying Trials: The continuously-varying
trials demonstrated the HKIC’s ability to autonomously adapt
behavior to the sensed walking speed and ground incline.
The kinematic and kinetic errors were calculated in a similar
manner for the continuously-varying task trials, though this

0.8 1 1.2
Speed (m/s)

80

100

120

C
ad

en
ce

 (
S

te
ps

/m
in

) -5 deg

0.8 1 1.2
Speed (m/s)

80

100

120
0 deg

0.8 1 1.2
Speed (m/s)

80

100

120
5 deg

AB FSMC HKIC
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similar cadence trends as the able-bodied reference (AB) calculated from [24],
with increasing step frequency with increasing speed. Overall, the participants
preferred longer strides relative to able-bodied, which may be due to the larger
mass of the powered prosthesis.

TABLE II
TASK ESTIMATE RMSE OBSERVED DURING THE CONTINUOUSLY-VARYING

TASK TRIALS AVERAGED OVER LUMPED PARTICIPANT STRIDES

Trial Controller Incline (deg) Speed (m/s)

CV-Incline HKIC 0.61± 0.58 0.10± 0.07
FSMC 1.81± 1.42 0.11± 0.06

CV-Decline HKIC 0.66± 0.42 0.11± 0.07
FSMC 1.03± 0.68 0.12± 0.07

time including strides that occurred during task transients. Fig.
10 shows the inter-participant average error trajectories at both
joints for the CV-Incline trial, calculated as the able-bodied
references subtracted from the observed values. Appendix
Table V details the participant-specific stance and swing
kinematic and kinetic RMSE for both the CV-Incline and
CV-Decline trials. Aside from the late-swing knee kinematics
(discussed above), the HKIC shows low errors throughout
the gait cycle, particularly at the ankle joint. Further, the
magnitude of the FSMC’s error is larger than the HKIC’s
for most of the gait cycle, highlighting the importance of the
HKIC’s continuously-adaptive nature.

As both controllers received no external task input during
these trials, the task estimates (and the phase estimate for the
HKIC) contributed to the kinematic and kinetic errors. The
task estimate RMSE, averaged over each stride and participant,
is shown in Table II for each trial. Although the same task
estimation algorithms were used with both controllers, FSMC
showed higher incline estimate error, suggesting that differ-
ences in controller behavior may have impacted the incline
estimate’s efficacy. Additionally, the average phase estimate
trajectories produced by HKIC during the CV-Incline and CV-
Decline trials were highly linear (mean R2 = 0.989) and
accurate (mean RMSE of 6.157%), even as speed and incline
varied (Fig. 11). However, the phase estimate saturated more
often for participant P2 than participant P1, suggesting that
participant P2’s thigh trajectory was less similar to able-bodied
trajectories than participant P1’s.

VI. DISCUSSION

A. HKIC Performance

This work presented a data-driven, phase-based walk-
ing controller for a powered knee-ankle prosthesis that au-
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Fig. 10. Plot of the inter-participant average kinematic and kinetic error
trajectories in the continuously-varying incline trial, relative to able-bodied
data [24]. The knee data is shown in the left column and the ankle in the
right. Shaded regions represent ±1 standard deviation over lumped participant
strides. Aside from intentional discrepancies in the late-swing knee kinematics
(see Appendix Section A2), the HKIC showed low RMSE across the gait cycle
throughout varying tasks, suggesting appropriately adapting biomechanics.

tonomously adapted its behavior across a continuous range of
walking speeds and inclines. To achieve this without manual
impedance tuning, we used an able-bodied dataset to opti-
mize for continuous stiffness, damping, and equilibrium angle
functions that reproduced biological stance joint torques, given
biological kinematics. In an initial offline analysis, we showed
that our optimized impedance parameter model produced joint
torques with across-task average normalized RMSE values
of 0.78 and 0.58 for the knee and ankle, respectively. The
low normalized RMSE suggests that the model captures the
essential joint dynamics of able-bodied walking.

The subsequent experiments with two AKA participants
demonstrated that the identified impedance parameter func-
tions also rendered appropriate stance phase joint mechanics
when used for real-time control in the HKIC. Other normative
walking features were observed, such as increasing ankle work
with increasing incline (Fig. 9) and increasing cadence with

walking speed (Fig. 8). Although the kinematic and kinetic
profiles produced by the HKIC had small differences relative
to able-bodied data (Figs. 6-7), the participants exhibited qual-
itatively normal gait patterns over a wide array of tasks (see
Supplemental Video). Kinematic and kinetic trends emerged
with variable speeds and inclines that were consistent with
able-bodied data (Fig. 6), including appropriately varying peak
ankle moments, stance ankle kinematics, and knee stance
kinematics. Knee swing kinematics showed the highest error
for the HKIC, which was expected because we intentionally
allowed the phase variable to saturate early to ensure full
knee extension prior to heelstrike. Pilot testing showed that
consistent full knee extension helped eliminate participants’
problematic instinctive compensations and promoted confi-
dence that the prosthesis was ready to accept weight (see
Section A2). Small phase shifts result in large swing kinematic
errors due to the large knee range of motion, and although
the error values appear large, they did not interfere with the
participants’ gait or cause toe-stubbing.

Appropriate kinematic and kinetic adaptation are both prac-
tically and clinically important for the user. For example, knee
swing kinematic adaptations enable the prosthesis to have the
proper configuration at heelstrike as incline varies. Without
such adaptations, the user may, for example, toe-stub during
swing when walking uphill with level ground kinematics, or
vise versa, experience too much flexion to enable heelstrike
at the desired time. Further, kinetic adaptation during stance
enables increasing peak ankle moments for propulsion as
incline and speed increase (Fig. 6). Improper joint kinetics
can cause improper ground reaction forces, which can affect
user balance [68]. Finally, appropriate kinematic and kinetic
co-adaptation enables joint work adaptation, even in cases
where both kinematics and kinetics deviate from able-bodied
normative trajectories. For example, the HKIC’s peak ankle
moment at a 7 deg incline is slightly smaller than able-
bodied (Fig. 6). However, a corresponding increase in peak
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plantarflexion angle allows the HKIC to maintain appropriate
ankle work (Fig. 9). Biomimetic energy injection is important
to prevent compensations from other joints and additional
health problems [3]–[5], [41].

Qualitative remarks by the participants also testified to
the biomimetic task adaptation of the HKIC. Participant P1
remarked while walking at the seven deg incline that he did not
feel like he was walking uphill, suggesting appropriate joint
dynamics and energy exchange. Participant P2 remarked that
he did not even notice that the treadmill had transitioned to the
2 deg decline and that he could “climb up much easier” while
ascending steep inclines. These anecdotal remarks further
support the claim that the HKIC adapts to changing tasks
to produce normative able-bodied biomechanics, which could
result in many practical benefits for the user. For example,
the biomimetic energy injection at steep inclines (Fig. 9) may
allow users to walk uphill for longer before fatiguing.

While the FSMC’s performance was not drastically worse
than the HKIC’s in the tested metrics, it required on average 10
minutes of tuning per tuned task. Although only 3 tasks were
tuned for this study, practical deployment of the FSMC would
likely require many more tasks to be tuned. For example,
participant P2 noted that the FSMC was “kicking off way
too hard” when going uphill at slow speeds, but was happy
with its behavior at normal speeds, suggesting that more
speed-specific impedance parameter sets could be beneficial.
However, adding more tuning points is likely impractical in a
clinical setting, especially without specialized equipment such
as a variable-incline treadmill. Therefore, the HKIC’s potential
to produce biomimetic behavior over varying tasks without
manual impedance tuning is a significant benefit.

For online implementation of the continuous impedance
parameter model, gait phase needed to be estimated in real-
time. The improved phase variable behavior observed in
simulation in Section IV-A was confirmed in the participant
experiments. Fig. 11 shows how the phase variable eliminated
the previously observed phase pause near push-off. The result
of this monotonicity is visible in the kinematics of Fig. 6, as
there is not a pause in the kinematic trajectories near push-off,
which was observed previously in [49]. Further, the general
linearity of the average phase trajectories in Fig. 11 (mean
R2 = 0.989) is improved compared to [49]. Because both the
impedance and kinematic models in HKIC assume a perfectly
linear phase estimate, the observed linearity keeps the model
outputs of the controller synchronized with the user’s gait.
Additionally, Fig. 11 shows that participant P2’s phase variable
saturates at 1 earlier in the gait cycle than participant P1.
This occurs because the methods used to estimate the thigh
trajectory features (Appendix Section A2) prioritize phase
saturation (and subsequently full knee extension) to promote
participant confidence. This early phase saturation suggests
that P2 preferred for the knee to be fully extended earlier
in swing, whereas P1 was satisfied with full knee extension
occurring right before heelstrike, as it does in able-bodied data.

The task estimates are other critical components required
for walking over continuously-varying tasks. Seen in Table
II, the error in the speed estimate was fairly consistent over
the trials, with RMSE between 0.10 and 0.12 m/s for both
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Fig. 11. Average phase estimate progression calculated in real-time by the
HKIC during the continuously-varying task trials for participants P1 and P2.
Shaded regions represent ±1 standard deviation. The linearity and consistency
of the trajectories illustrate the phase variable’s ability to adapt to continuous
task variations and appropriately parameterize the gait cycle.

controllers. This error is likely due to a slightly asymmetric
gait, which violates the assumptions made in the speed estima-
tor’s formulation. Gait asymmetries may be the result of our
participants’ habitual compensations, socket comfort, or the
significant mass difference between the robotic prosthesis and
participants’ passive prostheses. Interestingly, the incline esti-
mate produced lower error with the HKIC (0.61 to 0.66 deg)
than the FSMC (1.03 to 1.81 deg). We speculate that the higher
error in the FSMC is due to a feedback interaction between
incline estimate errors and the impedance parameters. Due to
the discrete switching behavior of the impedance parameters
(see Appendix Fig. 15b), a small incline estimate error can
result in large changes in prosthesis behavior and may affect
the θf and `cop progressions. Therefore, the continuous nature
of the HKIC may be preferable, as it does not display discrete
changes in behavior with small changes in task inputs.

B. Limitations and Future Work

The HKIC and this study were not without limitations. Our
experiment provided a somewhat limited view of the HKIC’s
behavior, as it involved only two participants, each with only
one experimental session (although both had prior experience
walking with the prosthesis). We expect that the data-driven
impedance parameter model identified in Section III will yield
similar performance for a wide array of participants, as it was
created without a priori knowledge of the participants or their
preferences. Preliminary studies of able-bodied users testing
the HKIC over varying tasks suggest that this assumption holds
[69]. However, this assumption should be validated in future
studies with wider AKA participant pools, as the HKIC’s abil-
ity to generalize to the full AKA population remains unknown.
Further, the performance of the HKIC should also be inves-
tigated when implemented on different hardware platforms to
better validate the framework. While the HKIC could in theory
be implemented on any powered prosthetic leg with the ability
to render a variable joint impedance, prostheses with non-
trivial actuator transmissions (e.g., [6], [48]) or series elasticity
(e.g., [21], [61]) would require actuator characterization [70]
and, in some cases, closed-loop torque control to accurately
render variable joint impedance.

Additionally, it is possible that there are users for which
the population average impedance parameters are not optimal.
There may also exist other impedance parameter functions
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that produce normative biomechanics, as the human senso-
rimotor system is highly adaptable [71]–[73]. Participants’
sensitivity to changes in the impedance parameter model
could be investigated in future studies. Additionally, there
may be factors other than those considered in this work
that distinguish the ideal parameter functions, such as user
preference. A study investigating users’ preferred stiffness in
ankle prostheses showed that the preferred joint stiffness varies
by user [74], which is likely true for AKA participants as
well. For example, participant P2 noted that the knee felt
“squishy” when ascending steep slopes and that he would have
preferred it to be stiffer. While one of the major advantages
of HKIC is that it required no manual impedance parameter
tuning, it is currently limited by the lack of an ability to
customize to an individual’s preferred behavior. Future work
will investigate methods to incorporate user preferences in the
impedance model, such as weighting the optimization with
a single baseline personalization for level-ground walking,
as suggested in [75]. This baseline personalization could be
gathered using tools in a standard clinic [51], maintaining the
minimal-tuning nature of the controller.

Our study also did not investigate discrete changes in ground
slope, which may be encountered during daily ambulation
(e.g., wheelchair ramps) and should be handled by a variable-
task walking controller. While [49] showed that the HKIC’s
incline estimation algorithm is stable under discrete incline
changes, our task estimation methods are limited by their
discrete “once-per-step” update nature. Because we detect
incline during midstance, the user must, at a minimum, be
able to complete the first half of stance phase with the previous
stride’s task estimate. This is particularly problematic during
discrete transitions between steep inclines and level ground
walking because the heelstrike kinematics vary drastically
[24]. Future work involving anticipatory algorithms that up-
date the task estimate based on sensed characteristics of the
upcoming terrain [76]–[78] or user behavior [79], [80] may be
necessary to alleviate this limitation.

Further, this work only investigated rhythmic walking over
relatively long durations, though almost half of all walk-
ing bouts in community ambulation contain less than 12
consecutive steps [81]. One of the unique strengths of the
presented phase variable is the ability to intuitively control
non-rhythmic tasks [31]. Although this capability of the HKIC
was demonstrated at the beginning and end of each trial in
this study, it should be explored further and characterized in
future studies involving rapid start/stop, lateral movements,
and other behaviors that are prominent in agile locomotion.
Such studies may also highlight the limitations of using the
current impedance parameter model for non-rhythmic tasks.
Although the participants were able to achieve start/stop
behaviors in this experiment, additional able-bodied data may
need to be included in the optimization to produce appropriate
impedance parameters for other non-rhythmic tasks.

The continuously-adaptive nature of the HKIC may also be
a limitation in some circumstances. For example, participant
P2 noted that while he appreciated that the HKIC always
adapted to the current task, he also preferred the predictability
of the FSMC. We plan to investigate methods to preserve the

flexibility of the HKIC while increasing predictability in future
studies. One way to improve the predictability of the HKIC
may be to increase the training duration to allow the partici-
pants to better acclimate to and leverage the benefits the HKIC
and the powered prosthesis. Perhaps the lack of early stance
knee flexion in both controllers (Fig. 10) and the low knee
energy dissipation (Fig. 9) are less due to controller behavior
and more due to the participant’s habitual compensations
developed through years of using a passive prosthesis [66],
[67]. Future work may show that as the participants become
more comfortable with a powered prosthesis and develop a
stronger intuition for the HKIC’s behavior, these gait features
become more similar to able-bodied data.

Finally, there is much interesting work to be done investigat-
ing the relationship between biological joint impedance mea-
sured in empirical studies [12]–[14] and the impedance param-
eters used in impedance controllers. Mechanical impedance
can only be characterized through perturbation studies, so the
impedance parameters found by optimizing over non-perturbed
gait data will not necessarily reflect these dynamics. We plan
to study the effects of constraining the optimization with
known empirical impedance values, as well as to investigate
the HKIC’s behavior during gait perturbations.

VII. CONCLUSION

This work presented a data-driven walking controller de-
signed to work over a continuum of speeds and inclines. We
developed continuous models of joint stiffness, damping, and
equilibrium angle for an impedance controller using convex
optimization. We also presented an improved phase estima-
tion algorithm, showing increased monotonicity and linear-
ity. Two AKA prosthesis users demonstrated the controller’s
ability to autonomously produce biomimetic behavior over
continuously-varying tasks during treadmill experiments. The
experiments showed that, when compared with able-bodied
data, the presented controller produced biomimetic trends in
joint kinematics, kinetics, work, and cadence, indicating its
ability to render appropriate joint mechanics as task varied.

APPENDIX

A. Task-Invariant Phase Variable Algorithm

The new phase variable ŝ is calculated through a series of
linear equations with θth as an input. An FSM controls when
each equation is used. Although the FSM contains discrete
states, the structure of the linear equations ensures that ŝ is
continuous. Each equation is defined by quantitative features
of the θth trajectory, which are measured in real-time. Table
III lists the features’ definitions and notations. First, we give
the rationale for each FSM state and its corresponding phase
variable equation. Then, we present methods to estimate the
thigh trajectory features in real-time, as well as the steps taken
to promote closed-loop stability of the phase estimate.

1) Phase Variable FSM: Consider the average θth trajectory
for an able-bodied individual walking at 1 m/s on level ground,
shown in Fig. 12. The pertinent θth trajectory features used in
the phase estimate are labeled, as well as the standard timing
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of the FSM states. The overall structure of the FSM used to
control the phase estimate is shown in Fig. 13.

The FSM begins in S1, occurring just after a heelstrike (HS)
event. During S1, θth is linearly scaled as the hip joint extends
from θHS

th to θMHE
th such that ŝ increases and ŝ = sMHE when

θth = θMHE
th . Mathematically, this is given by

ŝ =
θHS

th − θth

θHS
th − θMHE

th
sMHE in S1, S2. (22)

The FSM transitions to S2 at a phase estimate threshold
ŝ1→2 = 0.1, which typically corresponds to the point in the
gait cycle where the θth trajectory becomes linear.

In S2, ŝ is calculated using the same linear relationship as in
S1 (22), but is denoted as a distinct state because it represents
a portion of the gait cycle where θth (and therefore ŝ) has
constant velocity. The average rate of change of ŝ during S2
( ˙̂sS2) is recorded for use in S3. The FSM transitions to S3
once ŝ2→3 = 0.9sMHE, which typically corresponds to the end
of the linear portion of the thigh trajectory, or if θ̇th > 0. This
second case rarely occurs during steady walking, but is an
important path to S3 in the event of an unusually short stride.

S3 occurs during the section of the gait cycle where θth
reaches its minimum, and thus has a period of low angular
velocity θ̇th. Previous work has shown that sections of low
θ̇th are problematic because they cause a pause in the phase
variable trajectory [31], [41], [49]. This pause violates the
assumption that ŝ increases monotonically and at a constant
rate, resulting in incorrect kinematic and impedance model
outputs. Therefore, during S3, we decouple ŝ from θth and
instead assume that phase continues progressing at ˙̂sS2:

ŝ = ŝ23 +

∫ ∆t

0

˙̂sS2dτ in S3. (23)

This feedforward phase progression continues until a toe-off
(TO) event. Although this approach limits the user’s ability
to stop phase progression during S3, such cases are unlikely
because stopping would inhibit power delivery from the ankle
during push-off. Moreover, the under-actuated dynamics of
bipedal walking dictate that once the user’s gravity vector
passes anterior of the stance foot, the user must continue
the gait cycle until the contralateral foot lands [68], [82].
Therefore, we expect the sacrifice in direct control of phase
progression during this section of the gait cycle to be negligi-
ble.

After TO, the FSM transitions to S4, where phase is again
estimated via a linear scaling of θth. This mapping is defined
such that ŝ increases from ŝTO towards sMHF as θth increases:

ŝ =
θth − θTO

th

θMHF
th − θTO

th
(sMHF − ŝTO) + ŝTO in S4. (24)

The FSM transitions to S5 when θth is equivalent to the average
of θHS

th and θMHF
th , which typically corresponds to the end of

this linear section of the thigh trajectory.
Two problems typically occurred with the previous phase

variable methods when θth ≈ θMHF
th , which occurs during S5 in

the new FSM. First, a pause in ŝ would occur as θ̇th slowed and
θth approached θMHF

th , similar to the effect seen in S3. Second,
the previous methods assumed that θMHF

th = θHS
th . In cases

TABLE III
SYMBOL DEFINITIONS FOR FEATURES USED TO CALCULATE ŝ

θHS
th θth at heelstrike

θMHE
th θth at maximum hip extension
θMHF

th θth at maximum hip flexion
θTO

th θth at toe off
sMHE s at maximum hip extension
sMHF s at maximum hip flexion
ŝTO ŝ at toe off
˙̂sS2 Average rate of change of ŝ during S2
˙̂sS4 Average rate of change of ŝ during S4
∆t Time since state transition
tMHE Time at maximum hip extension
tMHF Time at maximum hip flexion
t0 Time at heelstrike
tf Time at gait cycle completion
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Fig. 12. The average global thigh angle trajectory θth (positive flexion) for
1 m/s 0 deg able-bodied walking, segmented by the phase variable FSM
states. The phase variable is defined by linear mappings of θth during S1,
S2 and S4, and by a feedforward phase variable rate during S3 and S5. The
feedforward rates for S3 and S5 are given by the average rate of change of
the phase estimates during the preceding states, which correspond to periods
of constant thigh angular velocity.

where θMHF
th > θHS

th , such as the trajectory shown in Fig. 12, the
resulting ŝ would saturate prematurely. Excessive saturation
in the phase variable can cause desynchronization between
the prosthesis and the user, leading to problems such as toe-
stubbing. This effect was most exaggerated during declined
walking, as the difference between θMHF

th and θHS
th was most

pronounced [24]. To avoid both excessive saturation and a
phase variable pause, a feedforward phase progression is again
enforced based on the average phase rate in S4, ˙̂sS4:

ŝ = ŝ45 +

∫ ∆t

0

˙̂sS4dτ in S5. (25)

This feedforward phase rate continues until either a heelstrike
occurs or ŝ = 1. If the user is walking consistently and the
θth trajectory feature estimates are correct, ŝ = 1 should occur
simultaneously with heelstrike, returning the FSM to S1. If
ŝ = 1 prior to HS, the FSM transitions to S6.

S6 is primarily encountered if the user pauses at the end of
the gait cycle, so it does not appear in Fig. 12. During S6, ŝ is
again calculated using a linear scaling of θth, giving the user
volitional control of ŝ through θth:

ŝ =
θth − θMHE

th

θHS
th − θMHE

th
(1− sMHE) + sMHE in S6. (26)

This volitional control during S6 is important because it allows
movements such as kicking and non-steady leg swinging [31].
As in S5, a HS event returns the FSM to S1.
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ŝ > ŝ1→2
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Fig. 13. Flow chart depicting the FSM states and transition criteria used
in the phase variable calculation. States 1-3 (green) occur during the stance
phase and states 4-6 (blue) occur during swing. States where phase is
directly calculated based on thigh angle are shown as squares and states with
feedforward definitions are shown as circles. State 6 is only necessary for
non-steady gait and is typically bypassed during steady walking.

2) Thigh Trajectory Feature Prediction: The θth features
used in (22)-(26) vary from stride-to-stride with changes
in speed, incline, and natural gait variation. Some of these
features are used in the phase estimate calculation before they
occur in the gait cycle, specifically θHS

th , θ
MHE
th , θMHF

th , sMHE and
sMHF. For example, θMHE

th is used to calculate ŝ during S1
and S2, but it does not typically occur until S3. Therefore,
we predict these features in real-time based on observations
from recent strides. At controller initialization, estimates of
the thigh trajectory features are calculated using able-bodied
data [24] and updated as new strides became available. Bounds
were enforced on all estimated feature values to reject atypical
strides and avoid stride-to-stride oscillation in the estimates.

Previous work showed that care must be exercised when
predicting features of the thigh trajectory to prevent unwanted
interaction between the prediction algorithms and the user’s
gait progression. For example, [49] observed that if a simple
moving average was used to calculate θMHE

th , a divergent
behavior occurred that resulted in the user taking progressively
larger strides. To avoid this behavior, the kinematic features
θHS

th , θ
MHE
th , and θMHF

th were estimated with moving average
filters. These filters recorded the feature values from the
previous 5 strides and averaged the median 3 for θHS

th and the
minimum 3 for θMHE

th and θMHF
th . These filters were chosen to

best reject non-representative strides, and the 5-stride window
balanced between filter response time and variance rejection.

Another closed-loop interaction was observed during pilot
studies regarding the predictions of sMHE and sMHF. In cases
when the feature predictors were updating following a rapid
change in task, we observed rare strides where ŝ underesti-
mated the true phase at the end of the gait cycle, causing the
knee joint to not fully extend before heelstrike. Participants
instinctively responded by asymmetrically extending the late
swing portion of the gait cycle to try force the knee to full
extension. Moving average estimates of sMHE and sMHF, like
those used for the kinematic features, caused sMHE and sMHF
to decrease, resulting in further underestimation of ŝ on the
subsequent stride. We suspect that participants behaved this

way because they were accustomed to passive prostheses,
which will collapse upon loading if the knee is not fully
extended. Therefore, new prediction methods were developed
for sMHE and sMHF that favored ŝ saturation over underestima-
tion to combat this instinctive behavior. Let tŝ=1 be the first
time during the stride that ŝ = 1. Then, the sMHE and sMHF
estimates were calculated as

sMHE =
1

2

(
tMHE − t0
tf − t0

+
tMHE − t0
tŝ=1 − t0

)
,

sMHF =
1

2

(
tMHF − t0
tf − t0

+
tMHF − t0
tŝ=1 − t0

)
.

(27)

The first quotient in each line of (27) is the true phase where
θMHE

th and θMHF
th occurred. The second quotient is an upper

bound on this true phase. We average the two so that ŝ favors
saturation and full knee extension in late swing, avoiding the
potential unstable feedback loop with the user’s instinctive
compensations. The results of (27) were likewise low-pass
filtered with an infinite impulse response (IIR) filter to reject
stride-to-stride variation and to prevent step estimate changes.

Finally, to calculate the stance phase ŝst, the expected value
of ŝ at TO, ¯̂sTO, must be estimated. This was calculated with
a minimum moving average filter of ŝTO observed during
previous strides, similar to the thigh trajectory features. The
average window was 9 strides long, as the toe-off phase
exhibits slow changes with task. Like the thigh trajectory
features, ¯̂sTO was initialized from able-bodied data.

Note that some minor aspects of the thigh trajectory feature
estimation algorithms were modified after P1’s experiment to
better accommodate adaptation for users with thigh kinematics
that differ significantly from able-bodied, such as P2. Namely,
the feature estimate bounds were added, the θMHE

th and θMHF
th

filters were changed from moving average to moving minimum
filters, and the ¯̂sTO filter was changed from an IIR filter to a
moving minimum filter. A post-hoc simulation of P1’s data
before and after the minor adjustments showed only a 1.89%
mean absolute difference in phase estimate between methods,
suggesting that the changes would not have had an appreciable
effect on his results. Further, no distinguishable effects were
observed in the able-bodied simulation (Fig. 3c).

3) Phase Variable Linearization: The phase variable de-
scribed above produces a consistent phase estimate trajectory
over each stride during steady walking. This consistency
allows a linearization map to be formed in order to further
improve the phase estimate. Once the θth feature predictions
converged to steady values, the average progression of ŝ was
recorded for each steady walking stride and low-pass filtered
to produce an average trajectory, ¯̂s. The time constant of the
IIR low-pass filter was chosen to be sufficiently slow (19
strides) such that the transients of the θth feature predictors
were rejected. As a further precaution, any saturated portions
of ŝ were discarded prior to averaging, as they diminish as the
θth trajectory feature predictions converge.

The average phase was written as a function of true phase,
given by ¯̂s = σ(s). Although the shape of the thigh trajectory
may cause σ(s) to be nonlinear, it is monotonic during normal
walking. This implies that an inverse relationship s = σ−1(¯̂s)
exists, which can be applied to correct for nonlinearities in
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Fig. 14. Phase variable trajectories from 4 overground walking bouts recorded
while Participant P1 acclimated to the prosthesis between parallel bars. The
phase variable is able to parameterize these non-rhythmic motions, allowing
the participant to start and stop the gait cycle at will.

ŝ. First, σ(s) was fit with a 6th order polynomial σ̄(s) that
was constrained with a minimum slope of 0.2. This minimum
slope ensured strict monotonicity and numerical stability of
the inverse. At each HS event, σ̄(s) was recalculated to
incorporate the previous stride’s effect on ¯̂s. Then the final,
linearized phase estimate was calculated by applying the
inverse map σ̄−1 to the results of (22)-(26).

4) Phase Variable Results: Fig. 11 highlights the new phase
variable algorithm’s ability to parameterize variable-incline
walking, as consistent phase trajectories were produced for
both participants during the continuously-varying task trials.
The feedforward states S3 and S5 allowed for a positive phase
rate, even when thigh velocity was low. Additionally, the thigh
trajectory features were appropriately estimated, allowing a
consistent phase estimates that were independent of the vari-
able thigh trajectories seen with varying inclines. The phase
linearization algorithm ensured highly linear estimates, with
mean R2 = 0.997 for participant P1 and mean R2 = 0.982
for participant P2. Finally, the volitional start/stop behavior
of the phase variable originally shown in [31] was preserved.
Fig. 14 shows the phase variable trajectory for 4 non-steady
bouts during the overground acclimation for participant P1,
confirming its ability to parameterize non-rhythmic motion.

B. Benchmark FSM Impedance Controller

The Finite State Machine controller (FSMC), based on the
FSM impedance controller presented in [16], was constructed
to provide a benchmark with which to compare the HKIC.
The flow of the FSMC’s state machine is depicted in Figure
15. A tunable center of pressure threshold, `∗cop, controlled the
transition from S1 to S2. Then, after a tunable duration, t2→3,
the FSM transitioned to S3. Next, a TO event triggered the
transition to S4. Finally, knee extension (θ̇k < 0) caused a
transition to S5, where the FSM remained until returning to
S1 at HS. During transitions, the impedance parameters were
rate-limited to prevent step changes in torque. In the FSMC,
the torque command was given by (1), where K, B, and θeq
depended on the current FSM state (given in Table IV).

Many methods have been proposed for deciding when to
switch between sets of impedance parameters for different
tasks, including simple threshold methods [16] and more

S2S1
`cop ≥ `∗cop t ≥ t2→3

TO

S4HS

S3

S5
θ̇k < 0HS

(a)

Level
Params

Decline
Params

γ̂ ≥ 3

γ̂ ≤ 2

γ̂ ≥ −2

γ̂ ≤ −3

Incline
Params

(b)

Fig. 15. (a) The structure and transition logic of the benchmark finite
state machine controller. Tunable parameters `∗cop and t2→3 controlled the
transitions from S1 to S2 and S2 to S3, while constant ground contact and knee
velocity thresholds controlled the other three. States in green occur during
stance and blue states during swing. (b) Task transition logic indicating how
the impedance parameter sets are selected based on the incline estimate γ̂.

complex machine learning methods [83], [84]. We employed a
strategy similar to [16] where the prosthesis directly estimated
the ground incline using the method described in Section
IV-B. Then a secondary FSM was used to select between
parameter sets based on the estimated incline γ̂. To prevent
rapid switching between parameters at the boundaries, overlap
was included in the switching thresholds (Fig. 15b).

C. Additional Detailed Results

Table IV lists the results from the impedance parameter
tuning for the FSMC, including the tuned impedance param-
eters, transition thresholds, and tuning times. The stiffness
K, damping B, and equilibrium angle θeq were tuned by
the research team for each of the 5 states (S1, S2, S3, S4,
and S5) at three baseline tasks for each participant. Next,
Table V shows the kinematic and kinetic RMSE values for
each participant during both the steady-state and continuously
varying trials, each separated by stance and swing.
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TABLE IV
RESULTS OF THE IMPEDANCE PARAMETER TUNING FOR THE FSMC FOR BOTH PARTICIPANTS P1 AND P2 AT EACH BASELINE TASK. THE FSMC

CONSISTS OF 5 STATES: S1, S2, S3, S4, AND S5, EACH WITH UNIQUE PARAMETERS.

Participant P1 SS-Level - (0 deg, 1 m/s) SS-Incline - (5 deg, 1 m/s) SS-Decline - (-5 deg, 1 m/s)
Tuning Time 3 min 14 min 5 min
Transition `∗cop 8.00 cm 5.00 cm 10.00 cm
Parameters t2→3 0.091 s 0.190 s 0.061 s
Impedance S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

K
ne

e K (Nm/kg) 2.25 2.00 1.00 1.25 0.75 1.50 1.50 0.75 1.00 1.00 2.25 2.00 1.00 1.00 1.00
B (Nms/kg) 0.14 0.13 0.12 0.07 0.06 0.09 0.09 0.09 0.08 0.07 0.09 0.10 0.10 0.05 0.07
θeq (rad) 0.15 0.25 1.20 1.30 -0.15 0.35 0.25 0.50 1.20 0.30 0.15 0.35 0.75 1.25 0.05

A
nk

le K (Nm/kg) 1.50 3.50 4.50 0.10 0.50 3.50 3.50 4.00 0.35 1.00 3.50 3.50 3.50 1.00 1.00
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