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Abstract: This paper focuses on modeling and controlling a non-signalized heterogeneous
traffic network consisting of Human-Driven Vehicles (HDVs) and Autonomous Vehicles (AVs)
at a macroscopic level. To describe the traffic network’s behavior, we introduce an extended
heterogeneous METANET model wherein each vehicle class’s density and velocity dynamics are
described. To develop traffic control policies, we propose a two-level control structure. At the
higher level, a decentralized Extremum-Seeking (ES) control approach is designed to determine
an optimal density of human and autonomous vehicles so that the average flow within the cell
is maximized. At the lower level, a filtered feedback linearization control approach is designed
to determine the velocity of autonomous and human-driven vehicles such that the density of
each type of vehicle reaches the values set by the upper-level macroscopic controller. Numerical
simulation demonstrates the effectiveness of the proposed approach in managing the traffic flow
of a heterogeneous system.
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1 INTRODUCTION

Traffic jams cost US $87 billion in 2018 (Cookson and
Pishue (2017)). Different control strategies with different
traffic flow models have been developed to manage traf-
fic networks (Lazar et al. (2018)). Among these efforts,
connected automated vehicle (CAV) technologies have re-
ceived increasing attention recently (Lazar et al. (2018)).
Recent studies have shown the positive impacts of CAVs
technology on fuel consumption, reduced travel time, and
improved safety (Ross and Guhathakurta (2017); Ye and
Yamamoto (2018)). However, for practical purposes, (i)
no traffic network in the near future will consist entirely
of automated vehicles, and (ii) vehicles (even automated
ones, but especially the human-driven ones) will never
behave entirely homogeneously. Until then, there exists
significant uncertainty in the performance of mixed CAV
and human-driven traffic environments (Sharon and Stone
(2017); Wang et al. (2019); Zheng et al. (2020)). Therefore,
it is essential to develop control strategies that take into
account the uncertainty associated with the heterogeneity
in the traffic network and understand the extent to which
these strategies improve the performance of the network.

To manage the congestion in a heterogeneous traffic net-
work, a two-level control structure is proposed. In the

⋆

higher level, a decentralized ES control approach is de-
veloped. ES is a real-time control technique that optimize
the steady-state behaviour of an unknown system which is
done by estimating the gradients of the input-output map-
ping. (DeHaan and Guay (2005), Shahri et al. (2020)) At
the lower level, we employed Filtered Feedback lineariza-
tion (FFL) to determine the suggested velocity for each
class of vehicles so that the desired density determined in
the upper level can be achieved.

FFL is a high-parameter-stabilizing controlling approach
that helps to follow the reference commands and also
rejects the unknown disturbance in MIMO (Multi-Input-
Multi-Output) nonlinear dynamic systems where the equi-
librium of the zero dynamics is locally asymptotically
stable (Hoagg and Seigler (2013)). Mathematically, FFL
is equivalent to passing the classic feedback linearization
controller’s output to a low-pass filter. Nevertheless, un-
like the classic feedback linearization control approach,
the controller only needs a very limited information from
the dynamic model, specifically, knowledge of the the
dynamic-inversion matrix and also the vector relative
degree. (Hoagg and Seigler (2015), Shahri and Ghasemi
(2022))

The outline of this paper is as follows. Sections 2 presents
the model of a heterogeneous traffic network using hetero-
geneous METANET model. Section 3 presents the basics
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of a two-level controller to maximize the mobility of the
traffic network. Section 4 presents numerical results, and
section 5 is the conclusion where we also discuss our future
plans.

2 Macroscopic Dynamics of a Heterogeneous Traffic
Network

Consider a non-signalized heterogeneous traffic network
wherein the road is shared between the human-driven
vehicles and autonomous vehicles. The road can be dis-
cretized into multiple cells. We characterize cell i ∈
{1, 2, · · · , n} by its length ℓi, density of human-driven
and autonomous vehicles (ki,H, ki,A), space mean speed
of each class (vi,H, vi,A), and the total outflow rate qi. To
determine the fundamental relation between the average
flow(Qi), density(ki) and space mean speed vi, we adopt
a heterogeneous METANET model (Liu et al. (2014)).

2.1 Heterogeneous METANET Model

The heterogeneous METANET model is an extension of
the well-known METANET model (Papageorgiou (1983)).
In this model, in cell i ∈ {1, · · · , n}, for each class
of vehicles, two set of fundamental diagrams is defined
that describe the macroscopic behavior of autonomous
and human-driven vehicles in a homogeneous (fully au-
tonomous or fully human-driven) traffic network. In the
two set of fundamental diagrams, (vf,A ≥ vf,H), critical
density (kc,A ≥ kc,H), capacity (CA ≥ CH) and jam density
(kJ,A ≥ kJ,H) is assumed for autonomous vehicles with
respect to human-driven vehicles. In the heterogeneous
METANET model, based on the fundamental diagram
properties of each class of vehicles and their densities
within the cell, the road is divided into two sections and
it is assumed that each type of vehicle limit itself within
the allocated space of the road (Logghe (2003)). Therefore,
the road fractions for various types of vehicles are positive
(αi,A ≥ 0, αi,H ≥ 0), and the sum of all fractions is
αi,A + αi,H = 1.

To determine αA and αH, various approaches have been
proposed.(Benzoni-Gavage and Colombo (2003), Chanut
and Buisson (2003))

In this paper, according to different densities and their
relative behavior in the traffic network, three traffic phases
are distinguished (Liu et al. (2014)): free-flow, semi-
congested, congested. These phases are defined in below.
For all of these phases, we consider that each type of
vehicle occupies the road optimally and never occupies
more space than is necessary.

Free-Flow Phase: Both human-driven and autonomous
vehicles drive at their free-flow velocity. To this end, in
the free-flow phase, it is assumed that density of HDVs and
AVs in their optimal assigned space is less than or equal
to the critical density of each vehicle class. The optimal
space fractions of each vehicle class in the free-flow phase
are:

αff,i,H =
ki,Hkc,A

ki,Hkc,A + ki,Akc,H

αff,i,A =
ki,Akc,H

ki,Akc,H + ki,Hkc,A
(1)

where kc,H and kc,A are representing the critical density of
HDVs and AVs respectively.

Semi-Congested Phase: The vehicle class with a smaller
free-flow velocity (i.e., HDVs) drive at the free-flow ve-
locity but the other vehicle class with a larger free-flow
velocity (i.e., AVs) experience a congestion and drive at
a speed lower than its free-flow velocity. The important
point in the semi-congested phase is that the velocity of
autonomous class vehicles is still greater than or equal
to the free-flow velocity of human-driven vehicles. The
optimal space fraction of HDVs and AVs in semi-congested
phase is determined as:

αsc,i,A =
ki,A
k∗c,A

, αsc,i,H =
ki,H
kc,H

(2)

where k∗c,A is the “perceived” critical density of au-
tonomous vehicles and is defined as:

k∗c,A = kc,A

[
−am,Aln

(
vf,H
vf,A

)
+ 1

] 1
am,A

(3)

where vf,A and vf,H are the free-flow velocities for AVs
and HDVs accordingly. Also am,A is a state varying model
parameter. Congested Phase: Both human-driven and au-
tonomous vehicles drive at lower speed than the free-
flow velocity. In congested phase, autonomous and human-
driven class vehicles both have the same velocity. The
space fraction of HDVs and AVs in congested phase is
determined as follow:

αc,i,A =
A

B
, αc,i,H + αc,i,A = 1 (4)

A =
(
(kc,H − kJ,H)kc,Avf,A

− (kc,A − kJ,A)kc,Hvf,H

)
kAkH

+ (kc,A − kJ,A)kc,HkJ,Hvf,H kA
B = (kc,A − kJ,A)kc,HkJ,Hvf,HkA

+ (kc,H − kJ,H)kc,AkJ,Avf,AkH

where kJ,H is the jam density for the human-driven vehicles
and kJ,A is the jam density for the autonomous vehi-
cles. The total average flow relationship in a Macroscopic
Fundamental Diagram (MFD) can be calculated through
following equation:

Qi = ki,HV
( ki,H
αi,H

)
+ ki,AV

( ki,A
αi,A

)
(5)

where Qi is the total average flow which depends on the
densities and velocities of both human-driven vehicles and

autonomous vehicles, V
(

ki,H

αi,H

)
is the suggested velocity for

HDVs and V
(

ki,A

αi,A

)
is the suggested velocity for AVs.

2.2 Equations of Motion

Consider a non-signalized heterogeneous traffic network.
For a cell i ∈ {1, · · · , n}, let qi,A and qi,H be outflow
(number of AVs and HDVs leaving the cell i to the adjacent
cell i + 1) and di be the uncontrolled traffic demand
including the off-ramps and on-ramps traffic flows. Also,
consider ℓ as the length of the segment and γ as the
number of the lanes in the segment. Then, the density
of cell i (for each type of vehicle) is updated according
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of a two-level controller to maximize the mobility of the
traffic network. Section 4 presents numerical results, and
section 5 is the conclusion where we also discuss our future
plans.

2 Macroscopic Dynamics of a Heterogeneous Traffic
Network

Consider a non-signalized heterogeneous traffic network
wherein the road is shared between the human-driven
vehicles and autonomous vehicles. The road can be dis-
cretized into multiple cells. We characterize cell i ∈
{1, 2, · · · , n} by its length ℓi, density of human-driven
and autonomous vehicles (ki,H, ki,A), space mean speed
of each class (vi,H, vi,A), and the total outflow rate qi. To
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flow(Qi), density(ki) and space mean speed vi, we adopt
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2.1 Heterogeneous METANET Model
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that describe the macroscopic behavior of autonomous
and human-driven vehicles in a homogeneous (fully au-
tonomous or fully human-driven) traffic network. In the
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αff,i,H =
ki,Hkc,A

ki,Hkc,A + ki,Akc,H

αff,i,A =
ki,Akc,H

ki,Akc,H + ki,Hkc,A
(1)

where kc,H and kc,A are representing the critical density of
HDVs and AVs respectively.
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αsc,i,A =
ki,A
k∗c,A

, αsc,i,H =
ki,H
kc,H

(2)

where k∗c,A is the “perceived” critical density of au-
tonomous vehicles and is defined as:

k∗c,A = kc,A

[
−am,Aln

(
vf,H
vf,A

)
+ 1

] 1
am,A

(3)

where vf,A and vf,H are the free-flow velocities for AVs
and HDVs accordingly. Also am,A is a state varying model
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A

B
, αc,i,H + αc,i,A = 1 (4)
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(
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− (kc,A − kJ,A)kc,Hvf,H

)
kAkH

+ (kc,A − kJ,A)kc,HkJ,Hvf,H kA
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+ (kc,H − kJ,H)kc,AkJ,Avf,AkH
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cles. The total average flow relationship in a Macroscopic
Fundamental Diagram (MFD) can be calculated through
following equation:

Qi = ki,HV
( ki,H
αi,H

)
+ ki,AV

( ki,A
αi,A

)
(5)
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For a cell i ∈ {1, · · · , n}, let qi,A and qi,H be outflow
(number of AVs and HDVs leaving the cell i to the adjacent
cell i + 1) and di be the uncontrolled traffic demand
including the off-ramps and on-ramps traffic flows. Also,
consider ℓ as the length of the segment and γ as the
number of the lanes in the segment. Then, the density
of cell i (for each type of vehicle) is updated according
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to the conservation of vehicles law (Boriboonsomsin et al.
(2012)). Specifically,

ki,A(t+ 1) = ki,A(t) +
T

ℓiγi
(qi−1,A(t)− qi,A(t) + di,A(t))

(6a)

ki,H(t+ 1) = ki,H(t) +
T

ℓiγi
(qi−1,H(t)− qi,H(t) + di,H(t))

(6b)

which qi,H(t) = ki,H(t).vi,H(t) and qi,A(t) = ki,A(t).vi,A(t).

Following the heterogeneous METANET model, the veloc-
ity of each class of vehicles can be described as

vi,A(t+ 1) = vi,A(t) +
T

ℓ

[
vi,A(t)

(
vi−1,A(t)− vi,A(t)

)

−γA
τA

ki+1,A(t)− ki,A(t)

ki,A(t) + kc,AζA

]
+

T

τ

(
Ui,A(t)− vi,A(t)

)
(7a)

vi,H(t+ 1) = vi,H(t) +
T

ℓ

[
vi,H(t)

(
vi−1,H(t)− vi,H(t)

)

−γH
τ

ki+1,H(t)− ki,H(t)

ki,H(t) + kc,HζH

]
+

T

τH

(
Ui,H(t)− vi,H(t)

)

(7b)

with

Ui,A = (βi,A)vf,Aexp

[
−1

am,A

(
ki,A(t)

αi,Akc,A

)am,A
]

(8a)

Ui,H = (βi,H)vf,Hexp

[
−1

am,H

(
ki,H(t)

αi,Hkc,H

)am,H
]

(8b)

where am,H and am,A are state varying model parameters
that are a function of the density of each vehicle class.
ζH, ζA, τA and τH are model parameters for human and
autonomous vehicles. In addition, βi,A and βi,H are con-
sidered as the control commands adjusting the suggested
velocity to the autonomous vehicles and human-driven
vehicles. βi, rmA = 1 or βi,H = 1 means that the controller
is following the velocity-density steady state behavior for
that specific vehicle type. Also, βi,A = 0 or βi,H = 0 means
that the controller is commanding the vehicles of each class
to stop or to drive with the constrained minimum speed on
the road. It is assumed that the AVs are connected to the
infrastructure so they can receive the control commands
directly and HDVs can receive the suggested velocities
through the Variable Speed Limit (VSL) signs on the road.
It is important to note that, the control command for
HDVs is considered βi,H = 1 for the rest of the paper.
The terms αi,A and αi,H in Eqs. (8a, 8b), are the coupling
terms in which relates the dynamics of HDVs to AVs in
the METANET model.

For a traffic network consisting of n cell, by combining
equations (6a)-(8b), the equations of motion can be ex-
pressed as

ẋ = F(x) + G(x)u+ d (9)

where x = [x1, · · · , x4n]
T, d = [d1, · · · , d4n]T, u =

[β1,A, β1,H, · · · , βn,A, βn,H], F = [f1, · · · , f4n]T, G =
[g1, · · · , g2n]T. For i ∈ {1, · · · , n} gi = [0]2n×2n, For

i ∈ {n, · · · , 2n}, gi =
[
vf,Aexp

[
−1

am,A

(
ki,A(t)
αi,Akc,A

)am,A
]

, vf,Hexp
[

−1
am,H

(
ki,H(t)
αi,Hkc,H

)am,H
] ]

3 Traffic Management Controller

This section focuses on the design of a hierarchical macro-
scopic traffic management controller to improve the per-
formance of a heterogeneous traffic network in terms of
mobility. The controller has a two-level structure with a
decentralized ES algorithm in the upper-level and filtered
feedback linearization in the lower-level. The description
of these algorithms are given below.

3.1 Higher-level Controller: Decentralized Extremum Seek-
ing Controller

ES control approach is a real-time control technique that
optimize the steady-state behaviour of an unknown system
which is done by estimating the gradients of the input-
output mapping. As it is shown in Fig. 1, the higher level
controller contains a gradient estimator and an optimizer
block. The extremum seeking block gets the cost function
value Ji and the constraint vector yc,i from the plant
and then estimates the gradient of system’s outputs. The
optimizer block, takes the gradient estimator outputs
along with the constraint vector from the traffic network
and finally estimates the inputs of the lower-level controller
which are k∗i,H and k∗i,A. For each cell i ∈ {1, · · · , n}, we
consider the cost function to average flow expresses in Eq.
(5). In particular,

max
ki,H,ki,A

Ji(t) =Qi (10)

subjected to the dynamics equations (6)-(8).

To solve the optimization problem in Eq.(10), we develop
a decentralized ES control framework. ES controller is a
real-time optimizer and its main advantage is that it is
model-free (Zotos et al. (1997),Straus et al. (2019a)) .
This enables the ES control to control a complex dynamic
system and find the optimal operating states of the het-
erogeneous traffic network. The details of these controllers
are described below. In the ES control problems, J , which
is a function of time, is actually the output of a complex
dynamic model. The whole control schematic of the traffic
system described in (Ariyur and Krstic (2003)). To deter-

Fig. 1. Schematic of the whole system consisting the
MIMO plant, Extremum Seeking, Optimizer and Fil-
tered Feedback Linearization

mine the optimal control command βi,A and βi,H in each
cell, the calculated Ji and defined set of constraints yc,i
passes through a HP (High-Pass) filter Fi,HF = s

s+ωi,H
,

where ωi,H is the frequency for the high-pass filter. The
high-pass filter’s output is multiplied by the sinusoidal
signal with the same perturbation frequency, Ai sin(Ωt −
ϕi), where ϕi is the phase lag. Then, the output signal goes
through a LP (Low-Pass) filter to show us the direction of
maximizing the cost function and tracing the boundary.

Boundary tracing in the optimizer block is conducted
when any boundary constraint is passed and it is active,
otherwise, the problem is like an unconstrained problem.
In particular, the gradient of the static map∇Q dominates
when no constraint is active, on the other hand, when
we have an active constraint in the system, the optimiser
updates the lower-level input signals based on the con-
straint boundary gradient∇g. The required conditions and
equations of optimiser block are addressed in (Liao et al.
(2019)).

To ensure the proposed controller’s stability and conver-
gence, a set of conditions needs to be met (Straus et al.
(2019b)). It follows from the cost function (10) and the
form of the FD function expressed in Eq. (5) that the
first and second derivatives of the cost function Ji with
respect to ki,A and ki,H should exist. Additionally, it
can be shown that there exist k∗i,A and k∗i,H such that

the first derivative of J ′
i(k

∗
i,kA) = 0, J ′

i(k
∗
i,kH) = 0 and

J
′′
(k∗i,A) ≤ 0, J

′′
(k∗i,H) ≤ 0. Furthermore, we select the

high-pass filter’s cut-off frequencies ωi,H to be lower than
the frequency of the perturbation signal Ωi. In particular,
in this paper, we select ωi,H to be 5 times lower than Ωi

(i.e., ωi,H ≤ 0.1Ωi). By satisfying these conditions, the
ES converges to its optimal state k∗i,H, k

∗
i,A (Straus et al.

(2019b)).

3.2 Lower-level Controller: Filtered Feedback Lineariza-
tion (FFL)

The high level controllers’ outputs estimate the optimal
density k∗A and k∗H of each cell which will then be fed to
a lower-level control as a reference signal. In the lower-
level control, we employ a filtered feedback linearization
approach to determine the required control command
βi,A and βi,H. We select filtered feedback linearization
controller in the lower-level since this controller only
needs limited information from the dynamic traffic model,
specifically, the system’s relative degree and an estimate of
the nonlinear extension of the high-frequency-gain matrix,
and does not require any knowledge of the disturbance
in the system (Hoagg and Seigler (2013, 2015); Ghasemi
(2017); Ghasemi et al. (2018)). Furthermore, it can be
shown that FFL is capable of the L∞ of the command
following error arbitrarily small regardless of the presence
of undetermined disturbances in the system (Ghasemi
et al. (2018)). Below, we summarize the FFL control
approach.

Considering Yi = [ki,A, ki,H]
T, evaluating the second

derivative of Y yields
k̈i,A
k̈i,H


=


Ψi,A(x, ϕd)
Ψi,H(x, ϕd)


+ Γi(xi)


βi,A

βi,H


(11)

where Γi(xi) is non-singular for ki,A ∈ (0, kJ,A), ki,H ∈
(0, kJ,H), vi,A ∈ (0, vf,A), vi,H ∈ (0, vf,H) and ϕd =

[d, ḋ, d̈]T.

Then, the control commands generated by the standard
feedback linearization approach can be expressed as


β∗
i,A

β∗
i,H


 = −Γ−1

i (X)


νi,A +Ψi,A

νi,H +Ψi,H


(12)

νi,A = k̈∗i,A + ai,1(k̇
∗
i,A − k̇i,A) + ai,0(k

∗
i,A − ki,A) (13a)

νi,H = k̈∗i,H + ai,1(k̇
∗
i,H − k̇i,H) + ai,0(k

∗
i,H − ki,H) (13b)

where ai,0 and ai,1 are constants. It follows from Eq. (12)
that β∗

i,A, β
∗
i,H require the measurement of the disturbance

d as well as knowledge of Ψi(x, ϕd) which may not be
feasible in practice.

To this end, we determine the implementable control
commands βi,A, βi,H by passing β∗

i,A, β
∗
i,H through a low-

pass filter. Specifically, let βi,A, βi,H satisfy

ηz(p)βi,A = ηz(0)β
∗
i,A (14)

ηz(p)βi,H = ηz(0)β
∗
i,H (15)

where p = d/dt, and ηz is a real polynomial of order ρ ≥ 1
whose coefficients depend on the real parameter z > 0. The
required conditions and examples of ηz(s) are addressed in
(Hoagg and Seigler (2013)). For example, ηz(s) can be a
polynomial ηz(s) = (s+ z)3.

Substituting Eq. (11) into Eq. (12) and substituting this
result into Eqs. (15)-(15), FFL controller is defined as

(ηz(p)− ηz(0))βi,A

(ηz(p)− ηz(0))βi,H


=

ηz(0)Γ
−1
i (Ui−1, Ui, ki−1, ki)A,H


ëi,A + a1ėi,A + a0ei,A
ëi,H + a1ėi,H + a0ei,H



(16a)

where ei,A = k∗i,A − ki,A and ei,H = k∗i,H − ki,H and
0 ≤ βi,A, βi,H ≤ 1

The controllers (12) and (16) are mathematically equiva-
lent. However, unlike Eq. (12), the control (16) does not
require measurement of di or Ψi. Properties of the lower-
level closed-loop are addressed by (Hoagg and Seigler
(2013))-Lemma 1. Specifically, it is shown that there exists
zs > z0 such that for z > zs, the control command given
by Eq. (16) stabilizes the dynamic system and makes the
tracking error arbitrarily small.

4 Simulation and Results

In this section, we present a case study to demonstrate the
effectiveness of the proposed approach for improving the
mobility of a heterogeneous traffic network. We compare
the outcomes of the proposed control approach with a sce-
nario where there is no controller and vehicles are following
the classic METANET model dynamics. In this study, we
considered a real-world network with 10 heterogeneous
cells consisting HDVs and AVs. We used the I-485 N of
Exit 28 (Mallard Creek Rd, Mecklenburg County, NC in
Fig. 2) traffic flow data which was reported in Tuesday 22
December 2020 to calibrate the HDVs’ model parameters
and model the origin outflow in our simulation. The con-
centration is on eastbound PM peak hour of the highway
which is between 4:30-5:30 PM. For both scenarios (with
no-controller and with ES-FFL controller), the boundary
cells which set the demand and supply of the whole traffic
system and the initial states are the same. I-485 inner
highway has 4 lanes with the speed limit of 70 mph for
HDVs.
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Boundary tracing in the optimizer block is conducted
when any boundary constraint is passed and it is active,
otherwise, the problem is like an unconstrained problem.
In particular, the gradient of the static map∇Q dominates
when no constraint is active, on the other hand, when
we have an active constraint in the system, the optimiser
updates the lower-level input signals based on the con-
straint boundary gradient∇g. The required conditions and
equations of optimiser block are addressed in (Liao et al.
(2019)).

To ensure the proposed controller’s stability and conver-
gence, a set of conditions needs to be met (Straus et al.
(2019b)). It follows from the cost function (10) and the
form of the FD function expressed in Eq. (5) that the
first and second derivatives of the cost function Ji with
respect to ki,A and ki,H should exist. Additionally, it
can be shown that there exist k∗i,A and k∗i,H such that

the first derivative of J ′
i(k

∗
i,kA) = 0, J ′

i(k
∗
i,kH) = 0 and

J
′′
(k∗i,A) ≤ 0, J

′′
(k∗i,H) ≤ 0. Furthermore, we select the

high-pass filter’s cut-off frequencies ωi,H to be lower than
the frequency of the perturbation signal Ωi. In particular,
in this paper, we select ωi,H to be 5 times lower than Ωi
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ES converges to its optimal state k∗i,H, k

∗
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(2019b)).
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The high level controllers’ outputs estimate the optimal
density k∗A and k∗H of each cell which will then be fed to
a lower-level control as a reference signal. In the lower-
level control, we employ a filtered feedback linearization
approach to determine the required control command
βi,A and βi,H. We select filtered feedback linearization
controller in the lower-level since this controller only
needs limited information from the dynamic traffic model,
specifically, the system’s relative degree and an estimate of
the nonlinear extension of the high-frequency-gain matrix,
and does not require any knowledge of the disturbance
in the system (Hoagg and Seigler (2013, 2015); Ghasemi
(2017); Ghasemi et al. (2018)). Furthermore, it can be
shown that FFL is capable of the L∞ of the command
following error arbitrarily small regardless of the presence
of undetermined disturbances in the system (Ghasemi
et al. (2018)). Below, we summarize the FFL control
approach.

Considering Yi = [ki,A, ki,H]
T, evaluating the second

derivative of Y yields
k̈i,A
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
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
Ψi,A(x, ϕd)
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where Γi(xi) is non-singular for ki,A ∈ (0, kJ,A), ki,H ∈
(0, kJ,H), vi,A ∈ (0, vf,A), vi,H ∈ (0, vf,H) and ϕd =
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Then, the control commands generated by the standard
feedback linearization approach can be expressed as
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
 = −Γ−1
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where ai,0 and ai,1 are constants. It follows from Eq. (12)
that β∗
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∗
i,H require the measurement of the disturbance

d as well as knowledge of Ψi(x, ϕd) which may not be
feasible in practice.

To this end, we determine the implementable control
commands βi,A, βi,H by passing β∗
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∗
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pass filter. Specifically, let βi,A, βi,H satisfy

ηz(p)βi,A = ηz(0)β
∗
i,A (14)

ηz(p)βi,H = ηz(0)β
∗
i,H (15)

where p = d/dt, and ηz is a real polynomial of order ρ ≥ 1
whose coefficients depend on the real parameter z > 0. The
required conditions and examples of ηz(s) are addressed in
(Hoagg and Seigler (2013)). For example, ηz(s) can be a
polynomial ηz(s) = (s+ z)3.

Substituting Eq. (11) into Eq. (12) and substituting this
result into Eqs. (15)-(15), FFL controller is defined as
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The controllers (12) and (16) are mathematically equiva-
lent. However, unlike Eq. (12), the control (16) does not
require measurement of di or Ψi. Properties of the lower-
level closed-loop are addressed by (Hoagg and Seigler
(2013))-Lemma 1. Specifically, it is shown that there exists
zs > z0 such that for z > zs, the control command given
by Eq. (16) stabilizes the dynamic system and makes the
tracking error arbitrarily small.

4 Simulation and Results

In this section, we present a case study to demonstrate the
effectiveness of the proposed approach for improving the
mobility of a heterogeneous traffic network. We compare
the outcomes of the proposed control approach with a sce-
nario where there is no controller and vehicles are following
the classic METANET model dynamics. In this study, we
considered a real-world network with 10 heterogeneous
cells consisting HDVs and AVs. We used the I-485 N of
Exit 28 (Mallard Creek Rd, Mecklenburg County, NC in
Fig. 2) traffic flow data which was reported in Tuesday 22
December 2020 to calibrate the HDVs’ model parameters
and model the origin outflow in our simulation. The con-
centration is on eastbound PM peak hour of the highway
which is between 4:30-5:30 PM. For both scenarios (with
no-controller and with ES-FFL controller), the boundary
cells which set the demand and supply of the whole traffic
system and the initial states are the same. I-485 inner
highway has 4 lanes with the speed limit of 70 mph for
HDVs.
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Fig. 2. I-485 inner highway between Mallard Creek Rd and
Caldwell Rd, Charlotte, North Carolina

4.0.1 Heterogeneous Network The focus of this section
is only on one of the cells (cell 3) that is already in
the congested phase and it is experiencing a congestion
delay. Initially, the target cell has k3,A = 77, k3,H =

18 veh
mile.lane and both types of vehicles have same velocity

of v3,A = v3,H = 47mph. The HDVs model parameters
that were calibrated based on the NCDOT traffic flow
data and the AVs’ model parameters that were predicted
by simulating the same traffic scenario in PTV VISSIM
traffic simulator using CoExist AV models are listed here;

am,A = h(ki,A), am,H = h(ki,H), γA = 44, γH = 60mile2

h ,

ηA = 14, ηH = 10 veh
mile.h , τA = 3, τH = 12s. The length

of each cell is considered as ℓ = 1 mile and there are
4 lanes γ = 4 in each cell. Finally, the variables’ values
for each controller (ES and FFL) is listed here: Ai = 1,
Ω = 0.02π rad

s , ωi,H = 0.2Ωi, ωi,L = 0.1ωi,H, z = 100,
ai,1 = 20 and, ai,0 = 1.

Here, the goal is to maximize the average flow rate of the
target cell and improve its mobility. Based on the NCDOT
traffic data report, the HDVs’ density in cell 3 varies
between 16 to 21 veh

mile.lane as it is shown in Fig.3 (second
row). The higher level macro controller (ES) estimates the
optimum density of AVs in cell 3 (k∗3,A) according to the

density of HDVs and the defined cost function in Eq.(10).
The estimated AV’s density is fed into the lower-level
macro controller (FFL) as the reference trajectory (desired
density). And FFL generates the controller command in
cells 2 and 3 (β2,A, β3,A) to control the suggested velocity
of AVs in two adjacent cells (Upstream cell and the target
cell).

As it is shown in Fig.3, in the first row, the density of
autonomous vehicles in the ”ES-FFL Controller” scenario
is less than the ”No Controller” scenario. The density of
HDVs in both scenarios is exactly same. By looking at
the cost function values in Fig. 3, it can be seen that
the hierarchical controller design is effectively improving
the mobility of the target cell and maximizing the defined
cost function in comparison to the scenario where there is
not any active controller in the traffic system. In addition,
since the the optimum density of AVs in cell 3 is feasible,
the constraints on the density are not active and so they do
not have any effect on the optimum solution. In the ”ES-
FFL Controller” scenario, the estimated desired density
for AVs in cell 3 (k∗3,A) is the reference trajectory of the
density of AVs. Filtered Feedback Linearization controller

Fig. 3. Density of AVs (first row), density of HDVs (second
row) and, the cost-function value (third row) for both
”No Controller” scenario (first column) and the ”ES-
FFL Controller” scenario (second column) for the
target cell (cell 3) is shown in this figure.The desired
density of cell 3 for AVs (k∗A,3) which is estimated by
the ES controller is also shown by a ”dashed” line.

gets the AVs’ reference density in each time step and
calculates the desired controller commands for the target
cell and its upstream cell as it is shown in Fig. 4.

Fig. 4. Suggested velocity (UA,3) and velocity (vA,3) of
autonomous vehicles in cell 3 (first row) is shown in
this figure. The controller commands generated for
cells 2 and 3 (second row) are also shown here.

In Fig. 4, the velocity of AVs in the target cell is following
the suggested velocity with small errors. The reason that
there are some differences between the suggested velocity
and the actual average velocity of AVs is that the average
velocity equation (Eq.7a) contains two other terms which
may reduce the effect of the suggested velocity term. Since
the ultimate goal is to reduce the density of the target cell,
the FFL controller reduces the inflow of the target cell by
lowering the suggested velocity of its upstream cell. Also,

it increases the outflow of the target cell by increasing the
suggested velocity of cell 3. As it was stated in section
2.2, the control commands for HDVs are considered to be
(β2,H = β3,H = 1 which means that the controller is not
controlling the velocity of HDVs directly.

5 Conclusions

This paper focuses on modeling and controlling a non-
signalized heterogeneous freeway traffic network consist-
ing of Human-Driven Vehicles (HDVs) and Autonomous
Vehicles (AVs). In this paper, the heterogeneity in the
operational characteristics and controllability of each type
of vehicle is considered. It is assumed that autonomous
vehicles have a higher free-flow velocity and model param-
eters compared to human-driven vehicles. We developed
a two-level control structure to improve mobility in the
traffic network. At the higher level, a decentralized ES con-
trol approach is designed to determine an optimal density
of HDVs and/or AVs so that the average flow within a
cell is maximized. At the lower level, a filtered feedback
linearization control approach is designed to determine
the suggested velocity of both autonomous vehicles and
human-driven vehicles such that the density of the AVs
and HDVs reaches the values set by the upper-level con-
troller. In the future, we consider to what extend the
mobility of the traffic network can be improved if only
autonomous vehicles can receive the velocity commands
set by the higher-level controller. We further plan to vali-
date our control approach with more sophisticated traffic
simulators.
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it increases the outflow of the target cell by increasing the
suggested velocity of cell 3. As it was stated in section
2.2, the control commands for HDVs are considered to be
(β2,H = β3,H = 1 which means that the controller is not
controlling the velocity of HDVs directly.

5 Conclusions

This paper focuses on modeling and controlling a non-
signalized heterogeneous freeway traffic network consist-
ing of Human-Driven Vehicles (HDVs) and Autonomous
Vehicles (AVs). In this paper, the heterogeneity in the
operational characteristics and controllability of each type
of vehicle is considered. It is assumed that autonomous
vehicles have a higher free-flow velocity and model param-
eters compared to human-driven vehicles. We developed
a two-level control structure to improve mobility in the
traffic network. At the higher level, a decentralized ES con-
trol approach is designed to determine an optimal density
of HDVs and/or AVs so that the average flow within a
cell is maximized. At the lower level, a filtered feedback
linearization control approach is designed to determine
the suggested velocity of both autonomous vehicles and
human-driven vehicles such that the density of the AVs
and HDVs reaches the values set by the upper-level con-
troller. In the future, we consider to what extend the
mobility of the traffic network can be improved if only
autonomous vehicles can receive the velocity commands
set by the higher-level controller. We further plan to vali-
date our control approach with more sophisticated traffic
simulators.
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