

Challenges, Tasks, and Opportunities in Teleoperation of Excavator towards Human-in-the-loop Construction Automation

Jin Sol Lee¹, Youngjib Ham, Ph.D.², Hangue Park, Ph.D.³ and Jeonghee Kim, Ph.D.⁴

¹ Ph.D. Student, Department of Construction Science, Texas A&M University, College Station, TX.

Email: jinsollee@tamu.edu

²Associate Professor, Department of Construction Science, Texas A&M University, College Station, TX. Email: yham@tamu.edu

³Assistant Professor, Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX. Email: hangue.park@tamu.edu

12 ⁴Assistant Professor, Department of Engineering Technology & Industrial Distribution and
13 Electrical & Computer Engineering, Texas A&M University, College Station, TX. Email:
14 jeonghee.kim@tamu.edu

Abstract

17 Teleoperation stands for operating a system, machine, or robot from a distance. Teleoperation has
18 been widely adopted as a promising way to enhance worker safety in extreme and hazardous
19 construction workplaces. Over the years, studies have proposed various approaches to teleoperate
20 construction equipment for excavation, which could bring significant advantages such as declining
21 injury rate and dealing with dangerous on-site tasks. This paper identifies challenges, tasks, and
22 opportunities in teleoperation of excavator through quantitative and qualitative analyses. Prior

23 studies from the past two decades were rigorously reviewed and analyzed through the bibliometric
24 analysis and a systematic review for in-depth discussion. The outcomes provide the future
25 direction of teleoperation in construction workplaces in the following aspects: human operator,
26 interface, operation, and environment. The outcomes indicate that human-centered research that
27 understands and develops systems and technologies from the human point of view is necessary
28 since seamless human-robot interaction is required for teleoperation.

29

30 **Keywords:** excavation, teleoperation, human-in-the-loop

31

32 **1. Introduction**

33 An excavator is one of the most employed and essential equipment for earthmoving in jobsites.
34 The use of this equipment is not just limited to digging soils to make holes or trenches in earthwork
35 but also used for heavy lifting, soil transformation, and transportation [1,2]. However, the working
36 environment of excavation is known as one of the most hazardous workplaces which has a high
37 probability of fatal injuries of workers and property damages in the event of an accident.
38 Particularly, in the case of underground utility strike during excavation, the repairing cost and its
39 associated societal cost significantly increases as it negatively affects critical infrastructure
40 systems such as gas, electricity, and water supply that is vital to people's daily lives. Accordingly,
41 the importance of providing a safe earthwork environment for human operator while reducing
42 accidents is essential.

43 The use of teleoperated excavators has become a promising solution in extreme and
44 hazardous site conditions like disaster areas, underwater, and space [3], and have been studied in
45 various contexts. Teleoperation of excavators indicates manipulating excavators at a distance by a

46 human operator. Since human operators can stay away from dangerous workplaces, teleoperated
47 excavators are expected to be effective for lowering safety accidents. Nonetheless, a study on
48 current status of excavator's usage has observed that the usability and productivity of the excavator
49 teleoperation is often lower than that of traditional operations [4]. The reasons are the current
50 teleoperation sometimes has delay issues of control, and the difficulty for obtaining and
51 understanding the surrounding information such as soil, machines, nearby human workers, and
52 other obstacles, compared to conventional controls [3]. Since teleoperation is in the middle of
53 transition between manual operation and full automation, thanks to the advancement of sensing
54 and control technologies, it is expected that current productivity and safety issues of teleoperated
55 excavators would be resolved toward fully autonomous system of excavator [1]. Despite the
56 advancement of recent technologies (i.e., artificial intelligence, sensing), it could be still
57 challenging to solely rely on full automation of each and every process in jobsites, particularly in
58 case for dynamic and complex excavation tasks having uncertainties in workplaces [5–7]. Rather
59 than relying on a fully autonomous robotic system in which a robot alone senses and performs all
60 task planning and execution [8], teleoperation in which humans can cooperate with the robot
61 system as a commander and take advantages of human-robot interactions, is expected to have wide
62 range of capabilities and potentials as a robotic application for earthmoving tasks [9,10]. As such,
63 robust intervention of human operators for decision-making under uncertainties is still necessary
64 for efficient manipulation of construction robots [10,11]. In this regard, there is a need to carefully
65 examine the relevant studies of excavator teleoperation, one of the areas of human-in-the-loop
66 robotics and automation that will continue to be promising for future construction.

67 Research on excavator teleoperation has been conducted in multidisciplinary fields such
68 as construction, electrical, and mechanical engineering. Previous studies have conducted literature

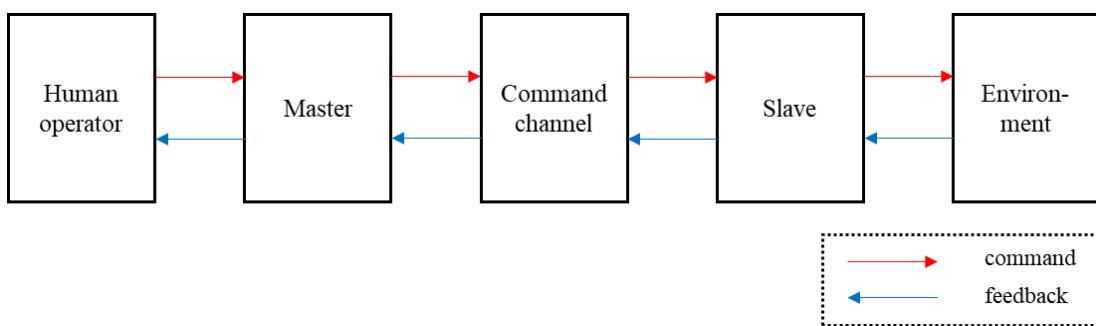
69 reviews regarding robotic automation including teleoperation of heavy construction equipment in
70 the field [12–14]. Despite their contribution on highlighting challenges on several types of heavy
71 construction equipment, they are limited to discussing topics and clusters of prior studies since
72 qualitative review was primarily conducted and various equipment were reviewed
73 comprehensively. This paper focuses on an excavator, the most used among construction
74 equipment, in details and examine human operators and teleoperation among different automation
75 levels in a holistic and a systematic view. In this study, prior works are analyzed both quantitatively
76 and qualitatively using the mixed review method to discuss research topics and scopes that need
77 to be explored from a systemic perspective of excavator teleoperation. This mixed method allows
78 to elaborate on research topic clusters based on quantitative data analysis, which complements
79 drawbacks of quantitative reviews that may not enlighten the specific topics with small numbers
80 of the associated papers. Therefore, the objective is to comprehensively review and provide future
81 research directions pertaining to excavator teleoperation by (1) analyzing current research based
82 on keywords through quantitative analysis; and (2) discussing recent research challenges,
83 knowledge gaps, and shedding light on opportunities via in-depth analysis. The scope of the study
84 is peer-reviewed papers related to teleoperation of excavator published in the last two decades.

85 This paper is organized as follows. The following section examines the terminology used
86 for excavator teleoperation. The methodology section describes the methods and criteria for data
87 collection in this study. The bibliometric analysis and results section discusses the current
88 application of teleoperation for excavators via the text mining for quantitative analysis. In the in-
89 depth discussion with a systematic review, we discuss fundamental components of teleoperations
90 based on in-depth discussion in the following aspects: human operator, interface, operation, and
91 environment. Based on teleoperation applications and components, this section also identifies

92 current challenges, knowledge gaps, and future research directions of excavator teleoperation
93 towards human-in-the-loop construction automation.

94

95 **2. Taxonomy for excavator teleoperation**


96 Working environments where robots are well applied such as manufacturing are relatively well-
97 controlled, and the tasks of robots are often repetitive. Automation therefore may require little
98 human monitoring or intervention by programming the robot to perform repetitive tasks multiple
99 times with little change between iterations. On the other hand, construction automation is typically
100 obscured by open and changing environments such as dynamic flows of construction works and
101 hard-to-define human-robot cooperation requirements [15]. In specific, work types, site conditions
102 such as weather and soil conditions, and construction equipment characteristics, which vary from
103 site to site, should be considered for earthwork automation. The types and forms of earthwork are
104 inconsistent, not likely repetitive, and the work plans are sometimes modified depending on site
105 work conditions. Topography, geologic features, and further the degree to which underground
106 utilities are buried are different for each jobsite. In particular, in the case of buried utilities, the
107 density or complexity of buried utilities in urban and rural areas are typically different. Of course,
108 before excavation, people try to figure out the topography and geologic features through in-situ
109 sampling and find out the approximate location of underground utilities through the 811 call
110 system, but there are unexpected variables (e.g., mis-location of buried utility, unforeseen rocks,
111 underground water) in the underground that are not visible. In addition, earthworks are not
112 performed by an excavator alone, but mainly in cooperation with a dump truck or other
113 construction equipment, and there are also construction workers who give guides or signals in the
114 vicinity of excavator (e.g., spotter). When excavation needs to be carried out continuously, not just
115 for a single day, the work environment could be volatile because the terrain changes, and people

116 and equipment who perform the task may not be consistent. Thus, automation in earthwork
117 environment often requires human to supervise, collaborate, monitor, and reprogram the robotic
118 system due to its dynamic work environment with uncertainty, which is quite different from other
119 industries where automation of robots have been well adopted. Thus, it is crucial to consider
120 humans as an essential part of the human-in-the-loop system where humans and robots interact
121 consistently.

122 Teleoperation has been studied as a promising solution in earthwork automation, the
123 intermediate stage between manual operation and full automation, which requires a human-in-the-
124 loop process for operating construction equipment. The definition of teleoperation is operating
125 robots or machines from a distance away by human operators [12,13,15,16]. However, with this
126 definition, there are questions left to look further into teleoperation. One question remains as to
127 how far the human operator can operate remotely. It is a question of whether the word
128 “teleoperation” can be used at a close distance like just in front of an excavator or go with a very
129 long distance. Another question remains as to how much automation or human intervention needs
130 to be done for operating robots and machines at distances. Existing studies show the definitions
131 and types of teleoperations in various ways, and they are commonly defined as one of the steps in
132 the process from manual to full autonomy. Sulaiman et al. [16] stated that a teleoperated excavator
133 was used from some distance away as an intermediate step between a conventional excavator
134 operated directly by a human operator and an unmanned excavator without direct human control.
135 Ha et al. [13] defined teleoperation as one of the five levels of robotic and automation of
136 construction equipment: functional assist, teleoperation, semi-autonomy, full-autonomy, and
137 cooperation. Ha et al. [13] also categorized teleoperation into two groups: remote control or open
138 loop teleoperation. Dadhich et al. [12] considered teleoperation as intermediate processes from

139 manual to full automation: manual, in-sight teleoperation, tele-remote operation, assisted tele-
140 remote operation, and fully autonomous. Building on these, in this paper, we regard teleoperation
141 as an intermediate level between manual operation and full automation. Since full automation
142 cannot be achieved for all at once, and therefore intermediate steps where teleoperation or remote
143 operation is needed are necessary to understand robotic automation in construction and human
144 control toward the ultimate stage of automation maturity [12].

145

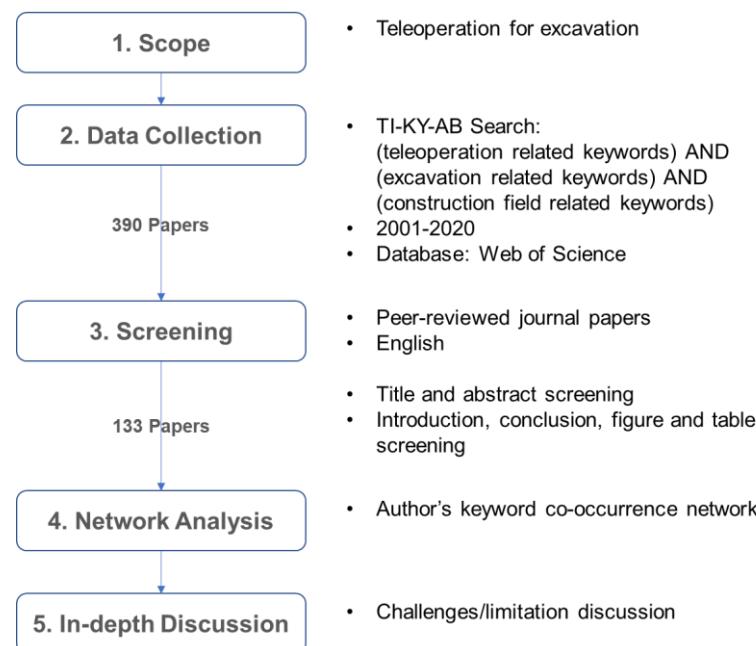
146

147 **Figure 1. Feedback system of teleoperation.**

148

149 Teleoperation system consists of two parts: the master robot part which is a control module
150 (i.e., interface) to manipulate a slave robot by human operator, the slave robot part which is an
151 execution robot in a remote location. The history of modern teleoperation control began in the late
152 1940s, when the first master-slave manipulators were developed at the Argonne National
153 Laboratory for handling chemical and nuclear materials. Since then, the evolution of remote
154 operations has been rapid, which has created a sophisticated telepresence system where operators
155 can feel that they are present in sites. As such, the teleoperation system was developed with
156 feedback system to make the operator feel the telepresence that makes them feel as if they are in
157 the field at distance (Figure 1). This system can be largely divided into human operator, master,
158 command channel, slave, and environment [17]. The master is an interface directly controlled by

159 the human operator, and the slave is a robot that moves based on the input command. Since there
160 is a distance between the master and the slave, the communication equipment part, called the
161 communication channel, should deal with the communication and connection of these two robots.
162 Since the operator should control the slave based on the information of the field with a distance,
163 the operator should understand the environment in which the slave is located. In the case of indirect
164 teleoperation, human operators have no choice but to grasp through the master (i.e., interface) to
165 understand the information of the environment and see whether the command and the movement
166 of the slave are performed well. Also, since commands should be transmitted through the master,
167 so the interaction between operator and master is the key to teleoperation. This study is to discuss
168 the state-of-the-art teleoperation systems for excavators. The scope of teleoperation in this review
169 includes both direct teleoperation (i.e., using human eyes to directly observe and perceive the
170 environment) and indirect teleoperation (i.e., the environment cannot be fully observed and
171 perceived with bare eyes, but sensors are needed to understand the environment in a distance).
172 This paper reviews master-slave robot parts as well as key components related to teleoperation as
173 a system toward human-in-the-loop construction automation.


174

175 **3. Methodology**

176 The purpose of this study is to have an in-depth and comprehensive understanding of challenges,
177 tasks, and opportunities of teleoperation for excavation. The methodology used in this study is
178 based on the mixed review method consisting of quantitative and qualitative approaches (i.e.,
179 bibliographic analysis and systematic review). Figure 2 shows an overview of the research
180 framework. Research papers were first retrieved from academic database. Bibliometric analysis
181 was then conducted for generating keyword co-occurrence maps and clusters, based on which key
182 research areas were identified. In-depth discussion in systematic review was conducted based on

183 bibliometric analysis results, to provide comprehensive understanding of research areas with its
184 evolution, and to discuss challenges and opportunities for future research on teleoperation of
185 excavator. The rationale of incorporating both bibliographic analysis and systematic review is to
186 converge and supplement findings from both quantitative and qualitative perspectives, which can
187 deliver convincing insights in case of any inconsistency or contradiction in either analysis [18]. In
188 addition, the conclusions from the two different methods can supplement each other and minimize
189 the subjective interpretation of research trends and opportunities. We first determine which areas
190 should be included and excluded from the study. This study focuses on teleoperation application
191 in construction, especially excavation, and thus the following questions were formulated: What
192 are the current trends of teleoperation in excavation research? What are the current challenges that
193 hinder the adoption of teleoperation in excavation? What are the future directions of teleoperation
194 in excavation research?

195

196

197

Figure 2. Research Framework.

198

199 *3.1 Identification of Sources*

200 In this study, Web of Science was selected as the database engine from which to search for and
201 extract studies. The reason for this selection is it comprehensively covers wide range of journal
202 publications and the knowledge domain in comparison with other databases such as Google
203 Scholar [19,20]. Publications from international peer-reviewed journals were considered in this
204 study for quality assurance. Start and end date was specified to identify the latest studies. The
205 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) was leveraged
206 for conducting systematic reviews of research [21].

207

208 *3.2 Data Collection*

209 The careful acquisition of data related to literature has significant implications in this study,
210 especially in quantitative interpretation of the knowledge domain through the bibliometric analysis.
211 For this reason, we employed three data collection criteria in article selections for our study: 1)
212 contemporary: all articles selected were published between 2001 and 2020, 2) relevance:
213 keywords and abstracts of each article was reviewed manually by authors to ensure their relevance
214 to the targeted research area; 3) quality assurance: only peer-reviewed articles from international
215 journals were included for quantitative review. Compared to non-peer reviewed articles, journal
216 papers typically undergo several rounds of peer reviews, and they typically provide more rigorous
217 information with higher quality. This is a generally accepted method to ensure the high quality and
218 consistency of review [18,22,23]. Existing literature related to teleoperation applications for
219 excavators was first retrieved by searching “Title/Abstract/Keywords”, with the string “TITLE-
220 ABS-KEY ((tele-oper* OR teleoper* OR remote* OR autono* OR automa* OR intelligent OR

221 robot* OR unman*) AND (excavator OR excavation OR earthmoving OR earthwork OR backhoe)
222 AND (construction OR built environment OR architecture OR infrastructure OR building)." The
223 asterisk character (*) is used to capture any term with spelling variations, such as "teleoperation"
224 and "teleoperated."

225

226 **Table 1. Search strategy by combination of search strings.**

Theme	Search strings	Boolean operator
Teleoperation related keywords	(tele-oper* OR teleoper* OR remote* OR autono* OR automa* OR intelligent OR robot* OR unman*)	AND
Excavation related keywords	(excavator OR excavation OR earthmoving OR earthwork OR backhoe)	AND
Construction Field related keywords	(construction OR built environment OR architecture OR infrastructure OR building)	

227

228 *3.3 Screening*

229 This study builds on peer-reviewed journal papers in English published internationally, 390 papers
230 were first extracted with TITLE-ABS-KEY search in Web of Science. Then, we reviewed titles,
231 keywords, and abstracts of all 390 articles and screened out 240 and set aside 150 for the next step.
232 Detailed screen process was conducted within 150 papers by reviewing introduction, conclusion,
233 figures, and tables. This process includes assessing the theoretical background of research
234 questions, methodologies, findings with figures and tables, and contributions. Out of 150 articles,
235 133 articles were finally remained for a bibliometric and a systematic review in the following
236 section. Excluded papers from the final stage were related to excavation, but these were not
237 included in the study because they mainly examined the associated energy efficiency or
238 construction wastes, which are out of our review scope.

239

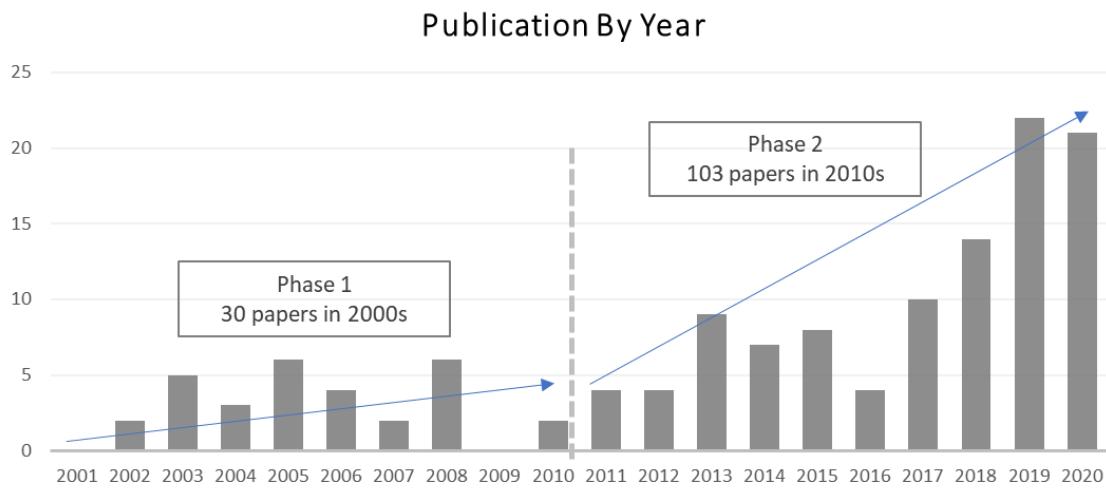
240 **4. Bibliometric analysis and results**

241 The bibliometric analysis is for quantitative review that aims to study, document, and synthesize
242 targeted research trends. This quantitative review enables to draw a picture of the selected research
243 domain through combining information from different categories with a large scale of scientific
244 literature such as citation, impacts, the structure of knowledge, and research evolution [18,24]. In
245 addition, the bibliometric analysis allows linking literature concepts of related articles through the
246 text mining, which enables to explore bibliographic coupling, keyword co-occurrence, and citation
247 analyses. In this paper, bibliometric analyses were conducted with carefully chosen 133 papers.
248 The author keyword co-occurrence analysis was taken to identify essential keywords in research
249 related to teleoperation of excavator to map, cluster, and see the recent trends of the knowledge
250 domain.

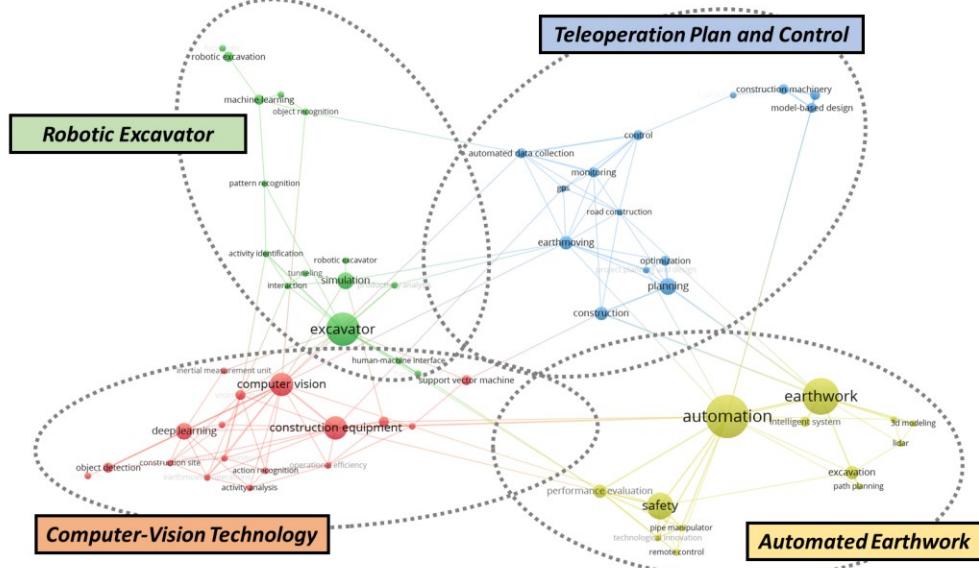
251

252 *4.1 Identified studies*

253 The majority of articles, accounting for around 72%, were published in construction & civil
254 engineering fields such as Automation in Construction, Journal of Computing in Civil Engineering,
255 Journal of Construction Engineering and Management, Computer Aided Civil and Infrastructure
256 Engineering, Construction and Building Materials, and Journal of Civil Engineering and
257 Management (Figure 2). Since teleoperation of excavator is related to robotics and automation as
258 well, some articles were published in journals in electrical or mechanical engineering fields such
259 as Sensors, International Journal of Precision Engineering and Manufacturing, and IEEE Access.
260 Among these journals, Automation in Construction is the most prevalent journal in this research
261 area. The number of articles published in Automation in Construction is 62, which is more than
262 40% of the total articles, and the number of citations is 1242. A total of 133 peer-reviewed


263 international articles published over past two decades represents a rapidly growing knowledge base
 264 on teleoperation of excavator. The articles were distributed by year between 2001 and 2020 in
 265 Figure 3. As can be seen, the distribution can be divided into two phases. From year 2001 to 2010,
 266 the average number of annual publications was 3, but from year 2011 to 2020, the average of
 267 annual publication was 10.3, which is around three times greater than that of 2000s. This is similar
 268 to the construction research trends analyzed by Pan and Zhang [25]. This phenomenon seems to
 269 be related to the rapid growth of development of artificial intelligence, sensors, telecommunication
 270 technology, and computer capacity in the 2010s which had been emerging for various relevant
 271 research areas.

272


273 **Table 2. Identified articles in 2001-2020.**

Academic journals	Number of articles	Number of citations
AUTOMATION IN CONSTRUCTION	62	1242
JOURNAL OF COMPUTING IN CIVIL ENGINEERING	14	280
JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT	13	186
ADVANCED ENGINEERING INFORMATICS	7	193
SENSORS	7	19
COMPUTER AIDED CIVIL AND INFRASTRUCTURE ENGINEERING	5	60
IEEE ACCESS	6	6
CONSTRUCTION AND BUILDING MATERIALS	4	103
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING	4	40
IEEE ASME TRANSACTIONS ON MECHATRONICS	3	32
OTHERS	8	
Total	133	2161

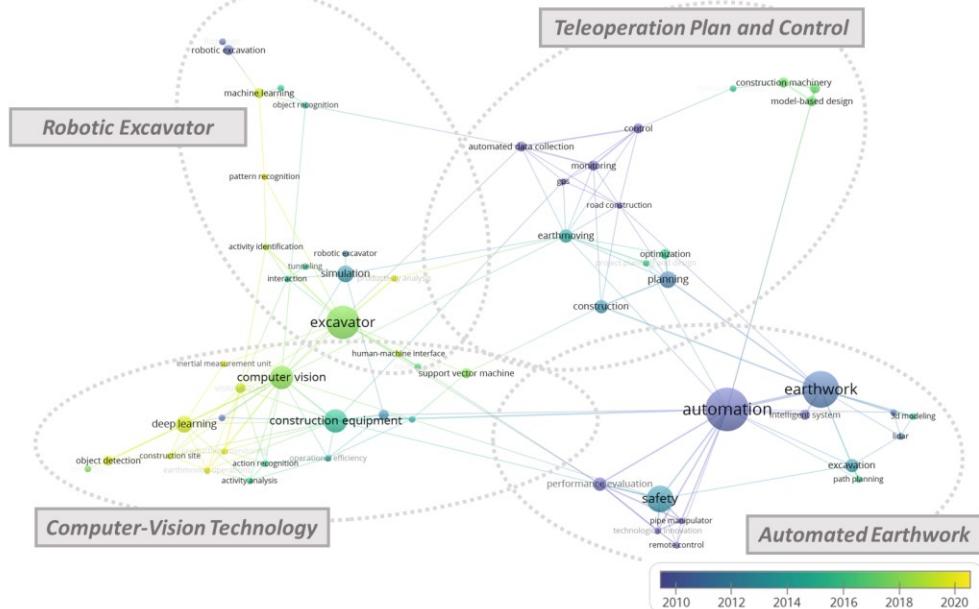

274

Figure 3. Number of published articles related to excavator teleoperation in 2001-2020.

A) Research cluster with keywords.

B) The trend topics with keywords used from 2010 to 2020.

277

278

Figure 4. Author keyword co-occurrence network analysis (min occurrence=2). (a) research clusters with keywords. (b) research topic trends with keywords.

279

281 4.2 *Keyword analysis*

282 Various topics and themes have been covered in research related to teleoperation of excavators in
283 recent two decades. To overlook those topics and themes, keywords are known as significant
284 elements to understand the trends and descriptive contents of the research articles [26]. Data from
285 the Web of Science and text mining was employed to analyze keyword co-occurrence and visualize
286 the networks between keywords. A keyword co-occurrence analysis was performed through
287 VOSviewer to identify the basic structure and cluster of excavator teleoperation-related research.
288 The degree of co-occurrence is determined by the proximity and similarity of keywords [24,27].
289 A total of 558 keywords chosen by each journal paper's authors were identified from the literature
290 database. Among them, 70 keywords with a minimum of 2 keyword co-occurrences were used for
291 the co-occurrence network analysis. We could find 4 significant research clusters associated with
292 these identified keywords (Figure 4a), and research topic trends with the keywords (Figure 4b).
293 Building upon from the keyword co-occurrence map (Figure 4a), four research clusters are as
294 follows:

295 *Cluster #1: Robotic Excavator*

296 In order to control excavators by teleoperation, operators need to understand the movement state
297 of excavators from a distance away. Keywords such as pattern recognition, object recognition, and
298 activity identification were observed in the Robotic Excavator cluster based on our quantitative
299 analysis with the VOSviewer. Although these keywords are related with the computer vision
300 technology, it seems that these were categorized in the Robotic Excavator cluster since the articles
301 with those keywords primarily focused on analyzing the activities of robotic excavators and their
302 movement states, rather than vision-based monitoring of work environments (e.g., surrounding
303 conditions while operating an excavator). The keywords of interaction, human-machine interface,

304 and haptic device represent the research on interfaces to recognize the situation of and around
305 teleoperated excavators and to give operators' commands to excavators. This indicates that not
306 only robotic applications for excavators have been studied in the past with conventional keywords
307 such as robotic excavation and simulation, but also extensive research was conducted with
308 technologies such as machine learning and computer vision to understand the activity of the
309 excavator in this research area.

310 *Cluster #2: Computer Vision Technology*

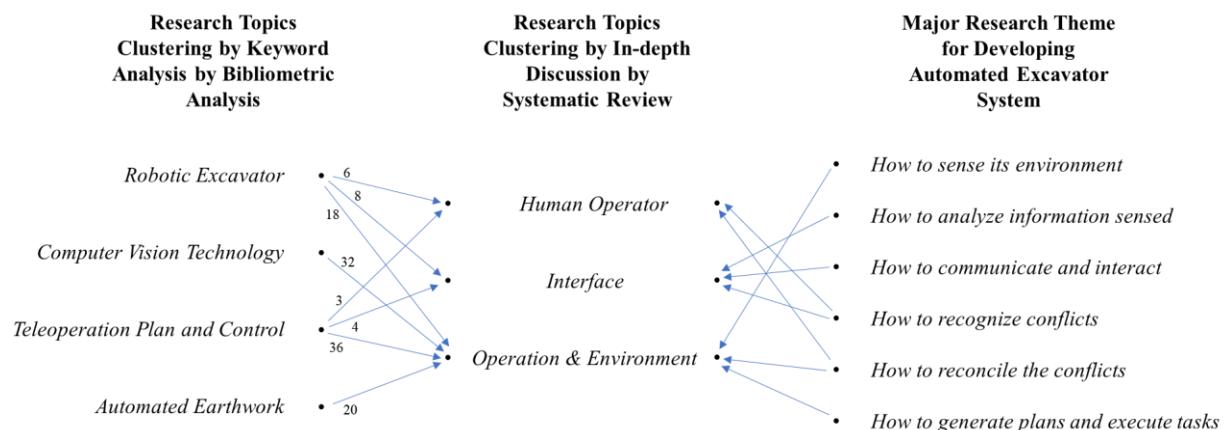
311 Significant advancement of digital technologies has affected research in the construction field. As
312 shown in Figure 4(b), 'Computer Vision' (Occurrence = 7) is a research field that has been
313 receiving a lot of attention recently compared to other clusters. Keywords of vision-based and deep
314 learning along with computer vision are clustered. Over the years, computer vision has gained its
315 attention in various research fields. The architecture, engineering, and construction (AEC) field is
316 one of the most focused areas where vision-based technology has been used to accelerate decision-
317 making processes during construction phase. Construction sites are typically dynamic and complex,
318 so efficient monitoring is often difficult and tedious [28]. With the advancement of machine vision,
319 extensive research related to monitoring excavators via visual sensing and deep learning-based
320 approaches has been conducted. For teleoperation, continuous monitoring of surrounding
321 conditions is required. In the past, people have directly monitored jobsites, but the advancement
322 of technology has shown the possibility that computer vision can replace humans. Computer
323 vision-based monitoring was basically used to monitor the location of people, equipment, and
324 materials at construction sites and to detect the working status or dangerous movement of humans
325 or equipment. In addition, to visually understand the situation of jobsites remotely for decision-
326 making, it is necessary to transmit and analyze a large amount of data, and thus image-based scene

327 understanding and 3D reconstruction also belong to this field. Since understanding environment
328 where distanced excavator is working is crucial for remote operation, sensing technologies based
329 on computer vision seem to be in the spotlight in this research area.

330 *Cluster #3: Teleoperation Plan and Control*

331 Keywords such as monitoring, planning, project planning and design, and model-based design,
332 could be categorized as plan (Occurrence = 5) and control (Occurrence = 3). A successful mission
333 requires a well-organized plan and control to execute tasks based on the plan. This applies to
334 teleoperation as well. Successful remote operation of excavation requires planning and controlling
335 of construction equipment taking account of the as-is situations of workplaces [29,30]. For task
336 planning toward teleoperation, information of the work environment and nearby excavators are
337 prerequisites. Information is often gathered by sensors attached to construction equipment or
338 workplaces. These sensors were also used to help monitor the process of excavation since it is hard
339 to manually monitor the teleoperation. Research on this area encompasses the field of control
340 guidance of excavators that allows remote control for operators who cannot directly recognize the
341 on-site situation and the field of semi-automation where tasks can be partially automated with
342 minimal supervision or command by humans.

343 *Cluster #4: Automated Earthwork*


344 Automation (Occurrence = 13) and earthwork (Occurrence = 11) are also main two keywords in
345 this cluster. As can be seen in Figure 4(b), studies have been conducted to enhance situational
346 awareness of construction sites and surroundings to remotely control robotic excavators since
347 around 2010. Other keywords like ‘3D modeling’, ‘LiDAR’, ‘intelligent system’, and ‘path
348 planning’ are also chosen in this cluster. The studies in this cluster contribute to improving
349 situational awareness of workplaces for excavation in the context of automation or intelligent

350 excavator system. Regarding the keyword ‘safety’ (Occurrence = 8), it was observed that
351 construction safety has been considered in this cluster. During excavation, heavy construction
352 equipment gathers and work simultaneously with human workers, which may cause numerous
353 fatal accidents. In addition, tragic accidents occur during excavation and underground utility
354 installation/maintenance due to the instabilities of trench walls or underground pipe strikes. With
355 keywords in this cluster, we could observe that there have been research efforts toward automated
356 earthwork recently with the advancement of technology while considering construction safety.

357

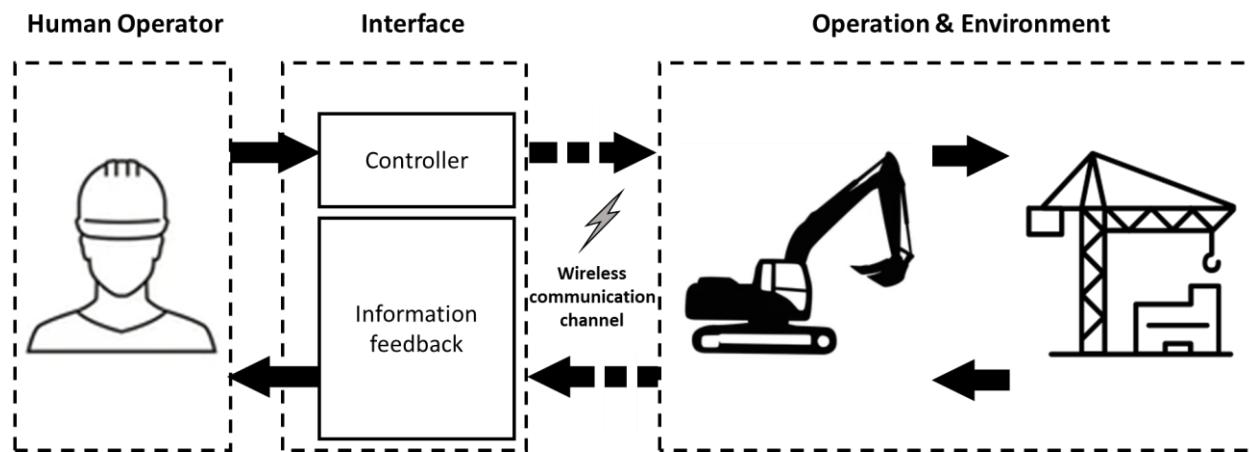
358 **5. In-depth discussion with systematic review**

359

360 * The number on each arrow represents the number of papers associated with the arrow.

361 **Figure 5. Research topic clustering.**

362 *5.1 Systematic Review*


363 Although the identified research cluster helps to form the knowledge domain structure of
364 teleoperation for excavators, the quantitative analysis may not be enough to reveal research
365 challenges and inform research requirements. In this regard, a systematic review with in-depth
366 discussion was conducted to supplement the inherent limitation of bibliometric review with

367 quantitative analysis. For example, a small number of research work may be important in a
368 particular field and can have a significant impact on the field of study. However, such a research
369 area could be neglected in quantitative analysis because the number is too small to quantitatively
370 represent the field of study. For this reason, the quantitative analysis may not be able to identify or
371 enlighten the specific research topics with small numbers of published journal papers which have
372 a tremendous effect on the research area. In this context, we conducted the qualitative review to
373 complement the comprehensive overview of the selected research area.

374 In order to construct the structure and classification for qualitative review of studies
375 regarding teleoperation of excavators in Section 5, we built upon the results of the keyword
376 analysis in Section 4, all papers reviewed for the bibliometric analysis, and relevant further studies
377 (e.g., conference proceedings). In addition, major research questions for developing automated
378 excavator systems were considered to build the research topics for in-depth discussion as well [31].
379 The classification structure of the research topics was determined through the consensus-based
380 discussion on the qualitative analysis of the research topics. The authors and other faculty members
381 from various disciplines (e.g., Construction Science, Industrial & Systems Engineering,
382 Psychological & Brain Sciences, Electrical & Computer Engineering) had weekly meetings from
383 January to June of 2021. During some weekly meetings, we invited and interviewed a total 15 of
384 construction experts (e.g., excavator operators, superintendents, safety managers, project
385 managers, etc.) with more than 10 years of average construction industry experience to understand
386 the associated current status and challenges in field practices. After meetings to discuss and
387 improve the classification structure of the research topics, all authors agreed and made a consensus
388 on the research topics for qualitative analysis as shown in Figure 5. In Figure 5, the number on
389 each arrow represents the number of papers associated with the arrow. These steps allow to offset

390 the heterogeneity of the findings obtained from both methods, and as far as possible, eliminate
391 potential bias in qualitative reviews. This section focuses on the research needs in teleoperation of
392 excavator to inform future research. Given that excavator teleoperation research have been
393 conducted to develop components or sub-systems of the platform of teleoperation such as
394 communication, kinetic and dynamic movement of excavator, obstacle avoidance, planning,
395 control and navigation [13,32], research topics are clustered into the following for in-depth
396 analysis: human operator, interface, and operation & environment as shown in Figure 6.

397

399 **Figure 6. Teleoperation system of excavator.**

400

401 *5.2 Human Operator*

402 *5.2.1 Proficiency*

403 As a major part of this system, humans have a significant influence on achieving the system goal.
404 Skilled operators are required for difficult teleoperation tasks to enhance the productivity and the
405 quality of the work. Human operators would plan, make decisions, and take actions through
406 information processing taking account of work contexts and surrounding conditions. The
407 intellectual demands of human operators arise from observation, attention, and memory depending

408 on their capabilities [33]. Though excavator operators have been through similar training, their
409 proficiencies may vary between individuals. These capabilities vary from operator to operator due
410 to a variety of individual factors ranging from age or gender to training and expertise [33]. These
411 differences involve knowledge [34], workspace spatial awareness [34], real-time situation and
412 operation monitoring ability [35], accident detection [36], proximity sensing [37], attention level
413 [38], information processing ability [38,39], or training & experience [40–43].

414 Compared to other industrial settings where licenses and certifications are used as criteria
415 for assuring work performance and mitigating potential risks caused by unqualified operators (e.g.,
416 airplane pilots must be qualified for controlling an airplane), operators in the construction field
417 often do not need a certificate or a license to drive small size of excavators in certain cases.
418 Therefore, in the study relevant to excavator operators, it should also be considered that machines
419 may be controlled by an operator who has little experience. Due to the aging issue and challenging
420 work environments, the supply of skilled operators with high work performance during excavation
421 is typically insufficient in the construction industry, and this situation increases the influx of
422 inexperienced operators into construction jobsites. Many studies have targeted university students
423 or workers who have no or little experience of operating an excavator [42,44–46] while expert
424 operators participated in experiments in some studies including [4,38,46,47]. It was observed that
425 those experts usually had 5 to 10 years of excavator operating experience or similar control
426 interface (e.g., joysticks) experience in the past.

427

428 *5.2.2 Fatigue and Cognitive Load*

429 The human-in-the-loop approach which sees different aspects of humans (i.e., physiological state,
430 physical state, action, behavior, and intention) should be significantly considered for teleoperation

431 of excavators since it builds on human-machine interactions. The literature indicated that excavator
432 operation is a mentally demanding task, and furthermore, in the case of teleoperation, operators
433 should rely on various technologies compared to conventional operation. Although new
434 technologies have been developed to support the operator's decision making, it should not be
435 disregarded that stress may occur with the adoption of unfamiliar technology depending on the
436 user who uses it in jobsites. It can be difficult to continue remote tasks if physical and cognitive
437 demand of operators keeps high during works. Cognitive overload and fatigue can cause poor
438 decision making, human errors, or underperformance, and this could lead to a dangerous situation
439 for the excavator operators [48]. Therefore, when conducting teleoperation studies, human factors
440 and ergonomics aspects should be measured and assessed physically and mentally.

441 Among the studies that developed devices or interfaces, human participants were asked to
442 report physical and cognitive loads such as mental demand, temporal demand, physical demand,
443 effort, performance, frustration level, and distraction after the task experiment [45,49]. The survey
444 was primarily based on six subscales of the National Aeronautics and Space Administration
445 (NASA)'s Task Load Index (TLX) subjective workload assessment tool. This evaluation has
446 served as a basis for determining whether a developed device or interface is effective enough for
447 reducing the cognitive load of human operators while enhancing the intuitiveness of using the
448 device. Ergonomic factors, muscle fatigue, wrist, and arm movement were evaluated to validate
449 the suitability of developed control devices in few studies [45,49]. In some studies, the spatial
450 abilities of participants (e.g., Spatial perception Ability (SpA)) which is a critical factor for
451 operator performance also have been primarily examined [42].

452

453 *5.2.3 Future Directions*

454 Future studies should consider the construction-specific dynamic work environments. For example,
455 operators may differ from day to day even in the same excavation workplace, and the ground of
456 jobsite, which was flat one day, maybe bumpy the next day during the earthwork. It is also possible
457 to perform different tasks each day with the same excavator. The excavator can do trenching for
458 yesterday and loading normal soil into a truck today. In such kind of work environment, the
459 operator's role is significant in the productivity, quality, and safety goal of each excavation task.

460 Many studies considered either novice or experienced operators for validating their works
461 during experiments. Since both novice and expert operators manipulate excavators in actual
462 construction sites, it is necessary to develop device, controller, and human-machine interface while
463 taking into account both experienced and inexperienced operators. Future human-machine
464 interfaces for excavators should be developed to compensate for bias in previous experience,
465 overconfidence, inattentiveness, and habituated behavior of experienced operators, and to support
466 lack of knowledge and experience for novice operators as well.

467 Moreover, human factors should be rigorously examined in designing and developing the
468 device or system for teleoperation since human operators are the main decision-makers who
469 receive various information and command to teleoperated excavators. Current works and studies
470 emphasized mainly on technologies and hardware of excavators. Human-centered human-machine
471 interface design is needed for future research. The experience and familiarity of the operator with
472 the design, human data such as their mental load changes, and their fatigue level need to be taken
473 into consideration when making the design. The purpose of the interactive design principle for
474 ensuring communication efficiency between human operators and excavators is to provide easy-
475 to-use interfaces with sufficient and efficient communication between them. These gaps will need
476 to be filled by conducting research through analyzing factors that affect the competence of

477 operators and remote controls of excavators, and by developing adequate training tools to operate
478 excavators via safe and efficient teleoperation. The most appropriate types and amount of
479 information to the operator should be selected, and the associated loads for operators to process it
480 should be evaluated to avoid data/information overload problems in workplaces. In addition, the
481 degree of easy-to-use need to be measured and assessed. Since individuals have different abilities
482 and degrees to feel each type of information, evaluating such degrees with subjects who can
483 represent the demographic of excavator operators is crucial in experiments. For this purpose, there
484 are metrics for evaluation such as response rate, task accuracy with trajectory, or work efficiency
485 with time. Survey such as the NASA TLX has been adopted to measure physical/cognitive load,
486 fatigue, intuitiveness, and stress of operators in studies. However, since these traditional surveys
487 are obtained through the participants' responses before or after the experiment, the results of the
488 experiment may not be reliable if the participants do not report properly. Therefore, in future work,
489 it is expected that human sensor data with physiological measurement devices such as
490 electroencephalograph (EEG) or electromyography (EMG) has the potential to give more objective
491 information during excavation tasks for further behavior analysis and supplement the drawbacks
492 of conventional survey methods.

493

494 *5.3 Interface*

495 *5.3.1 Interface as assisting information feedback*

496 Typically, a teleoperation system consists of a master robot part and a slave robot part. A master
497 robot part is where the human operator commands, and a slave robot part is a robot or a machine
498 that receives an operator's command and performs tasks. Since the master part and the slave part
499 are separated from each other in teleoperation, humans cannot directly recognize the environment

500 where the slave part interacts with. Known that operators' situational awareness is significant for
501 robust control decision making for ensuring safety and productivity during teleoperation, operators
502 should rely on interfaces to understand the environment where the machine interacts with during
503 tasks. Therefore, one of keys to perform the successful teleoperation is an intuitive interface that
504 can support strong situational awareness. Reinforced situational awareness with intuitive
505 interfaces can provide a work environment in which human operators can work in good health by
506 enhancing the understanding of site conditions and machines because operators would get
507 telepresence feeling like onboarding the machine in the field [15]. Various interfaces such as visual,
508 haptic, or auditory cues have been designed and developed in responding to on-site demands for
509 enhanced situational awareness.

510 *Visual interface (2D/3D/Visual Annotation)* - Most visual interfaces of teleoperation
511 systems rely on providing image or video data. When multiple cameras are installed for monitoring,
512 changing visual scenes on an interface or viewing scenes on multiple views is needed. In this case,
513 operators need to pay attention to multiple scenes simultaneously, which may increase cognitive
514 loads for information processing and thus likely lower work productivity [15]. To overcome
515 limitations of conventional visual interface, research has been conducted to improve spatial
516 understanding in teleoperation through dedicated remote sensors other than common video
517 cameras. For example, environmental scanning techniques such as LiDAR have been introduced
518 to gather the 3D point cloud data of given scenes [50]. The virtual reality (VR) has been tested as
519 an intuitive user interface to explore the virtual scene in construction [15]. With the recent
520 advancement of VR, increasingly reproduced information has been positioned into the interface
521 that would enhance the situational awareness of operators. However, if excessive visual
522 information is provided, human operators often cannot digest all information and feel cognitive

523 load or fatigue. Visual annotation (VA) would be a promising solution to supplement visual
524 perception loss because of large amounts of visual information in a short time. For example,
525 hazardous obstacles have been highlighted so that operators can recognize obstacles or set up a
526 radar map indicating the position of obstacles in the corner of the screen [42]. However, since the
527 VA only gives information about visible obstacles, there is still a limitation in cases where it is
528 necessary to perform excavation tasks with uncertainties regarding invisible obstacles (e.g., buried
529 underground utilities).

530 *Tactile interface* - For teleoperation in construction, a tactile feedback has been proposed
531 in an interface system such as [51]. Providing information about collisions by tactile sense (e.g.,
532 high-frequency vibration) showed the potential in raising situational awareness because it can help
533 improve realistic understanding of situations. Since humans can recognize the physical
534 environment through tactile sense, transmitting tactile signals to operators when contacting objects
535 can improve the sense of reality and understanding of field situations [4]. For example, Okamura
536 et al. [52] showed that the sense of touch reflecting the characteristics of different physical
537 environments helps operators perceive and recognize objects with different characteristics. As such,
538 the use of tactile sensation to enhance operators' understanding of jobsite conditions has been
539 applied in the construction field [4]. Regarding the construction machinery to which teleoperation
540 is applied, it is expected that tactile information will be able to play a crucial role in alerting
541 operators of field situations on construction sites. However, the tactile feedback has challenges,
542 such that environmental stimuli, such as other mechanical vibrations caused by other proximal
543 equipment, could mask tactile displays.

544 *Auditory interface* - The auditory interface can help give alarms to operators. A visual
545 interface may cause a cognitive load problem because human operators need to process multiple

546 pieces of visual information at once. Since the auditory interface uses a different sensory channel
547 (i.e., hearing) as opposed to the sight, it would be an appropriate interface for alarming when it is
548 in a visually demanding situation. However, when information related to the danger can be visually
549 transmitted to operators in an appropriate manner, the auditory interface may duplicate the
550 associated information, which should be carefully considered for designing auditory interface [2].
551 Bhalerao et al. [53] and Mavridis et al. [54] showed that participants trained with verbal-audio or
552 audio stimuli performed better in the training than those who are trained without such stimuli.
553 Meanwhile, the auditory channel may be less-available due to the presence of high-decibel
554 workplace noise, and often also the need to wear protective hearing equipment.

555

556 *5.3.2 Interface as controller*

557 The interface as a controller is supposed to deliver commands by the operator to the machine from
558 a distance. Therefore, the major goal of relevant studies is to develop an intuitive, ease-to-use, and
559 efficient-to-use controller.

560 *Joystick* – Shin et al. [55] developed joysticks for remote control by installing a device on
561 existing levers and pedals in the cockpit to control excavators at a distance. But the conventional
562 controller interface (e.g., joystick) is often known as counter-intuitive to some excavator operators.
563 Since the operator has to control two joysticks to manipulate excavator attachment with three
564 components (e.g., bucket, arm, and boom), it is quite difficult and confusing. This may cause a lot
565 of cognitive loads to operators especially novice operators. Although joystick allows operators to
566 control the end effector of the slave robot arm by means of trajectory-related methods, it requires
567 training for operators to be familiar with the mechanism. It should be noted that even professional
568 operators are prone to make error under excessive working pressure and high perceived load when

569 remotely operating robot systems in an unstructured environment with uncertainties (e.g.,
570 obstacles such as underground utility strike).

571 *Haptic & Graphic User Interface* – Kim et al. [44] and Gong et al. [56] proposed haptic-
572 based methods to control the excavator attachment by the human arm since the kinetic mechanism
573 of the human arm is much more similar to that of the excavator arm and bucket compared to the
574 joystick. However, these studies posed challenges in that excessive physical load may be required
575 for workers if the arm is manipulated for long periods of time compared to finger-moving joysticks.
576 Okishiba et al. [45] developed a graphical user interface (GUI) for control via human factors
577 analysis taking account of the cognitive load of human information processing among different
578 interface types. Compared to a joystick that takes time to get used to and adapt to, the GUI based
579 on a mobile device was developed so that unskilled workers can more easily control excavators
580 remotely.

581

582 *5.3.3 Future Directions*

583 There is a contradiction in designing interactive interface (i.e., delivering sufficient information
584 with less cognitive load to operators). If too much information is provided visually, it may not be
585 able to be digested during tasks and likely lowers concentration and work efficiency. In this context,
586 research on how to optimally deliver information feedback via robust interfaces should be
587 conducted in terms of the contents of visual presentation, information format, and the relationship
588 with other sensory feedback. As well as the operator's cognitive load, the load of computer and
589 communication channel should be also considered. Since the size of visual data is often large, it is
590 necessary to consider the format, space, and transmission type to efficiently store and process the
591 data. While the interface for remote operation is primarily focused on visual feedback, it should

592 not be overlooked that tactile and/or audio feedback can be used to tele-operate the excavator.
593 Audio feedback has been used to intuitively transmit warning to operators, and tactile feedback
594 has been used to recognize the characteristic of physical environments. As such, in order to reduce
595 cognitive loads due to excessive visual feedback, leveraging other sensory channels would be a
596 promising solution in the future research. The interface for excavator is crucial for effective
597 interaction between human and excavator.

598 Another research gap is that the control of validity of experimental environments during
599 the use of simulators is not specifically defined. Prior studies mentioned that the simulator was
600 used for the experiments, but there are differences between the virtual environments in simulators
601 and the real-life environment. If the environment control is too high in the virtual environment,
602 the performance of the interface design is likely to be different in a sub-ideal (real-life)
603 environment. Though it is convenient and cost-efficient to use a simulator for experiments, more
604 attention to the balance between environment control and validity is needed from the
605 experimenters.

606 Lastly, it should not be neglected that the ultimate goal for effective communication is to
607 perform and assist excavation tasks effectively (e.g., digging, dumping, driving, lifting). For future
608 studies, it is essential to conduct the task analysis for human operator and excavator, regarding
609 operators' behaviors as well as kinetic movement of excavator while executing given tasks to check
610 its usability. It is necessary to identify information processing or decision-making process of
611 operators when performing tasks with excavators (especially, complex tasks that require much
612 caution) and taking account of users' perspective in the design process when developing an
613 effective interface.

614

615 *5.4 Operation & Environment*

616 *5.4.1 Data Communication Efficiency*

617 To teleoperate excavators, hardware such as machines, sensors, computers, and interfaces need to
618 send and receive data (e.g., image/video data, 3D spatial data, excavator motion data) and
619 associated information wirelessly in real time. Exchanging such different types of data and vast
620 amounts of information in real time may cause the deterioration of wireless communication
621 performance. If communication performance deteriorates, errors including compatibility problems
622 may occur in collecting and transmitting information due to data interference or transmission errors
623 between platforms. In addition, it takes a long time to process data, and there may be a time delay
624 in the operation (i.e., latency). Communication errors or delay problems affect safety, work
625 efficiency, and accuracy in performing teleoperation tasks [57]. Therefore, establishing an efficient
626 communication channel is important for the teleoperation of excavators.

627 Likewise, Dadhich et al. [12] emphasized the reliable wireless network of remote
628 communication for different types of information to be used as feedback and to transmit control
629 commands. Wireless networks often have traffic problems because they are not only for
630 teleoperation but also for other purposes in jobsite management (e.g., security cameras, UAVs)
631 and thus using dedicated methods such as wireless local area networks (WLANs) need to be
632 considered. In addition, advancement of wireless communication technology, where it moves from
633 3G to 4G LTE, now 5G is commercialized to complement slow speed of WLANs, and 6G is
634 coming, thus we may envision ultra-low latency in teleoperation. Latency lowers the transmission
635 rate due to data interference, error, and compatibility issues based on data types in addition to the
636 communication network and speed [12]. In this regard, effective data management has been
637 studied. Kim et al. [29] conducted a study on how to reduce the high data traffic load caused by

638 high volume and frequency when operating excavators remotely. Kim et al. [29] developed the
639 Data Communication Manager (DCM), a middleware interface system, for efficient
640 communication between control station and data from sensors and controllers of intelligent
641 excavators. Lee et al. [58] developed a GPS-based fleet telematics system that can monitor health
642 conditions or performance of operators based on data such as location, speed, distance, and
643 utilization time of heavy earthwork equipment in real time. Despite the significance of this field
644 in remote operation, relatively few studies have been conducted compared with other topics in
645 excavator teleoperation. In this regard, there is still a need for research related to wireless
646 communication system for teleoperating excavators to achieve low latency and minimizing data
647 loss for efficient data communication during teleoperation.

648

649 *5.4.2 Environment Awareness*

650 People have expectations that remote control of construction equipment for excavation could
651 improve productivity and safety. However, unlike the manufacturing industry where workplaces
652 are typically structured, there could be more risks and uncertainties associated with remote control
653 in construction sites. Coping with an unexpected environment through real-time monitoring is
654 crucial for earthwork involving uncertainties. Therefore, reliable information along with
655 continuous and real-time monitoring of workplaces is essential for remote operation of excavators
656 in a safe and successful manner [59]. Technologies aided by computer vision can contribute to
657 robust machine vision-based inspection, which increasingly replaces error-prone, time-consuming,
658 labor-intensive, and dangerous manual observation [25]. In teleoperation, since human operators
659 may not be able to see and feel sites directly, providing reliable spatial information is essential for
660 robust control. In addition to monitoring the kinetic movement of excavators, operators should be

661 aware of the work environment to perform teleoperation tasks well. Environment awareness should
662 be able to understand information related to safety as well as task productivity in real time, which
663 is based on recognizing surroundings and obstacles that may affect or interfere with works.

664 Environment awareness in the context of excavation can be divided into two categories;
665 one is site monitoring for objects above ground [60–79], and the other is monitoring for terrain
666 conditions and underground objects [80–84]. There are many obstacles for excavation because the
667 workplace is often not well-organized, and the ground level is not typically consistent. Therefore,
668 in order to remotely operate excavators safely without colliding with obstacles above ground, it is
669 necessary to be aware of the surrounding situation. In this regard, studies on 3D mapping of
670 construction sites (e.g., in the form of 3D point cloud data) have been conducted [6,85]. In
671 unstructured surface conditions of jobsites for earthwork, at least obstacles are visible, but
672 underground situations are invisible, and thus the associated uncertainty is greater than the ground
673 surface, which likely leads major safety issues.

674 In case of buried utilities, one of the main obstacles for excavation, it is not easy to
675 pinpoint the exact location of underground utility because the reference (e.g., as-built drawings)
676 may misrepresent the location of utility and may not be updated, or the human error of the locator
677 may provide misinformation to excavation workers. Therefore, it is important to know the actual
678 location/depth while performing excavation tasks. Studies have been conducted to ensure the
679 excavation safety and have used technologies for locating and mapping underground utilities to
680 prevent accidents [86]. Wei et al. [84] and Cai et al. [87] proposed ways to improve the accuracy
681 of utility mappings by integrating detectable and undetectable data. The methodology included
682 identifying utility presence and estimating utility location using spatial data from GPR, previous

683 records of buried utility, and specifications. Li et al. [88] has developed a framework that integrates
684 spatial reasoning and natural language processing (NLP) for utility compliance automation.

685

686 *5.4.3 Future Directions*

687 Teleoperation requires telepresence that allows human operators to feel realism even from a
688 distance. Toward such telepresence, the information about excavators and the surroundings needs
689 to be robustly delivered to human operators, which requires seamless data transmission and
690 reception of various types and large amounts of data and information. Accordingly, reliable
691 information on the work environment and multicast communication is necessary. Real-time
692 modeling of construction workplaces and efficient data management systems are essential for
693 teleoperation, but relevant technical limitations still exist. With the current communication
694 technology, latency may not be a problem in a short distance, but in the case of controlling from a
695 long distance, there is a need for robust ways to overcome latency issues for accurate control.

696 Regarding environment awareness of construction workplaces, although studies have been
697 conducted on 3D mapping of jobsites, there is still a question as to whether this can take account
698 of cognitive overload issues due to excessive information to operators and the latency issue of data
699 transmission when operators teleoperate excavators. Therefore, in future studies, it is necessary to
700 conduct experiments to confirm whether 3D mapping is practical in teleoperation of excavators in
701 jobsites. The hybrid GPR/GPS systems have shown promising results, but they may not be ideal
702 solutions for taking account of underground utilities under each and every site condition. GPR
703 surveys take time for analyzing data and often have limitation on catching utilities depending on
704 soil conditions. In this context, there is a need for further studies on underground utility detection
705 and localization to gather complete site information. Although accurate site information is

706 important to prevent potential accidents, when looking at the root cause of an accident such as a
707 buried utility strike, many cases are still caused by excavator operators' inattentive operation.
708 Therefore, it would be a good way to reduce fatal accidents via guidance systems that can support
709 inattentive excavator operators to work safely along with accurate spatial information of obstacles
710 (e.g., buried utilities).

711

712 *5.5 Opportunities in teleoperation of excavators*

713 Although Occupational Safety and Health Administration (OSHA) safety trainings and various
714 regulations are required in many jobsites before excavation tasks, fatal accidents still occur.
715 Physically removing human operators from dynamic and dangerous excavation sites could be a
716 fundamental way to reduce deadly accidents. Therefore, when the technology related to
717 teleoperation is further developed and supported, its application to excavators is expected to bring
718 us many opportunities in the future since it allows operators to manipulate excavators from a safe
719 distance. In particular, this is essential in extremely challenging situations such as disaster areas
720 caused by earthquakes, floods, or tsunamis, which are dangerous or harmful for humans to work
721 on site.

722 After quantitative reviews with keyword analysis, we have conducted a qualitative review
723 and in-depth discussion of studies related to the teleoperation of excavators in three aspects (i.e.,
724 human operator, interface, operation & environment). In-depth analysis was performed by
725 selecting a total of 9 papers in the Human operator section, 12 papers in the Interface section, and
726 106 papers in the Operation & Environment section. As such, we could observe that the Human
727 Operator cluster and the Interface cluster have a relatively small amount of research conducted
728 compared to the Operation & Environment cluster. Since the dynamic field environment (e.g., the

729 movement and interaction of heavy equipment and laborers on bumpy, rough, and uneven ground
730 condition) is one of the most challenging parts, it makes sense that there have been many studies
731 conducted in the Operation & Environment cluster among others. However, it should not be
732 neglected that the subject that operates an excavator is human. Although higher levels of
733 automation could reduce the dependence of the human operator on decision-making, human
734 intervention is still required in certain task situations (e.g., non-pre-programmed and error-prone
735 situations). In this regard, human-centered research (e.g., physical and psychological stress, ability
736 of human operator, human-robot interface) needs to be more conducted by future researchers.

737

738 **6. Conclusion**

739 There has been increasing interest of the automation in hazardous construction workplaces. Given
740 the currently developed technologies, achieving full autonomy for each and every construction
741 task needs more time because of dynamic, complex, and uncertain nature of construction
742 workplaces. In this context, there have been research efforts on emerging teleoperation
743 technologies for human-in-the-loop construction automation. Among various type of construction
744 robots, this paper focuses on excavators which are the most widely employed and representative
745 construction robot at jobsites while the largest proportion of fatal accidents in construction is
746 related to excavation. This paper explores challenges, tasks, and opportunities of excavator
747 teleoperation by examining related studies in the past two decades using the mixed review method,
748 both quantitative (i.e., bibliometric analysis) and qualitative (i.e., systematic review) approaches.
749 Total 133 peer-reviewed papers were systematically and rigorously reviewed. Through the
750 bibliometric analysis with the VOSviewer, research clusters were identified: excavator, computer
751 vision technology, teleoperation plan and control, and automated earthwork. The number of studies

752 related to excavator teleoperation in the 2010s was more than three times higher than that in the
753 2000s. The research clusters identified from the bibliographic analysis are synthesized through the
754 consensus-based discussion to develop the classification structure of the retrieved publications.
755 The classification structure is used to conduct the qualitative review and the comprehensive
756 discussion of excavator teleoperation related research challenges, knowledge gaps, and potentials.
757 Through the in-depth discussion for the qualitative reviews, research directions in terms of human
758 operator, interface, and operation & environment were identified, which clarifies the essential roles
759 of each area in the overall system of teleoperation for excavation. Since teleoperation always
760 involves human operators, excavator research needs to be conducted from human perspectives and
761 represent the demographic of excavator operators. For developing robust human-machine
762 interfaces, research should be conducted in the aspect of enhancing task performance while
763 delivering sufficient information with less cognitive load to operators. And when it comes to
764 various tasks of excavation to be performed remotely, it is necessary that operators robustly sense
765 situational awareness taking account of uncertainties in jobsites for preventing safety accidents,
766 and simultaneously there is a need for technologies for efficiently transmitting vast amounts of
767 heterogeneous data. As such, there are still challenges that need to be addressed, and this paper
768 could shed light on this field by reviewing relevant studies, analyzing knowledge gaps, and
769 suggesting the direction of future research. If successful in filling the gaps for teleoperation, it is
770 anticipated that human-in-the-loop automation can make construction work safer and more
771 efficient.

772

773 **Acknowledgement**

774 This material is based upon work supported by the National Science Foundation under Grant No.
775 2026574. Any opinions, findings, and conclusions or recommendations expressed in this material
776 are those of the author(s) and do not necessarily reflect the views of the National Science
777 Foundation.

778

779 **Reference**

- 780 [1] J. Kim, D. Lee, J. Seo, Task planning strategy and path similarity analysis for an autonomous
781 excavator, *Automation in Construction*. 112 (2020) 103108.
782 <https://doi.org/10.1016/j.autcon.2020.103108>.
- 783 [2] F. Morosi, M. Rossoni, G. Caruso, Coordinated control paradigm for hydraulic excavator
784 with haptic device, *Automation in Construction*. 105 (2019) 102848.
785 <https://doi.org/10.1016/j.autcon.2019.102848>.
- 786 [3] M. Ito, C. Raima, S. Saiki, Y. Yamazaki, Y. Kurita, Effects of Machine Instability Feedback
787 on Safety During Digging Operation in Teleoperated Excavators, *IEEE Access*. 9 (2021)
788 pp.28987-28998. <https://doi.org/10.1109/ACCESS.2021.3059710>.
- 789 [4] H. Nagano, H. Takenouchi, N. Cao, M. Konyo, S. Tadokoro, Tactile feedback system of high-
790 frequency vibration signals for supporting delicate teleoperation of construction robots,
791 *Advanced Robotics*. 34 (2020) pp.730-743. <https://doi.org/10.1080/01691864.2020.1769725>.
- 792 [5] A. Dubois, L.-E. Gadde, The construction industry as a loosely coupled system: implications
793 for productivity and innovation, *Construction Management and Economics*. 20 (2002)
794 pp.621-631. <https://doi.org/10.1080/01446190210163543>.
- 795 [6] D. Moon, S. Chung, S. Kwon, J. Seo, J. Shin, Comparison and utilization of point cloud
796 generated from photogrammetry and laser scanning: 3D world model for smart heavy
797 equipment planning, *Automation in Construction*. 98 (2019) pp.322-331.
798 <https://doi.org/10.1016/j.autcon.2018.07.020>.
- 799 [7] A. Stroupe, T. Huntsberger, A. Okon, H. Aghazarian, M. Robinson, Behavior-based multi-
800 robot collaboration for autonomous construction tasks, in: 2005 IEEE/RSJ International
801 Conference on Intelligent Robots and Systems, 2005: pp. 1495–1500.
802 <https://doi.org/10.1109/IROS.2005.1545269>.
- 803 [8] G. Hitz, A. Gotovos, F. Pomerleau, M. Garneau, C. Pradalier, A. Krause, R.Y. Siegwart, Fully
804 autonomous focused exploration for robotic environmental monitoring, in: 2014 IEEE
805 International Conference on Robotics and Automation (ICRA), 2014: pp. 2658–2664.
806 <https://doi.org/10.1109/ICRA.2014.6907240>.
- 807 [9] S. Hirche, M. Buss, Human-Oriented Control for Haptic Teleoperation, *Proceedings of the*
808 *IEEE*. 100 (2012) pp.623-647. <https://doi.org/10.1109/JPROC.2011.2175150>.
- 809 [10] Q. Zhu, J. Du, Y. Shi, P. Wei, Neurobehavioral assessment of force feedback simulation in
810 industrial robotic teleoperation, *Automation in Construction*. 126 (2021) 103674.
811 <https://doi.org/10.1016/j.autcon.2021.103674>.
- 812 [11] P.F. Hokayem, M.W. Spong, Bilateral teleoperation: An historical survey, *Automatica*. 42
813 (2006) pp.2035-2057. <https://doi.org/10.1016/j.automatica.2006.06.027>.

814 [12] S. Dadhich, U. Bodin, U. Andersson, Key challenges in automation of earth-moving
815 machines, *Automation in Construction*. 68 (2016) pp.212-222.
816 <https://doi.org/10.1016/j.autcon.2016.05.009>.

817 [13] Q.P. Ha, L. Yen, C. Balaguer, Robotic autonomous systems for earthmoving in military
818 applications, *Automation in Construction*. 107 (2019) 102934.
819 <https://doi.org/10.1016/j.autcon.2019.102934>.

820 [14] N. Melenbrink, J. Werfel, A. Menges, On-site autonomous construction robots: Towards
821 unsupervised building, *Automation in Construction*. 119 (2020) 103312.
822 <https://doi.org/10.1016/j.autcon.2020.103312>.

823 [15] T. Zhou, Q. Zhu, J. Du, Intuitive robot teleoperation for civil engineering operations with
824 virtual reality and deep learning scene reconstruction, *Advanced Engineering Informatics*. 46
825 (2020) 101170. <https://doi.org/10.1016/j.aei.2020.101170>.

826 [16] H. Sulaiman, M. Saadun, A. Yusof, Modern manned, unmanned and teleoperated excavator
827 system, *Journal of Mechanical Engineering and Technology*. 7 (2015).
828 <https://journal.utm.edu.my/index.php/jmet/article/view/539>.

829 [17] L. Basañez, R. Suárez, Teleoperation, in: Nof S. (Eds) *Springer Handbook of Automation*,
830 Springer, 2009: pp. 449–468. https://doi.org/10.1007/978-3-540-78831-7_27.

831 [18] Y. Zhang, H. Liu, S.-C. Kang, M. Al-Hussein, Virtual reality applications for the built
832 environment: Research trends and opportunities, *Automation in Construction*. 118 (2020)
833 103311. <https://doi.org/10.1016/j.autcon.2020.103311>.

834 [19] P. Hallinger, J. Kovačević, A bibliometric review of research on educational administration:
835 Science mapping the literature, 1960 to 2018, *Review of Educational Research*. 89 (2019)
836 pp.335-369. <https://doi.org/10.3102/0034654319830380>.

837 [20] P. Mongeon, A. Paul-Hus, The journal coverage of Web of Science and Scopus: a comparative
838 analysis, *Scientometrics*. 106 (2016) pp.213-228. <https://doi.org/10.1007/s11192-015-1765-5>.

840 [21] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic
841 reviews and meta-analyses: The PRISMA statement, *International Journal of Surgery*. 8
842 (2010) pp.336-341. <https://doi.org/10.1016/j.ijsu.2010.02.007>.

843 [22] M.R. Hosseini, I. Martek, E.K. Zavadskas, A.A. Aibinu, M. Arashpour, N. Chileshe, Critical
844 evaluation of off-site construction research: A Scientometric analysis, *Automation in
845 Construction*. 87 (2018) pp.235-247. <https://doi.org/10.1016/j.autcon.2017.12.002>.

846 [23] M. Oraee, M.R. Hosseini, E. Papadonikolaki, R. Palliyaguru, M. Arashpour, Collaboration in
847 BIM-based construction networks: A bibliometric-qualitative literature review, *International
848 Journal of Project Management*. 35 (2017) pp.1288-1301.
849 <https://doi.org/10.1016/j.ijproman.2017.07.001>.

850 [24] N.J. van Eck, L. Waltman, R. Dekker, J. van den Berg, A comparison of two techniques for
851 bibliometric mapping: Multidimensional scaling and VOS, *Journal of the American Society
852 for Information Science and Technology*. 61 (2010) pp.2405-2416.
853 <https://doi.org/10.1002/asi.21421>.

854 [25] Y. Pan, L. Zhang, Roles of artificial intelligence in construction engineering and management:
855 A critical review and future trends, *Automation in Construction*. 122 (2021) 103517.
856 <https://doi.org/10.1016/j.autcon.2020.103517>.

857 [26] M. Akinlolu, T.C. Haupt, D.J. Edwards, F. Simpeh, A bibliometric review of the status and
858 emerging research trends in construction safety management technologies, *International
859 Journal of Construction Management*. (2020) pp.1-13.

860 https://doi.org/10.1080/15623599.2020.1819584.

861 [27] N.J. van Eck, L. Waltman, Visualizing Bibliometric Networks. In: Ding Y., Rousseau R.,
862 Wolfram D. (eds) *Measuring Scholarly Impact*, Springer International Publishing, 2014.
863 <http://link.springer.com/10.1007/978-3-319-10377-8> (accessed September 27, 2021).

864 [28] S. Xu, J. Wang, W. Shou, T. Ngo, A.-M. Sadick, X. Wang, Computer Vision Techniques in
865 Construction: A Critical Review, *Archives of Computational Methods in Engineering*. 28
866 (2021) pp.3383-3397. <https://doi.org/10.1007/s11831-020-09504-3>.

867 [29] J. Kim, S.S. Lee, J. Seo, V.R. Kamat, Modular data communication methods for a robotic
868 excavator, *Automation in Construction*. 90 (2018) pp.166-177.
869 <https://doi.org/10.1016/j.autcon.2018.02.007>.

870 [30] T. Tanimoto, K. Shinohara, H. Yoshinada, Research on effective teleoperation of construction
871 machinery fusing manual and automatic operation, *Robomech Journal*. 4 (2017) pp.1-12.
872 <https://doi.org/10.1186/s40648-017-0083-5>.

873 [31] S.-K. Kim, J.S. Russell, Framework for an intelligent earthwork system: Part II. Task
874 identification/scheduling and resource allocation methodology, *Automation in Construction*.
875 12 (2003) pp.15-27. [https://doi.org/10.1016/S0926-5805\(02\)00033-X](https://doi.org/10.1016/S0926-5805(02)00033-X).

876 [32] Q. Ha, M. Santos, Q. Nguyen, D. Rye, H. Durrant-Whyte, Robotic excavation in construction
877 automation, *IEEE Robotics & Automation Magazine*. 9 (2002) pp.20-28.
878 <https://doi.org/10.1109/100.993151>.

879 [33] K.K. Hughes, *Integration Of Cognitive And Physical Factors To Model Human Performance
880 In Fluid Power Systems*, Dissertations. (2011) 279.
881 <https://digital.library.ncat.edu/dissertations/11/> (accessed September 27, 2021).

882 [34] X. Su, S. Talmaki, H. Cai, V.R. Kamat, Uncertainty-aware visualization and proximity
883 monitoring in urban excavation: a geospatial augmented reality approach, *Visualization in
884 Engineering*. 1 (2013) pp.1-13. <https://doi.org/10.1186/2213-7459-1-2>.

885 [35] S. Talmaki, V.R. Kamat, H. Cai, Geometric modeling of geospatial data for visualization-
886 assisted excavation, *Advanced Engineering Informatics*. 27 (2013) pp.283-298.
887 <https://doi.org/10.1016/j.aei.2013.01.004>.

888 [36] J. Akyeampong, S.J. Udoka, E.H. Park, A Hydraulic Excavator Augmented Reality Simulator
889 for Operator Training, in: *Proceedings of the 2012 International Conference on Industrial
890 Engineering and Operations Management*, 2012: pp. 1511–1518.

891 [37] X. Chen, F. Chen, J. Zhou, L. Li, Y. Zhang, Cushioning structure optimization of excavator
892 arm cylinder, *Automation in Construction*. 53 (2015) pp.120-130.
893 <https://doi.org/10.1016/j.autcon.2015.03.012>.

894 [38] M. Wallmyr, T.A. Sitompul, T. Holstein, R. Lindell, Evaluating Mixed Reality Notifications
895 to Support Excavator Operator Awareness, in: D. Lamas, F. Loizides, L. Nacke, H. Petrie, M.
896 Winckler, P. Zaphiris (Eds.), *Human-Computer Interaction – INTERACT 2019*, Springer
897 International Publishing, Cham, 2019: pp. 743–762. [https://doi.org/10.1007/978-3-030-29381-9_44](https://doi.org/10.1007/978-3-030-
898 29381-9_44).

899 [39] Q. Xiang, X. Luo, G. Ye, X. Gong, J. Ke, A Methodology for Analyzing Information Needs
900 in Construction, in: *Construction Research Congress 2020*, American Society of Civil
901 Engineers, Tempe, Arizona, 2020: pp. 157–164. <https://doi.org/10.1061/9780784482872.018>.

902 [40] Y. Du, M.C. Dorneich, B. Steward, Virtual operator modeling method for excavator trenching,
903 *Automation in Construction*. 70 (2016) pp.14-25.
904 <https://doi.org/10.1016/j.autcon.2016.06.013>.

905 [41] P.S. Dunston, R.W. Proctor, X. Wang, Challenges in evaluating skill transfer from

construction equipment simulators, *Theoretical Issues in Ergonomics Science*. 15 (2014) pp.354-375. <https://doi.org/10.1080/1463922X.2011.624647>.

[42] Z. Hong, Q. Zhang, X. Su, H. Zhang, Effect of virtual annotation on performance of construction equipment teleoperation under adverse visual conditions, *Automation in Construction*. 118 (2020) 103296. <https://doi.org/10.1016/j.autcon.2020.103296>.

[43] S. Talmaki, V.R. Kamat, Real-Time Hybrid Virtuality for Prevention of Excavation Related Utility Strikes, *Journal of Computing in Civil Engineering*. 28 (2014) 04014001. [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000269](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000269).

[44] D. Kim, J. Kim, K. Lee, C. Park, J. Song, D. Kang, Excavator tele-operation system using a human arm, *Automation in Construction*. 18 (2009) pp.173-182. <https://doi.org/10.1016/j.autcon.2008.07.002>.

[45] S. Okishiba, R. Fukui, M. Takagi, H. Azumi, S. Warisawa, R. Togashi, H. Kitaoka, T. Ooi, Tablet interface for direct vision teleoperation of an excavator for urban construction work, *Automation in Construction*. 102 (2019) pp.17-26. <https://doi.org/10.1016/j.autcon.2019.02.003>.

[46] L. Scalera, S. Seriani, P. Gallina, M. Di Luca, A. Gasparetto, Experimental Evaluation of Vibrotactile Training Mappings for Dual-Joystick Directional Guidance, in: D. Prattichizzo, H. Shinoda, H.Z. Tan, E. Ruffaldi, A. Frisoli (Eds.), *Haptics: Science, Technology, and Applications*, Springer International Publishing, Cham, 2018: pp. 575–586. https://doi.org/10.1007/978-3-319-93399-3_49.

[47] Y. Du, M.C. Dorneich, B. Steward, Modeling expertise and adaptability in virtual operator models, *Automation in Construction*. 90 (2018) pp.223-234. <https://doi.org/10.1016/j.autcon.2018.02.030>.

[48] Y. Desai, D. Davis, S. Jiang, A. Ward, The Effect of Auditory Cues on Haptic-Controlled Excavator Operator Performance, *IIE Annual Conference. Proceedings*. (2014) pp.825-832. <https://www.proquest.com/docview/1622299272/abstract/9DB507386F784741PQ/1> (accessed September 28, 2021).

[49] J. Akyeampong, S. Udoka, G. Caruso, M. Bordegoni, Evaluation of hydraulic excavator Human–Machine Interface concepts using NASA TLX, *International Journal of Industrial Ergonomics*. 44 (2014) pp.374-382. <https://doi.org/10.1016/j.ergon.2013.12.002>.

[50] M.J. Chae, G.W. Lee, J.Y. Kim, J.W. Park, M.Y. Cho, A 3D surface modeling system for intelligent excavation system, *Automation in Construction*. 20 (2011) pp.808-817. <https://doi.org/10.1016/j.autcon.2011.02.003>.

[51] T. Hirabayashi, J. Akizono, T. Yamamoto, H. Sakai, H. Yano, Teleoperation of construction machines with haptic information for underwater applications, *Automation in Construction*. 15 (2006) pp.563-570. <https://doi.org/10.1016/j.autcon.2005.07.008>.

[52] A.M. Okamura, M.R. Cutkosky, J.T. Dennerlein, Reality-based models for vibration feedback in virtual environments, *IEEE/ASME Transactions on Mechatronics*. 6 (2001) pp.245-252. <https://doi.org/10.1109/3516.951362>.

[53] B.N. Bhalerao, P.S. Dunston, R.W. Proctor, Use of PC-based Simulators to Train Basic Control Functions of a Hydraulic Excavator: Audiovisual Instruction Contrasted with Hands-On Exploration, *International Journal of Human–Computer Interaction*. 33 (2017) pp.66-74. <https://doi.org/10.1080/10447318.2016.1232230>.

[54] N. Mavridis, G. Pierris, P. Gallina, Z. Papamitsiou, U. Saad, On the subjective difficulty of Joystick-based robot arm teleoperation with auditory feedback, in: 2015 IEEE 8th GCC Conference Exhibition, 2015: pp. 1–6. <https://doi.org/10.1109/IEEEGCC.2015.7060097>.

[55] D. Shin, M. Kang, S. Lee, C. Han, Development of remote controlled manipulation device for a conventional excavator without renovation, in: 2012 IEEE/SICE International Symposium on System Integration (SII), 2012: pp. 546–551. <https://doi.org/10.1109/SII.2012.6427299>.

[56] D. Gong, Y. Wang, J. Yu, G. Zuo, Motion Mapping from a Human Arm to a Heterogeneous Excavator-like Robotic Arm for Intuitive Teleoperation, in: 2019 IEEE International Conference on Real-Time Computing and Robotics (RCAR), 2019: pp. 493–498. <https://doi.org/10.1109/RCAR47638.2019.9044131>.

[57] Y. Okawa, M. Ito, R. Sekizuka, S. Saiki, Y. Yamazaki, Y. Kurita, An Assistive Interface of a Teleoperation System of an Excavator by Overlapping the Predicted Position of the Arm, in: Kitakyushu, Japan, 2020. <https://doi.org/10.22260/ISARC2020/0012>.

[58] S.S. Lee, S. Park, J. Seo, Utilization analysis methodology for fleet telematics of heavy earthwork equipment, *Automation in Construction*. 92 (2018) pp.59-67. <https://doi.org/10.1016/j.autcon.2018.02.035>.

[59] R.K. Shah, A new approach for automation of location-based earthwork scheduling in road construction projects, *Automation in Construction*. 43 (2014) pp.156-169. <https://doi.org/10.1016/j.autcon.2014.03.003>.

[60] E.R. Azar, B. McCabe, Part based model and spatial-temporal reasoning to recognize hydraulic excavators in construction images and videos, *Automation in Construction*. 24 (2012) pp.194-202. <https://doi.org/10.1016/j.autcon.2012.03.003>.

[61] E.R. Azar, B. McCabe, Automated Visual Recognition of Dump Trucks in Construction Videos, *Journal of Computing in Civil Engineering*. 26 (2012) pp.769-781. [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000179](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000179).

[62] C. Chen, Z. Zhu, A. Hammad, Automated excavators activity recognition and productivity analysis from construction site surveillance videos, *Automation in Construction*. 110 (2020) 103045. <https://doi.org/10.1016/j.autcon.2019.103045>.

[63] J. Chen, Y. Fang, Y.K. Cho, C. Kim, Principal Axes Descriptor for Automated Construction-Equipment Classification from Point Clouds, *Journal of Computing in Civil Engineering*. 31 (2017) 04016058. [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000628](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000628).

[64] W. Fang, L. Ding, B. Zhong, P.E.D. Love, H. Luo, Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach, *Advanced Engineering Informatics*. 37 (2018) pp.139-149. <https://doi.org/10.1016/j.aei.2018.05.003>.

[65] M. Golparvar-Fard, A. Heydarian, J.C. Niebles, Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers, *Advanced Engineering Informatics*. 27 (2013) pp.652-663. <https://doi.org/10.1016/j.aei.2013.09.001>.

[66] Y. Guo, Y. Xu, S. Li, Dense construction vehicle detection based on orientation-aware feature fusion convolutional neural network, *Automation in Construction*. 112 (2020) 103124. <https://doi.org/10.1016/j.autcon.2020.103124>.

[67] Q. Hu, Y. Bai, L. He, Q. Cai, S. Tang, G. Ma, J. Tan, B. Liang, Intelligent Framework for Worker-Machine Safety Assessment, *Journal of Construction Engineering and Management*. 146 (2020) 04020045. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001801](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001801).

[68] V.R. Kamat, J.C. Martinez, Dynamic 3D Visualization of Articulated Construction Equipment, *Journal of Computing in Civil Engineering*. 19 (2005) pp.356-368. [https://doi.org/10.1061/\(ASCE\)0887-3801\(2005\)19:4\(356\)](https://doi.org/10.1061/(ASCE)0887-3801(2005)19:4(356)).

[69] H. Kim, Y. Ham, W. Kim, S. Park, H. Kim, Vision-based nonintrusive context documentation

998 for earthmoving productivity simulation, *Automation in Construction*. 102 (2019) pp.135-
 999 147. <https://doi.org/10.1016/j.autcon.2019.02.006>.

1000 [70] J. Kim, S. Chi, J. Seo, Interaction analysis for vision-based activity identification of
 1001 earthmoving excavators and dump trucks, *Automation in Construction*. 87 (2018) pp.297-
 1002 308. <https://doi.org/10.1016/j.autcon.2017.12.016>.

1003 [71] J. Kim, S. Chi, Multi-camera vision-based productivity monitoring of earthmoving
 1004 operations, *Automation in Construction*. 112 (2020) 103121.
 1005 <https://doi.org/10.1016/j.autcon.2020.103121>.

1006 [72] H. Luo, M. Wang, P.K.-Y. Wong, J.C.P. Cheng, Full body pose estimation of construction
 1007 equipment using computer vision and deep learning techniques, *Automation in Construction*.
 1008 110 (2020) 103016. <https://doi.org/10.1016/j.autcon.2019.103016>.

1009 [73] M. Memarzadeh, M. Golparvar-Fard, J.C. Niebles, Automated 2D detection of construction
 1010 equipment and workers from site video streams using histograms of oriented gradients and
 1011 colors, *Automation in Construction*. 32 (2013) pp.24-37.
 1012 <https://doi.org/10.1016/j.autcon.2012.12.002>.

1013 [74] C. Sabillon, A. Rashidi, B. Samanta, M.A. Davenport, D.V. Anderson, Audio-Based Bayesian
 1014 Model for Productivity Estimation of Cyclic Construction Activities, *Journal of Computing
 1015 in Civil Engineering*. 34 (2020) 04019048. [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000863](https://doi.org/10.1061/(ASCE)CP.1943-

 1016 5487.0000863).

1017 [75] X. Shen, E. Marks, N. Pradhananga, T. Cheng, Hazardous Proximity Zone Design for Heavy
 1018 Construction Excavation Equipment, *Journal of Construction Engineering and Management*.
 1019 142 (2016) 05016001. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001108](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001108).

1020 [76] Y. Shi, Y. Xia, Y. Zhang, Z. Yao, Intelligent identification for working-cycle stages of
 1021 excavator based on main pump pressure, *Automation in Construction*. 109 (2020) 102991.
 1022 <https://doi.org/10.1016/j.autcon.2019.102991>.

1023 [77] H. Tajeen, Z. Zhu, Image dataset development for measuring construction equipment
 1024 recognition performance, *Automation in Construction*. 48 (2014) pp.1-10.
 1025 <https://doi.org/10.1016/j.autcon.2014.07.006>.

1026 [78] S. Tang, D. Roberts, M. Golparvar-Fard, Human-object interaction recognition for automatic
 1027 construction site safety inspection, *Automation in Construction*. 120 (2020) 103356.
 1028 <https://doi.org/10.1016/j.autcon.2020.103356>.

1029 [79] J. Zou, H. Kim, Using Hue, Saturation, and Value Color Space for Hydraulic Excavator Idle
 1030 Time Analysis, *Journal of Computing in Civil Engineering*. 21 (2007) pp.238-246.
 1031 [https://doi.org/10.1061/\(ASCE\)0887-3801\(2007\)21:4\(238\)](https://doi.org/10.1061/(ASCE)0887-3801(2007)21:4(238)).

1032 [80] H. Fernando, J. Marshall, What lies beneath: Material classification for autonomous
 1033 excavators using proprioceptive force sensing and machine learning, *Automation in
 1034 Construction*. 119 (2020) 103374. <https://doi.org/10.1016/j.autcon.2020.103374>.

1035 [81] K.-T. Kim, L.E. Bernold, A comparison of two innovative technologies for safe pipe
 1036 installation — “Pipeman” and the Stewart-Gough platform-based pipe manipulator,
 1037 *Automation in Construction*. 17 (2008) pp.322-332.
 1038 <https://doi.org/10.1016/j.autcon.2007.04.004>.

1039 [82] B.T. Kolera, L.E. Bernold, Intelligent Utility Locating Tool for Excavators, *Journal of
 1040 Construction Engineering and Management*. 132 (2006) pp.919-927.
 1041 [https://doi.org/10.1061/\(ASCE\)0733-9364\(2006\)132:9\(919\)](https://doi.org/10.1061/(ASCE)0733-9364(2006)132:9(919)).

1042 [83] C.P. Tan, Y.H. Zweiri, K. Althoefer, L.D. Seneviratne, Online soil parameter estimation
 1043 scheme based on Newton-Raphson method for autonomous excavation, *IEEE/ASME*

1044 Transactions on Mechatronics. 10 (2005) pp.221-229.
1045 <https://doi.org/10.1109/TMECH.2005.844706>.

1046 [84] L. Wei, D.R. Magee, A.G. Cohn, An anomalous event detection and tracking method for a
1047 tunnel look-ahead ground prediction system, Automation in Construction. 91 (2018) pp.216-
1048 225. <https://doi.org/10.1016/j.autcon.2018.03.002>.

1049 [85] S. Siebert, J. Teizer, Mobile 3D mapping for surveying earthwork projects using an
1050 Unmanned Aerial Vehicle (UAV) system, Automation in Construction. 41 (2014) pp.1-14.
1051 <https://doi.org/10.1016/j.autcon.2014.01.004>.

1052 [86] W.A. Tanoli, A. Sharafat, J. Park, J.W. Seo, Damage Prevention for underground utilities
1053 using machine guidance, Automation in Construction. 107 (2019) 102893.
1054 <https://doi.org/10.1016/j.autcon.2019.102893>.

1055 [87] J. Cai, J. Jeon, H. Cai, S. Li, Fusing Heterogeneous Information for Underground Utility Map
1056 Generation Based on Dempster-Shafer Theory, Journal of Computing in Civil Engineering.
1057 34 (2020) 04020013. [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000892](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000892).

1058 [88] S. Li, H. Cai, V.R. Kamat, Integrating Natural Language Processing and Spatial Reasoning
1059 for Utility Compliance Checking, Journal of Construction Engineering and Management. 142
1060 (2016) 04016074. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001199](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001199).

1061