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Abstract
We consider a new class of multi-period network interdiction problems, where interdiction
and restructuring decisions are decided upon before the network is operated and implemented
throughout the time horizon.We discuss howwe apply this new problem to disrupting domes-
tic sex trafficking networks, and introduce a variant where a second cooperating attacker has
the ability to interdict victims and prevent the recruitment of prospective victims. This prob-
lem is modeled as a bilevel mixed integer linear program (BMILP), and is solved using
column-and-constraint generation with partial information. We also simplify the BMILP
when all interdictions are implemented before the network is operated. Modeling-based aug-
mentations are proposed to significantly improve the solution time in a majority of instances
tested. We apply our method to synthetic domestic sex trafficking networks, and discuss pol-
icy implications from our model. In particular, we show how preventing the recruitment of
prospective victims may be as essential to disrupting sex trafficking as interdicting existing
participants.
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1 Introduction

Human trafficking is an egregious violation of human rights and dignity. The International
Labour Organization estimated $150 billion in annual profits from human trafficking (de
Cock & Woode, 2014), but the real impact is not well understood (Fedina, 2015). Victims
of human trafficking are recruited through violence and force, fraudulent job opportunities,
fake romantic interest, manipulation, offers of safemigration, or by traffickers exploiting their
lack of access to basic needs. Traffickers compel work through strong arm tactics such as
extreme physical and sexual violence, threats of unmanageable debts or quotas, confiscation
of critical documents, and social isolation and confinement (Anthony et al., 2017; Carpenter
& Gates, 2016; Martin et al., 2014; Preble, 2019). Traffickers also groom their victims into
believing that performing the tasks asked of themwill solidify a relationshipwith the trafficker
(Cockbain, 2018). This work, including physical labor, peddling and begging, transactional
sex, and other illicit activities, would not be performed by the victim without force, fraud,
or coercion (Anthony et al., 2017). We focus on the specific case of sex trafficking, which
is part of a complex and stigmatized commercial market (Dank et al., 2014; Marcus et al.,
2016; Martin et al., 2017).

Konrad et al. (2017) identified that current efforts to combat human trafficking can be
supplemented by techniques fromoperations research.However, due to significant challenges
in data collection in relation to sex trafficking (Fedina et al., 2019; Gerassi et al., 2017;
Weitzer, 2014), information about networks within sex trafficking operations that is needed
to inform these techniques is limited. Thus the potential impacts of network disruptions are
even less well-known. Qualitative studies have yielded some relevant insights. For example,
sex trafficking operations have wide variation in level of complexity, the degree of hierarchy,
and role of actors (Cockbain, 2018). Individuals often move between networks and change
roles over time (Cockbain, 2018; Denton, 2016; Martin & Lotspeich, 2014; Martin et al.,
2014). Thus, victims can move up in the hierarchy to escape violence or they can exit the
network through escape, intervention (e.g. law enforcement or social services), or moving to
a different network. The amount and frequency of “turnover” of victims and the response of
trafficking networks is not yet well understood (Caulkins et al., 2019; Konrad et al., 2017;
Martin & Lotspeich, 2014). Pre-existing relationships among network members seem to
be an important factor in establishing trust and maintaining a network (Cockbain, 2018).
Connections between legal and criminalized commercial sex, as well as between formal and
informal networks, add complexity to how networks function (Cockbain, 2018; Dewey et
al., 2018). Social problems such as poverty, running away from home, homelessness and
addictions make some people more vulnerable to being trafficked for sexual exploitation
(Fedina et al., 2019; Franchino-Olsen, 2021; Ulloa et al., 2016). These nuanced market and
social factors shape how sex trafficking networks function, including how they recruit and
retain victims (Cockbain, 2018; Dewey et al., 2018). Modeling of networks and potential
disruptions must account for this nuance and complexity.

Policing disruptions in the US have been primarily directed toward arrest and prosecution
of traffickers and identification of victims (Farrell & de Vries, 2020), with limitations and
uneven application (Farrell et al., 2015). Social service and healthcare responses have focused
on finding victims and referring them to supportive services such as: housing, therapy, addic-
tion treatment, mental health support, and job training (Hounmenou&O’Grady, 2019; Macy
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et al., 2021; Roby & Vincent, 2017). Moynihan et al. (2018) identified a variety of different
(non-law enforcement) intervention strategies that promote the well-being of victims, such as
focused health and/or social services and residential programs. While necessary to remediate
the short and long-term harms to victims of sex trafficking, these approaches do not get ahead
of trafficking before it happens and we lack data on their impact. Franchino-Olsen (2021)
identified common risk factors that lead to victims being trafficked, including, but not limited
to homelessness, negativemental health and an early introduction to drugs and alcohol.While
rigorous evaluation studies of the impact of social services on vulnerabilities to trafficking
are lacking, we hypothesize that providing resources to address these risk factors will help
prevent victimization.

It is known that traffickers will adapt to anti-trafficking activities in order to minimize
detection and maximize profits (Surtees, 2008). Effectively combating human trafficking
will require the coordination of multiple different organizations with different intervention
strategies. However, there are tensions between organizations that have limited the effective-
ness of these coordination efforts (Foot, 2015). Addressing these tensions can lead to more
successful anti-trafficking efforts. Foot et al. (2021) explored how counter-human traffick-
ing coalitions can lead to more positive outcomes of their efforts. Pajón and Walsh (2022)
proposed that law enforcement needs to collaborate with other agencies, such as those that
are able to ensure the safeguarding of victims, in order to more effectively investigate and
prosecute traffickers. In this paper, we model how cooperating anti-trafficking stakeholders
can more effectively disrupt human trafficking and assess the impact of this cooperation.

Because trafficking operations rely on the ability to obtain and control victims in order
to generate profit, it is important to model recruitment dynamics. Research suggests that
removing individual victims from a trafficking situation, while clearly necessary, might para-
doxically result in more victims being recruited into trafficking after a disruption (Caulkins
et al., 2019; Martin & Lotspeich, 2014). Theorizing how networks may restructure after a
disruption, specifically the removal of a victim from a trafficking situation, is necessary to
inform the field about effective disruption. Our work here helps tomathematically understand
the limitations of victim-level disruptions related to recruitment on the overall prevalence of
human trafficking. Although, ethics dictate that we must continue to provide exit options for
victims of trafficking and our results suggest a combination of exit options and preventative
measures to recruitment are necessary for organizations whose goals are to disrupt trafficking
in the long-term.

Applying tools from operations research to disrupting human trafficking has been a focus
of recent research (Caulkins et al., 2019; Dimas et al., 2021; Konrad et al., 2017). Smith and
Song (2020) suggests that network interdictionmayprove useful in supporting anti-trafficking
efforts. Network interdiction is a two player Stackelberg (Stackelberg, 1952) game that is
commonly used to model adversarial scenarios involving networks. One player, the defender,
seeks to operate the network to the best of their ability (shortest path, maximum flow, etc.).
The other player, the attacker, tries to inhibit the defender’s ability to operate the network
by removing nodes or arcs, subject to certain constraints, before the defender has the ability
to operate the network. In this work, we focus on max flow network interdiction, which
has previously been applied to telecommunications (Baycik et al., 2018), electrical power
(Salmeron et al., 2009), transportation (Alderson et al., 2011), and illicit drug trafficking
(Malaviya et al., 2012). It has recently begun to be applied to disrupting human trafficking
(Kosmas et al., 2022; Mayorga et al., 2019; Xie & Aros-Vera, 2022). In applying max flow to
human trafficking, the practical interpretation of flow depends on the scale of the trafficking
operation.We consider domestic sex trafficking networks,where the flowhas been interpreted
as the ability of the traffickers to control and/or coerce their victims (Kosmas et al., 2022).
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Interdictions for a domestic sex trafficking network can be practically interpreted as actions
such as a trafficker being arrested by law enforcement or agencies providing a victim a service
to address one of their vulnerabilities, such as access to affordable housing and health care.

In this work, we introduce the multi-period max flow network interdiction problem with
restructuring (MP-MFNIP-R), extending the work of Kosmas et al. (2020) to include a tem-
poral component. In this problem, interdiction and restructuring decisions are decided upon
upfront and implemented throughout the time horizon. We discuss how we extend the work
of Kosmas et al. (2022) so that constraints on interdictions and restructuring for domes-
tic sex trafficking networks can be formulated for a multi-period model. We additionally
propose a variant with two cooperating attackers with different abilities to interdict the net-
work, modeling how multiple anti-trafficking stakeholders would cooperate. We formulate
MP-MFNIP-R as a bilevel mixed integer linear program (BMILP), which can be solved
using column-and-constraint generation. We then derive a column-and-constraint generation
(C&CG) algorithm to solve the BMILP, and propose augmentations to the C&CG algorithm
based on modeling choices for domestic sex trafficking networks. We test our model on vali-
dated synthetic domestic sex trafficking networks that are grounded in real-world experience
(Kosmas et al., 2022). These tests demonstrate the efficacy of our augmentations, as well as
how recommended interdiction prescriptions change based on different modeling choices.

1.1 Literature review

Wood (1993) originally proposed max flow network interdiction, and there have been many
extensions proposed since the original work. Derbes (1997) was the first work to consider
incorporating a temporal component in max flow network interdiction. Rad and Kakhki
(2013) also considered a multi-period max flow network interdiction model where each
arc has a traversal time for flow to travel across it, and derive a Benders’ decomposition
algorithm based on temporally repeated flows to solve this problem. Zheng and Castañón
(2012) proposed a stochastic version of themulti-periodmaxflownetwork interdictionmodel,
where the attacker has incomplete information on the network structure. Soleimani-Alyar
and Ghaffari-Hadigheh (2017) considered a multi-period interdiction model where flow is
sent from source to sink instantaneously, and solve the problem with generalized Benders’
decomposition. They also expand this model to include uncertainty in the arc capacities
(Soleimani-Alyar & Ghaffari-Hadigheh, 2018). Malaviya et al. (2012) and Jabarzare et al.
(2020) applied multi-period max flow network interdiction models to illicit drug trafficking
networks. In all of these works, the network remains static, and is not allowed to change after
interdictions have been implemented. Specialized methods proposed by these works, such
as the Benders’ decomposition based on temporally repeated flows, are no longer applicable
if the underlying network changes in different time periods.

Understanding how networks “react" to interdiction has been identified as a key feature
necessary to applying network interdiction models to disrupting human trafficking (Caulkins
et al., 2019; Konrad et al., 2017). However, it has received little attention, since incorporating
the ability to change the network after interdictions have been implemented proves to be
computationally difficult even in a single time period. Sefair and Smith (2016) proposed a
dynamic version of the shortest path interdiction problem, where the attacker and defender
alternate between the attacker interdicting the network and the defender traversing an arc.
Holzmann and Smith (2019) introduced the shortest path interdiction problem with improve-
ment (SPIP-I), where the defender has a limited budget to reduce the cost of traveling along
certain arcs after the attacker has interdicted the network. Kosmas et al. (2020) introduced the
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max flow network interdiction problem with restructuring (MFNIP-R), where the defender
has a limited budget to add arcs to the network in response to the implemented interdic-
tions. The works for Holzmann and Smith (2019) and Kosmas et al. (2020) do not include a
temporal component.

Applying tools from operations research (OR) to disrupting human trafficking has been
receiving more attention over the last few years. Konrad et al. (2017) was among the first
works suggesting how the OR and analytics community could support anti-human trafficking
efforts. They suggest network interdiction may prove useful in combating human trafficking
and note that there were modeling nuances that need to first be addressed, such as ‘the
ability to accommodate dynamic changes’ and that ‘trafficked humans are a “renewable
commodity."’ Caulkins et al. (2019) additionally suggested that intervention strategies must
also account for unintended consequences, highlighting an example of an intervention in
seafood supply chains that use labor trafficking also could harm the legal industry. Dimas et
al. (2021) reviewed literature in OR and analytics for human trafficking that was published
between 2010 and March 2021. They identified that the majority of the published works in
this time period focused on machine learning classification/clustering methods. They also
noted that many works in OR and analytics for human trafficking are broadly focused, and
this broad focus can potentially lead to models not appropriately accounting for unique
nuances for specific populations of victims and survivors. Sharkey et al. (2021) stated that
combating human trafficking is a transdisciplinary challenge, and that, to ensure that the
models developed by the OR and analytics communities are appropriately accounting for
these unique nuances, researchers should employ a transdisciplinary research approach. By
collaborating with subject-matter experts, both in and out of academia, models will be better
developed to account for these nuances.Martin et al. (2022) demonstrated the process inwhich
they built a transdisciplinary research team to address sex trafficking and recommended that
effective team-building was the key to establishing the respect and trust needed to develop a
shared language across a diverse set of disciplines.

Two perspectives are currently being considered when developing network interdiction
models for disrupting human trafficking: macroscopic andmicroscopic.Macroscopicmodels
seek to disrupt themovement of trafficking victims from their origin location towhere demand
is, while microscopic models seek to disrupt the exploitation of trafficked individuals when
they are at their destination. These differing perspectives support each other by helping
address the limitations of the other perspective. Macroscopic models are currently limited by
failing to include how victims are exploited after they reach their destination, which is the
primary focus of microscopic models. In turn, microscopic models are limited by not fully
accounting for how victims are moved within trafficking networks, which is the primary
focus of macroscopic models.

To the best of our knowledge, three works explore the macroscopic perspective. Mayorga
et al. (2019) applied a network interdiction model to networks where victims were moved
between illicit massage parlors in a geographic area. Tezcan and Maass (2020) explored
a multi-period network interdiction model where the probability of an interdiction being
successful was dependent on the success of previous interdictions, and applied this model to
human trafficking across the Nepal-India border. Xie andAros-Vera (2022) proposed amulti-
period interdependent network interdiction model on the sex trafficking supply chain, where
flow needs to pass through the communication network before victims can be moved through
the physical network. Mayorga et al. (2019) and Xie and Aros-Vera (2022) considered the
flow through the network to be the victims themselves, whereas Tezcan and Maass (2020)
considered the flow to be the desirability of a trafficker to travel across an an arc. None of
these works allow for the underlying network to change after interdictions. Kosmas et al.
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(2022) is currently the only work investigating the microscopic perspective. They applied a
network interdiction model with restructuring to domestic sex trafficking networks. In their
work, they consider the flow through the network to be the ability of a trafficker to control
their victims. We expand upon their work by extending the model they used to include a
temporal component. This extension will allow policy-makers to better understand the long-
term impacts, both intended and unintended, of their proposed anti-trafficking efforts to
prevent exploitation.

To solve their model, Kosmas et al. (2022) implemented a column-and-constraint gen-
eration algorithm. Column-and-constraint generation was originally proposed by Zeng and
An (2014) to solve bilevel mixed integer linear programs that satisfy the relatively com-
plete response property, meaning that for every feasible integer upper level and integer lower
level solution, there is a feasible continuous upper level and continuous lower level solution
(i.e., there is no pair of upper level and lower level integer solutions that make the bilevel
problem infeasible). Yue et al. (2019) expanded C&CG to solve general BMILPs by incorpo-
rating implications constraints to remove lower level integer decisions that are infeasible with
respect to the upper level integer decision that is being considered in the branch-and-bound
procedure. Kosmas et al. (2020) adapted this procedure for network interdiction models with
restructuring, where the restructuring decisions aremonotonic with respect to the interdiction
decisions. They do so by instead incorporating partial information from previously visited
restructuring plans, identifying which components of the restructuring plans remain feasible
as the interdiction decisions being considered in the branch-and-bound procedure change.
Kosmas et al. (2020) showed that this adaptation is necessary to solve models where new
participants could be recruited into the illicit network. We apply the algorithm of Kosmas et
al. (2020) to solve the multi-period version of their problem, as well as suggest algorithmic
augmentations that lead to significant computational gains based on modeling choices for
disrupting domestic sex trafficking networks.

We summarize the key differences between the reviewed literature and this work. Previous
max flow network interdictions models that include a temporal component only allow for the
defender to respond to interdictions by shifting how flow is sent through the network. Our
work expands on the capabilities of the defender by also allowing them to add arcs to the
network over time. Prior network interdictionmodels that allow for the defender to add arcs to
the network have focused on shortest path interdiction, not max flow interdiction. This work
additionally distinguishes itself from prior work on applying network interdiction models
to disrupting sex trafficking by including a temporal component in the model where flow
is modeled as control. The network interdiction model we propose accounts for two of the
modeling nuances identified by Konrad et al. (2017), dynamic changes and the “re-usability"
(over time) of trafficking victims, which no prior work has fully explored.

1.2 Paper organization

This paper is organized as follows: Sect. 2 formally introduces the multi-period max flow
network interdiction problem with restructuring and proposes a bilevel mixed integer linear
programming formulation of the problem. Section 3 discusses modeling choices regard-
ing interdiction decisions and Sect. 4 discusses modeling choices regarding restructuring
decisions for disrupting domestic sex trafficking networks. Section 5 derives an equivalent
linear program that can be solved by column-and-constraint generation. Section 6 proposes
modeling-based augmentations to improve the solution time of the column-and-constraint
generation procedure. Section 7 presents results on validated synthetic domestic sex traffick-
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ing networks, both comparing the quality of solution times with the proposed augmentations
and discussing policy recommendations provided by our model. Section 8 concludes the
paper and discusses avenues for future research.

2 Problem description

Wefirst reviewhow themodel ofKosmas et al. (2022) is constructed.Thenetworks considered
are each trafficker’s operation, as as well as the social network between traffickers, which
helps to capture potential reactions after interdictions. The node set N is partitioned into
different sets, based on the role the node plays in the network. They first consider the roles
of participants currently active in the network. These are traffickers, victims, and bottoms. A
bottom is a victimwho assists the trafficker inmanaging the trafficking operation as part of the
activities they are forced to perform (Belles, 2018). Bottoms are typically viewed as the most
trusted or highest earning victim (Roe-Sepowitz et al., 2015). Let T be the set of traffickers,
B be the set of bottoms, and V be the set of victims. Additionally, they consider participants
who can be brought into the network, or those who can have their roles change. For example,
if a trafficker is interdicted, one of their friends or family members may be able to take over
the operations of the trafficking network (Dank et al., 2014). Alternatively, if the bottom is
interdicted, the trafficker may promote another victim to take over the responsibilities of the
previous bottom. Let T R be the set of back-up traffickers, BR be the set of victims that can
be promoted to be a bottom, and V R be the set of prospective victims. We summarize all
notation in “Appendix 1”.

In Kosmas et al. (2022), the traffickers operate the networks (typically referred to as the
defender in an interdiction problem), and the anti-trafficking stakeholder is trying to interdict
the network (typically referred to as the attacker). Both players have complete information
about the game, having full knowledge about the network and each other’s decisions and
objectives. Each trafficker has limited ability to coerce their victims and acquire new victims.
In their model, they consider the flow through the trafficking network to be the ability of a
trafficker (or bottom) to coerce a victim into providing labor. Their model interdicts nodes
insteadof arcs, representing the removal of participants from thenetworks.After interdictions,
they allow arcs from a set AR to be added to the network. The addition of these arcs is referred
to as restructuring. These arcs belong to two different sets AR,out and AR,in , based on the
role of the participants that is allowed to initiate that restructuring. As described in Kosmas
et al. (2022), an “out" restructuring (an arc belonging to AR,out ) is initiated by the trafficker.
Examples of this include arcs that model a trafficker restructuring to a new victim after one
of their victims has been interdicted or a trafficker assigning one of their victims to their
bottom. An “in" restructuring (an arc belonging to AR,in) is initiated by the victim, such as
a victim being recruited into a new operation after their trafficker has been interdicted. We
will describe which belong to AR,out and AR,in in Sect. 4. In their work, A ∩ AR = ∅.

We now introduce the multi-period max flow network interdiction problem with restruc-
turing (MP-MFNIP-R). MP-MFNIP-R is a two player game on a network G = (N , A),
with N being the set of nodes and A being the set of arcs currently in the network, and
AR = AR,out ∪ AR,in representing the set of restructurable arcs. Nodes and arcs (including
restructurable arcs) are assigned capacities u : N ∪ A ∪ AR → R+, and a victim node i that
is promoted to be the new bottom will have their capacity increased by ũi . We denote that
α ∈ N is the source node, and ω ∈ N is the sink node. Let τ be the number of time periods.
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Gameplay for MP-MFNIP-R is as follows. First, the attacker decides upon an interdiction
plan. Interdictions are decided upon at the beginning of the time horizon, and require a certain
length of time before they are implemented, setting the capacity of the interdicted node to 0.
After the interdiction plan is decided upon, the defender decides upon a restructuring plan
in response to the attacker’s interdiction plan. Restructuring decisions are also decided upon
at the beginning of the time horizon, and require a certain length of time before they are
implemented, setting the capacity of each restructured arc to its non-zero capacity. After the
interdiction and restructuring decisions are made, the defender operates the network, sending
flow from source to sink instantaneously each time period. The goal of the defender is to
maximize the amount of flow sent throughout the entire time horizon, and the goal of the
attacker is to minimize the amount of flow sent throughout the entire time horizon.

To describe the mathematical program, we must first define the decision variables. Let xit
be the flow across node i at time t for i ∈ N and t = 1, . . . , τ , and xi j t be the flow across
arc (i, j) at time t for (i, j) ∈ A ∪ AR and t = 1, . . . , τ . Let

yi =
{
1 if node i has been interdicted,

0 otherwise,

and let

γi t =
{
1 if node i is interdicted in or before time period t ,

0 otherwise.

Additionally, let

zouti j =
{
1 if arc (i, j) has been restructured when i is able to initiate the restructuring,

0 otherwise,

and

zini j =
{
1 if arc (i, j) has been restructured when j is able to initiate the restructuring,

0 otherwise.

Let

ζ out
i j t =

⎧⎪⎨
⎪⎩
1 if arc (i, j) has been restructured in or before time period t

when i is able to initiate the restructuring,

0 otherwise,

and

ζ ini j t =

⎧⎪⎨
⎪⎩
1 if arc (i, j) has been restructured in or before time period t

when j is able to initiate the restructuring,

0 otherwise.

We now define relevant parameters independent of the application to domestic sex traf-
ficking. Let δ

y
i be the number of time periods needed before node i can be interdicted. Let

δzi j be the number of time periods needed before arc (i, j) can be restructured. Let Y be the
set of all feasible interdiction decisions, and for each y ∈ Y , let Z(y) be the set of all feasible
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restructuring decisions responding to interdiction plan y. The constraints defining Y will be
further defined in Sect. 3, and the constraints defining Z(y) will be further defined in Sect. 4.

We can now describe the bilevel programming formulation of MP-MFNIP-R.

min
y,γ

max
x,z,ζ

τ∑
t=1

∑
i∈N :(α,i)∈A∪AR,out

xαi t

s.t.
∑

(h,i)∈A∪AR,out

xhit = xit for i ∈ N \ α, t = 1, . . . , τ (1a)

xit =
∑

(i,h)∈A∪AR,out

xiht for i ∈ N \ ω, t = 1, . . . , τ (1b)

0 ≤ xi j t ≤ ui j for (i, j) ∈ A, t = 1, . . . , τ (1c)

0 ≤ xi j t ≤ ui j ζ
out
i j for (i, j) ∈ AR,out \ AR,in, t = 1, . . . , τ (1d)

0 ≤ xi j t ≤ ui j (ζ
out
i j t + ζ ini j t ) for (i, j) ∈ AR,in, t = 1, . . . , τ (1e)

0 ≤ xit ≤ ui (1 − γi t ) for i ∈ N \ { j ∈ V : ∃h ∈ B

with (h, j) ∈ BR}, t = 1, . . . , τ (1f)

0 ≤ x jt ≤ u j (1 − γ j t ) + ũ j ζ
out
α j t for j ∈ V s.t.∃i ∈ B, (i, j) ∈ BR, t = 1, . . . , τ

(1g)

(y, γ ) ∈ Y (1h)

(z, ζ ) ∈ Z(y) (1i)

The objective function of (1) is the sum of the flows out of the source node across all
time periods. Constraints (1a) - (1b) are flow balance constraints. Constraints (1c) - (1e)
are the capacity constraints on the arcs and restructurable arcs, and constraints (1f) - (1g)
are the capacity constraints on the nodes. It is worth noting that this model builds off the
work done in Kosmas et al. (2020) by adding the time dimension. We additionally note
that traditional max flow models only have a single flow balance constraint for each node.
However,when interdicting nodes insteadof arcs, it is necessary to have the pair of constraints.
An equivalence between this model and an interdiction model where arcs are interdicted is
established in Malaviya et al. (2012).

3 Modeling interdictions

We now describe constraints regarding interdiction, based on interdicting domestic sex traf-
ficking networks. We first describe constraints linking y and γ .

γi t = 0 for i ∈ N \ {α, ω}, t ∈ 1, . . . , δyi (2)

γi t = yi for i ∈ N \ {α, ω}, t ∈ (δ
y
i + 1), . . . , τ (3)

Constraints (2) indicate that a node i will be able to carry flow for the first δyi time periods,
regardless of interdiction decisions. Then, after δ

y
i time periods have elapsed, constraints (3)

enforce that the node will be unable to carry flow if it was interdicted.
We additionally include a budget constraint to limit the overall number of interdictions

implemented. Let ri be the cost to interdict node i and let b be the total budget of the attacker.
We use the same budget constraints described in Kosmas et al. (2022), where the cost to
interdict a trafficker can be decreased based on interdicting their bottom (if the trafficker has
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one) and victims. This models how, if victims or bottom are willing to cooperate with law
enforcement, it is easier for law enforcement to build a successful case (Clawson et al., 2008;
David, 2008). To represent this, we define additional variables r̃i to be the adjusted cost of
interdicting trafficker i . Additionally, for each trafficker i ∈ T , let rmin

i be the minimum cost
of interdicting trafficker i after interdicting their victims, and let dil be the reduction in cost
of interdicting trafficker i if victim (or bottom) l is also interdicted. We assume the discount
in cost to interdict the trafficker is additive until the cost would be reduced rmin

i , in which
case the cost remains at rmin

i . The following constraints capture the interdiction budget and
costs to interdict each node.∑

i∈T
r̃i yi +

∑
j∈B∪N

ri yi ≤ b (4)

r̃i ≥ ri −
∑

l∈B∪V
dil yi for i ∈ T (5)

r̃i ≥ rmin
i for i ∈ T (6)

Constraint (4) enforces that the chosen interdictions respect the overall attacker budget.
Constraints (5)-(6) compute the adjusted cost to interdict a trafficker.

3.1 Modeling extension: cooperating attackers

There are multiple stakeholders in the efforts to disrupt human trafficking, which have a
variety of different means of disrupting the network. For example, law enforcement has the
ability to arrest and prosecute participants in the trafficking network, while social service
professionals have the ability to provide services to victims to help them leave the trafficking
network while also helping reduce the vulnerabilities of prospective victims.

We want to model a second interdictor that only has the ability to interdict victims and
prevent the ability to add prospective victims to the network. Let y′

i be the indicator ofwhether
or not the second attacker interdicts node i for i ∈ V ∪ V R . Let r ′

i be the cost for the second
interdictor to interdict node i , and let b′ be the budget of the second attacker. We include the
following constraint regarding the second attacker:

∑
i∈V∪V R

r ′
i y

′
i ≤ b′ (7)

To update the model to incorporate the second attacker, we must update the existing
constraints regarding interdicting victims, as well as include constraint (7). For i ∈ V , we
adjust the constraints (3) from γi t = yi to γi t = yi + y′

i for t ∈ (δ
y
i + 1), . . . , τ . For i ∈ V R ,

we introduce the constraints γi t = y′
i for t = 1, . . . , τ . If a prospective victim j were to be

interdicted, then even if an arc (i, j) were to be restructured from trafficker i , the capacity of
the prospective victim node would be set to 0 for t = δ

y
j , . . . , τ , and thus would not increase

the objective value in time periods after the victim is interdicted.We note that this formulation
assumes that the two attackers are cooperating and fully aware of each other’s actions, which
may not be true in reality (Foot, 2015). However, there has been little quantitative work
in exploring cooperating attackers within network interdiction (Sreekumaran et al., 2021;
Wilt & Sharkey, 2019) and this first effort helps to shed light on how two attackers can
cooperate and coordinate their efforts to have the most impact on the trafficking network.
Future work on applying interdiction models to disrupting trafficking networks can better
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model the capabilities of different stakeholders, as well as their willingness to cooperate, and
their knowledge of each other’s activities.

4 Modeling restructuring

For the set of restructurable arcs, we use the same sets outlined in Kosmas et al. (2022). This
set includes traffickers recruiting each other’s victims (or alternatively, a victim joining a
different trafficker’s operation after their trafficker has been interdicted), traffickers assigning
or taking victims from their bottom, recruiting new victims not currently in the network, back-
up traffickers taking over an interdicted trafficker’s operation, a victim being promoted to take
the place of an interdicted bottom, and traffickers assigning victims to their newly promoted
bottom. Kosmas et al. (2022) decided upon these types of restructurable arcs by analyzing
transcripts frommeetings with their qualitative research team and survivor-centered advisory
group that described how trafficking networks may react after interdictions.

We extend the constraints on the restructuring outlined in Kosmas et al. (2022) to a
multi-period setting. We first propose constraints that link when interdictions occur to when
restructurings are allowed. Consider a feasible interdiction plan ȳ ∈ Y . For i ∈ T , let
δ
min,out
i = min(i, j)∈AR,out δzi j , and δ

max,out
i = max(i, j)∈AR,out δzi j , which help to capture the

earliest and the latest time which a trafficker may initiate a restructuring after an interdiction
has occurred. For j ∈ V , let δ

min,in
j = min(i, j)∈AR,in δzi j , and δ

max,in
j = max(i, j)∈AR,in δzi j ,

which help to capture the earliest and the latest timewhich a victimmay initiate a restructuring
after an interdiction has occurred.

∑
(i, j)∈Aout

R

zouti j ≤
∑

h∈N :(i,h)∈A

ȳh for all i ∈ T

(8)∑
(i, j)∈Ain

R

zini jτ ≤
∑

h∈N :(h, j)∈A

ȳh for all j ∈ V

(9)∑
j∈N :(i, j)∈AR,out

δzi j≥t1

ζ out
i j(t2+δzi j )

≤
∑

h:(i,h)∈A,(δ
y
h+1)≤t2

ȳh
for i ∈ T , t1 = δ

min,out
i , . . . , δ

max,out
i

t2 = 1, . . . , τ − δ
max,out
i

(10)

∑
i∈N :(i, j)∈AR,in

δzi j≥t1

ζ ini j(t+δzi j )
≤

∑
h:(h, j)∈A,(δ

y
h+1)≤t

ȳh
for j ∈ V , t1 = δ

min,in
j , . . . , δ

max,in
j

t2 = 1, . . . , τ − δ
max,in
j

(11)

Constraints (8)-(9) determine the number of restructurings each trafficker and victim is
allowed to make in response to the implemented interdictions. Constraints (10)-(11) enforce
that a restructured arc can only come online after the required amount of time has passed.
We next define constraints to enforce the relationship between z and ζ .
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ζ out
i j t ≥ ζ out

i j(t−1) for (i, j) ∈ AR,out , t = 2, . . . τ (12)

ζ ini j t ≥ ζ ini j(t−1) for (i, j) ∈ AR,in, t = 2, . . . τ (13)

ζ out
i jτ = zouti j for (i, j) ∈ AR,out (14)

ζ ini jτ = zouti j for (i, j) ∈ AR,in (15)

Constraints (12)–(13) enforce that if an arc has turned online, it must remain online in
the following time period. Constraints (14)-(15) ensure that if an arc was restructured, it will
be online in the last time period. The combination of these constraints, as well as (8)-(11),
ensure that, once it is decided that an arc is to be restructured, it will first come online in
a time period that it is allowed to, and remain online for the rest of the time horizon. They
also ensure that the restructurings chosen occur in the appropriate time periods based on
the chosen interdictions, and that the number of restructurings is limited by the number of
relevant interdictions.

The next constraints limit the number of actions that each trafficker can take over the
entire time horizon, independent of the number of interdictions that have occurred. This is
to mirror the budget constraint of the attacker. Let couti be the number of actions trafficker i
can take, and cinj be the number of actions victims j can take We note that the constraints
include the ability of each trafficker to bring new victims into their organization, assign new
victims to their bottom, and to promote a victim to be a bottom.

∑
j∈N :(i, j)∈AR,out

zouti j +
∑

k∈N ,h∈N :(i,k)∈A
(k,h)∈AR,out

zoutkh +
∑

l∈N :(i,l)∈A
(α,l)∈AR,out

zoutαl ≤ couti for all i ∈ T (16)

We additionally include constraints that limit the number of interactions with each victim
(including prospective victims), preventing them from belonging to too many trafficking
operations.

∑
(i, j)∈AR,out

zouti j +
∑

(i, j)∈AR,in

zini j ≤ cinj for j ∈ V ∪ V R (17)

For trafficking operations that have a back-up trafficker, we include constraints indicating
when a back-up trafficker can replace an interdicted trafficker.

ζ out
α j t = 0 for (i, j) ∈ T R, t ∈ 1, . . . , (δyi + δ

z,out
α j ) (18)

ζ out
α j t = ȳi for (i, j) ∈ T R, t = (δ

y
i + δ

z,out
α j + 1), . . . , τ (19)

Constraints (18) enforce that the arc representing the back-up trafficker will be offline for
a number of time periods equal to the time to interdict the primary trafficker and restructure
to the back-up trafficker. Constraints (19) allow for the arc to come online if the trafficker
has been interdicted.

The next set of constraints enforces when victims are allowed to be promoted to be a
bottom.
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ζ out
α j t = 0 for (i, j) ∈ BR, t = 1, . . . , (δyi + δ

z,out
α j ) (20)∑

(i, j)∈BR

ζ out
α j(t+δ

z,out
α j )

≤ ȳi for i ∈ B, t = (δ
y
i + 1), . . . , τ (21)

zoutα j t ≤ 1 − ȳ j for j ∈ V s.t. ∃i ∈ B, (i, j) ∈ BR (22)∑
h∈V :( j,h)∈AR,out

zoutjh ≤ |V |zoutα j for j ∈ V s.t. ∃i ∈ B, (i, j) ∈ BR (23)

Constraints (20)-(21) act similarly to constraints (18)-(19), allowing a victim to be pro-
moted to a bottom if the current bottom of the operations is interdicted and after the requisite
time has passed. Constraints (22) prevent an interdicted victim from being promoted to be a
bottom. Constraints (23) allows for a trafficker to assign some of their victims to the newly
promoted bottom once they have been promoted.

The last constraints enforce that any arc in AR,out ∩ AR,in cannot have both zout and zin

be nonzero, preventing an arc from being restructured twice.

zouti j + zini j ≤ 1 for all (i, j) ∈ AR,out ∩ AR,in (24)

5 Model derivation

We now describe the integer programming formulation of the multi-period max flow net-
work interdiction problem with restructuring (MP-MFNIP-R) including the constraints on
interdictions, and derive the column-and-constraint algorithm to solve it. The following pro-
gram incorporates the constraints defined in Sect. 3 and Z(y) is defined by the constraints
introduced in Sect. 4. Since the inclusion of a second attacker does not impact the model
derivation, we only discuss the derivation of the model with a single attacker in this section.
We will discuss the changes in the model by including the second attacker after presenting
the final model.

min
y,r̃

max
x,z,ζ

τ∑
t=1

∑
i∈N :(α,i)∈A∪AR,out

xαi t

s.t.
∑

(h,i)∈A∪AR,out

xhit = xitfor i ∈ N \ α, t = 1, . . . , τ (25a)

xit =
∑

(i,h)∈A∪AR,out

xiht for i ∈ N \ ω, t = 1, . . . , τ (25b)

0 ≤ xi j t ≤ ui j for (i, j) ∈ A, t = 1, . . . , τ (25c)

0 ≤ xi j t ≤ ui j ζ
out
i j for (i, j) ∈ AR,out \ AR,in, t = 1, . . . , τ (25d)

0 ≤ xi j t ≤ ui j (ζ
out
i j t + ζ ini j t ) for (i, j) ∈ AR,in, t = 1, . . . , τ (25e)

0 ≤ xit ≤ ui (1 − γi t )

for i ∈ N \ { j ∈ V : ∃h ∈ B with (h, j) ∈ BR}, t = 1, . . . , τ (25f)

0 ≤ x jt ≤ u j (1 − γ j t ) + ũ j ζ
out
α j t

for j ∈ V s.t.∃i ∈ B, (i, j) ∈ BR, t = 1, . . . , τ (25g)∑
i∈T

r̃i yi +
∑

j∈B∪T
ri yi ≤ b (25h)
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r̃i ≥ rmin
i for i ∈ T (25i)

r̃i ≥ ri −
∑

l∈B∪V
dil yi for i ∈ T (25j)

γi t = 0 for i ∈ N , t = 1, . . . , δyi (25k)

γi t = yi for i ∈ N , t ∈ (δ
y
i + 1), . . . , τ (25l)

y ∈ {0, 1}|N |\{α,ω} (25m)

γ ∈ {0, 1}|N |\{α,ω}×τ (25n)

z, ζ ∈ Z(y) (25o)

We follow the procedure outlined in Kosmas et al. (2020) to derive a single-level mini-
mization problem that can be solved as part of column-and-constraint generation with partial
information. For the sake of brevity, we include the full model derivation in “Appendix 2”,
and only state the final master problem that is solved.

We first describe variables associated with the standard column-and-constraint generation
procedure. Let η be the variable representative of the objective value of the bilevel opti-
mization problem, and let n be the number of restructurings plans being considered in the

optimization model. Let π+k

i t and π−k

i t be the dual variables associated with constraints (25a)
and (25b), respectively, for node i at time t for the kth restructuring plan. Let θki j t be the dual

variables associated with constraints (25c)-(25e) for arc (i, j) at time t for the kth restruc-
turing plan, and let θki t be the dual variable associated with constraints (25f)-(25g) for node
i at time t for the kth restructuring plan.

Now we describe parameters and variables specific to the partial information adaptation,
which depends on each previously considered restructuring plan zk . Let zout,ki j be the parame-

ter indicating if arc (i, j)was restructured by node i in the kth restructuring plan, and let zin,k
i j

be the parameter indicating if arc (i, j) was restructured by node j in the kth restructuring
plan. Letwout,k

i j t be the indicator of if arc (i, j) can be restructured out of node i in time period

t for restructuring plan k, and let w
in,k
i j t be the indicator of if arc (i, j) can be restructured

in from node j in time period t for restructuring plan k. Let λ
out,k
i t be the indicator of if all

of the “out" restructurings for trafficker i in time period t for restructuring plan k have been
performed, and let λin,k

i t be the indicator of if all of the “in" restructurings for victim i in time
period t for restructuring plan k have been performed.

min
y,γ,wπ,θ

η

s.t.η ≥
τ∑

t=1

[
∑

i∈N\{α,ω}
uiθ

k
i t +

∑
(i, j)∈A∪AR,out∪AR,in

ui jθ
k
i j t +

∑
(i, j)∈BR

ũ j z
out,k
α j t w

out,k
α j t θkα j t ]

for k = 1, . . . , n (26a)

π+k

j t + θkα j t ≥ 1 for k = 1, . . . , n, (α, j) ∈ A, t = 1, . . . , τ (26b)

π+k

j t − π−k

i t + θki j t ≥ 0

for k = 1, . . . , n, (i, j) ∈ A s.t. i �= α, j �= ω, t = 1, . . . , τ (26c)

π−k

i t − π+k

i t + θki t ≥ −γi t for k = 1, . . . , n, i ∈ N \ {α, ω}, t = 1, . . . , τ (26d)

− π−k

i t + θkiωt ≥ 0 for k = 1, . . . , n, (i, ω) ∈ A, t = 1, . . . , τ (26e)
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π+k

j t + θkα j t ≥ w
out,k
α j t + zout,kα j − 1

for k = 1, . . . , n, (α, j) ∈ AR,out , t = 1, . . . , τ (26f)

π+k

j t − π−k

i t + θki j t ≥ w
out,k
i j t + zout,ki j − 2

for k = 1, . . . , n, (i, j) ∈ AR,out s.t. i �= α, j �= ω, t = 1, . . . , τ (26g)

π+k

j t − π−k

i t + θki j t ≥ w
in,k
i j t + zin,k

i j − 2

for k = 1, . . . , n, (i, j) ∈ AR,in s.t. i �= α, j �= ω, t = 1, . . . , τ (26h)

θk ≥ 0 for k = 1, . . . , n (26i)

μout
i λ

out,k
i t +

∑
(i, j)∈AR,out :zout,ki j =1

w
out,k
i j(t+δ

z,out
i j )

≥
∑

(i,h)∈A

γht

for k ∈ 1, . . . , n, i ∈ T , t ∈ 1, . . . , τ − δ
max,out
i (26j)

μin
j λ

in,k
j t +

∑
(i, j)∈AR,in :zin,k

i j =1

w
in,k

i j(t+δ
z,in
i j )

≥
∑

(h, j)∈A

γht

for k ∈ 1, . . . , n, j ∈ V , t ∈ 1, . . . , τ − δ
max,in
i (26k)

λ
out,k
i t ≤

∑
(i, j)∈AR,out :zout,ki j =1 w

out,k
i j(t+δ

z,out
i j )∑

(i, j)∈AR,out :zout .ki j =1 z
out,k
i j

for k ∈ 1, . . . , n, i ∈ T , t = 1, . . . , τ (26l)

λ
in,k
i t ≤

∑
(i, j)∈AR,in :zin,k

i j =1 w
in,k

i j(t+δ
z,in
i j )∑

(i, j)∈AR,in :zin,k
i j =1 z

in,k
i j

for k = 1, . . . , n, i ∈ V , t = 1, . . . , τ (26m)

w
out,k
i j ≥ w

out,k
i j(t−1)

for k = 1, . . . , n, (i, j) ∈ AR,out , t ∈ 2 . . . , τ (26n)

w
in,k
i j t ≥ w

in,k
i j(t−1)

for k = 1, . . . , n, (i, j) ∈ AR,in, t ∈ 2 . . . , τ (26o)

w
out,k
α j t ≥ yi

for k = 1, . . . , n, ( j, i) ∈ T R, t ∈ δ
y
i + δ

z,out
α j , . . . , τ (26p)

w
out,k
α j(t+δ

z,out
α j )

≥ yi

for k = 1, . . . , n, ( j, i) ∈ BR s.t. zout,kα j = 1, t ∈ δ
y
i + 1, . . . , τ − δ

z,out
α j (26q)

w
out,k
i j t ≥ zout,ki j

for k = 1, . . . , n, i ∈ B, j ∈ V s.t. (i, j) ∈ AR,out (26r)

w
out,k
i j t ≥ zout,ki j

for k = 1, . . . , n, i ∈ V , j ∈ V s.t. (i, j) ∈ AR,out , ∃l ∈ B, (i, l) ∈ BR (26s)
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∑
i∈T

r̃i yi +
∑

j∈B∪T
ri yi ≤ b (26t)

r̃i ≥ rmin
i for i ∈ T (26u)

r̃i ≥ ri −
∑

l∈B∪V
dil yi for i ∈ T (26v)

γi t = 0 for i ∈ N , t = 1, . . . , δyi (26w)

γi t = yi for i ∈ N , t ∈ (δ
y
i + 1), . . . , τ (26x)

y ∈ {0, 1}|N |\{α,ω} (26y)

γ ∈ {0, 1}|N |\{α,ω}×τ (26z)

We focus on describing the constraints regarding partial information, since the other
constraints are a formulation of the minimum cut problem or are the constraints regarding
interdiction. Constraints (26j)-(26k) allow for restructurings from the kth restructuring plan
to be implemented after interdictions that allow for them have occurred. When a node is
allowed to restructure more arcs than the number of arcs that node restructured in the kth

restructuring plan, constraints (26l)-(26m) allow for λ = 1 to ensure the feasibility of con-
straints (26j)-(26k). Constraints (26n)-(26o) enforce that an arc is online in time periods after
the time period it was restructured in. Constraints (26p) enforce that a back-up trafficker is
restructured to when the primary trafficker is interdicted. Likewise, constraints (26q) enforce
that the victim who was promoted to be the bottom is still promoted if the current bottom
is interdicted. Constraints (26r)-(26s) enforce that any restructured arcs that are indepen-
dent of interdictions are considered to be restructured. We note that there are bilinear terms
w

out,k
α j t θkα j t in the objective function constraints, and these terms can be linearized using the

McCormick inequalities (McCormick, 1976).
Recall from Sect. 3, minor adjustments to (26) need to be made to incorporate the sec-

ond attacker. We would additionally include constraint (7), and constraints (26x) would be
changed to γi t = yi + y′

i for any nodes i ∈ V ∪ V R , which are the nodes that the second
attacker is able to interdict.

After solving (26), we identify optimal interdiction decisions ȳ for known restructuring
plans (z1, ζ 1, . . . , zn, ζ n), as well as a lower bound on the objective value of (25), η̄. We then
need to determine the optimal restructuring plan responding to (ȳ, γ̄ ). To do so, we solve the
defender’s problem using (ȳ, γ̄ ) as data.

max
x,z,ζ

τ∑
t=1

∑
i∈N :(α,i)∈A∪AR,out

xαi t

s.t.
∑

(h,i)∈A∪AR,out

xhit = xit for i ∈ N \ α, t = 1, . . . , τ (27a)

xit =
∑

(i,h)∈A∪AR,out

xiht for i ∈ N \ ω, t = 1, . . . , τ (27b)

0 ≤ xi j t ≤ ui j for (i, j) ∈ A, t = 1, . . . , τ (27c)

0 ≤ xi j t ≤ ui jζ
out
i j for (i, j) ∈ AR,out \ AR,in, t = 1, . . . , τ (27d)

0 ≤ xi j t ≤ ui j (ζ
out
i j t + ζ ini j t ) for (i, j) ∈ AR,in, t = 1, . . . , τ (27e)

0 ≤ xit ≤ ui (1 − γ̄i t ) for i ∈ N \ { j ∈ V : ∃h ∈ B with (h, j) ∈ BR}, t = 1, . . . , τ
(27f)
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0 ≤ x jt ≤ u j (1 − γ̄ j t ) + ũ jζ
out
α j t for j ∈ V s.t.∃i ∈ B, (i, j) ∈ BR, t = 1, . . . , τ

(27g)

z, ζ ∈ Z(ȳ) (27h)

Solving (27) provides the optimal restructuring plan z̄ responding to ȳ, as well as an upper
bound on the objective value of (25). Let U = min{U ,

∑τ
t=1

∑
i∈N :(α,i)∈A∪AR,out xαi t } be

the upper bound on (25), let L = η̄ be the lower bound on (25), and let ε ≥ 0 be the desired
error tolerance. IfU − L ≤ ε, then we have identified the desired solution, and the algorithm
will terminate. Otherwise, we set zn+1 = z̄, and repeat the process. We formalize this in
Algorithm 1.

Algorithm 1 C&CG for MP-MFNIP-R
Initialize: lower bound L = −∞, upper bound U = ∞, optimal interdiction decisions (y∗, γ ∗) = 0,
optimal restructuring decisions (z1, ζ 1) = (z∗, ζ∗) = 0, error tolerance ε ≥ 0. iteration counter m = 1.
while U − L > ε do

Step 1. Solve (26) for optimal interdiction decision (yn , γ n) and objective value η. Set L = η.
if U − L ≤ ε then

terminate; (y∗, γ ∗) and (z∗, ζ∗) are the optimal decisions with objective value U .
end if
Step 2. Input (y∗, γ ∗) into (27) as data and solve (27) for optimal restructuring decisions (zn+1, ζ n+1)
and objective value

∑τ
t=1

∑
i∈N :(α,i)∈A∪AR,out xαi t .

if
∑τ

t=1
∑

i∈N :(α,i)∈A∪AR,out xαi t < U then

Let y∗ = yn , γ ∗ = γ n , z∗ = zn+1, ζ∗ = ζ n+1, U = ∑τ
t=1

∑
i∈N :(α,i)∈A∪AR,out xαi t .

end if
Step 3. Include constraints corresponding to (zn+1, ζ n+1) in (26), create variables πn+1, θn+1, wn+1,
set n = n + 1, return to Step 1.

end while

5.1 Model simplifications: upfront interdiction

Wenote that, if δyi = 0 for all i ∈ N , meaning that all interdictions are implemented before the
network is operated by the defender, we can reduce the number of variables in the constraints.
We no longer need γ , as a node will either be online or offline for the entire time horizon.
Similarly, we no longer need to index wout , win by time, as a restructured arc (i, j) will
be in the network in time period δzi j + 1. This is reflected by only including the equivalent

constraints for (26j)-(26m) from δ
z,out
i j +1 (or δz,ini j , respectively) to τ . This will only enforce

the relationship between whether or not the arc is in the cut (if the arc is restructured in the
network) and which side of the cut the nodes are on in the time periods that the arc will
appear in. The following model incorporates this modeling simplification.

min
y,π,θ

η

s.t.η ≥
τ∑

t=1

∑
i∈N\{α,ω}

uiθ
k
i t +

∑
(i, j)∈A∪AR,out∪AR,in

ui jθ
k
i j t +

∑
(i, j)∈BR

ũ j z
out,k
α j t w

out,k
α j θkα j t

for k = 1, . . . , n (28a)

π+k

j t + θkα j t ≥ 1

123



Annals of Operations Research

for k = 1, . . . , n, (α, j) ∈ A, t = 1, . . . , τ (28b)

π+k

j t − π−k

i t + θki j t ≥ 0

for (i, j) ∈ A s.t. k = 1, . . . , n, i �= α, j �= ω, t = 1, . . . , τ (28c)

π−k

i t − π+k

i t + θki t ≥ −yi

for k = 1, . . . , n, i ∈ N \ {α, ω}, t = 1, . . . , τ (28d)

− π−k

i t + θkiωt ≥ 0

for k = 1, . . . , n, (i, ω) ∈ A, t = 1, . . . , τ (28e)

π+k

j t + θkα j t ≥ w
out,k
α j + zout,kα j t − 1

for k = 1, . . . , n, (α, j) ∈ AR,out , t = 1, . . . , τ (28f)

π+k

j t − π−k

i t + θki j t ≥ w
out,k
i j + zout,ki j t − 2

for (i, j) ∈ AR,out s.t. k = 1, . . . , n, i �= α, j �= ω, t = 1, . . . , τ (28g)

π+k

j t − π−k

i t + θki j t ≥ w
in,k
i j + zin,k

i j t − 2

for (i, j) ∈ AR,in s.t. k = 1, . . . , n, i �= α, j �= ω, t = 1, . . . , τ (28h)

θk ≥ 0 for k = 1, . . . , n

Constraints (26 j) − (26s) (28i)∑
i∈T

r̃i yi +
∑

j∈B∪T
ri yi ≤ b (28j)

r̃i ≥ rmin
i for i ∈ T (28k)

r̃i ≥ ri −
∑

l∈B∪V
dil yi for i ∈ T (28l)

y ∈ {0, 1}|N |\{α,ω} (28m)

Furthermore, we are able to reduce the size of the overall problem due to upfront inter-
diction. Since the time periods that the restructurings occur in are no longer dependent on
the time periods of the interdictions that allowed for those restructurings to occur in, we
can divide the time horizon into network “phases" based on when multiple sequential time
periods do not have any new restructurings. Given the kt h restructuring plan zk , let tk1 , . . . , tkf
be the unique time periods that restructurings in zk occur in. We can define network phase
s as Gsk = (N (G), A(G) ∪ {(i, j) ∈ AR,out : zout,ki j = 1, δzi j ≤ tki } ∪ {(i, j) ∈ AR,out :
zin,k
i j = 1, δzi j ≤ tki }). We then need to divide the time horizon {1, . . . , τ } into Sk intervals in

which we are in the different network phases. Let τ ks = tk1 − 1 for s = 1, τ ks = tks+1 − tks for
s = 2, . . . , tkf , and τ ks = τ − tkf − 1 for s = Sk .

min
y,π,θ

η

s.t.η ≥
Sk∑
s=1

τ ks [
∑

i∈N\{α,ω}
uiθ

k
is +

∑
(i, j)∈A∪AR,out∪AR,in

ui jθ
k
i js +

∑
(i, j)∈BR

ũ j z
out,k
α js w

out,k
α j θkα j ]

for k = 1, . . . , n (29a)

π+k

js + θkα js ≥ 1
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for k = 1, . . . , n, (α, j) ∈ A, s = 1, . . . , Sk (29b)

π+k

js − π−k

is + θki js ≥ 0

for (i, j) ∈ A s.t. k = 1, . . . , n, i �= α, j �= ω, s = 1, . . . , Sk (29c)

π−k

is − π+k

is + θkis ≥ −yi

for k = 1, . . . , n, i ∈ N \ {α, ω}, s = 1, . . . , Sk (29d)

− π−k

is + θkiωs ≥ 0

for k = 1, . . . , n, (i, ω) ∈ A, s = 1, . . . , Sk (29e)

π+k

js + θkα js ≥ w
out,k
α j + zout,kα js − 1

for k = 1, . . . , n, (α, j) ∈ AR,out , s = 1, . . . , Sk (29f)

π+k

js − π−k

is + θki js ≥ w
out,k
i j + zout,ki js − 2

for (i, j) ∈ AR,out s.t. k = 1, . . . , n, i �= α, j �= ω, s = 1, . . . , Sk (29g)

π+k

js − π−k

is + θki js ≥ w
in,k
i j + zin,k

i js − 2

for (i, j) ∈ AR,in s.t. k = 1, . . . , n, i �= α, j �= ω, s = 1, . . . , Sk (29h)

θk ≥ 0 for k = 1, . . . , n (29i)

Constraints (26 j) − (26s)∑
i∈T

r̃i yi +
∑

j∈B∪T
ri yi ≤ b (29j)

r̃i ≥ rmin
i for i ∈ T (29k)

r̃i ≥ ri −
∑

l∈B∪V
dil yi for i ∈ T (29l)

y ∈ {0, 1}|N |\{α,ω} (29m)

6 Modeling-based augmentations

We seek to improve our C&CG algorithm with modeling-based improvements. The first
improvement is to augment previously visited restructuring plans. We do so by including
additional arcs as “previously restructured" while still maintaining feasibility. This approach
helps to better take advantage of the way partial information about previously visited restruc-
tured plans provide bounds on the current interdiction decisions. Note that, as long as a
restructuring plan satisfies the constraints that are independent of y, then the w variables
will ensure that the constraints that are dependent on y are satisfied, producing a feasible
restructuring plan. As such, any previously visited restructuring plan can be augmented to
include additional arcs as long as the constraints independent of y are satisfied.

We provide a simple, yet effective augmentation. Every previously visited restructuring
plan (including the initial iteration: the empty restructuring plan) is augmented to include
every back-up trafficker, whether or not the back-up traffickers were restructured to. That is,
for every k = 1, . . . , n, ( j, i) ∈ T R , zout,kα j = 1. Note that the only constraints on whether
or not a back-up trafficker can be restructured are the constraints indicating whether or not
the primary trafficker has been interdicted. Thus, this change will not impact the feasibility
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of any constraints independent of y. Since, for (i, j) ∈ T R , wout,k
α j t = 0 for all t if yi = 0,

and w
out,k
α j t = 1 for t ≥ δ

y
i + δ

z,out
α j + 1 if yi = 1, the resulting restructuring sub plan will be

feasible. This augmentation will allow the master problem to better project what the impact
on flow will be if a trafficker is interdicted, which will in turn produce better lower bounds
when traffickers are interdicted.

The next improvement we propose is to project how new victims may be recruited. For
each previously considered restructuring plan, we can identify if a prospective victim j has
been recruited or not by computing

∑
i∈T :(i, j)∈AR,out zout,ki j . If

∑
i∈T :(i, j)∈AR,out zout,ki j =

1, then prospective victim j has been recruited in restructuring plan k. Otherwise,∑
i∈T :(i, j)∈AR,out zout,ki j = 0, meaning that prospective victim j has not been recruited.

We can thus identify the set of prospective victims that have not yet been recruited as
Pk = { j ∈ V R : ∑

i∈T :(i, j)∈AR,out zout,ki j = 0}. Additionally, we can identify the latest

a victim can be recruited as t̄ = maxi∈B∪V δ
y
i +max(i, j)∈AR,out : j∈Pk δ

z,out
i j . Likewise, we can

identify which traffickers still have the ability to act (recall that constraints (16) restrict the
number of acts each trafficker can take, which is independent of the interdiction decisions).
Let aki = ∑

j∈N :(i, j)∈Aout
R

zouti j +∑
l∈N ,h∈N :(i,l)∈A

(l,h)∈Aout
R

zoutlh +∑
l∈N :(i,l)∈A
(α,l)∈Aout

R

zoutαl be the number of

actions taken by trafficker i in restructuring plan k. Note that if aki = couti , then trafficker i
cannot take any more actions in restructuring plan k. However, if aki < couti , then trafficker
i may still be able to recruit new victims. Let Ck = {i ∈ T : aki < couti } be the set of
traffickers that can still recruit in restructuring plan k. From these two sets, we can identify
opportunities for recruitment. Let Ak,rec = {(i, j) ∈ AR,out : i ∈ Ck, j ∈ Pk} be the set
of restructurable arcs (i, j) where a trafficker i that can still act recruits prospective victim
j . For k = 1, . . . , n, (i, j) ∈ Ak,rec, let ψk

i j t be the indicator variable as to whether or not
(i, j) may be restructured in addition to restructuring plan k in time period t . We want to
define constraints that enforce that, if more interdictions have occurred that would allow for
more restructurings to occur, arcs in Ak,rec can additionally be restructured to augment that
restructuring plan. In order to do so, we need to define two additional variables to ensure
feasibility with big-M style constraints. Let νki be the indicator of whether or not trafficker
i has performed couti actions (including projected recruitment) in plan k, and let ξki be the
indicator of whether or not trafficker i has restructured all of the arcs they can in Ak,rec. We
can define the following constraints:

B(νki + ξki ) +
∑

j∈Pk :(i, j)∈Ak,rec

ψk
i j t̄ ≥

∑
(i, j)∈A

y j −
∑

(i, j)∈AR,out

w
out,k
i j t̄

for k ∈ 0, . . . , n, i ∈ Ck (30)∑
j∈Pk :(i, j)∈Ak,rec

ψi j t̄ ≤ couti − aki for k ∈ 0, . . . , n, i ∈ Ck (31)

νki ≤ 1

couti

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
j∈N :(i, j)∈Aout

R

zout,ki j =1

w̄
out,k
i jτ +

∑
l∈N ,h∈N :(i,l)∈A

(l,h)∈Aout
R

zout,klh =1

w̄
out,k
lhτ +

∑
l∈N :(i,l)∈A
(α,l)∈Aout

R

zout,kαl =1

w̄
out,k
αlτ +

∑
j∈Pk :(i, j)∈Ak,rec

ψk
i j t̄

⎞
⎟⎟⎟⎟⎟⎟⎠

for k = 1, . . . , n, i ∈ Ck (32)

ξki ≤
∑

j∈Pk :(i, j)∈Ak,rec ψk
i j t̄∣∣ j ∈ Pk : (i, j) ∈ Ak,rec

∣∣ for k = 1, . . . , n, i ∈ Ck (33)
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ψk
i j t ≥ ψk

i j(t−1) for (i, j) ∈ Ak,rec, t ∈ (t̄ + 1), . . . , τ (34)

Constraints (30) enforce that, for each previously considered restructuring plan, additional
recruitment occurs when more interdictions occur than restructurings that were enabled
by interdictions. Constraints (31) enforce that every trafficker takes at most couti actions.
Constraints (32) enforce that couti actions are taken before allowing νki = 1, which ensures
the feasibility of (30) when more than couti interdictions disrupt nodes incident to trafficker
i . Likewise, constraints (33) enforce that all possible potential recruitment occurs before
allowing ξki = 1, which ensures the feasibility of (30) when all ψk

i j t̄ = 1 for all j ∈ Pk :
(i, j) ∈ Ak,rec, i.e., all potential recruitment opportunities are taken. Constraints (34) ensure
that an arc stays online once it comes online.

We note that the introduction of these ψ variables may cause constraints (17) to be infea-
sible. However, in our model, u j = 1 for all j ∈ V R . This allows us to show that, even if the
constraints are violated, it will not impact the minimum cut in the network. First, we define
what it means for a node to be in the minimum cut.

Definition 1 A node i ∈ N is in the minimum cut at time t if θi t = 1.

Theorem 1 For every restructuring plan k, every prospective victim v ∈ Pk and time period
t ≥ t̄ , at most one trafficker node i that is not in the minimum cut will be brought into the
minimum cut when ψk

ivt = 1, regardless of the number of trafficker nodes where ψk
ivt = 1.

Proof Suppose that,with restructuringplan k in timeperiod t̄−1, there are twonon-interdicted
trafficker nodes where (i, v) ∈ Ak,rec and ( j, v) ∈ Ak,rec, and ψk

ivt = ψk
jvt = 1. Let f kt̄−1

be the maximum flow in through the network with restructuring plan k at time period t̄ − 1
as determined by the Ford-Fulkerson algorithm, and let (π̄k

t̄−1, θ̄
k
t̄−1) be the minimum cut

in time period t̄ − 1 as determined by the residual network D f , and suppose that θki(t̄−1) =
θkj(t̄−1) = 0. Thus, there are at least two α −ω augmenting paths in time period t̄ , (α, i, v, ω)

and (α, j, v, ω). Only one augmenting path through v can be chosen, since uv = 1 will be
amount of flow sent along the chosen path due to node and arc capacities being integral.
Thus, if j is not in the chosen path, then whether or not j can be reached by α will not be
impacted by the inclusion of arc ( j, v) after flow is sent along the augmenting path using i .
Thus, at most one trafficker node will be included in the minimum cut after including arcs
(i, v) and ( j, v). ��

Since at most one i ∈ T will be included in the minimum cut, regardless of the number
of arcs to recruitable victims that are “included" via ψ variables, we can construct a feasible
restructuring plan. If there were to be a change in the minimum cut after “including" an
arc (i, j) via ψk

i j t = 1, then (i, j) would be the arc that would be restructured. If no such
change occurs, then any one arc can be chosen and the minimum cut will only increase
by 1, regardless of which arc is chosen. Removing the extra arcs introduced by ψ will not
impact the feasibility of any of the restructuring plans. We also note that, the only arcs that
are added after the projected recruitment arcs will be restructuring to a back-up trafficker,
promoting a victim to be the new bottom, and assigning the newly promoted bottom more
victims. For a trafficker that was not interdicted, these arcs do not increase the total number
of victims a trafficker can reach. Thus, if a victim is recruited into a given organization,
no arcs restructured after their recruitment will cause them to be recruited into a different
organization, and thus a feasible restructuring plan can be constructed. This augmentation
can be implemented in both the standard model and simplified upfront interdiction models.
To implement the prospective recruitment constraints in the network phase model, we would
need to introduce an extra phase starting at t̄ if no such phase where to exist.
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Table 1 Sizes of generated
networks from Kosmas et al.
(2022)

Network Number
of nodes

Number of
traffickers

Number of
bottoms

Number of
victims

1 28 5 3 20

2 32 5 4 23

3 35 5 5 25

4 35 5 4 26

5 27 5 4 18

7 Computational results

We implement the models derived for Algorithm 1 in AMPL with Gurobi 9.5 as the solver.
Experiments were conducted on a laptop with an Intel® CoreTM i5-8250 CPU @ 1.6 GHz -
1.8 GHz and 16 GB RAM running Windows 10. Each instance is limited to a run time of 2
hours.

We test out model using τ = 7 on the networks used in Kosmas et al. (2022). The networks
used in Kosmas et al. (2022) were the product of a network generator that was informed
by qualitative literature, federal case file analysis, analyses of key stakeholder interviews
and a secondary analysis of previously conducted interviews, and the generator was further
validated by domain experts and a survivor-centered advisory board. Each network consists of
5 single-trafficker operations. These networks are similar in size and structure to the networks
presented in Cockbain (2018). However, we note that this is an exploratory analysis, and that
more analysis is needed to provide tailored recommendations for how different practitioners
may want to apply our model. Table 1 reports the number of nodes, as well as the number
of each type of node, in each network. The data used in this work is available from the
corresponding author upon request.

As in Kosmas et al. (2022), we choose the cost to interdict a victim to be 2, the cost to
interdict a bottom to be 4, and the cost to interdict a trafficker to be 8. Interdicting a victim
reduces the cost to interdict their trafficker by 1, while interdicting a bottom reduces the cost
by 3, to a minimum of 4. In the models with delayed interdiction, interdicting a victim takes
1 time period, interdicting a bottom takes 2 time periods, and interdicting a trafficker takes
3 time periods. In models with a second attacker, the second attacker has a fixed budget of
10, where interdicting a victim already in the trafficking network costs 3, and preventing a
victim from being recruited costs 1.

Each trafficker may restructure up to 4 arcs in their operation, while each victim may
restructure 1 arc if their trafficker is interdicted. Restructuring to a victim currently in the
trafficking network takes 1 time period, and recruiting a new victim takes 2 time periods.
A trafficker taking a victim from their bottom or assigning a victim to their bottom also
takes 1 time period. Trafficking operations with at least 4 victims (including a bottom, if the
operation has one) will have a back-up trafficker, and it takes 2 time periods to restructure
to them. For operations with a bottom, the set of victims that can be promoted to be the new
bottom is determined by randomly selecting half of the victims the trafficker is adjacent to
(rounding up), and promoting a victim to be a bottom takes 3 time periods.We set the number
of recruitable victims to be 40% of the number of victims in the network, as was done in
Kosmas et al. (2022).
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7.1 Comparison of solutionmethods

We first compare the solve times of Algorithm 1 with and without the augmentations for
models with a single attacker. Table 2 compares the solve times for delayed interdictions.
Table 3 compares solves times for the base formulation of upfront interdiction, and Table 4
compares the solve times for the network phase formulation of upfront interdiction. In each
table, we report the solve time, as well as the number of restructuring plans visited (in
parentheses).We note that the number of plans visited is equivalent to the number of iterations
of the C&CG algorithm. Unsolved instances are marked with an asterisk (∗) and bold entries
indicate which method solved the instance faster.

From these tables, we can see that, in themodelswith a single attacker, themodeling-based
augmentations allow the C&CG algorithm to almost always solve the problem significantly
quicker for all formulations. Out of 135 instances tested, only 6 instances are solved faster
without the augmentations. In all but two of these instances, the solve time for both methods
is under 10 seconds, indicating that those instances can already be easily solved. For all
the instances for delayed interdictions, the method with augmentations always outperform
the base method. The improvement in solve time by including the augmentations is quite
significant. In 114 out of 135 instances, the solve time of the method with augmentations is at
most 50% that of the basemethod, and in 39 out of 135 instances, the solve time is atmost 10%
that of the basemethod.Additionally, the basemethod is unable to solve 19 instances,whereas
the method with augmentations solves every instance. This improvement is due to requiring
significantly fewer iterations to solve the problem when the augmentations are included.
Although the augmentations increase the size of the master problem, the augmentations were
able to provide higher quality lower bounds in each iteration, thus solving the overall problem
significantly quicker. In comparing Tables 3 and 4, we can additionally see that the network
phase formulation for upfront interdictiondrastically outperforms the base formulation.Every
instance that both formulations solve is solved quicker with the network phase formulation,
with 68 out of 90 instances being solved in at most 50% of the solve time of the base
formulation. Additionally, the network phase formulation solves two more instances than the
base formulation.

We now present our results for the models with two cooperating attackers. Table 5 com-
pares solve times with delayed interdictions, Table 6 compares solves times for the base
formulation of upfront interdiction, and Table 7 compares the solve times for the network
phase formulation of upfront interdiction.

Here, we see that, while themethodwith augmentations is less effective with two attackers
than with one, it often solves the problem faster than the method without augmentations. We
expect that the augmentations would be less effective in these instances, since the second
attacker can prevent the recruitment of new participants, which limits the benefits of the
augmentation that projects the recruitment of new participants. Now, 28 of the instances
are solved faster without including augmentations. In instances with two attackers, the base
method is unable to solve 8 instances, and the method with augmentations is unable to solve
4 instances. We note that every instance that is solved by the base method is also solved by
the method with augmentations. Comparing Tables 6 and 7, we again see significant benefits
from the network phase formulation for upfront interdiction. The base formulation only
outperforms the network phase formulation in 3 instances, all of which are solved in under
60 seconds. For the network phase formulation, 54 of the 90 instances are solved in at most
50% of the solve time of the base formulation. Additionally, the network phase formulation
is able to solve every instance, where the base formulation is unable to solve 5 instances.
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Table 8 Relative optimality gap
of unsolved instances with
delayed interdiction, one attacker

Instance Base (%) Aug

Data2, Budget 28 5.469 –

Data2, Budget 32 8.333 –

Data2, Budget 36 7.207 –

Data3, Budget 12 0.562 –

Data3, Budget 16 2.907 –

Data3, Budget 24 1.987 –

Data3, Budget 28 3.471 –

Data3, Budget 32 3.008 –

Data3, Budget 36 4.800 –

Table 9 Relative optimality gap
of unsolved instances with
delayed interdiction, two
attackers

Instance Base (%) Aug

Data2, Budget 24 3.604 0.926%

Data2, Budget 28 3.030 –

Data4, Budget 24 2.326 3.817%

Data4, Budget 40 5.495 1.149%

Table 10 Relative optimality gap
of unsolved instances with
upfront interdiction, one attacker

Instance Base (%) Aug Phase Phase Aug

Data2, Budget 40 7.059 – 2.439% –

Data3, Budget 24 2.837 – 2.817% –

Data3, Budget 28 8.696 – 4.511% –

Data3, Budget 32 8.730 – 3.306% –

Data3, Budget 36 13.333 – – –

Data4, Budget 40 7.143 – – –

Table 11 Relative optimality gap
of unsolved instances with
upfront interdiction, two
attackers

Instance Base (%) Aug Phase Phase Aug

Data2, Budget 24 5.000 4.00% – –

Data2, Budget 28 4.651 – – –

Data3, Budget 16 5.479 – – -

Data4, Budget 40 1.471 – – –

We now compare the quality of the bounds determined in unsolved instances. For instances
with delayed interdiction for one attacker and two attackers, we report the relative optimality
gap, the difference between the upper and lower bound divided by the upper bound, in Tables 8
and 9. For instances with upfront interdiction for one attacker and two attackers, we report
the relative optimality gap in Tables 10 and 11. These results show that, with one exception,
the quality of the bounds identified using the method with augmentations are higher quality
than the base method, and that the bounds identified by the network phase model for upfront
interdiction are higher quality than the base model. Because the models with augmentations
both solve more instances and identify higher quality solutions in unsolved instances, the
inclusion of these augmentations better ensures that the recommendations provided by our
model appropriately account for how the traffickers will react to those decisions.
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Fig. 1 Interdicted and restructured flows with delayed interdiction and one attacker over varying attacker
budgets

Fig. 2 Interdicted and restructured flows with delayed interdiction and two attackers over varying attacker
budgets

7.2 Application-based analysis

We now compare the policy recommendations of a multi-period MFNIP model without
restructuring against those recommended by MP-MFNIP-R. For unsolved instances, we
present the solution associated with the upper bound from themodel andmethod that resulted
in the smallest upper bound. This is because this solution is a bilevel feasible solution, and
thus is what we want to minimize. We present the results of two sample networks, network 1
and 3, as the other three follow similar trends to one of these two; those results are included in
“Appendix 3”.Wefirst present the results on flow through the network. Figures 1 and 2 present
the flows with delayed interdictions with one and two attackers, respectively. Figures 3 and 4
present the flows with upfront interdictions with one and two attackers, respectively. In these
figures, the black dotted line represents the total flow through the un-interdicted network,
which is the total number of victims (bottoms included) multiplied by the number of time
periods. The blue circles are the optimal flow as determined by multi-period MFNIP, and
the red stars are the optimal flow after restructuring responding to multi-period MFNIP’s
recommended interdictions. The green triangles are the optimal flow as determined by MP-
MFNIP-R.
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Fig. 3 Interdicted and restructured flows with upfront interdiction and one attacker over varying attacker
budgets

Fig. 4 Interdicted and restructured flows with upfront interdiction and two attackers over varying attacker
budgets

Across all instances, the defender is able to regain a significant amount of flow after
restructuring in response to the interdictions recommended by multi-period MFNIP. The
interdictions recommended by MP-MFNIP-R are able to account for these restructurings,
resulting in a lower optimal flow. However, in instances with only one attacker, these flows
are closer to the restructured flows than the flows projected by multi-period MFNIP. This is
particularly noticeable in network 1 at higher budget levels, and network 3 at lower budget
levels. However, with the inclusion of a second attacker that can prevent the recruitment of
new participants, the amount of flow restructured in MP-MFNIP-R is significantly limited,
especially in the case of network 3. By preventing recruitment, more victims can be inter-
dicted, while also preventing them from being replaced, resulting in effectively reducing the
total flow.

In comparing the flow differences between delayed interdiction and upfront interdiction,
the difference in flows between the two models starts small, and the decrease in flow from
upfront interdictions grows as the attacker budget increases. This alignswith our expectations,
since at larger budget levels, the attacker with upfront interdictions can disrupt more of the
network sooner. Even though this allows for restructurings to be implemented in earlier time
periods, the original network is able to operate better than the restructured network.
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Table 12 Recommended delayed interdictions on network 1 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MNFIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 1 2 0 1 2

12 0 1 4 0 2 2

16 0 2 4 1 0 6

20 0 1 8 1 0 8

24 0 1 10 1 0 10

28 0 2 10 1 1 10

32 0 1 14 0 0 16

36 0 2 14 0 0 18

40 0 2 16 0 0 20

We next present results on how many nodes of each type were recommended to be inter-
dicted. Tables 12 and 13 present the recommended interdictions for network 1 with delayed
interdictions and one and two attackers, respectively. Tables 14 and 15 likewise present these
results on network 3. Tables 16, 17, 18, 19 present these results with upfront interdictions.
Columns with “MP-MFNIP" report the results from multi-period MFNIP, and columns with
“MP-MFNIP-R" report the results from MMNFIP-R. Columns with “2nd" report the deci-
sions of the second attacker.

In the case of delayed interdiction with one attacker, multi-period MFNIP prioritizes
interdicting bottoms in both networks, while focusingmore on interdicting victims in network
1, andmoreon interdicting traffickers in network3. Sincenetwork3hasmorevictims, itwould
be reasonable that disrupting traffickers would reduce the flow more, even accounting for
the time delay. However, in both networks, MP-MFNIP-R consistently allocates a significant
portion of the attacker budget to disrupting victims. This is likely due to the inclusion of back-
up traffickers that the multi-periodMFNIP is unable to account for. These trends continue for
the case with two attackers. At lower budget levels, the second attacker spends more budget
on interdicting current victims, and shifts their focus to preventing the recruitment of new
victims at higher budget levels. In both networks, the number of prospective victims that the
second attacker prevents their recruitment is double that of the number of current victims
they interdict when the primary attacker has a budget of at least 24. As the attacker budget
increases, the first attacker is able to disrupt more victims, allowing for more opportunities
for recruitment, making the prevention of recruitment a higher priority. This accounts for the
decrease in restructured flow seen in Figs. 2 and 4.

In the case of upfront interdiction with one attacker, the recommended interdictions from
MP-MFNIP-R in network 1 drastically shift towards interdicting traffickers and bottoms,
while the recommended interdictions fromMP-MFNIP-R in network 3 are almost completely
consistent with the recommendations from the delayed interdiction model. We additionally
have that, when there are two attackers, the first attacker’s interdictions increasingly focus
on disrupting victims currently in the network, while the second attacker again focuses
on the prevention of recruitment. We again observe that, in both networks, the number of
prospective victims that the second attacker prevents their recruitment is double that of the
number of current victims they interdict when the primary attacker has a budget of at least

123



Annals of Operations Research

Ta
bl
e
13

R
ec
om

m
en
de
d
de
la
ye
d
in
te
rd
ic
tio

ns
on

ne
tw
or
k
1
w
ith

tw
o
at
ta
ck
er
s

B
ud

ge
t

M
P-

M
FN

IP
In
t

T
ra
f-

fic
ke
r

M
P-

M
FN

IP
In
tB

ot
to
m

M
P-

M
FN

IP
In
tV

ic
tim

M
P-

M
FN

IP
2n

d
In
t

C
ur
re
nt

V
ic

M
P-

M
FN

IP
2n

d
In
t

Pr
os
p
V
ic

M
P-

M
FN

IP
-R

In
t

T
ra
f-

fic
ke
r

M
P-

M
FN

IP
-R

In
tB

ot
to
m

M
P-

M
FN

IP
-R

In
tV

ic
tim

M
P-

M
FN

IP
-R

2n
d

In
t

C
ur
re
nt

V
ic
tim

M
P-

M
FN

IP
-R

2n
d

In
t

Pr
os
p

V
ic
-

tim

8
0

1
2

3
1

0
0

4
2

3

12
0

1
4

2
3

0
0

6
2

3

16
0

1
6

3
1

0
0

8
2

3

20
0

1
8

3
1

0
0

10
2

3

24
0

2
12

2
3

0
0

12
2

4

28
0

1
14

2
3

0
0

14
2

4

32
0

1
14

2
4

0
0

16
2

4

36
0

2
14

2
4

0
0

18
2

4

40
0

3
14

2
4

0
0

20
0

8

123



Annals of Operations Research

Table 14 Recommended delayed interdictions on network 3 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 2 0

12 0 3 0 0 0 6

16 0 2 4 1 0 6

20 0 2 6 1 0 8

24 1 2 6 0 0 12

28 2 2 5 1 0 12

32 2 2 7 1 0 14

36 2 2 9 1 0 16

40 1 2 14 1 0 18

24. This suggests that disrupting the ability of traffickers to recruit new victims will be
key in effectively disrupting their operations. Currently, macroscopic models focus on how
victims are transported between locations tomove from their initial location towhere demand
is. Our results suggest that macroscopic network interdiction models should also focus on
understanding which communities victims of trafficking are more prominently recruited
from and how resources should be allocated to those susceptible communities to reduce the
population’s vulnerabilities to being trafficked, as opposed to solely focusing on movement
between locations.

8 Conclusion and future work

We introduced the multi-period max flow network interdiction problem with restructuring
(MP-MFNIP-R), where flow is sent from the source node to sink node in each time period,
and interdictions and restructurings are decided upon upfront and implemented throughout
the time horizon. We motivated this problem with applications in disrupting domestic sex
trafficking networks, where flow is defined as the ability of a trafficker to control their vic-
tims. We modeled this problem as a BMILP, and derived a column-and-constraint generation
(C&CG) algorithm to solve this problem. Modeling-specific augmentations were incorpo-
rated in the C&CG algorithm to significantly improve the solve time. For models where the
interdictions are also implemented upfront, we proposed equivalent models that are able to
significantly reduce the size of the problem.We additionally proposed additional models that
include a second attacker that has the ability to interdict victims currently in the network, as
well as to prevent the recruitment of new victims, modeling the ability of social services to
disrupt a sex trafficking network.

We tested ourmodel on validated synthetic domestic sex trafficking networkswith 5 single-
trafficker operations.We note that the benefits of all interdictions occurring upfront was more
noticeable at higher attacker budget levels. Our work also supports that coordination between
anti-trafficking stakeholders results in more effective disruption of flow. The inclusion of a
second attacker with the ability to prevent recruitment is key proved vital to successfully
reducing the flow after restructurings. By preventing recruitment, the resources spent on
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Table 16 Recommended upfront interdictions on network 1 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 0 4

12 1 1 1 1 0 4

16 1 2 1 1 0 6

20 1 3 1 1 0 8

24 0 2 8 1 0 10

28 0 2 10 1 1 10

32 0 2 12 2 2 8

36 1 2 10 2 2 10

40 1 2 12 2 3 10

Table 17 Recommended upfront interdictions on network 3 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 0 4

12 0 3 0 1 1 2

16 0 2 4 1 0 6

20 1 2 3 1 0 8

24 1 2 5 1 0 10

28 2 2 5 1 0 12

32 2 3 5 1 0 14

36 2 2 9 1 0 16

40 2 3 9 1 0 18

disrupting victims means that these victims cannot be replaced by traffickers. This suggested
that future research, both qualitative and quantitative, should focus on exploring how to
disrupt recruitment in sex trafficking networks. This work is speculative and more empirical
data is needed to understand the true impacts of our mathematical analysis.

There is much work needed to more accurately apply network interdiction models to
disrupting domestic sex trafficking networks. A first avenue of research is improving the
dynamics proposed in this model to allow for interdiction and restructurings to occur in any
time period, as decided by the attacker and defender. Bilevel mixed integer linear programs
with integer decision variables in both levels of the problem are already computationally
challenging, so extending this model to a multi-level mixed integer linear program with
integer decision variables in every level will require significant computational advances.
Additionally, as with any illicit network, there is significant uncertainty involved in learning
the network structure. Future work can integrate a learning aspect to the model, where as the
attacker learns more about the participants in the network and how it adapts as interdictions
are implemented.
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Appendices

Summary of notation

See Tables 20, 21, 22 and 23.

Table 20 Description of notation for sets

Set Description of set

N Set of nodes

T Trafficker nodes

B Bottom nodes

V Victim nodes

T R Back-up trafficker nodes

BR Victims nodes that can be promoted to the role of bottom

V R Recruitable victim nodes

A Set of arcs currently in the network

AR Set of arcs that can be restructured

AR,out Set of arcs that can be restructured from the tail node

AR,in Set of arcs that can be restructured from the head node

Y Set of all feasible interdiction plans

Z(y) Set of all feasible restructuring plans responding to interdiction plan y

Sk Set of network phases for restructuring plan k in upfront interdiction model

Pk Set of recruitable victims that were not recruited in restructuring plan k

Ck Set of traffickers that have not taken all of their actions in restructuring plan k

Ak,rec Set of restructurable arcs between traffickers in Ck and recruitable victims in Pk
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Table 21 Description of notation for variables

Variable Description of variable

yi Indicator of whether node i has been interdicted

γi t Indicator of if node i has been interdicted in or before time t

zout Indicator of whether arc (i, j) has been “out” restructured

ζ outi j t Indicator of if arc (i, j) has been “out” restructured in or before time t

zin Indicator of whether arc (i, j) has been “in” restructured

ζ ini j t Indicator of if arc (i, j) has been “in” restructured in or before time t

xi j t Amount of flow across arc (i, j) at time t

xi t Amount of flow across node i at time t

r̃i Adjusted cost to interdict trafficker i accounting for reductions from other
interdictions

y′
i Indicator of whether node i has been interdicted by second attacker

π+k

i t Dual variable for inflow conservation constraint for node i at time t for
restructuring plan k

π−k

i t Dual variable for outflow conservation constraint for node i at time t for
restructuring plan k

θki j t Indicator if arc (i, j) in in the minimum cut at time t with restructuring plan k

θki t Indicator if node i in in the minimum cut at time t with restructuring plan k

w
out,k
i j t Indicator of if arc (i, j) is “out” restructured at or after time period t , where (i, j)

was “out” restructured in restructuring plan k

w
in,k
i j t Indicator of if arc (i, j) is “in” restructured at or after time period t , where (i, j)

was “in” restructured in restructuring plan k

w
out,k
i j Indicator of if arc (i, j) is “out” restructured where (i, j) was “out” restructured in

restructuring plan k for upfront interdiction model

w
in,k
i j Indicator of if arc (i, j) is “in” restructured where (i, j) was “in” restructured in

restructuring plan for upfront interdiction model k

w
out,k
i js Indicator of if arc (i, j) is “out” restructured at or after network phase s, where

(i, j) was “out” restructured in restructuring plan k

w
in,k
i js Indicator of if arc (i, j) is “in” restructured at or after network phase s, where

(i, j) was “in” restructured in restructuring plan k

φk
i j t Indicator of if arc (i, j) can be restructured at or after time period t in addition to

the feasible restructurings in restructuring plan k

νki Indicator if trafficker i has performed couti actions in augmented restructuring plan
k

ξki Indicator if trafficker i has performed all feasible restructurings in augmented
restructuring plan k
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Table 22 Description of notation for data/parameters

Parameter Description of parameter

α Source node

ω Sink node

τ Number of time periods in time horizon

δ
y
i Number of time periods needed to interdict node i

δzi j Number of time periods needed to restructure arc (i, j)

ui j Capacity of arc (i, j)

ui Capacity of node i

ũi Capacity increase of victim node i being promoted to the role of bottom

ri Cost to interdict node i

dil Reduction in cost to interdict trafficker node i if victim (or bottom) node l is also
interdicted

rmin
i Minimum cost to interdict trafficker node i accounting for reductions from other

interdictions

b Attacker budget

r ′
i Cost for second attacker to interdict node i

b′ Attacker budget for second attacker

δ
min,out
i The minimum number of time periods need before trafficker node i can initiate a

restructuring

δ
max,out
i The maximum number of time periods need before trafficker node i can initiate a

restructuring

δ
min,in
j The minimum number of time periods need before victim node j can initiate a

restructuring

δ
max,in
j The maximum number of time periods need before victim node j can initiate a

restructuring

ȳ A feasible interdiction plan

couti Number of actions trafficker i can take

cinj Number of actions victim j can take

λ
out,k
i t Indicator of if trafficker node i is able to perform all restructurings performed in

restructuring plan k by time t

λ
in,k
j t Indicator of if victim node j is able to perform all restructurings performed in

restructuring plan k by time t

zout,ki j Indicator of whether arc (i, j) has been “out” restructured in restructuring plan k

ζ
out,k
i j t Indicator of if arc (i, j) has been “out” restructured in or before time t in

restructuring plan k

zin,k
i j Indicator of whether arc (i, j) has been “in” restructured in restructuring plan k

ζ
in,k
i j t Indicator of if arc (i, j) has been “in” restructured in or before time t in

restructuring plan k

M Number of restructuring plans in
⋃

y∈Y Z(y)

My Number of restructuring plans in Z(y)
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Table 22 continued

Parameter Description of parameter

n Number of restructuring plans considered in (26)

U Upper bound on objective value of MP-MFNIP-R

L Lower bound on objective value of MP-MFNIP-R

t̄ The latest time period any recruitable victim can be recruited in

aki Number of actions taken be trafficker i in restructuing plan k

B Arbitrarily large parameter for big-M style constraints

Table 23 Description of notation for data/parameters specific to network phase model

Parameter Description of parameter

τ ks Number of time periods spent in network phase s in restructuring plan k

ζ
out,k
i js Indicator of if arc (i, j) has been “out” restructured in or before network phase s in

restructuring plan k

ζ
in,k
i js Indicator of if arc (i, j) has been “in” restructured in or before network phase s in

restructuring plan k

Full model derivation

As per standard column-and-constraint generation, we separate the maximization problem
into two problems, where the innermost problem in only the continuous variables, the x
variables. This allows us to replace the problem with the dual minimization problem:

min
y,γ∈Y max

z,ζ
min
π,θ

∑τ
t=1[

∑
i∈N\{α,ω} uiγi tθi t + ∑

(i, j)∈A ui jθi j t + ∑
(i, j)∈AR,out ui jζ out

i j t θi j t

+∑
(i, j)∈AR,in ui jζ ini j tθi j t + ∑

(i, j)∈BR ũ jζ
out
α j t θα j t ]

s.t.π+
j t + θα j t ≥ 1 for (α, j) ∈ A ∪ AR, t = 1, . . . , τ (35a)

π+
j t − π−

i t + θi j t ≥ 0 for (i, j) ∈ A ∪ AR s.t. i �= α, j �= ω, t = 1, . . . , τ

(35b)

π−
i t − π+

i t + θi t ≥ 0 for i ∈ N \ {α, ω}, t = 1, . . . , τ (35c)

− π−
i t + θiωt ≥ 0 for (i, ω) ∈ A ∪ AR, t = 1, . . . , τ (35d)

θ ≥ 0 (35e)

y ∈ {0, 1}|N |\{α,ω} (35f)

γ ∈ {0, 1}|N |\{α,ω}×τ Constraints (25h) − (25l) (35g)

As in Kosmas et al. (2020), we use an equivalent formulation to reduce the number of
bilinear terms in the objective function.

min
y,γ

max
z,ζ

min
π,θ

τ∑
t=1

[
∑

i∈N\{α,ω}
ui θi t +

∑
(i, j)∈A∪AR,out∪AR,in

ui j θi j t +
∑

(i, j)∈BR

ũ j ζ
out
α j t θα j t ]

s.t.π+
j t + θα j t ≥ 1

for (α, j) ∈ A, t = 1, . . . , τ (36a)
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π+
j t − π−

i t + θi j t ≥ 0 for (i, j) ∈ A s.t. i �= α, j �= ω, k = 1, . . . , n, t = 1, . . . , τ

(36b)

π−
i t − π+

i t + θi t ≥ −γi t for i ∈ N \ {α, ω}, t = 1, . . . , τ (36c)

− π−
i t + θiωt ≥ 0 for (i, ω) ∈ A, k = 1, . . . , n, t = 1, . . . , τ (36d)

π+
j t + θα j t ≥ ζ out

α j t for (α, j) ∈ AR,out , t = 1, . . . , τ (36e)

π+
j t − π−

i t + θi j t ≥ ζ out
i j t − 1

for (i, j) ∈ AR,out s.t. i �= α, j �= ω, k = 1, . . . , n, t = 1, . . . , τ (36f)

π+
j t − π−

i t + θi j t ≥ ζ ini j t − 1

for (i, j) ∈ AR,in s.t. i �= α, j �= ω, k = 1, . . . , n, t = 1, . . . , τ (36g)

θ ≥ 0 (36h)

y ∈ {0, 1}|N |\{α,ω} (36i)

γ ∈ {0, 1}|N |\{α,ω}×τ

Constraints (25h) − (25l) (36j)

Note that Z(y) is a finite set, so we can reduce the tri-level problem into a single-
minimization problem by enumerating over every feasible (z, ζ ) solution, and enforcing
that the objective value of the bilevel problem is at least as large as objective value associated
with each (z, ζ ) solution. Let My = |Z(y)|. The following is a non-standard formulation of
the single-level minimization problem.

min
y,γ,π,θ

η (37a)

s.t.η ≥
τ∑

t=1

[
∑

i∈N\{α,ω}
uiθ

k
i t +

∑
(i, j)∈A∪AR,out∪AR,in

ui jθ
k
i j t +

∑
(i, j)∈BR

ũ jζ
out,k
α j t θα j t ]

for k = 1, . . . , My (37b)

π+k

j t + θkα j t ≥ 1

for (α, j) ∈ A, k = 1, . . . , My, t = 1, . . . , τ (37c)

π+k

j t − π−k

i t + θki j t ≥ 0

for (i, j) ∈ A s.t. i �= α, j �= ω, k = 1, . . . , My, t = 1, . . . , τ (37d)

π−k

i t − π+k

i t + θki t ≥ −γi t

for i ∈ N \ {α, ω}, k = 1, . . . , My, t = 1, . . . , τ (37e)

− π−k

i t + θkiωt ≥ 0

for (i, ω) ∈ A, k = 1, . . . , My, t = 1, . . . , τ (37f)

π+k

j t + θkα j t ≥ ζ
out,k
α j t

for (α, j) ∈ AR,out , k = 1, . . . , My, t = 1, . . . , τ (37g)

π+k

j t − π−k

i t + θki j t ≥ ζ
out,k
i j t − 1

for (i, j) ∈ AR,out s.t. i �= α, j �= ω, k = 1, . . . , My, t = 1, . . . , τ (37h)

π+k

j t − π−k

i t + θki j t ≥ ζ
in,k
i j t − 1
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for (i, j) ∈ AR,in s.t. i �= α, j �= ω, k = 1, . . . , My, t = 1, . . . , τ (37i)

θ ≥ 0 (37j)

y ∈ {0, 1}|N |\{α,ω} (37k)

γ ∈ {0, 1}|N |\{α,ω}×τ

Constraints (25h) − (25l) (37l)

To return to a standard formulation, we now include our partial information constraints
and variables. The include of these constraints and variables enforce that, for a given y and
(z, ζ ) /∈ Z(y), we identify another solution (z̄, ζ̄ ) ∈ Z(y) that allows for nonzero components
of (z, ζ ) that are feasible with respect to y will remain nonzero. These constraints are (57)-
(66). Let M = ⋃

y∈Y Z(y). The following is a standard formulation of the single-level
problem with partial information constraints.

min
y,γ,wπ,θ

η

s.t.η≥
τ∑

t=1

[
∑

i∈N\{α,ω}
uiθ

k
i t+

∑
(i, j)∈A∪AR,out∪AR,in

ui jθ
k
i j t+

∑
(i, j)∈BR

ũ j z
out,k
α j t w

out,k
α j t θkα j t ]

for k = 1, . . . , M (38a)

π+k

j t + θkα j t ≥ 1

for (α, j) ∈ A, k = 1, . . . , M, t = 1, . . . , τ (38b)

π+k

j t − π−k

i t + θki j t ≥ 0

for (i, j) ∈ A s.t. i �= α, j �= ω, k = 1, . . . , M, t = 1, . . . , τ (38c)

π−k

i t − π+k

i t + θki t ≥ −γi t

for i ∈ N \ {α, ω}, k = 1, . . . , M, t = 1, . . . , τ (38d)

− π−k

i t + θkiωt ≥ 0

for (i, ω) ∈ A, k = 1, . . . , M, t = 1, . . . , τ (38e)

π+k

j t + θkα j t ≥ w
out,k
α j t + zout,kα j − 1

for (α, j) ∈ AR,out , k = 1, . . . , M, t = 1, . . . , τ (38f)

π+k

j t − π−k

i t + θki j t ≥ w
out,k
i j t + zout,ki j − 2

for (i, j) ∈ AR,out s.t. i �= α, j �= ω, k = 1, . . . , M, t = 1, . . . , τ (38g)

π+k

j t − π−k

i t + θki j t ≥ w
in,k
i j t + zin,k

i j − 2

for (i, j) ∈ AR,in s.t. i �= α, j �= ω, k = 1, . . . , M, t = 1, . . . , τ (38h)

θk ≥ 0

for k = 1, . . . , M (38i)

μout
i λ

out,k
i t +

∑
(i, j)∈AR,out :zout,ki j =1

w
out,k
i j(t+δ

z,out
i j )

≥
∑

(i,h)∈A

γht

for k ∈ 1, . . . , M, i ∈ T , t ∈ 1, . . . , τ − δ
max,out
i (38j)
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μin
j λ

in,k
j t +

∑
(i, j)∈AR,in :zin,k

i j =1

w
in,k

i j(t+δ
z,in
i j )

≥
∑

(h, j)∈A

γht

for k ∈ 1, . . . , M, j ∈ V , t ∈ 1, . . . , τ − δ
max,in
i (38k)

λ
out,k
i t ≤

∑
(i, j)∈AR,out :zout,ki j =1 w

out,k
i j(t+δ

z,out
i j )∑

(i, j)∈AR,out :zout,ki j =1 z
out,k
i j

for k ∈ 1, . . . , M, i ∈ T , t = 1, . . . , τ (38l)

λ
in,k
i t ≤

∑
(i, j)∈AR,in :zin,k

i j =1 w
in,k

i j(t+δ
z,in
i j )∑

(i, j)∈AR,in :zin,k
i j =1 z

in,k
i j

for k = 1, . . . , M, i ∈ V , t = 1, . . . , τ (38m)

w
out,k
i j ≥ w

out,k
i j(t−1)

for k = 1, . . . , M, (i, j) ∈ AR,out , t ∈ 2 . . . , τ (38n)

w
in,k
i j t ≥ w

in,k
i j(t−1)

for k = 1, . . . , M, (i, j) ∈ AR,in, t ∈ 2 . . . , τ (38o)

w
out,k
α j t ≥ yi

for k = 1, . . . , M, ( j, i) ∈ T R, t ∈ δ
y
i + δ

z,out
α j , . . . , τ (38p)

w
out,k
α j(t+δ

z,out
α j )

≥ yi

for k = 1, . . . , M, ( j, i) ∈ BR s.t. zout,kα j = 1, t ∈ δ
y
i + 1, . . . , τ − δ

z,out
α j

(38q)

w
out,k
i j t ≥ zout,kki j

for k = 1, . . . , M, i ∈ B, j ∈ V s.t. (i, j) ∈ AR,out (38r)

w
out,k
i j t ≥ zout,ki j

for k = 1, . . . , M, i ∈ V , j ∈ V s.t. (i, j) ∈ AR,out , ∃l ∈ B, (i, l) ∈ BR

(38s)

y ∈ {0, 1}|N |\{α,ω} (38t)

γ ∈ {0, 1}|N |\{α,ω}×τ

Constraints (25h) − (25l) (38u)

In general, M will be very large, making the problem computationally difficult to solve.
We can instead optimize over a subset of points {z1, ζ 1, . . . , zn, ζ n} ⊂ ⋃

y∈Y Z(y), where
n < M to identify a lower bound on the true objective value of the bilevel problem. We then
iteratively identify new points (z̃, ζ̃ ) to include in the set we optimize over, until the true
solution is identified. This is the minimization problem outlined in Sect. 5.
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Computational results

See Tables 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47

Table 24 MP-MFNIP-R flow
with delayed interdiction and 1
attacker

Budget Data1 Data2 Data3 Data4 Data5

Base 161 189 210 210 154

8 122 164 185 181 130

12 116 155 177 172 118

16 105 146 167 160 114

20 98 138 155 150 102

24 86 128 149 143 94

28 81 122 139 135 89

32 77 111 129 125 82

36 70 104 120 114 74

40 62 96 109 107 69

Table 25 MP-MFNIP-R flow
with delayed interdiction and 2
attackers

Budget Data1 Data2 Data3 Data4 Data5

Base 161 189 210 210 154

8 109 146 167 160 116

12 98 138 155 152 104

16 86 126 147 140 94

20 79 116 135 134 82

24 68 108∗ 125 129∗ 74

28 61 97 116 114 64

32 54 88 105 106 52

36 46 74 94 94 46

40 38 66 82 87∗ 41

Table 26 MP-MFNIP-R flow
with upfront interdiction and 1
attacker

Budget Data1 Data2 Data3 Data4 Data5

Base 161 189 210 210 154

8 119 161 185 183 126

12 110 153 173 167 112

16 97 139 159 154 108

20 89 130 147 140 94

24 77 119 140 133 84

28 70 110 129 121 77

32 65 98 117 110 71

36 54 88 106 98 62

40 47 80 94 91 54
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Table 27 MP-MFNIP-R flow
with upfront interdiction and 2
attackers

Budget Data1 Data2 Data3 Data4 Data5

Base 161 189 210 210 154

8 104 140 161 154 110

12 91 131 147 145 96

16 77 117 138 131 84

20 69 105 124 124 70

24 56 96 112 112 61

28 48 83 102 98 49

32 40 70 89 89 35

36 31 56 76 75 27

40 21 47 62 68 20

Table 28 Recommended delayed interdictions on network 1 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 1 2 0 1 2

12 0 1 4 0 2 2

16 0 2 4 1 0 6

20 0 1 8 1 0 8

24 0 1 10 1 0 10

28 0 2 10 1 1 10

32 0 1 14 0 0 16

36 0 2 14 0 0 18

40 0 2 16 0 0 20

Table 29 Recommended delayed interdictions on network 2 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 1 2

12 0 2 2 0 2 2

16 0 3 2 1 0 6

20 0 2 6 1 0 8

24 0 2 8 1 0 10

28 0 2 10 2 0 10

32 0 2 12 2 0 12

36 0 3 12 0 0 18

40 1 2 14 1 0 18
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Table 30 Recommended delayed interdictions on network 3 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 2 0

12 0 3 0 0 0 6

16 0 2 4 1 0 6

20 0 2 6 1 0 8

24 1 2 6 0 0 12

28 2 2 5 1 0 12

32 2 2 7 1 0 14

36 2 2 9 1 0 16

40 1 2 14 1 0 18

Table 31 Recommended delayed interdictions on network 4 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 2 0

12 1 1 2 0 0 6

16 1 1 4 1 0 6

20 2 2 1 1 0 8

24 2 3 1 1 0 10

28 1 1 10 2 1 8

32 2 3 5 2 1 10

36 2 2 9 2 0 14

40 2 3 9 2 0 16

Table 32 Recommended delayed interdictions on network 5 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 1 2 0 0 4

12 0 1 4 0 0 6

16 0 1 6 0 0 8

20 0 1 8 0 0 10

24 0 1 10 1 0 10

28 0 2 10 1 1 10

32 0 1 14 0 0 16

36 0 2 14 0 0 18

40 0 3 14 1 1 16
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Table 33 Recommended upfront interdictions on network 1 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 0 4

12 1 1 1 1 0 4

16 1 2 1 1 0 6

20 1 3 1 1 0 8

24 0 2 8 1 0 10

28 0 2 10 1 1 10

32 0 2 12 2 2 8

36 1 2 10 2 2 10

40 1 2 12 2 3 10

Table 34 Recommended upfront interdictions on network 2 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 0 4

12 0 3 0 1 0 4

16 0 4 0 1 0 6

20 0 4 2 1 1 6

24 1 4 1 1 0 10

28 2 4 1 2 0 10

32 2 4 3 2 0 12

36 0 3 12 2 1 12

40 0 4 12 2 1 14

Table 35 Recommended upfront interdictions on network 3 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 0 4

12 0 3 0 1 1 2

16 0 2 4 1 0 6

20 1 2 3 1 0 8

24 1 2 5 1 0 10

28 2 2 5 1 0 12

32 2 3 5 1 0 14

36 2 2 9 1 0 16

40 2 3 9 1 0 18
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Table 36 Recommended upfront interdictions on network 4 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 2 0 0 0 4

12 1 1 2 1 0 4

16 1 2 1 1 0 6

20 2 2 1 1 0 8

24 2 3 1 1 1 8

28 2 3 3 2 1 8

32 2 3 5 2 1 10

36 2 3 7 2 0 14

40 2 3 9 2 1 14

Table 37 Recommended upfront interdictions on network 5 with one attacker

Budget MP-
MFNIP
Int Traf-
ficker

MP-
MFNIP
Int Bottom

MP-
MFNIP
Int Victim

MP-
MFNIP-R
Int Traf-
ficker

MP-
MFNIP-R
Int Bottom

MP-
MFNIP-R
Int Victim

8 0 1 2 0 0 4

12 0 1 4 0 0 6

16 0 1 6 0 0 8

20 0 1 8 0 0 10

24 0 2 8 1 0 10

28 0 3 8 1 1 10

32 0 4 8 0 2 12

36 0 3 12 2 1 12

40 0 3 14 2 1 14
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