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Abstract

Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical 1

tweezers) often use video tracking to measure the three-dimensional position of 2

micron-scale beads under an applied force. The force in these experiments is calibrated 3

by comparing the bead trajectory to a thermal motion-based model with the drag 4

coefficient, γ, and trap spring constant, κ, as parameters. Estimating accurate 5

parameters is complicated by systematic biases from spectral distortions, the camera 6

exposure time, parasitic noise, and least-squares fitting methods. However, while robust 7

calibration methods exist that correct for these biases, they are not always used because 8

they can be complex to implement computationally. To address this barrier, we present 9

Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments. 10

Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their 11

uncertainties from a single bead trajectory via the power spectral density (PSD) and 12

Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most 13

common sources of biases in SMFS video-tracking experiments. Here, we provide a 14

comprehensive overview of Tweezepy’s calibration scheme, including a review of the 15

theory underlying thermal motion-based parameter estimates, a discussion of the PSD, 16

AV, and MLE, and an explanation of their implementation. 17

1 Introduction 18

Single-molecule force spectroscopy (SMFS) instruments are powerful tools with a wide 19

variety of experimental applications. They can be used to study polymer elasticity [1, 2] 20

and dynamics [3], measure bond energies and lifetimes [4, 5], assess the activity of 21

molecular motors [6, 7], and characterize protein and nucleic acid folding [8]. 22

To obtain accurate and reproducible results, an essential first step in any SMFS 23

experiment is force calibration. Typically, force calibration relies on comparing the 24

thermal motion of a trapped bead to a model derived from the Langevin equation [9]. 25

These methods have limitations; notably, at times, t . 10−4 s, the standard Langevin 26

equation does not account for certain hydrodynamic effects between the bead and the 27

surrounding fluid [10]. Nevertheless, for longer times, these hydrodynamic effects can be 28

ignored and the bead motion is well-described by the overdamped Langevin equation, 29

which only depends on two parameters: the drag coefficient of the bead, γ, and the 30

spring constant of the trap, κ, from which the force can be calculated. 31

In practice, analyzing and fitting the bead trajectory must be done carefully. Several 32

factors, including spectral distortions, the exposure time of the detection system (e.g., 33
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video cameras), parasitic noise (e.g., tracking errors and mechanical drift), and biased 34

fitting, can all lead to inaccurate parameter estimates [11–15]. Robust calibration 35

methods that account for all of these factors exist, yet they can be complex to 36

implement computationally, leading some researchers to opt for alternative 37

strategies [16]. 38

Existing force-calibration software packages [17–20] only account for some sources of 39

bias; most notably they do not account for the finite exposure time of the camera in 40

video-tracking experiments. Thus, it is often up to researchers to write with their own 41

calibration code, of which published examples are only available in proprietary 42

programming languages (e.g., MatLab [21] and LabView [22]), hindering easy access. As 43

has been argued elsewhere [23], different computational implementations, even those 44

based on the same algorithms, can often lead to different numerical outcomes. This lack 45

of standardized calibration methods and computational implementations hinders 46

reproducibility and makes comparison across different research groups, instruments, and 47

experiments difficult [24]. 48

To help improve and standardize SMFS force calibration, we present Tweezepy: a 49

Python package for calibrating forces in single-molecule video-tracking experiments. 50

Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters, and their 51

uncertainties, from a user-provided bead trajectory via a thermal motion-based model 52

of the power spectral density (PSD) or Allan variance (AV). It accounts for the most 53

common sources of biases and parasitic noise in SMFS video-tracking experiments. 54

Moreover, it is written in Python, a popular and freely available programming language, 55

and includes documentation (https://tweezepy.readthedocs.io) with installation 56

instructions and tutorials. It is designed for ease-of-use, only requiring a few lines of 57

simple code, yet it has a versatile object-oriented framework that can be part of a larger 58

scripted workflow or in a Jupyter notebook as a lab journal page [25,26]. It is developed 59

on GitHub (https://github.com/ianlmorgan/tweezepy) and available through the 60

Python package index, making it easy to distribute and install. The latest stable 61

versions are also archived on the Zenodo database [27]. 62

In this article, we provide a comprehensive overview of Tweezepy’s force calibration 63

scheme. In Section 2, we describe several common force calibration methods and 64

motivate the use of the PSD and AV. In Section 3, we give closed-form expressions that 65

account for common sources of parameter biases and parasitic noise in video-tracking 66

experiments, such as the finite exposure time of the detection system and tracking 67

errors. In Section 4, we review how to compute the experimental PSD and AV from a 68

bead trajectory. In Section 5, we describe how to use MLE to reduce biased fitting and 69

estimate parameters and their uncertainties. We note here that estimating parameter 70

uncertainties using MLE has received relatively little attention in the SMFS literature. 71

For experienced readers that are familiar with force calibration theory, we recommend 72

skipping ahead to Section 6 , which covers the computational implementation of the 73

calibration methods in Tweezepy. In Section 7, we use Tweezepy to calibrate simulated 74

bead trajectories, and show that it accurately estimates parameters and their 75

uncertainties, similar to previously published results [15]. 76

2 Background 77

In a typical SMFS experiment, a polymer is tethered between a surface and a trapped 78

bead (Fig. 1A), and the polymer extension is measured while force is applied to the 79

bead. The force on the bead is not known a priori and needs to be calibrated. 80

Most force calibration methods fall into two categories: methods that calibrate 81

against known forces, such as Stokes drag or sedimentation [28], and methods that 82

calibrate based on the thermal motion of the bead [9]. The first category generally relies 83
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Fig 1. (A) Illustration of a magnetic tweezer SMFS experiment in which a polymer is
tethered between a glass surface and a paramagnetic bead. Collisions with water
molecules drive the bead away from its equilibrium position, creating a restoring force
κx from the magnetic trap and a drag force γẋ from the solution. The polymer bead
system is treated as an inverted pendulum, such that the upward force, Fmag, is
determined from the height of the bead above the surface, L, and the spring constant, κ,
in the x-direction: Fmag = κL [32]. (B) Simulated random, diffusive motion of the
bead’s x position over time, t, with a drag coefficient, γ = 8.38× 10−6 pNs/nm, and
three different spring constants: κ1 = 5.3× 10−4 pN/nm (blue),
κ2 = 1.1× 10−3 pN/nm (green), and κ3 = 2.6× 10−3 pN/nm (orange). (C) The bead
positions follow a Gaussian distribution due to the (D) harmonic potential generated by
the applied magnetic trap. (E) The power spectral density (PSD) and (F) Allan
variance (AV) of the bead trajectories in (B).

on intrinsic parameters of the system (e.g. the density and viscosity of the solution) 84

that can be difficult to measure and often vary within an experiment, leading to large 85

uncertainties [29]. 86

In comparison, thermal motion-based calibration methods are advantageous because 87

they only rely on the temperature of the system, which is much easier to measure and 88

control in most experiments. These methods model the trap as a harmonic potential in 89

which the bead undergoes random, diffusive motion (Fig. 1B-D). The applied force is 90

determined from the spring constant of the trap, κ, and displacement of the bead, x, via 91

Hooke’s law (F = −κx) [13,30]. By the equipartition theorem, the spring constant of 92

the trap can be related to the standard variance of the bead position, σ2
x: 93

σ2
x =

kBT

κ
. (1)

where kB is the Boltzmann constant and T is the absolute temperature of the 94

system [31]. While Eq. 1 can theoretically give an accurate estimate of κ when the time 95

between measurements, τs, is much faster than the relaxation time of the bead, 96

τc ≡ γ/κ, in practice, sources of parasitic noise always increase the variance, leading to 97

systematic underestimates of the apparent spring constant [13]. 98

A better approach to thermal motion-based calibration is the PSD, which permits 99

separation of thermal motion from parasitic noise [13,33]. The PSD describes the 100

distribution of the variance (i.e., total power) across different frequency components in a 101

signal (Fig. 1E). Invariably, parasitic noise sources have spectral signatures that differ 102

from those of the bead’s thermal motion. As discussed in detail below, when using the 103

PSD to calibrate video-tracking experiments, one needs to account for several factors, 104
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including 1) distortions from aliasing and spectral leakage [11,34], 2) low-pass filtering 105

from the exposure time of the camera [12], and 3) biased parameter estimates from 106

improperly using least squares fitting routines with experimental PSD values that do 107

not have Gaussian-distributed errors [14]. 108

An alternative means of thermal motion-based calibration, that also distinguishes 109

parasitic from thermal noise, is the AV. The AV measures the noise in the bead position 110

over different observation times and was designed as a means of measuring drift in a 111

system [35] (Fig. 1F). It was originally introduced into the SMFS literature to assess 112

optimal measurement times [36] and low-frequency noise [37,38]; however, it was quickly 113

realized that the AV could be directly used for force calibration through fitting [15]. As 114

discussed in detail below, the AV is naturally suited to video-tracking experiments 115

because it intrinsically accounts for low-pass filtering from the exposure time of the 116

camera. However, as with the PSD, improperly using least-squares fitting routines on 117

AV values that do not have Gaussian-distributed errors will lead to biased parameter 118

estimates [15]. 119

When used properly, both the PSD and AV will give accurate parameter estimates 120

under optimal conditions. One of these conditions is that τs should be less than τc; 121

further, τc should be less than the total measurement time, τm: τs < τc < τm [32]. 122

Hence, assuming τs and γ are constant, it is possible to perform calibrations when 123

κ < γ/τs, so long as the measurement time is long enough. Thus, calibration will be 124

easier when κ is small, corresponding to small forces or measurements of longer (and 125

thus, more flexible) polymers. 126

When identifying and accounting for various sources of parasitic noise, the PSD and 127

AV have complementary strengths [38]. The PSD is excellent at identifying high 128

frequency coherent noise sources, such as line frequencies from power sources, while the 129

AV is ideal for identifying low frequency noise sources, such as mechanical drift. In 130

combination, the PSD and AV can be used to identify most forms of parasitic noise. 131

When working with a new or modified instrument, both should be used to determine 132

sources of parasitic noise, which can then be removed, or accounted for in the final 133

fitting procedure. 134

3 Modeling Thermal Motion in the PSD and AV 135

3.1 Langevin dynamics 136

Thermal motion-based calibration methods rely on Langevin dynamics, which model the 137

trapped bead in an SMFS experiment as randomly diffusing in a harmonic potential. 138

Collisions between the bead and water molecules create a stochastic (Langevin) force, 139

FL, that obeys the fluctuation-dissipation relation, 〈FL(t+ t′)FL(t)〉 = 2γkBTδ(t
′), 140

where δ(t) is the Dirac delta function. In video-tracking SMFS experiments, the bead’s 141

motion is well-described by the overdamped Langevin equation [15]: 142

κx(t) + γẋ(t) = FL(t). (2)

3.2 A closed-form expression for the PSD 143

The predicted PSD, P , of the bead trajectory at each frequency, f , follows from Fourier 144

analysis of Eq. 2: 145

P (f) =
kBT

2π2γ

[(
κ

2πγ

)2
+ f2

] . (3)

For frequencies above the corner frequency, fc ≡ κ/2πγ, the bead motion is purely 146

diffusive and the PSD can be approximated as P (f) ≈ kBT
2π2γf2 . For frequencies below 147
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the corner frequency, the bead is constrained by the trap, and the PSD can be 148

approximated as P (f) ≈ 2kBTγ
κ2 . 149

Eq. 3 does not account for the exposure time of the camera, τ0, which introduces a 150

low-pass filter to the experimental bead positions. The predicted PSD that accounts for 151

the exposure time, PA, includes a correction function, I [12]: 152

PA(f) = P (f)I(f). (4)

where 153

I(f) =
sin2 (πfτ0)

(πfτ0)2
. (5)

Eq. 4 also needs to be adjusted for aliasing distortions: for an instrument with a 154

sampling rate, fs ≡ 1/τs, the PSD at each positive frequency, f , (0 < f < fs/2) 155

contains the summed power of other frequencies, nfs, for all integers, n [11]. The 156

predicted PSD, PA,B , that accounts for both the exposure time of the camera and 157

aliasing distortions is given by, 158

PA,B(f) =
∞∑

n=−∞
PA(|f + nfs|). (6)

In the special case that τ0 = τs, the sum in Eq. 6 can be performed analytically to 159

give an exact, closed-form expression for PA,B [15]: 160

PA,B(f) =
2kBTγ

κ3

κ+
2γfs sin2

(
πf
fs

)
sinh

(
κ
γfs

)
cos
(

2πf
fs

)
− cosh

(
κ
γfs

)
 . (7)

Most modern video cameras are designed to maximize captured light, with a dead time 161

(∼ 10−6 s) that is much less than the sampling time (τs ∼ 10−1 s to 10−4 s). This 162

ensures that the exposure time is about the same as the sampling time, τ0 = τs, i.e., 163

zero dead-time, fitting the criteria for applying Eq. 7. 164

While sources of parasitic noise will vary among different SMFS instruments, most 165

video-tracking experiments have a frame-to-frame tracking error arising from the 166

imprecision of the bead localization algorithm. Assuming the tracking error is 167

Gaussian-distributed with a standard deviation, ε, this adds a frequency-independent 168

white noise term to PA,B [39]: 169

PA,B,C(f) = PA,B(f) +
ε2

fs
. (8)

In the PSD, the effect of tracking errors is most apparent at high frequencies, where the 170

thermal motion is diminished (Fig. 2 A). 171

3.3 A closed-form expression for the AV 172

For bead motion, the predicted AV, σ2
AV , at each observation time, τ , is similarly 173

derived through analysis of Eq. 2 [15]: 174

σ2
AV,A(τ) =

2kBTγ

κ2τ

(
1 +

2γ

κτ
e−

κτ
γ − γ

2κτ
e−

2κτ
γ − 3γ

2κτ

)
. (9)

For observation times that are shorter than the bead relaxation time, τ � τc ≡ γ/κ, 175

neighboring positions are highly correlated, and the AV increases as σ2
AV,A ≈ 2kBTτ/3γ. 176

For observation times that are longer than the bead relaxation time, neighboring 177
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Fig 2. Example plots of PSDs with per-frame tracking errors. (A) Simulated bead
trajectories with tracking errors lead to deviations in the PSD at high frequencies. The
data points correspond to bead trajectories with per-frame tracking errors, ε = 0 (blue),
10 (green), and 20 (orange) nm. All trajectories contained Nx = 20480 points and were
simulated with fs = 1000 Hz, γ = 1.77× 10−5 pNs/nm, and κ = 1.2× 10−4 pN/nm.
Dotted lines are overlays of Eq. 8 using known parameter values. (B) MLE fits of PA,B
(Eq. 7, orange dotted line) and PA,B,C (Eq. 8, green dotted line) to experimentally
derived PSD values (blue points). The experimental data were collected on a bead
tethered to double-stranded DNA (contour length ≈ 2.8 um) at 400 Hz on a
custom-built magnetic tweezer as described in Ref. [40]. PA,B,C Eq. 8) is more
consistent with the experimental data as judged by the normalized residuals, ∆, and
Akaike Information Criterion (AIC = 334 Eq. 8 vs. 739 Eq. 7). The best fit parameters
for PA,B,C are κ = 1.8± 0.2× 10−4 pN/nm, γ = 1.78± 0.04× 10−5 pNs/nm, and
ε = 8.0± 0.3 nm. All PSD values were computed using Welch’s method (Sect. 4.1) with
35 half-overlapping bins. Error bars represent one standard deviation.

positions become uncorrelated, and the AV decreases as σ2
AV,A ≈ 2kBTγ/τκ

2 [37]. The 178

peak of the transition between the two regimes can be numerically calculated as 179

τmax ≈ 1.89τc [15]. 180

In its definition, the AV implicitly accounts for the exposure time of the camera and 181

assumes zero dead-time, i.e., τ0 = τs. As discussed in the previous section, this is 182

usually a reasonable assumption for SMFS video-tracking systems. When this is not the 183

case, the AV is biased and requires an additional correction function [41]. However, 184

conveniently, this bias is negligible when the time between samples is shorter than the 185

bead relaxation time, i.e., τs < τc [37]. Hence, Eq. 9 can often be applied without 186

modification for SMFS experiments, regardless of whether dead-time is present [42]. 187

As with the PSD, tracking errors in video-tracking experiments can be accounted for 188

by adding a white-noise term to σ2
AV,A: 189

σ2
AV,A,B(τ) = σ2

AV,A(τ) +
ε2τs
τ
. (10)

The effect of tracking errors is most apparent at short observation times, when the bead 190

motion is mostly diffusive (Fig. 3). 191

4 Computing the PSD and AV 192

The SMFS experiment generates an experimental bead trajectory containing Nx points. 193

This trajectory must be converted into a noise metric (the PSD or AV) containing Ny 194
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Fig 3. Example plots of AV values for data with per-frame tracking errors. (A)
Simulated bead trajectories with tracking errors lead to deviations in the AV at short
observation times. The data points correspond to the simulated bead trajectories with ε
= 0 (blue), 10 (green), and 20 (orange) nm. The simulated trajectories are the same as
in Fig. 2A. Dotted lines are overlays based on Eq. 10 with the known parameter values.
(B) MLE fits of σ2

AV,A,B (Eq. 10, dotted orange line) and σ2
AV,A (Eq. 9, dotted green

line) to experimentally derived AV values (blue points). The data are the same as in
Fig. 3B. σ2

AV,A,B (Eq. 10) is more consistent with the experimental data as judged by
the normalized residuals, ∆, and AIC (AIC = 161 Eq. 10 vs. 198 Eq. 9). The best fit
parameters for σ2

AV,A,B are κ = 1.7± 0.1× 10−4 pN/nm,

γ = 1.77± 0.04× 10−5 pNs/nm, and ε = 7.9± 0.9 nm. Error bars represent one
standard deviation.

points, which is then fit with the expressions in Section 3 so as to extract parameter 195

estimates. The conversion of the experimental trajectory to the noise metric has a few 196

subtleties which are described here. 197

4.1 Computing the experimental PSD with Welch’s method 198

The experimental PSD values are optimally computed using Welch’s method [43]. This 199

method consists of splitting the trajectory into half-overlapping bins, each containing m 200

points. The total number of PSD values and bins are thus Ny = m and M = 2Nx/m−1, 201

respectively. A smaller m improves the signal-to-noise ratio of the final experimental 202

PSD, at the cost of reduced sensitivity at lower frequencies [14]. Each bin consists of 203

bead positions, x̂j for j ∈ (0, 1, 2, . . . ,m− 1), and the discrete Fourier transform of each 204

bin is calculated for the frequencies, fk = kfs/2m for k ∈ (1, 2, . . . ,m), as 205

P̂n(fk) =
1

mfs

∥∥∥∥∥∥
m−1∑
j=0

wj x̂j exp

(
−2πijk

m

)∥∥∥∥∥∥
2

. (11)

Note that, in practice, most computational implementations compute the discrete 206

Fourier transform using a fast Fourier transform algorithm (e.g., the Cooley-Tukey 207

algorithm [44]). The PSD values of each bin are then averaged together by frequency: 208

P̂ (fk) =
1

M

M∑
n=1

P̂n(fk). (12)

The windowing function, wj , accounts for the phenomenon of spectral leakage: the 209

finite duration of the measurement causes power at one frequency to show up at other 210
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frequencies [45]. Most computational implementations of Welch’s method use the Hann 211

windowing function [46], 212

wj =

√
8

3
sin2

(
πj

b

)
, (13)

which reduces the total power of each experimental PSD value in a 213

frequency-independent manner, which is then corrected by the leading factor of
√

8/3. 214

The use of the Hann window, in conjunction with half-overlapping bins, means that 215

data near the termini of one bin is diminished by the window, but that same data is 216

near the center of the next bin, and thus captured by the window; this provides a 217

reasonable trade-off between over- and under-utilizing all of the data [43]. Occasionally, 218

after performing Welch’s method, the calculated PSD values are logarithmically binned 219

to help visualize power-law behavior [11]. 220

4.2 Computing the overlapping AV 221

The experimental AV is optimally computed from the bead trajectory by partitioning it 222

into octave-sampled, overlapping bins [35]. Octave sampling consists of using bin 223

lengths, mk, in powers of 2, i.e., mk = 2k for k ∈ (1, . . . , Ny), where Ny = blog2(Nx/2)c. 224

The bin lengths determine the number of overlapping bins, M = Nx − 2mk + 1, and the 225

observation times, τ = mkτs, where τs is the sampling time. For each τ , the 226

experimental AV, σ̂2
AV , is calculated as one-half the mean-squared difference of 227

consecutive average bin positions: 228

σ̂2
AV (τ) =

1

2(M − 1)

M−1∑
n=1

(x̄n+1 − x̄n)
2

(14)

where x̄n is the average of bead positions, x̂j , j ∈ (1, 2, . . . ,mk): 229

x̄n =
1

mk

mk∑
j=1

x̂j . (15)

In practice, computing all the average bin positions for each τ can be slow, so an 230

equivalent, but more computationally efficient, method is often used [41,47]. 231

5 Biased fitting 232

After computing the set of experimental AV or PSD values, ŷk, k ∈ (1, 2, . . . , Ny), they 233

are compared to the Langevin model predictions, yk (Eqs. 7-10), using maximum 234

likelihood estimation (MLE), to extract the best-fit parameter estimates for γ and κ. 235

MLE accounts for the expected probability distributions of each experimental value. For 236

the AV and PSD, the probability, pk, of measuring each experimental value is given by 237

the Gamma probability distribution function: 238

pk(ŷk, yk(γ, κ)) =
ŷηk−1k e−ŷk/θk

θηkk Γ(ηk)
(16)

where ηk is termed the shape parameter, θk = yk/ηk is termed the scale parameter, and 239

Γ is the gamma function. 240

For the PSD, the shape parameter is given by the number of bins, ηk = M , which is 241

notably the same for all values ŷk. For the AV, the shape parameter is generally 242

ηk = νAV,k/2, where νAV,k counts the degrees of freedom for each value. νAV,k depends 243

on the number of differences used to calculate the kth value, as well as the dominant 244
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type of noise at that value [41]. It is common to approximate νAV,k from the number of 245

successive differences between non-overlapping bins of length mk that are present in the 246

trajectory, νAV,k = (Nx/mk)− 1 [15]; however, this is an underestimate. 247

For both the PSD and AV, as ηk →∞, the Gamma distribution approaches a 248

normal (Gaussian) distribution, and least-squares fitting can be used. However, for 249

moderate values of ηk, the distribution is not normal, and least-squares fitting routines 250

lead to biased parameter estimates. While it is possible to correct for these biases 251

analytically, in general, MLE gives more accurate parameter estimates [14]. 252

5.1 Maximum likelihood estimation 253

MLE is based on estimating the parameters, γ̂ and κ̂, that maximize the likelihood 254

function, L, which is the joint probability of all pk: 255

L(γ, κ) =

Ny∏
k=1

pk(ŷk, yk(γ, κ)). (17)

In practice, rather than maximizing L, it is more convenient to minimize the cost 256

function, ` ≡ − lnL. Given Eqns. 16 and 17, the cost function is given by: 257

`(γ, κ) =

Ny∑
k=1

ηk

[
ŷk

yk(γ, κ)
+ ln(yk)

]
+ const, (18)

where the final term is a constant with respect to the parameters. Minimizing ` is a 258

straightforward optimization problem that can be solved numerically with standard 259

algorithms (e.g., Nelder-Mead [48]). 260

5.2 Parameter uncertainties 261

After finding the best-fit parameters, γ̂ and κ̂, an estimate of their uncertainties can be 262

found from standard approaches: In particular, the likelihood function, L, is assumed to 263

have a Gaussian form in the vicinity of its maximum. Then, the matrix of second 264

partial derivatives of L (i.e., the Hessian matrix) are calculated, and inverted to find the 265

squared uncertainties (i.e., the covariance matrix). Details of this approach can be 266

found in statistical references, e.g. Ref. [49]. 267

The applicability and robustness of Hessian-based estimates of parameter 268

uncertainty rests on whether L behaves as a Gaussian over a significant region near 269

(γ̂, κ̂). This question is distinct from that of the proper distribution governing the AV or 270

PSD estimates themselves (i.e, the values ŷk)– the ŷk values, in certain cases, are 271

calculated from a relatively small number of samples, and so are distributed in a highly 272

non-Gaussian manner (Eq. 16), which drives the use of MLE rather than least-squares 273

optimization methods. However, the MLE cost function is based on a relatively larger 274

number of points (Ny), and so, by the central limit theorem, is well-modeled as 275

Gaussian. Therefore, in practice, the Hessian approach typically results in robust 276

estimates of parameter uncertainty. 277

That said, in some cases, it may not be appropriate to approximate the likelihood 278

function as a Gaussian, e.g., when there are small sample sizes, outliers, or complex 279

parameter correlations. Such situations can be handled by an alternate, numerical 280

approach in which a Monte Carlo algorithm is used to sample the parameter space [49]. 281

To carry out Monte Carlo sampling, several ‘walkers’ are initiated around the 282

estimated parameters. These ‘walkers’ take random steps in parameter space and 283

evaluate the cost function, which determines whether each step is accepted or rejected. 284

After a predetermined number of steps, a histogram of the accepted steps is used to 285
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Fig 4. Histograms of accepted steps from MCMC sampling of experimental data in
Fig. 2B. One-dimensional histograms of (A) γ and κ values with best-fit parameters
(blue line) and 15.8th and 84.2nd percentiles (black dotted lines). The histograms follow
a Gaussian distribution (black solid line) as assumed in the Hessian method.
Two-dimensional histogram of (B) γ and κ values with best-fit parameters (blue lines).
The contour (black) lines are the one, two, and three standard deviations. Points
outside of three standard deviations are plotted individually.

generate an empirical probability distribution for the parameters (Fig. 4). From this 286

distribution, the confidence intervals can be evaluated. Typically, the standard errors 287

are estimated as half the difference between the 15.8th and 84.2nd percentiles, which 288

corresponds to one standard deviation for a Gaussian distribution. 289

5.3 Fit quality 290

After fitting, the quality of the fit needs to be judged. There are several means of 291

judging the quality of the fit, each with its own advantages and disadvantages. The 292

simplest means is to look at the normalized residuals, ∆k, i.e., the deviations between 293

the experimental and predicted values: 294

∆k =
ŷk − yk(γ̂, κ̂)

σy,k
, (19)

where σy,k is the standard deviation of the kth experimental value. The normalized 295

residuals can be plotted to assess systematic deviations between the data and the fit. 296

If the normalized residuals follow a Gaussian distribution, their variance corresponds 297
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to the reduced chi-squared value, χ2
νy : 298

χ2
νy =

χ2

νy
=

1

νy

Ny∑
k=1

∆2
k. (20)

The degrees of freedom, νy, are estimated as νy = Ny −K, where K is the number of fit 299

parameters. A reduced chi-squared value of one is usually considered a ‘good’ fit [49]. A 300

reduced chi-squared value that is greater than one is generally considered a ‘poor’ fit, 301

whereas a reduced chi-squared value that is less than one is usually considered an 302

overfit. However, the reduced chi-squared value has a variance that scales as 2/νy, so 303

values based on small sample sizes or models with a large number of parameters can be 304

misleading. 305

Instead, the cumulative distribution function of chi-squared-distributed values, F , is 306

usually a better measure of fit quality (also termed the support for the fit) [17]: 307

F (χ2, ν) =
1

Γ(νy/2)

∫ χ2/2

0

zνy/2−1 exp(−z)dz. (21)

The support evaluates the probability that repeating the experiment will give a larger 308

χ2
νy value. It is closely related to the p-value, i.e., 1− F . For a ‘good’ fit, the support is 309

expected to be close to one. 310

While the support for the fit evaluates agreement between the experimental and 311

predicted values, other statistical metrics, such as the Akaike Information Criterion 312

(AIC), are better at comparing models with different numbers of parameters [50]. The 313

AIC balances the quality of fit with the number of parameters. It is calculated as 314

AIC = 2K − 2 ln(L̂). (22)

Due to varying constants and sample sizes, individual AIC values are not informative. 315

Instead, the data are considered to be best described by the model with the lowest AIC 316

value, AICmin, regardless of the number of parameters, when the difference between two 317

models’ AIC values is ∆AIC = AIC−AICmin ≥ 4 [50], as applied in Figs. 2 and 3. 318

6 Tweezepy 319

Tweezepy is a Python package for thermal motion-based force calibration in SMFS 320

video-tracking experiments that estimates parameters and their uncertainties from a 321

user-provided bead trajectory, using MLE, via the PSD or AV. For a detailed 322

explanation of the package, including expected inputs and outputs, the reader is 323

referred to the docstrings and usage examples. In this section, we discuss specific 324

implementation choices and practical considerations for using the package. 325

To use Tweezepy, the user provides a bead trajectory and sampling frequency to 326

either the PSD or AV class objects. Given this information, Tweezepy computes the 327

experimental values and compares them to a user-selected predictive model using MLE. 328

After fitting, it reports the parameter estimates and uncertainties, as well as the fit 329

quality. The experimental and predicted values, as well as the normalized residuals, can 330

be visualized using the included plotting functions. 331

To compute the experimental PSD, Tweezepy uses Welch’s method (Sec. 4.1). By 332

default, it uses a Hann windowing function with three half-overlapping bins. The 333

signal-to-noise ratio of the experimental PSD values can be improved by increasing the 334

number of bins, which helps to visualize the values and slightly reduces the parameter 335

uncertainties. However, there is a trade-off: as the number of bins increases, the 336
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low-frequency resolution decreases. For low corner frequencies, this can lead to a 337

substantial bias in the parameter estimates (Fig. 5). Unfortunately, it is difficult, a 338

priori, to know the optimal number of bins, so it is up to the user to choose the 339

appropriate number of bins. This is a drawback of the PSD method. 340

Tweezepy uses MLE to compare the experimental PSD values to, by default, Eq. 7, 341

which accounts for both aliasing and the finite bandwidth of the detection system. This 342

function assumes the exposure time is the same as the time between measurements, i.e., 343

zero dead-time. As discussed in Section 3.2, this assumption is typically good for 344

video-tracking experiments. When dead-time is present in the measured bead trajectory, 345

the user can also select an alternative function that uses a closed-form expression based 346

on Eq. 6 that assumes a negligible exposure time [14,15], i.e., it only accounts for 347

aliasing. Additionally, the user can select to use a modified version of either function 348

that includes tracking errors from video-tracking bead localization algorithms (e.g., 349

Eq. 8). 350

To compute the experimental AV, Tweezepy uses the octave-sampled, overlapping 351

approach as described in Sec. 4.2. It empirically determines the degrees of freedom for 352

each value using the Greenhall algorithm [51], based on the dominant type of power-law 353

noise for each experimental value. It estimates the dominant type of noise using the 354

Lag1 autocorrelation algorithm [52]. This algorithm has lower precision for AV values 355

with fewer bins, i.e., for long observation times when Nx/mk < 32. Typically, this 356

corresponds to the three or four AV values with the longest observation times. For these 357

points, Tweezepy assumes the dominant noise type is the same as the last point that 358

satisfies Nx/mk > 32. If the algorithm fails to estimate any of the dominant types of 359

noise, it warns the user and falls back on using the approximate degrees of freedom 360

based on nonoverlapping bins, i.e., νAV = Nx/mk − 1. The user can choose to use only 361

the approximate degrees of freedom by setting the keyword argument ’edf’ to ’approx’. 362

For visualization purposes, the user can select to plot all or decade-spaced observation 363

times. As discussed in Section 4.2, the approximate degrees of freedom give nearly 364

identical parameter estimates but underestimate the confidence for each AV value, 365

leading to slightly larger parameter errors. After computing the experimental AV values, 366

Tweezepy compares them to Eq. 9. Additionally, the user can select a predefined 367

function that accounts for tracking errors from the video-tracking bead localization 368

algorithms (Eq. 10). 369

In addition to its predefined functions, Tweezepy also accepts user-defined functions 370

to compare to the experimental values. If these functions include additional fitting 371

parameters, it is recommended that they are compared to a function without the 372

additional parameters using the AIC to avoid overfitting (Sec. 5.3). Additionally, the 373

normalized residuals can be plotted and visualized to detect deviations between the 374

data and theoretical values. Typically, it is easier to visualize the residuals of the AV 375

compared to the PSD because it has fewer values. 376

Evaluating the AIC can also be useful for determining whether one or more 377

parameters is poorly constrained during the fit. As discussed later (Sec. 7), in some 378

cases, the sampling frequency is not fast enough to resolve the purely diffusive motion of 379

the bead, causing γ to be poorly constrained during fitting. However, κ can usually still 380

be reliably estimated by fixing γ to a known value. Tweezepy contains keyword 381

arguments for fixing any of the parameters for its predefined functions during the fit. 382

Ideally, the known γ value should be estimated from the same bead at a lower force, 383

and adjusted for surface effects using Faxen’s correction [53]. To determine whether 384

fixing a parameter is necessary, the AIC of the fits with and without fixing are 385

compared, and the fit with the lowest AIC value is used. 386

When sources of parasitic noise are present but cannot be properly described by the 387

selected model analytically, it is recommended that the user subtract a reference 388

December 3, 2021 12/19



spectrum or bandpass filter the measured data.For example, mechanical drift in 389

experiments often manifests as 1/f power-law noise at low frequencies in the PSD or τ 390

power-law noise at long observation times in the AV [38]. By excluding the regions of 391

the spectrum where drift (or other sources of noise) dominates during fitting, the 392

parameters can still be accurately estimated. In Tweezepy, the user can select upper 393

and lower cutoff frequencies (or observation times) to compare the function to a limited 394

range of the spectrum using the keyword argument ‘cutoffs’. 395

To calculate parameter uncertainties, Tweezepy evaluates and inverts the expected 396

Hessian (Sec. 5.2). To evaluate the Hessian, it uses the Autograd Python package. 397

Autograd uses automatic differentiation to evaluate derivatives by repeatedly applying 398

the chain rule to elementary operations. This speeds up code and reduces numerical 399

precision errors that can occur with numerical and symbolic differentiation [54,55]. In 400

addition to calculating and inverting the Hessian, Tweezepy contains an optional 401

method for robust uncertainty estimates via Monte Carlo sampling (Sec. 5.1). This 402

method uses the Emcee Python package [56] to carry out Monte Carlo sampling. In our 403

hands, this more robust method, but slower (with computation time on the order of 404

10 s), produces Gaussian parameter distributions (Fig. 4) and near-identical uncertainty 405

estimates to the faster method (≈ 10 ms) that inverts the Hessian. For example, for the 406

data in Fig. 4, using the Hessian method gives γ =1.43± 0.02× 10−5 pNs/nm and 407

κ =1.6± 0.1× 10−4 pN/nm, while the MCMC method gives 408

γ =1.43± 0.01× 10−5 pNs/nm and κ =1.6± 0.1× 10−4 pN/nm. 409

In addition to the packages mentioned above, Tweezepy makes use of the standard 410

python library [57], including NumPy [58], SciPy [59], and Numba [60]. All the package 411

dependencies are noted in the requirements and setup files for easy installation. 412

7 Results 413

To evaluate Tweezepy, we sought to benchmark its fit results against known parameter 414

values. Following the example of Ref. [15], we simulated bead trajectories using 415

Nx = 4096, fs = 100 Hz, and γ = 1.0× 10−5 pNs/nm (a typical drag coefficient for a 416

one micron spherical bead in water), and varied the corner frequency, fc, logarithmically 417

from 0.2 Hz to 100 Hz, giving spring constants κ that ranged from 1.4× 10−4 pN/nm to 418

6.8× 10−3 pN/nm. To carry out the simulations, we iteratively generated successive 419

bead positions, without tracking errors, from Eq. 2 [61] (Fig. 1B). To mimic the effects 420

of the camera exposure time, we used a time step of δt = 1/(1000fs), split the 421

trajectory into bins of 1000 points, and took the average of each bin to generate a 422

downsampled trajectory. For each corner frequency, we simulated 1000 trajectories. For 423

each trajectory, we computed and fit the PSD to Eq. 7 (Fig. 2B) and the AV to Eq. 9 424

(Fig. 3B) using Tweezepy to estimate the parameters and their uncertainties. To 425

estimate bias, we calculated the ratio of the median parameter estimates and true 426

values. To estimate the error, we calculated the ratio of the median parameter 427

uncertainties and true values. 428

For nearly all corner frequencies, the bias for γ and κ estimates is within ±1% 429

(Fig. 5 A and C magenta box). There is an increase in the bias and error for κ estimates 430

at lower corner frequencies because, for the simulated length of the trajectory, the bead 431

motion is mostly unconstrained by the trap. As a result, the κ estimate is poorly 432

constrained during fitting. This effect is slightly worse for the PSD because binning 433

decreases its low frequency resolution more than the AV. In practice, this bias can 434

usually be reduced by increasing the length of the trajectory [62]. 435

At high corner frequencies, fc ' fs/8, there is an increase in the error and a slight 436

bias in both parameters (Fig. 5 C and D), consistent with previous findings [14,15]. 437

This is because the sampling frequency is not fast enough to resolve the unconstrained 438
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Fig 5. Bias and error for the AV and PSD methods in Tweezepy. (A and C) Bias in
estimated parameters as compared to known parameter values for (A) γ and (B) κ. (C
and D) Error in estimated parameters using Hessian method for (C) γ and (D) κ. Fixing
γ reduces the bias and error in κ at high corner frequencies by removing parameter
correlations. Each point represents the median of 1000 simulations; each simulation
contained 4096 bead positions with a constant drag coefficient, γ = 1× 10−5 ps/N, and
sampling frequency, fs = 100 Hz. The corner frequency was varied logarithmically
between 0.2 Hz to 100 Hz. The blue and green points represent two-parameter AV and
PSD method fit results. The orange and red points represent fixed gamma AV and PSD
method fit results. In the bias plots, the magenta box represents the ±1% bias region.

diffusive bead motion, which leads to poorly constrained γ estimate. The correlations 439

between the γ and κ parameters lead to a poorer κ estimate. This is why it is 440

advantageous to collect bead trajectories for force calibration in SMFS video-tracking 441

experiments at the highest available sampling frequency. 442

It is worth noting that the authors in Ref. [21] recommend using a 443

low-pass-corrected standard variance calibration method [12] to avoid the small bias at 444

high corner frequencies with the PSD and AV. However, we note that their 445

implementation of this alternative method fixes γ to a known value during fitting, 446

removing the parameter correlations. We find that fixing γ with the PSD and AV 447

similarly removes the increase in the error and slight bias for κ at high corner 448

frequencies (Fig. 5 C and D). This suggests that, under optimal conditions, all three 449

methods can accurately estimate parameters. 450

8 Conclusions 451

In this article, we have reviewed robust thermal motion-based force calibration in SMFS 452

experiments using the PSD and AV, and discussed implementing them computationally 453

into a Python package, Tweezepy, that is freely available on Github and the Python 454

package index. 455

In designing Tweezepy, our goal was to make it as robust, versatile, and user-friendly 456
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as possible. It uses MLE to estimate parameters via the PSD or AV, and goes beyond 457

previous computational implementations by calculating the empirical degrees of freedom 458

for the overlapping AV and determining parameter uncertainties from MLE, either by 459

inverting the Hessian or, optionally, via Monte Carlo sampling. It includes several 460

predefined closed-form expressions that account for the most common biases and 461

parasitic noise in SMFS video-tracking experiments. Yet, it also accepts user-defined 462

functions, so it can be adapted to account for additional sources of noise or applied to 463

other problems that rely on fitting the PSD or AV of a bead trajectory, e.g., torque 464

calibration [42]. Lastly, Tweezepy uses sensible default options to make it easy-to-use, 465

only requiring a few straightforward lines of code, with computation times on the order 466

of 10 ms. Our hope is that Tweezepy can serve as a useful tool to improve and 467

standardize force calibration across different SMFS research groups, instruments, and 468

experiments. 469
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21. Yu Z, Dulin D, Cnossen J, Köber M, van Oene MM, Ordu O, et al. A Force 535

Calibration Standard for Magnetic Tweezers. Review of Scientific Instruments. 536

2014;85(12):123114. doi:10.1063/1.4904148. 537

22. Daldrop P, Brutzer H, Huhle A, Kauert DJ, Seidel R. Extending the Range for 538

Force Calibration in Magnetic Tweezers. Biophysical Journal. 539

2015;108(10):2550–2561. doi:10.1016/j.bpj.2015.04.011. 540

23. Ince DC, Hatton L, Graham-Cumming J. The Case for Open Computer 541

Programs. Nature. 2012;482(7386):485–488. doi:10.1038/nature10836. 542

December 3, 2021 16/19



24. Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical Tweezers in 543

Single-Molecule Biophysics. Nature Reviews Methods Primers. 2021;1(1):1–29. 544

doi:10.1038/s43586-021-00021-6. 545

25. Shen H. Interactive Notebooks: Sharing the Code. Nature News. 546

2014;515(7525):151. doi:10.1038/515151a. 547
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