Tweezepy: A Python package for calibrating forces in
single-molecule video-tracking experiments

Ian L. Morgan', Omar A. Saleh!':2,

1 BMSE Program, University of California, Santa Barbara, California 93106, USA
2 Materials Department, University of California, Santa Barbara, California 93106, USA

* ilmorgan@ucsb.edu
saleh@ucsb.edu

Abstract

Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical
tweezers) often use video tracking to measure the three-dimensional position of
micron-scale beads under an applied force. The force in these experiments is calibrated
by comparing the bead trajectory to a thermal motion-based model with the drag
coefficient, v, and trap spring constant, k, as parameters. Estimating accurate
parameters is complicated by systematic biases from spectral distortions, the camera
exposure time, parasitic noise, and least-squares fitting methods. However, while robust
calibration methods exist that correct for these biases, they are not always used because
they can be complex to implement computationally. To address this barrier, we present
Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments.
Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their
uncertainties from a single bead trajectory via the power spectral density (PSD) and
Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most
common sources of biases in SMFS video-tracking experiments. Here, we provide a
comprehensive overview of Tweezepy’s calibration scheme, including a review of the
theory underlying thermal motion-based parameter estimates, a discussion of the PSD,
AV, and MLE, and an explanation of their implementation.

1 Introduction

Single-molecule force spectroscopy (SMFS) instruments are powerful tools with a wide
variety of experimental applications. They can be used to study polymer elasticity [1,2]
and dynamics [3], measure bond energies and lifetimes [4, 5], assess the activity of
molecular motors [6,7], and characterize protein and nucleic acid folding [8].

To obtain accurate and reproducible results, an essential first step in any SMF'S
experiment is force calibration. Typically, force calibration relies on comparing the
thermal motion of a trapped bead to a model derived from the Langevin equation [9)].
These methods have limitations; notably, at times, t < 10~ s, the standard Langevin
equation does not account for certain hydrodynamic effects between the bead and the
surrounding fluid [10]. Nevertheless, for longer times, these hydrodynamic effects can be
ignored and the bead motion is well-described by the overdamped Langevin equation,
which only depends on two parameters: the drag coefficient of the bead, v, and the
spring constant of the trap, «, from which the force can be calculated.

In practice, analyzing and fitting the bead trajectory must be done carefully. Several
factors, including spectral distortions, the exposure time of the detection system (e.g.,

December 3, 2021

1/19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

video cameras), parasitic noise (e.g., tracking errors and mechanical drift), and biased
fitting, can all lead to inaccurate parameter estimates [11-15]. Robust calibration
methods that account for all of these factors exist, yet they can be complex to
implement computationally, leading some researchers to opt for alternative

strategies [16].

Existing force-calibration software packages [17-20] only account for some sources of
bias; most notably they do not account for the finite exposure time of the camera in
video-tracking experiments. Thus, it is often up to researchers to write with their own
calibration code, of which published examples are only available in proprietary
programming languages (e.g., MatLab [21] and LabView [22]), hindering easy access. As
has been argued elsewhere [23], different computational implementations, even those
based on the same algorithms, can often lead to different numerical outcomes. This lack
of standardized calibration methods and computational implementations hinders
reproducibility and makes comparison across different research groups, instruments, and
experiments difficult [24].

To help improve and standardize SMF'S force calibration, we present Tweezepy: a
Python package for calibrating forces in single-molecule video-tracking experiments.
Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters, and their
uncertainties, from a user-provided bead trajectory via a thermal motion-based model
of the power spectral density (PSD) or Allan variance (AV). It accounts for the most
common sources of biases and parasitic noise in SMFS video-tracking experiments.
Moreover, it is written in Python, a popular and freely available programming language,
and includes documentation (https://tweezepy.readthedocs.io) with installation
instructions and tutorials. It is designed for ease-of-use, only requiring a few lines of
simple code, yet it has a versatile object-oriented framework that can be part of a larger
scripted workflow or in a Jupyter notebook as a lab journal page [25,26]. It is developed
on GitHub (https://github.com/ianlmorgan/tweezepy) and available through the
Python package index, making it easy to distribute and install. The latest stable
versions are also archived on the Zenodo database [27].

In this article, we provide a comprehensive overview of Tweezepy’s force calibration
scheme. In Section 2, we describe several common force calibration methods and
motivate the use of the PSD and AV. In Section 3, we give closed-form expressions that
account for common sources of parameter biases and parasitic noise in video-tracking
experiments, such as the finite exposure time of the detection system and tracking
errors. In Section 4, we review how to compute the experimental PSD and AV from a
bead trajectory. In Section 5, we describe how to use MLE to reduce biased fitting and
estimate parameters and their uncertainties. We note here that estimating parameter
uncertainties using MLE has received relatively little attention in the SMFS literature.
For experienced readers that are familiar with force calibration theory, we recommend
skipping ahead to Section 6 , which covers the computational implementation of the
calibration methods in Tweezepy. In Section 7, we use Tweezepy to calibrate simulated
bead trajectories, and show that it accurately estimates parameters and their
uncertainties, similar to previously published results [15].

2 Background

In a typical SMFS experiment, a polymer is tethered between a surface and a trapped
bead (Fig. 1A), and the polymer extension is measured while force is applied to the
bead. The force on the bead is not known a priori and needs to be calibrated.

Most force calibration methods fall into two categories: methods that calibrate
against known forces, such as Stokes drag or sedimentation [28], and methods that
calibrate based on the thermal motion of the bead [9]. The first category generally relies

December 3, 2021

2/19

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

https://tweezepy.readthedocs.io
https://github.com/ianlmorgan/tweezepy

1 =
jun}
) 2
—200 a9
£ T ey
3 =102 F =
2 el .
£ : H
D;} E’ I K1
B = 100
E’CE = 10 t om
== K3
0 —200 0 200 1073 107! 10
z (nm) 7 (s)

Fig 1. (A) Illustration of a magnetic tweezer SMFS experiment in which a polymer is
tethered between a glass surface and a paramagnetic bead. Collisions with water
molecules drive the bead away from its equilibrium position, creating a restoring force
kx from the magnetic trap and a drag force vz from the solution. The polymer bead
system is treated as an inverted pendulum, such that the upward force, Fi,ag, is
determined from the height of the bead above the surface, L, and the spring constant, «,
in the z-direction: Fiae = kL [32]. (B) Simulated random, diffusive motion of the
bead’s x position over time, ¢, with a drag coefficient, v = 8.38 x 10~% pNs/nm, and
three different spring constants: x; = 5.3 x 104 pN/nm (blue),

k2 = 1.1 x 1073 pN/nm (green), and x3 = 2.6 x 1073 pN/nm (orange). (C) The bead
positions follow a Gaussian distribution due to the (D) harmonic potential generated by
the applied magnetic trap. (E) The power spectral density (PSD) and (F) Allan
variance (AV) of the bead trajectories in (B).

on intrinsic parameters of the system (e.g. the density and viscosity of the solution)
that can be difficult to measure and often vary within an experiment, leading to large
uncertainties [29].

In comparison, thermal motion-based calibration methods are advantageous because
they only rely on the temperature of the system, which is much easier to measure and
control in most experiments. These methods model the trap as a harmonic potential in
which the bead undergoes random, diffusive motion (Fig. 1B-D). The applied force is
determined from the spring constant of the trap, x, and displacement of the bead, z, via
Hooke’s law (F = —kx) [13,30]. By the equipartition theorem, the spring constant of

the trap can be related to the standard variance of the bead position, o2:
kT
2
ot = "2 (1)

where kp is the Boltzmann constant and T is the absolute temperature of the

system [31]. While Eq. 1 can theoretically give an accurate estimate of x when the time
between measurements, 7, is much faster than the relaxation time of the bead,

Te = 7/K, in practice, sources of parasitic noise always increase the variance, leading to
systematic underestimates of the apparent spring constant [13].

A better approach to thermal motion-based calibration is the PSD, which permits
separation of thermal motion from parasitic noise [13,33]. The PSD describes the
distribution of the variance (i.e., total power) across different frequency components in a
signal (Fig. 1E). Invariably, parasitic noise sources have spectral signatures that differ
from those of the bead’s thermal motion. As discussed in detail below, when using the
PSD to calibrate video-tracking experiments, one needs to account for several factors,

December 3, 2021

3/19

84

85

86

87

88

89

90

91

92

93

9%

95

96

97

98

99

100

101

102

103

104

including 1) distortions from aliasing and spectral leakage [11,34], 2) low-pass filtering
from the exposure time of the camera [12], and 3) biased parameter estimates from
improperly using least squares fitting routines with experimental PSD values that do
not have Gaussian-distributed errors [14].

An alternative means of thermal motion-based calibration, that also distinguishes
parasitic from thermal noise, is the AV. The AV measures the noise in the bead position
over different observation times and was designed as a means of measuring drift in a
system [35] (Fig. 1F). It was originally introduced into the SMFS literature to assess
optimal measurement times [36] and low-frequency noise [37,38]; however, it was quickly
realized that the AV could be directly used for force calibration through fitting [15]. As
discussed in detail below, the AV is naturally suited to video-tracking experiments
because it intrinsically accounts for low-pass filtering from the exposure time of the
camera. However, as with the PSD, improperly using least-squares fitting routines on
AV values that do not have Gaussian-distributed errors will lead to biased parameter
estimates [15].

When used properly, both the PSD and AV will give accurate parameter estimates
under optimal conditions. One of these conditions is that 7 should be less than 7.;
further, 7. should be less than the total measurement time, 7,,: 75 < T < T, [32].
Hence, assuming 7, and y are constant, it is possible to perform calibrations when
Kk < v/Ts, so long as the measurement time is long enough. Thus, calibration will be
easier when k is small, corresponding to small forces or measurements of longer (and
thus, more flexible) polymers.

When identifying and accounting for various sources of parasitic noise, the PSD and
AV have complementary strengths [38]. The PSD is excellent at identifying high
frequency coherent noise sources, such as line frequencies from power sources, while the
AV is ideal for identifying low frequency noise sources, such as mechanical drift. In
combination, the PSD and AV can be used to identify most forms of parasitic noise.
When working with a new or modified instrument, both should be used to determine
sources of parasitic noise, which can then be removed, or accounted for in the final
fitting procedure.

3 Modeling Thermal Motion in the PSD and AV

3.1 Langevin dynamics

Thermal motion-based calibration methods rely on Langevin dynamics, which model the
trapped bead in an SMFS experiment as randomly diffusing in a harmonic potential.
Collisions between the bead and water molecules create a stochastic (Langevin) force,
F,, that obeys the fluctuation-dissipation relation, (Fy (t + t")Fp(t)) = 2vkgTd(t'),
where §(t) is the Dirac delta function. In video-tracking SMFS experiments, the bead’s
motion is well-described by the overdamped Langevin equation [15]:

k(t) +yi&(t) = Fr(t). (2)

3.2 A closed-form expression for the PSD

The predicted PSD, P, of the bead trajectory at each frequency, f, follows from Fourier

analysis of Eq. 2:
kgT

5 .
272y [(2#“7) + f 2]
For frequencies above the corner frequency, f. = k/27y, the bead motion is purely

diffusive and the PSD can be approximated as P(f) =~ % For frequencies below

P(f) =

3)

December 3, 2021

4/19

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

the corner frequency, the bead is constrained by the trap, and the PSD can be
approximated as P(f) ~ 2’“5#

Eq. 3 does not account for the exposure time of the camera, 7y, which introduces a
low-pass filter to the experimental bead positions. The predicted PSD that accounts for
the exposure time, Py, includes a correction function, I [12]:

Pa(f) = P(NHI(). (4)

where
sin? (7 f70)

"= "Gy

Eq. 4 also needs to be adjusted for aliasing distortions: for an instrument with a
sampling rate, fs = 1/75, the PSD at each positive frequency, f, (0 < f < fs/2)
contains the summed power of other frequencies, nfs, for all integers, n [11]. The
predicted PSD, P4 g, that accounts for both the exposure time of the camera and
aliasing distortions is given by,

()

o0

Pa(f) = Z Pa(lf +nfsl)- (6)

n=—oo

In the special case that 79 = 7, the sum in Eq. 6 can be performed analytically to
give an exact, closed-form expression for P4 p [15]:

Pan(f) = 2kB(T’y - 2 f, sin (7}—{) sinh (7,;”3) . @

K cos (2%) — cosh (ﬁ)
Most modern video cameras are designed to maximize captured light, with a dead time
(~107C s) that is much less than the sampling time (75 ~ 1071 s to 10=*s). This
ensures that the exposure time is about the same as the sampling time, 79 = 7, i.e.,
zero dead-time, fitting the criteria for applying Eq. 7.

While sources of parasitic noise will vary among different SMFS instruments, most
video-tracking experiments have a frame-to-frame tracking error arising from the
imprecision of the bead localization algorithm. Assuming the tracking error is
Gaussian-distributed with a standard deviation, €, this adds a frequency-independent
white noise term to P4 g [39]:

2
PaB.c(f)=Pap(f)+ 7 (8)

In the PSD, the effect of tracking errors is most apparent at high frequencies, where the
thermal motion is diminished (Fig. 2 A).

3.3 A closed-form expression for the AV

For bead motion, the predicted AV, 0%,,, at each observation time, 7, is similarly
derived through analysis of Eq. 2 [15]:

2kgT
U,QAV,A(T) — 250 (1 +

K21

¥ _
KT 25T 2KT

2 KT KT 3
T - L% '7). 9)

For observation times that are shorter than the bead relaxation time, 7 < 7. = v/k,

neighboring positions are highly correlated, and the AV increases as oiv) A R 2kpTT/3y.

For observation times that are longer than the bead relaxation time, neighboring

December 3, 2021

5/19

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

T T T !-—lI\II T 'B
Alg10°t :
s :
|
g 10'| :
o
N 75)
=9
\N_
5 : : :
Feo-—-2-2o- @ fo2 o2 oot ___ ﬂ
0 T) <]—2 0 ‘#.?' ..":2.
10 10 10 10 10 10

f(Hz) f(Hz)

Fig 2. Example plots of PSDs with per-frame tracking errors. (A) Simulated bead
trajectories with tracking errors lead to deviations in the PSD at high frequencies. The
data points correspond to bead trajectories with per-frame tracking errors, ¢ = 0 (blue),
10 (green), and 20 (orange) nm. All trajectories contained N, = 20480 points and were
simulated with f; = 1000 Hz, v = 1.77 x 107° pNs/nm, and x = 1.2 x 1074 pN/nm.
Dotted lines are overlays of Eq. 8 using known parameter values. (B) MLE fits of P4 g
(Eq. 7, orange dotted line) and P4 p,c (Eq. 8, green dotted line) to experimentally
derived PSD values (blue points). The experimental data were collected on a bead
tethered to double-stranded DNA (contour length ~ 2.8 um) at 400 Hz on a
custom-built magnetic tweezer as described in Ref. [40]. P4 g ¢ Eq. 8) is more
consistent with the experimental data as judged by the normalized residuals, A, and
Akaike Information Criterion (AIC = 334 Eq. 8 vs. 739 Eq. 7). The best fit parameters
for Py p.c are k =1.8+£0.2 x 107*pN/nm, v = 1.78 £ 0.04 x 107° pNs/nm, and

€ =8.0£0.3nm. All PSD values were computed using Welch’s method (Sect. 4.1) with
35 half-overlapping bins. Error bars represent one standard deviation.

positions become uncorrelated, and the AV decreases as aiw 4~ 2kpTy/7K? [37]. The
peak of the transition between the two regimes can be numerically calculated as
Tmax =~ 1.897, [15].

In its definition, the AV implicitly accounts for the exposure time of the camera and
assumes zero dead-time, i.e., 79 = 75. As discussed in the previous section, this is
usually a reasonable assumption for SMFS video-tracking systems. When this is not the
case, the AV is biased and requires an additional correction function [41]. However,
conveniently, this bias is negligible when the time between samples is shorter than the
bead relaxation time, i.e., 75 < 7. [37]. Hence, Eq. 9 can often be applied without
modification for SMFS experiments, regardless of whether dead-time is present [42].

As with the PSD, tracking errors in video-tracking experiments can be accounted for
by adding a white-noise term to 0'124‘/, A

627'5

UiV,A,B(T) = UE\V,A(T) + - (10)

The effect of tracking errors is most apparent at short observation times, when the bead
motion is mostly diffusive (Fig. 3).

4 Computing the PSD and AV

The SMFS experiment generates an experimental bead trajectory containing IV, points.
This trajectory must be converted into a noise metric (the PSD or AV) containing N,

December 3, 2021

6,19

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

10*F N
e b
y, 2
s/ v
’ ‘1\
10° ¢ r'y N ¥
y
5 ® T T T
0 ____:__:__.__T__,_:__.__s__’l__q._;a_
=5 = = X0

10° 10" 10
T.(s) T.(s)

Fig 3. Example plots of AV values for data with per-frame tracking errors. (A)

Simulated bead trajectories with tracking errors lead to deviations in the AV at short

observation times. The data points correspond to the simulated bead trajectories with e
0 (blue), 10 (green), and 20 (orange) nm. The simulated trajectories are the same as

in F1g. 2A. Dotted lines are overlays based on Eq. 10 with the known parameter values.

(B) MLE fits of 0%y, 4 5 (Eq. 10, dotted orange line) and 0%y, 4 (Eq. 9, dotted green
line) to experimentally derived AV values (blue points). The data are the same as in
Fig. 3B. 0124‘,’ AB (Eq. 10) is more consistent with the experimental data as judged by
the normalized residuals, A, and AIC (AIC = 161 Eq. 10 vs. 198 Eq. 9). The best fit
parameters for 0%, 4 p are £ = 1.7+ 0.1 x 10~ pN/nm,

v =1.7740.04 x 1075 pNs/nm, and € = 7.9 & 0.9nm. Error bars represent one
standard deviation.

points, which is then fit with the expressions in Section 3 so as to extract parameter
estimates. The conversion of the experimental trajectory to the noise metric has a few
subtleties which are described here.

4.1 Computing the experimental PSD with Welch’s method

The experimental PSD values are optimally computed using Welch’s method [43]. This
method consists of splitting the trajectory into half-overlapping bins, each containing m
points. The total number of PSD values and bins are thus NV, = m and M = 2N, /m—1,
respectively. A smaller m improves the signal-to-noise ratio of the final experimental
PSD, at the cost of reduced sensitivity at lower frequencies [14]. Each bin consists of
bead positions, &; for j € (0,1,2,...,m — 1), and the discrete Fourier transform of each
bin is calculated for the frequencies, fr = kfs/2m for k € (1,2,...,m), as
. 2
2mijk
Pah) = Z exp(") . (11)

=0

Note that, in practice, most computational implementations compute the discrete
Fourier transform using a fast Fourier transform algorithm (e.g., the Cooley-Tukey
algorithm [44]). The PSD values of each bin are then averaged together by frequency:

P(fi) = MZP (f)- (12)

The windowing function, w;, accounts for the phenomenon of spectral leakage: the
finite duration of the measurement causes power at one frequency to show up at other

December 3, 2021

7/19

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

frequencies [45]. Most computational implementations of Welch’s method use the Hann

windowing function [46],
3 .
wj = \/QSiHQ (7;‘7) , (13)

which reduces the total power of each experimental PSD value in a
frequency-independent manner, which is then corrected by the leading factor of /8/3.
The use of the Hann window, in conjunction with half-overlapping bins, means that
data near the termini of one bin is diminished by the window, but that same data is
near the center of the next bin, and thus captured by the window; this provides a
reasonable trade-off between over- and under-utilizing all of the data [43]. Occasionally,
after performing Welch’s method, the calculated PSD values are logarithmically binned
to help visualize power-law behavior [11].

4.2 Computing the overlapping AV

The experimental AV is optimally computed from the bead trajectory by partitioning it
into octave-sampled, overlapping bins [35]. Octave sampling consists of using bin

lengths, my, in powers of 2, i.e., my = 2* for k € (1,..., N,), where N, = [log,(N,/2)].

The bin lengths determine the number of overlapping bins, M = N, — 2my + 1, and the
observation times, 7 = my7s, where 7, is the sampling time. For each 7, the
experimental AV, 6%, is calculated as one-half the mean-squared difference of
consecutive average bin positions:

M-1
. 1 _ _ 2
Ghv(r) = M=) ; (Znt1 — Tn) (14)
where Z,, is the average of bead positions, &;, j € (1,2,...,mg):
1 &
Tp = — ZTi. 15
s 09

In practice, computing all the average bin positions for each 7 can be slow, so an
equivalent, but more computationally efficient, method is often used [41,47].

5 Biased fitting

After computing the set of experimental AV or PSD values, g, k € (1,2,...,N,), they
are compared to the Langevin model predictions, yi (Egs. 7-10), using maximum
likelihood estimation (MLE), to extract the best-fit parameter estimates for v and k.
MLE accounts for the expected probability distributions of each experimental value. For
the AV and PSD, the probability, px, of measuring each experimental value is given by
the Gamma probability distribution function:

~ne—1 _—4,. /0
gy e~ Uk/0k

o () (16)

P (ks Yr (7, 1)) =

where 7, is termed the shape parameter, 8; = y/nx is termed the scale parameter, and
T" is the gamma function.

For the PSD, the shape parameter is given by the number of bins, 7, = M, which is
notably the same for all values 3. For the AV, the shape parameter is generally
Mk = Vav,k/2, where vay,, counts the degrees of freedom for each value. vy, depends
on the number of differences used to calculate the k" value, as well as the dominant

December 3, 2021

8/19

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

type of noise at that value [41]. It is common to approximate v4y,j from the number of
successive differences between non-overlapping bins of length my that are present in the
trajectory, vav,g = (Ng/my) — 1 [15]; however, this is an underestimate.

For both the PSD and AV, as 1, — oo, the Gamma distribution approaches a
normal (Gaussian) distribution, and least-squares fitting can be used. However, for
moderate values of 7, the distribution is not normal, and least-squares fitting routines
lead to biased parameter estimates. While it is possible to correct for these biases
analytically, in general, MLE gives more accurate parameter estimates [14].

5.1 Maximum likelihood estimation

MLE is based on estimating the parameters, 4 and &, that maximize the likelihood
function, L, which is the joint probability of all pg:

N,

L) = T pelie. v (7.). an
k=1

In practice, rather than maximizing L, it is more convenient to minimize the cost
function, £ = —In L. Given Eqns. 16 and 17, the cost function is given by:

N, .
U, k) = kz::lnk Lﬂc(i’k,fi) + ln(yk)] + const, (18)

where the final term is a constant with respect to the parameters. Minimizing £ is a
straightforward optimization problem that can be solved numerically with standard
algorithms (e.g., Nelder-Mead [48]).

5.2 Parameter uncertainties

After finding the best-fit parameters, 4 and &, an estimate of their uncertainties can be
found from standard approaches: In particular, the likelihood function, L, is assumed to
have a Gaussian form in the vicinity of its maximum. Then, the matrix of second
partial derivatives of L (i.e., the Hessian matrix) are calculated, and inverted to find the
squared uncertainties (i.e., the covariance matrix). Details of this approach can be
found in statistical references, e.g. Ref. [49].

The applicability and robustness of Hessian-based estimates of parameter
uncertainty rests on whether L behaves as a Gaussian over a significant region near
(%, k). This question is distinct from that of the proper distribution governing the AV or
PSD estimates themselves (i.e, the values g)— the gi values, in certain cases, are
calculated from a relatively small number of samples, and so are distributed in a highly
non-Gaussian manner (Eq. 16), which drives the use of MLE rather than least-squares
optimization methods. However, the MLE cost function is based on a relatively larger
number of points (N,), and so, by the central limit theorem, is well-modeled as
Gaussian. Therefore, in practice, the Hessian approach typically results in robust
estimates of parameter uncertainty.

That said, in some cases, it may not be appropriate to approximate the likelihood
function as a Gaussian, e.g., when there are small sample sizes, outliers, or complex
parameter correlations. Such situations can be handled by an alternate, numerical

approach in which a Monte Carlo algorithm is used to sample the parameter space [49].

To carry out Monte Carlo sampling, several ‘walkers’ are initiated around the
estimated parameters. These ‘walkers’ take random steps in parameter space and
evaluate the cost function, which determines whether each step is accepted or rejected.
After a predetermined number of steps, a histogram of the accepted steps is used to

December 3, 2021

9/19

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

1000 ¢

750

500

Counts

2501

k (pN/nm) x10~*
¢

£ > > L0 500

v (pNs/nm) x107° Counts
Fig 4. Histograms of accepted steps from MCMC sampling of experimental data in
Fig. 2B. One-dimensional histograms of (A) v and « values with best-fit parameters
(blue line) and 15.8th and 84.2nd percentiles (black dotted lines). The histograms follow
a Gaussian distribution (black solid line) as assumed in the Hessian method.

Two-dimensional histogram of (B) v and x values with best-fit parameters (blue lines).

The contour (black) lines are the one, two, and three standard deviations. Points
outside of three standard deviations are plotted individually.

generate an empirical probability distribution for the parameters (Fig. 4). From this
distribution, the confidence intervals can be evaluated. Typically, the standard errors
are estimated as half the difference between the 15.8th and 84.2nd percentiles, which
corresponds to one standard deviation for a Gaussian distribution.

5.3 Fit quality

After fitting, the quality of the fit needs to be judged. There are several means of
judging the quality of the fit, each with its own advantages and disadvantages. The
simplest means is to look at the normalized residuals, Ay, i.e., the deviations between
the experimental and predicted values:

A, = Uk — yk(7, R)
Oy,k

; (19)

where 7,1, is the standard deviation of the k' experimental value. The normalized
residuals can be plotted to assess systematic deviations between the data and the fit.
If the normalized residuals follow a Gaussian distribution, their variance corresponds

December 3, 2021

10/19

286

287

288

289

290

291

292

293

294

295

296

297

to the reduced chi-squared value, x?,y:

X 1
Xp, = =—Y A (20)

The degrees of freedom, vy, are estimated as v, = N, — K, where K is the number of fit
parameters. A reduced chi-squared value of one is usually considered a ‘good’ fit [49]. A
reduced chi-squared value that is greater than one is generally considered a ‘poor’ fit,
whereas a reduced chi-squared value that is less than one is usually considered an
overfit. However, the reduced chi-squared value has a variance that scales as 2/v,, so
values based on small sample sizes or models with a large number of parameters can be
misleading.

Instead, the cumulative distribution function of chi-squared-distributed values, F, is
usually a better measure of fit quality (also termed the support for the fit) [17]:

x*/2
F(x*v) = F(l/i/?)/o 20/27 L exp(—2)dz. (21)

The support evaluates the probability that repeating the experiment will give a larger
ng value. It is closely related to the p-value, i.e., 1 — F. For a ‘good’ fit, the support is
expected to be close to one.

While the support for the fit evaluates agreement between the experimental and
predicted values, other statistical metrics, such as the Akaike Information Criterion
(AIC), are better at comparing models with different numbers of parameters [50]. The
AIC balances the quality of fit with the number of parameters. It is calculated as

AIC = 2K —2In(L). (22)

Due to varying constants and sample sizes, individual AIC values are not informative.
Instead, the data are considered to be best described by the model with the lowest AIC
value, AIC,i,, regardless of the number of parameters, when the difference between two
models’ AIC values is Apic = AIC — AIC,,i, > 4 [50], as applied in Figs. 2 and 3.

6 Tweezepy

Tweezepy is a Python package for thermal motion-based force calibration in SMFS
video-tracking experiments that estimates parameters and their uncertainties from a
user-provided bead trajectory, using MLE, via the PSD or AV. For a detailed
explanation of the package, including expected inputs and outputs, the reader is
referred to the docstrings and usage examples. In this section, we discuss specific
implementation choices and practical considerations for using the package.

To use Tweezepy, the user provides a bead trajectory and sampling frequency to
either the PSD or AV class objects. Given this information, Tweezepy computes the

experimental values and compares them to a user-selected predictive model using MLE.

After fitting, it reports the parameter estimates and uncertainties, as well as the fit
quality. The experimental and predicted values, as well as the normalized residuals, can
be visualized using the included plotting functions.

To compute the experimental PSD, Tweezepy uses Welch’s method (Sec. 4.1). By
default, it uses a Hann windowing function with three half-overlapping bins. The
signal-to-noise ratio of the experimental PSD values can be improved by increasing the
number of bins, which helps to visualize the values and slightly reduces the parameter
uncertainties. However, there is a trade-off: as the number of bins increases, the

December 3, 2021

11/19

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

low-frequency resolution decreases. For low corner frequencies, this can lead to a
substantial bias in the parameter estimates (Fig. 5). Unfortunately, it is difficult, a
priori, to know the optimal number of bins, so it is up to the user to choose the
appropriate number of bins. This is a drawback of the PSD method.

Tweezepy uses MLE to compare the experimental PSD values to, by default, Eq. 7,
which accounts for both aliasing and the finite bandwidth of the detection system. This
function assumes the exposure time is the same as the time between measurements, i.e.,
zero dead-time. As discussed in Section 3.2, this assumption is typically good for
video-tracking experiments. When dead-time is present in the measured bead trajectory,
the user can also select an alternative function that uses a closed-form expression based
on Eq. 6 that assumes a negligible exposure time [14,15], i.e., it only accounts for
aliasing. Additionally, the user can select to use a modified version of either function
that includes tracking errors from video-tracking bead localization algorithms (e.g.,
Eq. 8).

To compute the experimental AV, T'weezepy uses the octave-sampled, overlapping
approach as described in Sec. 4.2. It empirically determines the degrees of freedom for
each value using the Greenhall algorithm [51], based on the dominant type of power-law
noise for each experimental value. It estimates the dominant type of noise using the
Lagl autocorrelation algorithm [52]. This algorithm has lower precision for AV values
with fewer bins, i.e., for long observation times when N,/m; < 32. Typically, this
corresponds to the three or four AV values with the longest observation times. For these
points, Tweezepy assumes the dominant noise type is the same as the last point that
satisfies N, /my, > 32. If the algorithm fails to estimate any of the dominant types of
noise, it warns the user and falls back on using the approximate degrees of freedom
based on nonoverlapping bins, i.e., vay = N, /mg — 1. The user can choose to use only
the approximate degrees of freedom by setting the keyword argument ’edf’ to ’approx’.
For visualization purposes, the user can select to plot all or decade-spaced observation
times. As discussed in Section 4.2, the approximate degrees of freedom give nearly
identical parameter estimates but underestimate the confidence for each AV value,
leading to slightly larger parameter errors. After computing the experimental AV values,
Tweezepy compares them to Eq. 9. Additionally, the user can select a predefined
function that accounts for tracking errors from the video-tracking bead localization
algorithms (Eq. 10).

In addition to its predefined functions, Tweezepy also accepts user-defined functions
to compare to the experimental values. If these functions include additional fitting
parameters, it is recommended that they are compared to a function without the
additional parameters using the AIC to avoid overfitting (Sec. 5.3). Additionally, the
normalized residuals can be plotted and visualized to detect deviations between the
data and theoretical values. Typically, it is easier to visualize the residuals of the AV
compared to the PSD because it has fewer values.

Evaluating the AIC can also be useful for determining whether one or more
parameters is poorly constrained during the fit. As discussed later (Sec. 7), in some
cases, the sampling frequency is not fast enough to resolve the purely diffusive motion of
the bead, causing -y to be poorly constrained during fitting. However, x can usually still
be reliably estimated by fixing v to a known value. Tweezepy contains keyword
arguments for fixing any of the parameters for its predefined functions during the fit.
Ideally, the known ~ value should be estimated from the same bead at a lower force,
and adjusted for surface effects using Faxen’s correction [53]. To determine whether
fixing a parameter is necessary, the AIC of the fits with and without fixing are
compared, and the fit with the lowest AIC value is used.

When sources of parasitic noise are present but cannot be properly described by the
selected model analytically, it is recommended that the user subtract a reference

December 3, 2021

12/19

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

spectrum or bandpass filter the measured data.For example, mechanical drift in
experiments often manifests as 1/f power-law noise at low frequencies in the PSD or 7
power-law noise at long observation times in the AV [38]. By excluding the regions of
the spectrum where drift (or other sources of noise) dominates during fitting, the
parameters can still be accurately estimated. In Tweezepy, the user can select upper
and lower cutoff frequencies (or observation times) to compare the function to a limited
range of the spectrum using the keyword argument ‘cutoffs’.

To calculate parameter uncertainties, Tweezepy evaluates and inverts the expected
Hessian (Sec. 5.2). To evaluate the Hessian, it uses the Autograd Python package.
Autograd uses automatic differentiation to evaluate derivatives by repeatedly applying
the chain rule to elementary operations. This speeds up code and reduces numerical
precision errors that can occur with numerical and symbolic differentiation [54,55]. In
addition to calculating and inverting the Hessian, Tweezepy contains an optional
method for robust uncertainty estimates via Monte Carlo sampling (Sec. 5.1). This
method uses the Emcee Python package [56] to carry out Monte Carlo sampling. In our
hands, this more robust method, but slower (with computation time on the order of
10s), produces Gaussian parameter distributions (Fig. 4) and near-identical uncertainty
estimates to the faster method (= 10 ms) that inverts the Hessian. For example, for the
data in Fig. 4, using the Hessian method gives v =1.43 4 0.02 x 10~ pNs/nm and
k =1.6£0.1 x 10~* pN/nm, while the MCMC method gives
v =1.43+£0.01 x 107° pNs/nm and k£ =1.6 = 0.1 x 10~* pN/nm.

In addition to the packages mentioned above, Tweezepy makes use of the standard
python library [57], including NumPy [58], SciPy [59], and Numba [60]. All the package
dependencies are noted in the requirements and setup files for easy installation.

7 Results

To evaluate Tweezepy, we sought to benchmark its fit results against known parameter
values. Following the example of Ref. [15], we simulated bead trajectories using

N, = 4096, f, = 100Hz, and v = 1.0 x 1075 pNs/nm (a typical drag coefficient for a
one micron spherical bead in water), and varied the corner frequency, f., logarithmically
from 0.2 Hz to 100 Hz, giving spring constants & that ranged from 1.4 x 10~% pN/nm to
6.8 x 1072 pN/nm. To carry out the simulations, we iteratively generated successive
bead positions, without tracking errors, from Eq. 2 [61] (Fig. 1B). To mimic the effects
of the camera exposure time, we used a time step of 6t = 1/(1000f;), split the
trajectory into bins of 1000 points, and took the average of each bin to generate a
downsampled trajectory. For each corner frequency, we simulated 1000 trajectories. For
each trajectory, we computed and fit the PSD to Eq. 7 (Fig. 2B) and the AV to Eq. 9
(Fig. 3B) using Tweezepy to estimate the parameters and their uncertainties. To
estimate bias, we calculated the ratio of the median parameter estimates and true
values. To estimate the error, we calculated the ratio of the median parameter
uncertainties and true values.

For nearly all corner frequencies, the bias for v and k estimates is within £1%
(Fig. 5 A and C magenta box). There is an increase in the bias and error for x estimates
at lower corner frequencies because, for the simulated length of the trajectory, the bead
motion is mostly unconstrained by the trap. As a result, the x estimate is poorly
constrained during fitting. This effect is slightly worse for the PSD because binning
decreases its low frequency resolution more than the AV. In practice, this bias can
usually be reduced by increasing the length of the trajectory [62].

At high corner frequencies, f. £ fs/8, there is an increase in the error and a slight
bias in both parameters (Fig. 5 C and D), consistent with previous findings [14,15].
This is because the sampling frequency is not fast enough to resolve the unconstrained

December 3, 2021

13/19

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

406

407

408

409

410

411

412

413

415

416

418

419

420

421

423

424

425

426

428

429

430

431

432

433

434

436

437

438

1.02 1.02 PSD
= 025 = 025} AV,
< < = —— PSD
Z1.000} 1 =1.000}] it
3 ~ | 8
M 0.975 1 A 0975}

0.950 | 1 0950}

C

< =

> -1 D -1
;b: 10 § 10

8 5

= =

m m

-2 L L L -2 L L L

10 107! 109 10! 102 10 1071 10° 10! 102

fe (Hz) Je (Hz)

Fig 5. Bias and error for the AV and PSD methods in Tweezepy. (A and C) Bias in
estimated parameters as compared to known parameter values for (A) v and (B) . (C
and D) Error in estimated parameters using Hessian method for (C) v and (D) . Fixing
~ reduces the bias and error in k at high corner frequencies by removing parameter
correlations. Each point represents the median of 1000 simulations; each simulation
contained 4096 bead positions with a constant drag coefficient, v = 1 x 1075 ps/N, and
sampling frequency, fs = 100 Hz. The corner frequency was varied logarithmically
between 0.2 Hz to 100 Hz. The blue and green points represent two-parameter AV and
PSD method fit results. The orange and red points represent fixed gamma AV and PSD
method fit results. In the bias plots, the magenta box represents the £1% bias region.

diffusive bead motion, which leads to poorly constrained - estimate. The correlations
between the v and k parameters lead to a poorer k estimate. This is why it is
advantageous to collect bead trajectories for force calibration in SMFS video-tracking
experiments at the highest available sampling frequency.

It is worth noting that the authors in Ref. [21] recommend using a
low-pass-corrected standard variance calibration method [12] to avoid the small bias at
high corner frequencies with the PSD and AV. However, we note that their
implementation of this alternative method fixes v to a known value during fitting,
removing the parameter correlations. We find that fixing v with the PSD and AV
similarly removes the increase in the error and slight bias for « at high corner
frequencies (Fig. 5 C and D). This suggests that, under optimal conditions, all three
methods can accurately estimate parameters.

8 Conclusions

In this article, we have reviewed robust thermal motion-based force calibration in SMFS
experiments using the PSD and AV, and discussed implementing them computationally
into a Python package, Tweezepy, that is freely available on Github and the Python
package index.

In designing T'weezepy, our goal was to make it as robust, versatile, and user-friendly

December 3, 2021

14/19

439

440

441

442

443

445

446

447

448

450

451

452

453

454

455

as possible. It uses MLE to estimate parameters via the PSD or AV, and goes beyond
previous computational implementations by calculating the empirical degrees of freedom
for the overlapping AV and determining parameter uncertainties from MLE, either by
inverting the Hessian or, optionally, via Monte Carlo sampling. It includes several
predefined closed-form expressions that account for the most common biases and
parasitic noise in SMFS video-tracking experiments. Yet, it also accepts user-defined
functions, so it can be adapted to account for additional sources of noise or applied to
other problems that rely on fitting the PSD or AV of a bead trajectory, e.g., torque
calibration [42]. Lastly, Tweezepy uses sensible default options to make it easy-to-use,
only requiring a few straightforward lines of code, with computation times on the order
of 10ms. Our hope is that Tweezepy can serve as a useful tool to improve and
standardize force calibration across different SMF'S research groups, instruments, and
experiments.

Acknowledgments

We thank Frank Truong and Sarah Innes-Gold for helpful discussions and beta testing
Tweezepy. This work was supported by the National Science Foundation under Grant
No. 1715627.

References

1. Smith SB, Finzi L, Bustamante C. Direct Mechanical Measurements of the
Elasticity of Single DNA Molecules by Using Magnetic Beads. Science.
1992;258(5085):1122-1126. doi:10.1126/science.1439819.

2. Saleh OA. Perspective: Single Polymer Mechanics across the Force Regimes. The
Journal of Chemical Physics. 2015;142(19):194902. doi:10.1063/1.4921348.

3. Perkins TT, Quake SR, Smith DE, Chu S. Relaxation of a Single DNA Molecule
Observed by Optical Microscopy. Science. 1994;264(5160):822-826.
doi:10.1126 /science.8171336.

4. Woodside MT, Behnke-Parks WM, Larizadeh K, Travers K, Herschlag D, Block
SM. Nanomechanical Measurements of the Sequence-Dependent Folding
Landscapes of Single Nucleic Acid Hairpins. Proceedings of the National
Academy of Sciences. 2006;103(16):6190-6195. doi:10.1073/pnas.0511048103.

5. Yu H, Liu X, Neupane K, Gupta AN, Brigley AM, Solanki A, et al. Direct

Observation of Multiple Misfolding Pathways in a Single Prion Protein Molecule.

Proceedings of the National Academy of Sciences. 2012;109(14):5283-5288.
doi:10.1073 /pnas.1107736109.

6. Strick TR, Croquette V, Bensimon D. Single-Molecule Analysis of DNA
Uncoiling by a Type IT Topoisomerase. Nature. 2000;404(6780):901-904.
doi:10.1038/35009144.

7. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. Direct
Observation of Base-Pair Stepping by RNA Polymerase. Nature.
2005;438(7067):460-465. doi:10.1038/nature04268.

8. Zhuang X, Rief M. Single-Molecule Folding. Current Opinion in Structural
Biology. 2003;13(1):88-97. doi:10.1016/S0959-440X(03)00011-3.

December 3, 2021

15/19

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

478

479

480

481

482

483

484

485

486

487

489

490

491

492

493

494

495

497

498

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Florin EL, Pralle A, Stelzer EHK, Hérber JKH. Photonic Force Microscope
Calibration by Thermal Noise Analysis. Applied Physics A. 1998;66(1):S75-S78.
doi:10.1007 /s003390051103.

Lukié¢ B, Jeney S, Tischer C, Kulik AJ, Forré L, Florin EL. Direct Observation of
Nondiffusive Motion of a Brownian Particle. Physical Review Letters.
2005;95(16):160601. doi:10.1103/PhysRevLett.95.160601.

Berg-Sgrensen K, Flyvbjerg H. Power Spectrum Analysis for Optical Tweezers.
Review of Scientific Instruments. 2004;75(3):594-612. doi:10.1063/1.1645654.

Wong WP, Halvorsen K. The Effect of Integration Time on Fluctuation
Measurements: Calibrating an Optical Trap in the Presence of Motion Blur.
Optics Express. 2006;14(25):12517-12531. doi:10.1364/0E.14.012517.

Neuman KC, Block SM. Optical Trapping. Review of Scientific Instruments.
2004;75(9):2787-2809. doi:10.1063/1.1785844.

Ngrrelykke SF, Flyvbjerg H. Power Spectrum Analysis with Least-Squares
Fitting: Amplitude Bias and Its Elimination, with Application to Optical
Tweezers and Atomic Force Microscope Cantilevers. Review of Scientific
Instruments. 2010;81(7):075103. doi:10.1063/1.3455217.

Lansdorp BM, Saleh OA. Power Spectrum and Allan Variance Methods for
Calibrating Single-Molecule Video-Tracking Instruments. Review of Scientific
Instruments. 2012;83(2):025115. doi:10.1063/1.3687431.

Ostrofet E, Papini F'S, Dulin D. Correction-Free Force Calibration for Magnetic
Tweezers Experiments. Scientific Reports. 2018;8(1):15920.
doi:10.1038/s41598-018-34360-4.

Toli¢-Ngrrelykke IM, Berg-Sorensen K, Flyvbjerg H. MatLab Program for
Precision Calibration of Optical Tweezers. Computer Physics Communications.
2004;159(3):225-240. doi:10.1016/j.cpc.2004.02.012.

Hansen PM, Tolic-Ngrrelykke IM, Flyvbjerg H, Berg-Sgrensen K. Tweezercalib
2.1: Faster Version of MatLab Package for Precise Calibration of Optical
Tweezers. Computer Physics Communications. 2006;175(8):572-573.
doi:10.1016/j.cpc.2006.07.009.

Osterman N. TweezPal — Optical Tweezers Analysis and Calibration Software.
Computer Physics Communications. 2010;181(11):1911-1916.
doi:10.1016/j.cpc.2010.07.024.

Taylor CD, Foley TW, Chang AN, Mowa S, Burris JL, Hester BC.
Computer-Automated Program for Calibration of Optical Tweezers. In: Optics
and Photonics for Information Processing VI. vol. 8498. SPIE; 2012. p. 127-142.

Yu Z, Dulin D, Cnossen J, Kéber M, van Oene MM, Ordu O, et al. A Force
Calibration Standard for Magnetic Tweezers. Review of Scientific Instruments.
2014;85(12):123114. doi:10.1063/1.4904148.

Daldrop P, Brutzer H, Huhle A, Kauert DJ, Seidel R. Extending the Range for
Force Calibration in Magnetic Tweezers. Biophysical Journal.
2015;108(10):2550-2561. doi:10.1016/j.bpj.2015.04.011.

Ince DC, Hatton L, Graham-Cumming J. The Case for Open Computer
Programs. Nature. 2012;482(7386):485-488. doi:10.1038/nature10836.

December 3, 2021

16/19

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical Tweezers in
Single-Molecule Biophysics. Nature Reviews Methods Primers. 2021;1(1):1-29.
doi:10.1038/s43586-021-00021-6.

Shen H. Interactive Notebooks: Sharing the Code. Nature News.
2014;515(7525):151. doi:10.1038/515151a.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, et al.

Jupyter Notebooks — a Publishing Format for Reproducible Computational
Workflows. In: Loizides F, Scmidt B, editors. 20th International Conference on
Electronic Publishing (01/01/16). IOS Press; 2016. p. 87-90.

Morgan I. Tanlmorgan/Tweezepy: Tweezepy v1.2.5; 2021. Zenodo.

Felgner H, Miiller O, Schliwa M. Calibration of Light Forces in Optical Tweezers.

Applied Optics. 1995;34(6):977-982. doi:10.1364/A0.34.000977.

Florin EL, Pralle A, Heinrich Horber JK, Stelzer EHK. Photonic Force
Microscope Based on Optical Tweezers and Two-Photon Excitation for Biological
Applications. Journal of Structural Biology. 1997;119(2):202-211.
doi:10.1006/jsbi.1997.3880.

Neuman KC, Nagy A. Single-Molecule Force Spectroscopy: Optical Tweezers,
Magnetic Tweezers and Atomic Force Microscopy. Nature Methods.
2008;5(6):491-505. doi:10.1038/nmeth.1218.

Strick TR, Allemand JF, Bensimon D, Bensimon A, Croquette V. The Elasticity
of a Single Supercoiled DNA Molecule. Science. 1996;271(5257):1835-1837.
doi:10.1126 /science.271.5257.1835.

Gosse C, Croquette V. Magnetic Tweezers: Micromanipulation and Force

Measurement at the Molecular Level. Biophysical Journal. 2002;82(6):3314-3329.

doi:10.1016 /S0006-3495(02) 75672-5.

Hutter JL, Bechhoefer J. Calibration of Atomic-force Microscope Tips. Review of
Scientific Instruments. 1993;64(7):1868-1873. doi:10.1063/1.1143970.

Berg-Sgrensen K, Oddershede L, Florin EL, Flyvbjerg H. Unintended Filtering in
a Typical Photodiode Detection System for Optical Tweezers. Journal of Applied
Physics. 2003;93(6):3167-3176. doi:10.1063/1.1554755.

Allan DW, Weiss MA, Jespersen JL. A Frequency-Domain View of Time-Domain
Characterization of Clocks and Time and Frequency Distribution Systems. In:

Proceedings of the 45th Annual Symposium on Frequency Control 1991; 1991. p.

667-678.

Gibson GM, Leach J, Keen S, Wright AJ, Padgett MJ. Measuring the Accuracy
of Particle Position and Force in Optical Tweezers Using High-Speed Video
Microscopy. Optics Express. 2008;16(19):14561. doi:10.1364/0E.16.014561.

Czerwinski F, Richardson AC, Oddershede LB. Quantifying Noise in Optical
Tweezers by Allan Variance. Optics Express. 2009;17(15):13255.
doi:10.1364/0OE.17.013255.

Andersson M, Czerwinski F, Oddershede LB. Optimizing Active and Passive
Calibration of Optical Tweezers. Journal of Optics. 2011;13(4):044020.
doi:10.1088 /2040-8978 /13 /4,/044020.

December 3, 2021

17/19

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

572

573

574

575

576

577

578

579

580

581

582

583

584

585

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

52.

93.

van der Horst A, Forde NR. Power Spectral Analysis for Optical Trap Stiffness
Calibration from High-Speed Camera Position Detection with Limited
Bandwidth. Optics Express. 2010;18(8):7670. doi:10.1364/0FE.18.007670.

Ribeck N, Saleh OA. Multiplexed Single-Molecule Measurements with Magnetic
Tweezers. Review of Scientific Instruments. 2008;79(9):094301.
doi:10.1063/1.2981687.

Riley WJ. Handbook of Frequency Stability Analysis. US Department of
Commerce, National Institute of Standards and Technology; 2008.

van Oene MM, Ha S, Jager T, Lee M, Pedaci F, Lipfert J, et al. Quantifying the
Precision of Single-Molecule Torque and Twist Measurements Using Allan
Variance. Biophysical Journal. 2018;114(8):1970-1979.
doi:10.1016/j.bpj.2018.02.039.

Welch P. The Use of Fast Fourier Transform for the Estimation of Power Spectra:

A Method Based on Time Averaging over Short, Modified Periodograms. IEEE
Transactions on Audio and Electroacoustics. 1967;15(2):70-73.
doi:10.1109/TAU.1967.1161901.

Cooley JW, Tukey JW. An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation. 1965;19(90):297-301.
doi:10.1090/S0025-5718-1965-0178586-1.

Stoica P, Moses RL. Spectral Analysis of Signals. Upper Saddle River, N.J:
Pearson/Prentice Hall; 2005.

Harris FJ. On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform. Proceedings of the IEEE. 1978;66(1):51-83.
doi:10.1109/PROC.1978.10837.

Lansdorp BM, Saleh OA. Erratum: “Power Spectrum and Allan Variance

Methods for Calibrating Single-Molecule Video-Tracking Instruments” [Rev. Sci.
Instrum. 83, 025115 (2012)]. Review of Scientific Instruments. 2014;85(1):019901.

doi:10.1063/1.4860059.

Nelder JA, Mead R. A Simplex Method for Function Minimization. The
Computer Journal. 1965;7(4):308-313. do0i:10.1093/comjnl/7.4.308.

Bevington PR, Robinson DK. Data Reduction and Error Analysis for the
Physical Sciences. 3rd ed. Boston: McGraw-Hill; 2003.

Burnham KP, Anderson DR. Multimodel Inference: Understanding AIC and BIC
in Model Selection. Sociological Methods & Research. 2004;33(2):261-304.
doi:10.1177/0049124104268644.

Greenhall CA, Riley WJ. Uncertainty of Stability Variances Based on Finite
Differences. In: Proceedings of the 35th Annual Precise Time and Time Interval
Systems and Applications Meeting; 2003. p. 267-280.

Riley WJ, Greenhall CA. Power Law Noise Identification Using the Lag 1
Autocorrelation. In: 2004 18th European Frequency and Time Forum (EFTF
2004); 2004. p. 576-580.

Faxén H. Der Widerstand Gegen Die Bewegung Einer Starren Kugel in Einer
Zéahen Fliissigkeit, Die Zwischen Zwei Parallelen Ebenen Wénden Eingeschlossen
Ist. Annalen der Physik. 1922:373(10):89-119. doi:10.1002/andp.19223731003.

December 3, 2021

18/19

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

o4.

95.

96.

o7.

58.

59.

60.

61.

62.

Neidinger RD. Introduction to Automatic Differentiation and MATLAB
Object-Oriented Programming. SIAM Review. 2010;52(3):545-563.
doi:10.1137/080743627.

Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Automatic Differentiation
in Machine Learning: A Survey. Journal of Machine Learning Research.
2018;18(153):1-43.

Foreman-Mackey D, Hogg DW, Lang D, Goodman J. Emcee : The MCMC
Hammer. Publications of the Astronomical Society of the Pacific.
2013;125(925):306-312. doi:10.1086/670067.

Van Rossum G, Drake Jr FL. Python Tutorial. vol. 620. Centrum voor Wiskunde
en Informatica Amsterdam; 1995.

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau
D, et al. Array Programming with NumPy. Nature. 2020;585(7825):357-362.
doi:10.1038/s41586-020-2649-2.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods. 2020;17(3):261-272. doi:10.1038/s41592-019-0686-2.

Lam SK, Pitrou A, Seibert S. Numba: A LLVM-Based Python JIT Compiler. In:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC. LLVM ’15. New York, NY, USA: Association for Computing Machinery;
2015. p. 1-6.

Beausang JF, Zurla C, Finzi L, Sullivan L, Nelson PC. Elementary Simulation of
Tethered Brownian Motion. American Journal of Physics. 2007;75(6):520-523.
doi:10.1119/1.2710484.

Cox DR, Snell EJ. A General Definition of Residuals. Journal of the Royal
Statistical Society: Series B (Methodological). 1968;30(2):248-265.
doi:10.1111/j.2517-6161.1968.tb00724.x.

December 3, 2021

19/19

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

	Introduction
	Background
	Modeling Thermal Motion in the PSD and AV
	Langevin dynamics
	A closed-form expression for the PSD
	A closed-form expression for the AV

	Computing the PSD and AV
	Computing the experimental PSD with Welch's method
	Computing the overlapping AV

	Biased fitting
	Maximum likelihood estimation
	Parameter uncertainties
	Fit quality

	Tweezepy
	Results
	Conclusions

