TOPICAL REVIEW

Tunable stiffness in fish robotics: mechanisms and advantages

To cite this article: Daniel Quinn and George Lauder 2022 Bioinspir. Biomim. 17 011002

View the article online for updates and enhancements.

You may also like

- Cephalopod-inspired robot capable of cyclic iet propulsion through shape change Caleb Christianson, Yi Cui, Michael Ishida et al.
- Locomotion of arthropods in aquatic environment and their applications in robotics

Bokeon Kwak and Joonbum Bae

 Fish-inspired robots: design, sensing, actuation, and autonomy—a review of research

Aditi Raj and Atul Thakur

IOP ebooks™

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Bioinspiration & Biomimetics

RECEIVED 7 August 2021

REVISED 8 November 2021

ACCEPTED FOR PUBLICATION

23 November 2021

PUBLISHED
29 December 2021

TOPICAL REVIEW

Tunable stiffness in fish robotics: mechanisms and advantages

Daniel Quinn^{1,2,*} and George Lauder³

- Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA, United States of America
- ² Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, United States of America
- ³ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
- * Author to whom any correspondence should be addressed.

E-mail: danquinn@virginia.edu

Keywords: bio-inspired robotics, fluid-structure interaction, smart materials, underwater vehicles

Abstract

One of the emerging themes of fish-inspired robotics is flexibility. Adding flexibility to the body, joints, or fins of fish-inspired robots can significantly improve thrust and/or efficiency during locomotion. However, the optimal stiffness depends on variables such as swimming speed, so there is no one 'best' stiffness that maximizes efficiency in all conditions. Fish are thought to solve this problem by using muscular activity to tune their body and fin stiffness in real-time. Inspired by fish, some recent robots sport polymer actuators, adjustable leaf springs, or artificial tendons that tune stiffness mechanically. Models and water channel tests are providing a theoretical framework for stiffness-tuning strategies that devices can implement. The strategies can be thought of as analogous to car transmissions, which allow users to improve efficiency by tuning gear ratio with driving speed. We provide an overview of the latest discoveries about (1) the propulsive benefits of flexibility, particularly *tunable* flexibility, and (2) the mechanisms and strategies that fish and fish-inspired robots use to tune stiffness while swimming.

Introduction

One of the most immediately evident traits of fishes is that they are flexible. Thanks to a network of collagenous membranes, muscle fibers, and ligaments, fish are highly flexible in both their bodies and fins [1–4]. Their body's passive rigidity can be O(1 Nmm²) [5], on par with thin sheets of rubber. Many fish species can bend their vertebral column bilaterally into a 'C' shape [6], a feat that in humans is reserved for professional contortionists.

Robots have historically been stiff in comparison. To many, the idea of a 'robot' brings to mind rigid metal components, epitomized perhaps by 'the robot', the dance style in which limbs are straight and jerky. As the field of *soft robotics* matures, this perception is fading. Bio-inspired robots today often use advanced polymers or soft materials to be as flexible (or more so) than animals in nature [7], yet a large performance gap remains.

The main challenge of adding flexibility is that there is no one 'best' stiffness. One stiffness may provide maximal efficiency, while another produces the most thrust. And the best stiffness for thrust may itself depend on inputs like swimming speed. A solution found in nature is *tunable* stiffness. With situation-dependent stiffness, an animal can access the advantages of flexibility while avoiding some of its pitfalls. Tunable stiffness is behind the dexterity of octopus arms, elephant trunks, and human tongues, and there is growing evidence that fish too use active muscle tensioning to adjust their stiffness [5, 8–10].

Before understanding why fish robots should tune stiffness, it is best to understand why fish-robots should be flexible at all. We will first review studies that explore the *role of flexibility* in fish and fish-inspired robots (section 1). We will then review studies and models that show the *advantages of tuning stiffness* (section 2). Lastly, we will review the known and hypothesized *mechanisms of tuning stiffness*—both in real fish (section 3) and fish-inspired robots (section 4). We suggest that the inclusion of tunable stiffness in the design of fish-like robotic systems is a key direction for improving the performance of aquatic robots.

1. Why be flexible?

The role of flexibility in fish-like swimming has been studied over a range of fidelities. Lower-order studies (e.g. those that abstract fishes as simply-actuated beams) offer scalable models rooted in physics, but they risk over-simplifying dynamics. Higher-order studies (e.g. those that quantify the kinematics of live fish) offer direct metrics of real swimmers, but they risk obscuring physics-based patterns in the data. Only with the full spectrum of studies has the role of flexibility begun to materialize, and there is now a considerable diversity of fish-inspired mechanical models that span the range from the simple to the complex (figure 1).

Some of the earliest work applying hydrodynamic theory to flexible swimmers was done by Wu [11]. Wu used linearized potential flow equations to show that 2D flexible hydrofoils could be more efficient than rigid ones at producing thrust. Computational studies later showed that Wu's findings applied to 2D foils with finite amplitudes and deforming wakes [12], and to 3D foils [13]. Several theoretical [14–19] and experimental [20–26] studies have since confirmed that adding flexibility can improve a hydrofoil's thrust and/or efficiency.

Real fish are more complicated than hydrofoils: they are complex networks of muscle, cartilage, bone, skin, and organs [27]. They use heterogeneous materials, such as bony rays connected by collagen fibers [28], and their stiffness is nonuniform, often varying within a single fin [29]. Nevertheless, even the complex musculature of vertebrates can exhibit simple spring-like behavior [30, 31]. When comparing fish to comparably stiff hydrofoils, one will often find similar swimming speeds, patterns of curvature, and Reynolds and Strouhal numbers [32]. Models with increasing fidelity (e.g. silicone casts of sunfish bodies [33] or robotic sunfish pectoral fins [34]) continue to find that flexibility can increase thrust and/or efficiency.

From this spectrum of flexibility studies, two physical explanations have emerged to explain how flexibility improves thrust and/or efficiency: (1) flexibility leverages the phenomenon of *resonance* to maximize fin/body amplitude, and (2) flexibility *tunes aerodynamic variables* like camber and angle-of-attack to maximize the thrust-to-drag ratio.

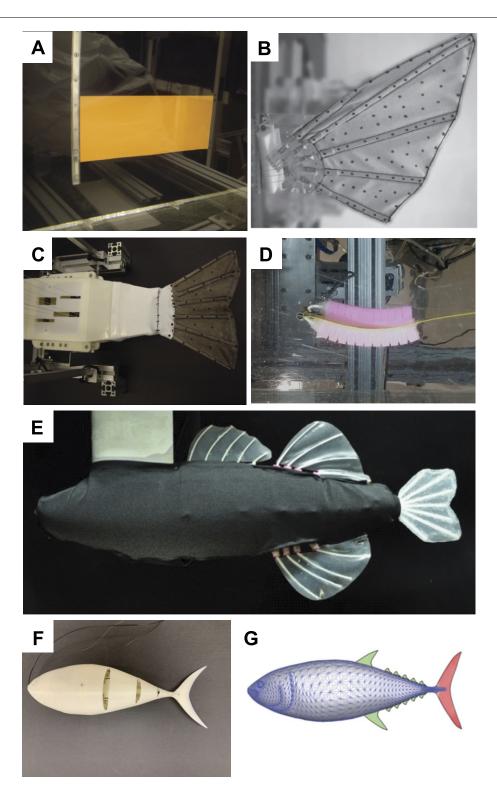
1.1. Theory 1: flexibility leverages resonance

The idea that resonance improves efficiency relies on fish and fish-robots acting like harmonic oscillators. The concept, first proposed by Blight [10], is that fish will deform most easily when actuated at their resonant frequency. At sub-resonant frequencies, energy is wasted on needless deformation; at super-resonant frequencies, energy is wasted on needless lateral accelerations; at resonance, the energy converted to useful work is maximized [31]. There is evidence that some

scallops actuate at the resonant frequency of their shell-hinge system [35], and that some jellyfish save 30% of their energy costs by actuating at the resonant frequency of their bells [36].

Several reduced-order studies have supported this theory about resonance. As stiffness is varied, simulated [24, 37] and experimental [22, 38] hydrofoils can pass through a series of local maxima in speed and/or efficiency. This kind of multi-modal response is typical of harmonic oscillators. In some setups, performance and amplitude peak at the same conditions, confirming that resonance plays an important role [22, 23, 39–42]. In robotic and computational fluid dynamics (CFD) simulations of lampreys, for example, actuating at resonance increased stride length with only a small increase in wake energy, suggesting resonance plays a role in maximizing efficiency [43, 44].

1.2. Theory 2: flexibility tunes aerodynamics


Other studies suggest a smaller role for resonance. Peaks in the amplitude of a flexible foil do not always correspond to peaks in thrust and efficiency [45–47]. As a result, the efficiency of bio-inspired propulsors may peak at just a fraction of the resonant frequency: 0.33 [48], 0.4 [49], 0.4–0.5 [50], 0.4–0.7 [51], or 0.5–0.6 [52]. In these cases, efficiency must be governed by more than just resonance.

Here is an explanation that avoids resonance: flexible propulsors deform in ways that—regardless of amplitude—optimize thrust-to-drag, i.e. they are more 'aerodynamic'. For example, flexibility creates a passive phase offset between a forcing and its response. This phase offset could reduce the effective angle of attack at the leading edge of a fin [16], which is a critical parameter for efficiency because it affects leading edge vortices and hence leading edge suction [53, 54]. Flexibility affects not just phasing, but also the temporal evolution of flexible shapes more generally, and these changes can reorient forces in ways that boost thrust and reduce drag [16, 50, 52, 55].

1.3. Reconciling the two theories

A key step toward reconciling these two theories came recently, when resonant peaks in efficiency were proven to be absent from inviscid models [45]. This discovery explains why resonance-driven efficiency maxima do not show up in potential flow models [24, 56, 57] but do show up in water channel experiments [22, 23, 38, 40, 58] and models that add resistive drag [38, 41, 45, 58]. The role of resonance will therefore depend on whether/how viscous forces are modeled. Still, even viscous studies find differing degrees of resonance, so unexplained discrepancies remain.

However, there is no reason that theories 1 and 2 cannot both be correct. The two theories are also highly interconnected, because a propulsor's resonance and general shape are both functions of its

Figure 1. Flexibility studies use models that range in complexity. (A) A simple rectangular plastic foil actuated at the leading edge in pitch and heave (see Saadat *et al* [221]). (B) Soft robotic fish-inspired model using antagonistic pneumatic actuators (see Wolf *et al* [222]). (C) Robotic fish caudal fin with individually-controlled fin rays attached to a rigid body. Reproduced with permission from [64]. (D) Robotic fish pectoral fin. Reproduced with permission from [34]. (E) Pneumatically-controlled dorsal, anal, and caudal fins attached to an undulating body for analyses of acceleration performance (see Wen *et al* [164]). (F) Tuna-inspired robot with flexible joints capable of high-frequency locomotion (see White *et al* [182]). (G) Three-dimensional reconstruction of a bluefin tuna used in immersed boundary simulations of the surrounding flow. Reproduced with permission from [223].

midline kinematics. Efficiency in aquatic propulsion is probably governed by a combination of these two theories. This view helps to explain why global efficiency maxima are often affected by both resonance and aerodynamics. Heaving flexible foils, for example, peak in efficiency when driven at resonance and a

moderate Strouhal number (0.2–0.4) [40]. Pitching flexible foils peak in efficiency when driven at structural resonance *and* wake resonance [59].

Most likely, the relative importance of theories 1 and 2 depends on physical inputs to the system. Many of the studies that downplay resonance are from

the micro aerial vehicle literature [48–50, 52], so the importance of resonance may be linked to mass ratio or Reynolds number. Indeed, peaks in efficiency are highly sensitive to drag [45, 57]. Resonance may also be more important for carangiform and thunniform fishes than it is for more flexible anguilliform swimmers, because the dynamics of sufficiently flexible foils can be dominated by fluttering modes [45, 46]. Efforts to refine the role of flexibility are ongoing.

2. Why tune flexibility?

Adding flexibility does not always improve performance. Making an oscillating hydrofoil more flexible may actually decrease its propulsive efficiency [22, 60–62]. When a propulsor is too flexible, actuation energy can be wasted on deformation rather than transmitted to the surrounding fluid. The resulting kinematics may even become chaotic [22]. An analogy from solid mechanics would be an overly-loosened shock absorber on a bicycle.

Different performance metrics are also affected by flexibility in different ways. For lamprey-like robots, one stiffness may maximize acceleration while another maximizes steady swimming speed [63]. For bluegill-inspired robotic fin rays, one stiffness may maximize thrust while another maximizes lift [64]. For tuna-inspired hydrofoils, one stiffness may maximize thrust while another maximizes efficiency [60]. The stiffness that optimizes performance depends on how 'performance' is defined.

Even within a single performance metric, the optimal flexibility can be situation-dependent. The magnitude of the incoming flow speed, for example, can determine whether a foil made more flexible becomes more or less efficient [22]. Consider the pectoral joint in Behbahani and Tan's fish-robot capable of rowing motions [65]. For low fin-beat frequencies, a more flexible joint led to higher speeds, but for high fin-beat frequencies, the trend was reversed. Dolphin-like [66] and tuna-like [67] robots exhibit similar trends: certain joint stiffnesses are more efficient at some speeds than others.

To make sense of these competing effects of flexibility, biomechanists and roboticists have used reduced-order models. The models offer a framework for understanding *why* tuning stiffness may be helpful, and also *when* and *how* tuning should be implemented. We will review two models that have been put forth. Each offers a different set of insights about the role that tuning stiffness plays in fish-like locomotion.

2.1. Model 1: a hydrofoil segmented by a torsional spring

Perhaps the simplest model of a flexible fin is to take an otherwise rigid hydrofoil and add a torsional spring partway along its length (figures 2(A)–(D)). The modeled efficiency of a foil with an internal

spring can be nearly 5 times that of a purely rigid foil [68]. The 'flexibility' of the hydrofoil is contained in one variable: the stiffness of the spring. Several studies have considered this one-spring model [48, 57, 68–70]. Simple actuations can then be applied, and the resulting kinematics can be studied easily. For example, Moore [57] pointed out that for small amplitudes and inviscid flow, this system has an exact solution when the spring is at the leading edge.

Despite the model's simplicity, it demonstrates both theories about flexibility mentioned in section 1. Consider, for example, the case where the spring's position is fixed and heave oscillations are prescribed at the leading edge. As stiffness changes, the amplitude of the trailing edge passes through a local maximum, i.e. resonance (figure 2(A)), and the effective angle of attack passes through a local minimum (figure 2(B)). The stiffness of the spring affects both the resonant (theory 1) and aerodynamic (theory 2) properties of the system, and no one stiffness optimizes both.

Changing the streamwise position of the torsional spring, i.e. the flexion ratio (ℓ_1/ℓ) , also affects the system's dynamics. In the model, stiffness is infinite everywhere except at the torsional spring, so increasing flexion ratio redistributes stiffness toward the leading edge. Nonuniform distributions of flexibility can lead to faster swimming speeds and/or higher efficiencies [62, 71–76]. Biomimetic fins with stiffness distributions modeled after pumpkinseed sunfish were 26% more efficient than comparably (but uniformly) flexible NACA0012 airfoils [76]. These studies tend to show that concentrating stiffness near the leading edge is better for performance [70, 72, 73, 77].

As in the case of tuning spring *strength*, the importance of tuning spring *position* can be seen in the context of both resonance and aerodynamics. Here, it is the distribution of stiffness that is tuned: the value of the flexion ratio (ℓ_1/ℓ) affects both the amplitude of the trailing edge (figure 2(C)) and the angle of attack of the leading edge (figure 2(D)). These variables are maximized/minimized at some intermediate flexion ratio (\sim 0.55–0.65). Interestingly, a wide range of fish—and even birds, bats, and insects—have flexion ratios in the 0.56–0.74 range [78].

Adding springs leads to increasingly complex distributions of stiffness. By adding a second spring to their model, Zeyghami and Moored [68] found that they could benefit thrust and efficiency simultaneously. Another study modeled a trapezoidal fin as six rigid elements connected by springs [72]; another modeled the backbone of a blue marlin as 23 rigid vertebrae connected by springs [1]. In figure 2, we chose one spring to illustrate that the importance of tuning stiffness (both in terms of strength and distribution) persists even in the simplest possible model of a flexible foil.

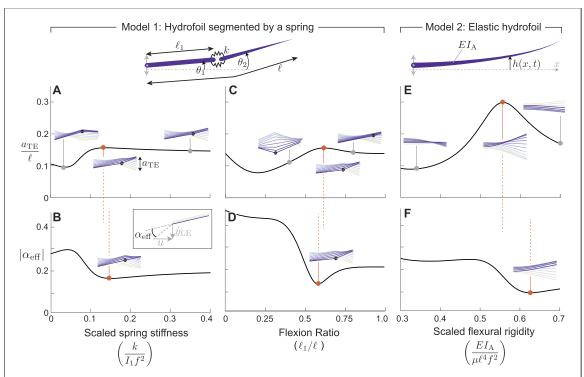


Figure 2. Two common flexible hydrofoil models highlight the importance of stiffness tuning. (A)–(D) Flexible foil is modeled as a hydrofoil segmented by a linear torsional spring heaved at the leading edge. Here, the pitch angles of the two hydrofoil segments (θ_1 and θ_2) are governed by the coupled equations $I_1\ddot{\theta}_1 = k (\theta_2 - \theta_1) - \zeta_1\dot{\theta}_1 + \tau_i$ and $I_2\dot{\theta}_2 = -k (\theta_2 - \theta_1) - \zeta_2\dot{\theta}_2$, where k is the torsional spring constant, τ_i is an inertial torque imposed by the heaving leading edge, and ζ_i and I_i are the i'th segment's damping coefficient and effective pitch moment of inertia, assumed to be proportional to the length of the segment and the length of the segment squared, respectively. (E) and (F) Flexible foil is modeled as a linearly elastic beam heaved at the leading edge. Here, the deflection of the beam (h(x,t)) is governed by elastic beam theory: $\mu h_{tt} = -EI_A h_{xxxx} - \zeta h_t$, where subscripts denote partial derivatives and μ , E, E, and E are the beam's effective mass per length, elastic modulus, cross-sectional second moment of area, and damping coefficient. (A), (C) and (E) show trailing edge amplitude (E); (B), (D) and (F) show maximum effective angle of attack (E0, as defined in the insert (E1, incoming flow; E1, deflection at the leading edge). See, e.g. Moore [57], Zeyghami and Moored [68], or Floryan and Rowley [45] for derivations, additional terms, and more details.

2.2. Model 2: an elastic hydrofoil

In the limit of a continuous distribution of an infinite number of linear springs, the hydrofoil model becomes a linearly elastic beam. Now the dynamics of the hydrofoil are governed by elastic beam theory, and the system again has exact solutions in some loading scenarios. Using beam theory to understand swimming dynamics has been successful across a wide range of theoretical [24, 37, 41, 49, 79–81] and experimental [20, 22, 23, 25, 40, 82–84] studies. It has also contributed to the design of actual swimming robots [85, 86].

A key advantage of modeling a foil as an elastic beam is that it offers a framework for considering intrinsic flexibility and shape simultaneously. The response of a beam/foil is dictated not just by its intrinsic flexibility (quantified by its elastic modulus E), nor by its shape (quantified by its cross-sectional moment of area I_A), but rather by their product, the flexural rigidity EI_A . A beam with constant rectangular cross-section has $EI_A = E(1/12)s\delta^3(1-\nu^2)^{-1}$, where s and δ are the span and thickness of the beam, and ν is the Poisson's ratio [87]. One could then predict, for example, that doubling this foil's thickness or octupling its elastic modulus will have the same effect on its dynamic response to loading.

Tuning the flexural rigidity in model 2 has similar effects as tuning the spring stiffness in model 1. As flexural rigidity increases, trailing edge amplitude passes through a local maximum, i.e. resonance (figure 2(E)), and trailing edge amplitude passes through a local minimum (figure 2(F)). The flexural rigidity affects both the resonance (theory 1) and aerodynamic (theory 2) properties of the system, and no one flexural rigidity optimizes both. Note that unlike the one-spring model, the elastic foil model will exhibit an infinite number of higher-order resonant modes as $EI_A \rightarrow 0$, but only the first mode is shown in figures 2(E) and (D).

The sample beam solutions shown (figures 2(E) and (F)) assume that the fluid only applies added mass and linear damping forces to the beam. More advanced beam-like swimming models add streamwise variation in flexural rigidity [88], a viscoelastic damping term [38], an internal tension term [14, 16, 19, 24, 37], or a linearized pressure drop across the trailing edge [24, 37, 38, 41, 45]. See Valdivia y Alvarado [89] for a comprehensive list of shear, inertia, and fluid-forcing terms and a discussion of the conditions meriting their neglection. In some cases, exact solutions can be found even with higher-order

terms added by assuming quadratic rigidity variation [88] or quartic beam deflection [41].

Elastic foil models can be further advanced by adding nonlinear forcing terms. With these terms included, resonant peaks can broaden and weaken with increasing heave amplitudes [90]. Even these nonlinear models are only 'weakly nonlinear' [38], because less predictable nonlinearities can be introduced by the wake [91]. Experiments confirm that forcing amplitude affects resonance for heaving flexible foils [58]. Real flexible joints, such as intervertebral joints in marlin, can also exhibit amplitude-dependent elasticity [1]. In figure 2, we chose a linear model with as few terms as possible to illustrate that the importance of tuning stiffness persists even in the simplest version of elastic beam theory.

2.3. Implications of the two models

Both models 1 and 2 reveal the importance of tuning stiffness. First, they reveal that certain performance metrics (e.g. trailing edge amplitude and effective angle of attack) respond differently to flexibility. A roboticist may therefore want to change flexibility as performance goals shift. More importantly, they reveal that even within one metric (say, trailing edge amplitude), the optimal stiffness depends on other variables such as frequency. Resonance in model 1 occurs not at a particular value of spring stiffness k, but rather at a particular value of the dimensionless ratio $k/(I_1f^2)$ (figures 2(A) and (C)). Resonance in model 2 occurs not at a particular value of beam rigidity EIA, but rather at a particular value of the dimensionless ratio $EI_A/(\mu \ell^4 f^2)$ (figure 2(E)).

These dimensionless ratios, which represent a ratio of elastic forces to hydrodynamic forces, go by a variety of names: 'effective flexibility/stiffness' [22, 23, 49, 59, 68, 92], 'dimensionless rigidity/ stiffness/frequency' [20, 24, 37, 38, 41, 79, 81], 'elastoinertial number' [25, 52], etc. The ratios shine light on the patterns lurking in these abstract models, but they also provide actionable stiffness-tuning strategies. For example, to maintain a constant value of $k/(I_1f^2)$ —perhaps one that leads to resonance—stiffness should be tuned to scale with frequency squared. This result was used to program a tuna-like robot that saves energy by tuning its own tail stiffness in realtime [67].

Lastly, note that while we have focused on propulsive benefits, tunable stiffness may have more exotic benefits beyond increasing thrust or efficiency. Flexibility affects how hydrofoils interact with solid boundaries [93, 94], so tunable stiffness could perhaps assist with near-boundary control. The flexibility of a foil's trailing edge affects the swirling strength of wake vortices, so tuning stiffness could be used to inhibit/enhance cross-stream dispersion [95]. Flexible structures are also less likely to damage their environments, so tunable stiffness could be used as a safety

mechanism [7]. There are clearly many reasons for swimmers to tune stiffness. But how can a swimmer tune its own stiffness while swimming?

3. Potential biological mechanisms of stiffness alteration and tuning

Virtually every component of the locomotor system in fishes has some degree of flexibility and undergoes both bending and longitudinal strain during swimming [96–102]. Undulatory motion of the fish body results in an obvious wave of bending that progresses from head to tail during forward locomotion [103–105]. Even stiff skeletal elements can experience 2% strains during movement in sharks, suggesting that the entire vertebral column (vertebrae and intervertebral joints together) may exhibit spring-like behavior, with total strains approaching 12% during maneuvering [96].

Fish are not, however, uniformly flexible. Fish bodies have non-uniform cross-sectional areas: they are thickest approximately one-quarter body length back from the head, then taper to a thin tail region [105–107]. This change in cross-sectional area is accompanied by changes in the relative proportion of muscular and skeletal elements, which further complicates the distribution of stiffness along the body. While some data exist on the flexural stiffness of passive fish bodies [5, 33, 108, 109], not much is known about how material properties of the fish body change quantitatively from head to tail, nor how the relative proportions of muscle, connective tissue, and skeletal elements affect body stiffness.

So, what is known about fish stiffness and how it compares to the simple flexible systems that have been used to model fish undulatory propulsion? McHenry et al [33] estimated that sunfish body flexural stiffness EI varies from approximately 1×10^{-3} N m² near the head to 1×10^{-6} N m² near the tail. Other researchers [5, 108] have estimated EI values that range from $3\,\times\,10^{-4}~N~m^2$ to $1.8\,\times\,10^{-4}~N~m^2$ and suggested that during locomotion, body flexural stiffness may increase two to threefold due to body muscle activation. Naughton et al [110] reported body stiffness values of 0.5 to 0.9 Nm m^{-1} for the body and 0.05 to 0.4 Nm m⁻¹ for the tail region in four species of elongate fishes. Shelton et al [32] used flexible foil materials with EI values of 3.3×10^{-5} N m² and $9.9 \times 10^{-4} \text{ N m}^2$ as simple models of undulatory swimming, and suggested that these values reflect, approximately, in vivo body stiffness values.

Realtime adjustments to fish body and fin stiffness are most likely mediated by changes in muscle activation. The organization of fish body musculature uses a two-gear system [98, 111–116]: so-called 'red' fibers that extend longitudinally and power slow-speed swimming, and so-called 'white' fibers that are W-shaped and power high-speed movements like rapid accelerations or maneuvers (figures 3(A) and (B)).

In most fishes, red fibers are located along the lateral body margin, but in many tuna-like species they are deeper beneath the skin and have complex attachments to tendons that connect in turn to the vertebral column and tail [117–119]. Both red and white fibers are segmentally arranged into blocks called myomeres and separated by connective tissue called myosepts, and it is the sequential activation of these myomeric blocks down the body that generates propulsive waves.

There are many challenges to conducting experimental analyses of muscle function and body stiffness in freely-swimming fishes, so it is hard to test the hypothesis that fish actively alter stiffness. There are, however, a few stiffness-tuning mechanisms that have been proposed and studied to some degree.

3.1. Mechanism 1: antagonistic body muscle contraction

As muscles on opposite sides of the body change the extent of their co-contraction, there will be a concomitant change in stiffness of that body region [8, 120]. Simultaneous antagonistic actuation implies that at times, muscles will do 'negative work', i.e. absorb energy rather than transfer it to the surroundings. Negative work is thought to be done by the red fibers of largemouth bass [121] and carp [122], and the white fibers of sculpin [123] and saithe [124]. Negative work requires extra energy, but the energetic benefits of altering stiffness may be worth the costs [8, 10]. In lampreys, for example, negative work can stiffen the tail, and more anterior muscles can make up for the losses with additional positive work [63]. It has been hypothesized that lampreys use appropriately-timed antagonistic muscle contractions to modulate their effective stiffness by about two-fold [109], thereby tuning their passive dynamics to maximize acceleration or speed [63].

Antagonistic muscle actuation can be recorded directly using electromyography. For example, when largemouth bass swim at high speeds and transition to an unsteady burst-and-glide mode, antagonistic muscle activity has been detected between white muscles on the left and right sides of the body (figure 3(C)) [125]. These data reflect coactivation of the body muscles by the nervous system, so they suggest that the fish is being stiffened by antagonistic activity, though these data do not allow quantification of the *degree* of stiffening.

Antagonistic body muscle activity also appears in some rapid C-start escape responses. Figure 3(D) shows recordings from *Polypterus* during a high-speed maneuver [120]. In the initial bending phase, there was muscle electrical activity on the left side of the body (the side toward which the fish body is bending), but also activity on the right side of the body. During the second phase of the escape response, there was little activity on the left side, but even stronger activity on the right side, corresponding to the body

bending in the opposite direction. These data suggest that antagonistic muscle activity during the escape response might be involved in tuning body stiffness, although Tytell and Lauder [120] could not detect any correlation between the extent of antagonistic activity and the body kinematic wave speed, so the effect of antagonistic muscle activation on locomotor performance remains unknown.

Fish are likely capable of regionally controlling where stiffness is altered along the body, because fish can recruit myomeres independently, and they may not recruit all regions of a single myomere simultaneously [125]. For example, white muscle myomeres usually have thinner regions extending anteriorly both above and below the vertebral column (figures 3(A) and (B)) [126-128], and each myomere can span several vertebrae. In largemouth bass, myomeres each span 7-10 vertebrae, or nearly 20% of the body length [129]. The complex folding of white body muscle suggests that fish can control where stiffness is altered both along the anterior-posterior axis and along the dorsoventral axis, perhaps to initiate a maneuver or to modulate the amount of force generated at any one location.

3.2. Mechanism 2: antagonistic fin actuation

Fins are also important elements of the functional design of fishes and are used in a diversity of ways during both rectilinear propulsion and maneuvering [104, 130]. Fins are not simply passive elements attached to a bending body—they have their own intrinsic musculature and skeletal elements that allow complex three dimensional movement [131, 132]. Fish fin rays can be actuated at their base by up to four distinct muscles, and each ray has a bilaminar design in which two half-rays (hemitrichs) slide past each other in response to antagonistic muscle activity (figure 4(A)) [4, 29, 83].

Antagonistic actuation at the bases of fin rays can vary the effective stiffness of a fin. A linear elasticity model, validated against simply-loaded bluegill sunfish pectoral fins, shows that actuating the bases of pectoral fin rays can vary stiffness by an order of magnitude [83]. Figure 4(B) shows the right pectoral fin of a bluegill sunfish executing a maneuver. In the absence of active control of fin rays, the fin would curve away from incident flow, but instead the fin is concave *toward* the free-stream flow. Electrical recordings in sunfish pectoral fin musculature verify that antagonistic muscle activity takes place (figure 4(C)) [132].

Antagonistic actuation may also play a role in stiffening the caudal fin or tail. The caudal fin contains several segmented fin rays which receive tendons from body musculature (figure 4(D)). There is a considerable diversity of attachment patterns in fishes, but in high-performance scombrid fishes (tunas and relatives), two prominent dorsal and ventral lateral tendons extend posteriorly to splay out over the heads of

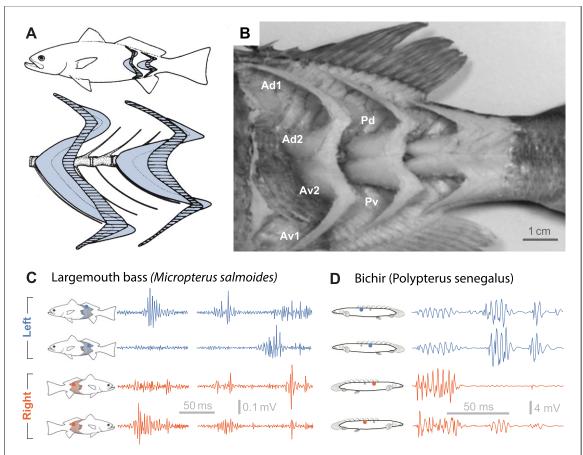


Figure 3. Stiffness control in body musculature. (A) White myotomal segmental muscle arrangement in diagrammatic form. (B) A largemouth bass (*Micropterus salmoides*) dissection reveals the W-shape of body myomeres with anteriorly-pointing regions (dorsal, Ad1 & Ad2; ventral, Av1 & Av2) and posteriorly-pointing deep regions (dorsal, Pd; ventral, Pv). Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Journal of Comparative Physiology [224] How swimming fish use slow and fast muscle fibers: implications for models of vertebrate muscle recruitment, Jayne, B. C. & Lauder, G. V., (c) 1994. (C) Varying degrees of antagonistic body muscle activity in largemouth bass during slow (left) and fast (right) swimming. See Jayne and Lauder [125]. (D) Varying degrees of antagonistic body muscle activity in bichir (*Polypterus senegalus*) during the first 50 ms of an escape maneuver. See Tytell and Lauder [120].

fin rays in the upper and lower tail lobes of the tail [133–135]. These tendons can be robust and at least indicate the potential for fish to actively control tail conformation [136, 137] and stiffness. For example, muscle activity was found to increase in the caudal fin of bluegill sunfish at high speeds, 'suggesting stiffening of the tail fin against imposed hydrodynamic loads' [138].

Given the potential importance of antagonistic muscle activity, there is surprisingly little evidence to support this stiffness-tuning mechanism. One reason for the lack of examples could be that experiments must be done in freely moving (and often uncooperative) fishes. A successful test requires multiple successful electrode implantations, simultaneous high-speed video over a range of swimming conditions, and post-mortem confirmation of electrode placement. Low-speed locomotion often exhibits little or no antagonistic muscle activity, and high-speed locomotion can destabilize electrode arrays. Considerable care needs to be taken to ensure that any 'antagonistic' muscle activity is not actually the result of electrical crosstalk among channels.

3.3. Mechanism 3: fin shape alteration

Changing the shape of a fin also affects stiffness, because a fin's second moment of area contributes to its flexural rigidity. Fish have fine control over a fin's shape [131, 132]. Some caudal fins have up to 50 muscle bundles for controlling shape in addition to the myotomal muscle fibers that generate the primary bending motion of the body [139–146]. These shape changes alter stiffness: 'cupping' a sunfish-inspired robotic caudal fin increased its stiffness and led to higher thrust [64]. Reconstructions of mackerel pectoral fins suggest that cupping can increase stiffness by 3–7 times [147]. And changes in fin curvature during rapid maneuvers have been suggested to reflect alterations in fin stiffness as a means to resist fluid loading [148, 149].

Changes in fin shape can also be as simple as a change in area, a technique fish often use to enhance performance [9]. As bluegill sunfish swim faster, they decrease the surface area of their median dorsal and anal fins [150] while increasing the area of their caudal fin [138]. They may also increase the area of dorsal/anal fins immediately prior to maneuvers

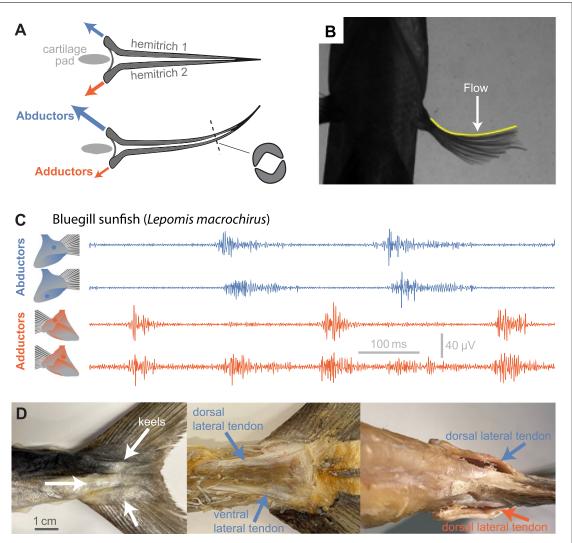


Figure 4. Stiffness control in fins. (A) Schematic anatomy of a fish fin ray to show its bilaminar structure and muscle attachment points. Antagonistic motion can stiffen fin (top) and/or bend fin (bottom). Insert: cross section of a fin ray. (B) Right pectoral fin of a maneuvering bluegill sunfish (*Lepomis macrochirus*); the fin's leading edge (outlined in yellow) curves into the incoming flow. Reproduced from [4] © IOP Publishing Ltd. All rights reserved. (C) Electrical recordings from pectoral fin muscles in bluegill sunfish. At first, adductor muscles are active while abductor muscles are not; then, during a rapid maneuver, both are active. See Lauder *et al* [132]. (D) Tail and caudal tendon anatomy in spanish mackerel (*Scomberomorus maculatus*). Left: caudal peduncle region with finlets and three external horizontal keels (white arrows). Middle: superficial dissection shows dorsal and ventral lateral tendons which splay out to attach to fin rays in the upper and lower tail lobes. Right: viewed from above, a dissection exposes two lateral dorsal tendons, one on each side.

[150, 151]. By modulating total surface area and the location of area increase along the body, fish change the way they respond to fluid loading.

3.4. Mechanism 4: pressure-driven stiffness alteration in skin

One last feature of fish functional design that could impact stiffness and possibly contribute to stiffness tuning is the skin. Fish skin has been implicated in body stiffness control, due both to the cross-helical pattern of collagen fibers that lie underneath the scales (a form of passive stiffness) [152–155] and to a proposed pressure-driven stiffening that occurs as a result of body muscle activity pressurizing the body cavity (a form of active stiffness) [156, 157]. Measurements of pressure inside the fish body during locomotion show that as fish myotomal musculature contracts, the

pressure increases, which is thought to increase the strain on cross-helical skin fibers as they resist radial expansion. Wainwright $et\ al\ [156]$ recorded pressures during rapid swimming that were $15\times$ higher than resting body pressures. These authors suggested that fish skin could act like an external tendon that uses cyclical strain cycles to increase the mechanical advantage of myotomal musculature and exert a force on the tail that increases thrust.

There are many challenges to analyzing the role of stiffness-tuning in freely-swimming fishes. And yet, there is a clear-cut theoretical expectation that altering the stiffness of propulsive surfaces should increase locomotor performance. One path forward is to turn to robotic fish-like platforms in which the cost of swimming and thrust can be directly measured and in which stiffness can be experimentally altered in a

controlled manner to assess the effects on thrust and efficiency.

4. Robotic mechanisms that tune stiffness

Fish-inspired robots have become increasingly flexible over the past couple of decades. A seminal example is MIT's 1996 RoboTuna [158], whose hull was a thin layer of flexible foam covered by a spandex sock. Since then, dozens of fish-like robots have used flexible components. Some use rigid frames but flexible skin-like coverings and/or fin membranes [159–166]; some have rigid components connected by flexible joints that mimic vertebrae [167–169]. Others have entirely flexible components, such as silicone bodies or tails [85, 170–178]. Thanks to advances in soft actuators, at least one prototype has been made almost entirely of flexible components [86].

Tunable stiffness is a newer concept that only a few fish-like robots have implemented. The simplest examples are robots designed with interchangeable flexible parts. There have been, for example, robotic tadpoles with interchangeable tails of varying stiffness [179] or robotic peduncles made with interchangeable springs at the peduncle joint [55]. Other fish-like robots adjust stiffness using nylon [43] or steel [180] tail inserts, extra vertebrae [181], extra joints [182], or the tension in the cables of tensegrity structures [183, 184]. In all of these examples, stiffness is tuned in between trials, i.e. offline. For roboticists wanting a stiffness that adapts to changing conditions, tuning must be done while swimming, i.e. online.

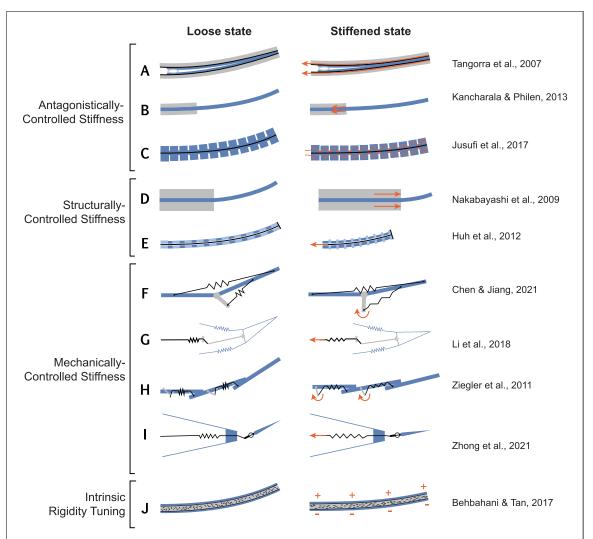
Online stiffness-tuning is new to robotic fish but rather common in other subfields of robotics. Some walking robots, for example, tune the stiffness of their leg joints in realtime [185]. To facilitate cross-field comparisons, we will therefore use established categories of stiffness tuning [7, 185] as we review mechanisms thus far implemented in robotic fish.

4.1. Antagonistically-controlled stiffness

Mechanisms that tune stiffness antagonistically do so by pulling in two directions on the same structural component. Because stiffness is essentially 'resistance to deformation', the dual actuation effectively stiffens the structure. For example, two springs pulling on the same rotational joint will increase its effective torsional stiffness [186]. This concept is the robotic analogue of antagonistic muscle actuation, so it is the most bio-inspired of the tuning mechanisms, at least based on the little that is known about stiffness-tuning in fish. Antagonistic actuators can be packaged into small, self-contained, adjustable-stiffness rotary actuators [187, 188], and springs are just one option—the actuators could also be dielectric elastomers [189] or soft pneumatic actuators [7].

One feature that makes antagonistically-controlled stiffness appealing is that—as in real

fish—the same antagonistic actuators can both actuate a fin and actively stiffen it (figure 4(A)). Tangorra *et al* [190], for example, showed how conducting polymer actuators could both actuate and actively stiffen robotic fins simultaneously (figure 5(A)). Similar fin-stiffening strategies have been demonstrated with other smart materials, like flexible matrix composite (FMC) actuators (which employ pressure-driven elastomers) [82], and macro fiber composite actuators (which employ piezoelectric fibers) [191] (figure 5(B)). In the case of FMC actuators, which can increase stiffness by up to 56 times [192], the authors tuned stiffness based on actuation frequency in order to maintain constant thrust.


Because antagonistic actuators work against each other, they at times perform negative work on the structure they control. As in real fish, this costs the robot energy, but the advantages of tuned flexibility may outweigh those costs. A recent study of antagonistic stiffening by Jusufi *et al* [47] proves this point. The authors used pneumatically-actuated, silicone-based elastomers to pull antagonistically on two sides of a flexible panel (figure 5(C)). The actuators were driven over a range of amplitudes and phases, and thrust was maximized when there was some level of bilateral co-contraction. Optimal performance occurred at a condition where some negative work was done on the panel.

Antagonistic stiffening has also been attempted several times in octopus-inspired robots. The layout is quite different than fish-like robots, but the stiffening is similar enough to merit a brief discussion. Octopi use antagonistic muscle pairs to stiffen their arms: transverse muscles elongate arms, longitudinal muscles contract arms, and both actuated together stiffen the arm. Laschi *et al* [193] proposed an artificial muscle layout based on this strategy, and the idea was later implemented using a pneumatic bladder (to elongate arms) and artificial tendons (to contract arms) [194]. The concept has since been miniaturized using shape-memory alloys and deployed in a self-contained eight-armed robot [195].

4.2. Structurally-controlled stiffness

Mechanisms that tune stiffness *structurally* do so by changing the geometry of elastic elements. A classic demonstration of structurally-controlled stiffness is curling a slice of pizza to prevent it from drooping. Cross-sections of the curved pizza have a higher second moment of area, resulting in a higher flexural rigidity and thus a higher resistance to bending. This concept explains how a fin can be stiffened by 3–7 times by 'cupping' [147], a technique that has been recreated in robotic caudal fins [64].

Another simple way to structurally-control stiffness is to change the length of a bending element. An actuator can, for example, change the length of a leaf

Figure 5. Stiffness control in robotic fish. Schematics illustrate the basic mechanisms of stiffness-tuning that have been tested or proposed in fish-like robotics. To antagonistically control stiffness, robots tune the co-actuation of two actuators, one on each side of a propulsor. To structurally control stiffness, robots tune the shape or length of a propulsor. To mechanically control stiffness, robots tune the pretension of internal elastic elements of a propulsor. To apply intrinsic rigidity tuning, robots make use of smart materials that change stiffness, e.g. in the presence of an electric field.

spring [196] or helical spring [197] attached to a load. This strategy has been used to stiffen robotic fins. In one case, an extendible rigid plate was used to adjust the active length of a flexible panel (figure 5(D)) [198]. The adjustable stiffness joint was shown to be more efficient compared with a uniform stiffness control. In another case, a tendon through the center of a beam was used to compress the beam (figure 5(E)) [199]. This mechanism was later tested in a robotic dolphin fluke [200].

4.3. Mechanically-controlled stiffness

Mechanisms that tune stiffness *mechanically* do so by changing the pre-tension of elastic elements. For example, if a mechanical arm is connected to a body via a pin joint *and* a spring, then tuning the pre-tension on the spring will tune the effective stiffness of the pin joint [201]. This mechanism can be miniaturized to fit into a self-contained joint, e.g. a torsional joint with a controllable spindle that

compresses internal springs [202]. In some ways, mechanically-controlled stiffness is a robotic analog to the hypothesized intermuscular pressure modulation of fish [203]. In that case, pressure increases the pre-tension of connective tissues, rendering a muscle effectively stiffer.

Mechanically-controlled stiffness has been implemented in four fish-like robots. The first, TenFiBot [204], uses springs with adjustable pre-tensions in a mechanism the authors call a mechanically adjustable compliance and controllable equilibrium position actuator (figure 5(F)). The second is a robot with a pre-tensioned internal spring that modulates the effective stiffness of a silicone tail [205] (online tuning was hypothesized but not demonstrated; figure 5(G)). The third is a tethered four-joint robot in which the final three joints each have a pre-tensioned spring for tuning stiffness [206] (figure 5(H)). The fourth is a tethered tuna-like robot with a pre-tensioned internal spring connected to the peduncle [67] (figure 5(I)).

4.4. Intrinsic rigidity tuning

A robot could, in theory, change its stiffness by changing the *intrinsic* material properties of its elastic elements. Until recently, this strategy has been hypothetical, but it has become more viable with the advent of smart materials. Intrinsic rigidity tuning has been attempted once in fish-like propulsion. The authors, Behbahani and Tan [207], used an electrorheological fluid-filled beam as a fin (figure 5(J)). As the electric field applied to the fluid changed from 0 to 1800 kV m⁻¹, the natural frequency of the fin increased by almost 40%. Other methods of intrinsic rigidity tuning include granular jamming and transition-based softening [7], but there is no evidence that real fish use these types of material-based active stiffening.

5. Future directions

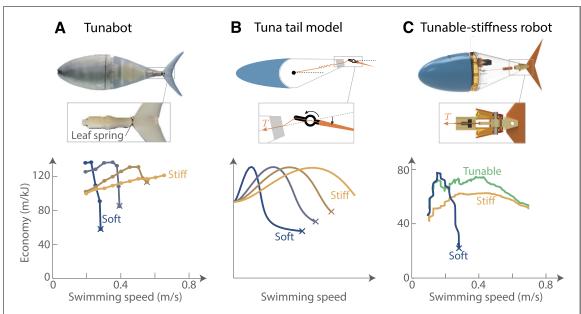
5.1. Implementing tunable stiffness in next generation robots

When a theoretical understanding of stiffness tuning is applied to a fish-like robot, the result can be an immediate improvement in efficiency. Consider, for example, the Tunabot [208], whose swimming performance depends on the stiffness of its peduncle (figure 6(A)). By modeling the caudal fin as a thin airfoil attached to a tendon-inspired spring, one can make sense of the stiffness-dependent performance of the Tunabot (figure 6(B)). Then, by building a tuna-like robot whose peduncle has a mechanically-controlled stiffness, one can drastically improve performance (figure 6(C)). Not only is the resulting robot more efficient, but also it can reach a wider range of speeds.

As benefits of tuning stiffness become clearer, more fish-like robots may start implementing stiffness-tuning mechanisms. Only a small handful of fish-like robot prototypes have attempted tuning stiffness—most of them in lab settings. Some of the more successful attempts have used antagonistically-controlled or mechanically-controlled stiffness, but there are a variety of other mechanisms from the robotics literature [7, 185] that have yet to be attempted in fish-like robots (e.g. granular jamming).

The stiffness model shown in figure 6 suggests that the benefits of tuning increase with size and frequency [67], so tuning may be especially important to future generations of fish-like robots that are larger and faster. However, these benefits can only be accessed if these faster robots can tune stiffness over increasingly wide ranges, so they will require robust tuning mechanisms. Large fish-like robots may therefore need to rely on tuning mechanisms that have no clear maximum stiffness, such as mechanically-controlled stiffness, rather than mechanisms that are constrained by material properties, such as intrinsic rigidity tuning. These hypotheses are based on a model developed for thunniform locomotion [67]; it is unknown how

tuning benefits scale to other types of swimming, such as rajiform (stingray-like) locomotion. Effective models of tunable stiffness could be particularly helpful when designing controllers, such as model-based precision controllers that have been tested in soft robotics applications [209, 210].


5.2. Passive stiffness tuning

Another promising direction that has so far received little attention is 'passive stiffness tuning'. The tuning mechanisms we have discussed are 'active' in that a nervous system or controller actively adjusts stiffness based on swimming conditions. However, elements with nonlinear stiffness could in theory offer 'passive tuning', e.g. an element could automatically get stiffer at higher speeds simply because it is experiencing higher loads. If the increased stiffness were energetically favorable, this setup would offer a form of automatic stiffness control [211].

There is some evidence that passive stiffness tuning occurs in aquatic animals. A model of lampreys showed that negative work emerged at higher frequencies without sensory input, and that the higher effective stiffness led to higher efficiency [63]. The vertebral column of dogfish sharks exhibits nonlinear stiffness: it stiffens automatically at higher frequencies, a feature the authors compare to a continuously variable transmission [212]. It would be of interest to see if other, non-elasmobranch, fish species with different backbone materials and anatomies show similar properties. The line between passive and active stiffness tuning can be blurry, because a backbone with naturally occurring frequency-dependent stiffness could be functionally identical to a backbone that is actively made to have frequency-dependent stiffness. In these cases, more formal treatments of stiffness may be helpful, such as decoupling stiffness matrices into passive and active elements [213].

5.3. Robo-inspired biology

While stiffness tuning strategies are poised to improve fish-like robotics, they can also offer insights into new studies of live fish locomotion. This learning will require challenging new experiments. Testing stiffness-related hypotheses in living fishes requires invasive surgery to implant transducers and electrodes into fish, appropriate and cooperative model fish species with anatomy conducive to in vivo stiffness measurements, flow tanks to control swimming speed in instrumented fish, simultaneous measurement of the energetic cost of swimming, and some good fortune so that fish maintain functioning instrumentation as they swim post-surgically at different speeds in a metabolic chamber. And even with a successful experimental protocol of this kind, there is the question of an appropriate control: how does one make a comparison between these

Figure 6. Tunable stiffness allows high efficiencies throughout multi-speed missions. (A) The stiffness of the peduncle in the 'Tunabot' [208] is dictated by a leaf spring. Stiffer peduncles can reach higher speeds (X's indicate speed limits given stiffness), but looser peduncles are more efficient at low frequencies. (B) A model of tuna tail dynamics [67] recreates the qualitative features of the stiffness-dependent economy curves of the Tunabot. The model uses dimensionless variables and can be fit to any size, so tick marks and units were omitted. (C) A robot with a variable-stiffness peduncle (the 'AutoTuna' [67]) outperforms the same robot with fixed-stiffness peduncles; by tuning the spring tension T based on swimming speed, the robot is able to reach a wide range of speeds while maintaining high efficiency (top row images from Zhong $et\ al\ [67]$). From [67]. Reprinted with permission from AAAS.

data and swimming in live fish that lack stiffness adjustments?

One experimental option that we suggest is implanting small tendon buckles onto tail tendons, then measuring how muscle activation changes with speed. The study of Shadwick and Syme [214] and the previous work of Knower [134] provide examples of this method and show that tendon buckles allow in vivo measurement of tendon forces. To address the issue of an appropriate control, new studies would ideally use experimental alterations of body stiffness, such as scale removal [154] or muscle deactivation via botulinum toxin. The latter option, which has the advantage of converting active elements to passive elements, has been used in a study of fish jaw muscles [215]. We suggest that particular emphasis be placed on studying antagonistic musculature. Data on antagonistic muscle activity, estimated muscle fiber length changes using sonomicrometry [100, 127, 214, 216], combined with in vitro studies of muscle length-tension relationships, could help in understanding how much bilateral force is being applied to the spinal column and fins, and if (and how) bilateral force production changes with swim-

Despite the sparse biological evidence of stiffness tuning, there are clear reasons to believe that changes in stiffness play an important role in the locomotor dynamics of fishes [5, 8, 33, 67]. These reasons can be argued based on anatomical data from fish, comparative data from walking and

flying animals, as well as theoretical and computational models [134, 214, 217]. Biological hypotheses can also be tested on fish-like robotic platforms where stiffness can be tuned with swimming speed [204, 207]. This concept highlights the interplay between biology and robotics. Biology can inspire robotic models of stiffness tuning, and these models can help us further understand the biological mechanisms on which they were based.

6. Conclusion

We believe that a closed loop of 'bio-inspired robotics' and 'robo-inspired biology' [218] will be critical to our understanding of aquatic stiffness tuning in the years ahead. Fish vastly outperform even the most advanced swimming robots [219], and our limited understanding of flexibility is thought to be a key contributor to this gap [220]. Fish-like robots have typically used a fixed stiffness—often one chosen based on rules of thumb. Based on recent discoveries, we suggest that future studies of flexibility in fish and robots should consider stiffness as a constantlyshifting variable. To keep pace with real fish, bioinspired robots may need to adapt their stiffness based on realtime performance goals and swimming conditions. Such robotic platforms may even outperform biological systems, which may have limitations on their ability to actively tune stiffness.

Acknowledgments

This work was made possible by funding from the Office of Naval Research (N00014-14-1-0533, N00014-15-1-2234, N00014-18-1-2537) and the National Science Foundation (1921809, 093088-17158, 2040351).

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Daniel Quinn https://orcid.org/0000-0002-5835-5221

George Lauder https://orcid.org/0000-0003-0731-286X

References

- [1] Long J H 1992 Stiffness and damping forces in the intervertebral joints of blue marlin (*Makaira nigricans*) *J. Exp. Biol.* **162** 131–55
- [2] Fish F E 1999 Performance constraints on the maneuverability of flexible and rigid biological systems Int. Symp. Unmanned Untethered Submersible Technology pp 394–406
- [3] Lauder G V and Madden P G A 2007 Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins Exp. Fluids 43 641-53
- [4] Lauder G V, Madden P G A, Tangorra J L, Anderson E and Baker T V 2011 Bioinspiration from fish for smart material design and function Smart Mater. Struct. 20 094014
- [5] Long J H Jr and Muscles J H 1998 Muscles, elastic energy, and the dynamics of body stiffness in swimming eels Am. Zool. 38 771–92
- [6] Domenici P and Blake R 1997 The kinematics and performance of fish fast-start swimming J. Exp. Biol. 200 1165–78
- [7] Manti M, Cacucciolo V and Cianchetti M 2016 Stiffening in soft robotics: a review of the state of the art *IEEE Robot*. *Autom. Mag.* 23 93–106
- [8] Long J H and Nipper K S 1996 The importance of body stiffness in undulatory propulsion *Am. Zool.* **36** 678–94
- [9] Fish F E and Lauder G V 2017 Control surfaces of aquatic vertebrates: active and passive design and function *J. Exp. Biol.* 220 4351–63
- [10] Blight A R 1977 The muscular control of vertebrate swimming movements *Biol. Rev.* **52** 181–218
- [11] Wu T Y-T 1971 Hydromechanics of swimming propulsion: I. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid *J. Fluid Mech.* 46 337–55
- [12] Katz J and Weihs D 1978 Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility J. Fluid Mech. 88 485–97
- [13] Katz J and Weihs D 1979 Large amplitude unsteady motion of a flexible slender propulsor J. Fluid Mech. 90 713–23
- [14] Hua R-N, Zhu L and Lu X-Y 2013 Locomotion of a flapping flexible plate *Phys. Fluids* **25** 121901
- [15] Zhu Q 2007 Numerical simulation of a flapping foil with chordwise or spanwise flexibility AIAA J. 45 2448–57
- [16] Shoele K and Zhu Q 2012 Leading edge strengthening and the propulsion performance of flexible ray fins J. Fluid Mech. 693 402

- [17] Miao J-M and Ho M-H 2006 Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil *J. Fluids Struct.* 22 401–19
- [18] Zhu Q and Shoele K 2008 Propulsion performance of a skeleton-strengthened fin J. Exp. Biol. 211 2087–100
- [19] Ferreira de Sousa P J S A and Allen J J 2011 Thrust efficiency of harmonically oscillating flexible flat plates J. Fluid Mech. 674 43–66
- [20] Prempraneerach P, Hover F S and Triantafyllou M S 2003 The effect of chordwise flexibility on the thrust and efficiency of a flapping foil Proc. 13th Int. Symp. Unmanned Untethered Submersible Technology: Special Session on Bioengineering Research Related to Autonomous Underwater Vehicles 152 (New Hampshire) pp 152–70
- [21] Heathcote S and Gursul I 2007 Flexible flapping airfoil propulsion at low Reynolds numbers AIAA J. 45 1066–79
- [22] Quinn D B, Lauder G V and Smits A J 2014 Scaling the propulsive performance of heaving flexible panels J. Fluid Mech. 738 250–67
- [23] Dewey P A, Boschitsch B M, Moored K W, Stone H A and Smits A J 2013 Scaling laws for the thrust production of flexible pitching panels J. Fluid Mech. 732 29–46
- [24] Alben S, Witt C, Baker T V, Anderson E and Lauder G V 2012 Dynamics of freely swimming flexible foils *Phys. Fluids* 24 051901
- [25] Thiria B and Godoy-Diana R 2010 How wing compliance drives the efficiency of self-propelled flapping flyers *Phys. Rev.* E 82 015303
- [26] Liu H, Taylor B and Curet O M 2017 Fin ray stiffness and fin morphology control ribbon-fin-based propulsion Soft Robot. 4 103–16
- [27] Shadwick R E and Lauder G V 2006 Fish Physiology: Fish Biomechanics (Amsterdam: Elsevier))
- [28] Videler J J and Geerlink P J 1986 The relation between structure and bending properties of teleost fin rays Neth. J. Zool. 37 59–80
- [29] Flammang B E, Alben S, Madden P G A and Lauder G V 2013 Functional morphology of the fin rays of teleost fishes J. Morphol. 274 1044–59
- [30] Dickinson M H, Farley C T, Full R J, Koehl M A R, Kram R and Lehman S 2000 How animals move: an integrative view Science 288 100–6
- [31] Pabst D A 1996 Springs in swimming animals Am. Zool. 36 723–35
- [32] Shelton R M, Thornycroft P J M and Lauder G V 2014 Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion J. Exp. Biol. 217 2110–20
- [33] McHenry M J, Pell C A and Long J H 1995 Mechanical control of swimming speed: stiffness and axial wave form in undulating fish models *J. Exp. Biol.* 198
- [34] Tangorra J L, Lauder G V, Hunter I W, Mittal R, Madden P G A and Bozkurttas M 2010 The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin *J. Exp. Biol.* 213 4043–54
- [35] DeMont M E 1990 Tuned oscillations in the swimming scallop Pecten maximus Can. J. Zool. 68 786–91
- [36] Demont M E and Gosline J M 1988 Mechanics of jet propulsion in the hydromedusan jellyfish, *Polyorchis* pexicillatus: III. A natural resonating bell; the presence and importance of a resonant phenomenon in the locomotor structure J. Exp. Biol. 134 347–61
- [37] Michelin S and Llewellyn Smith S G 2009 Resonance and propulsion performance of a heaving flexible wing *Phys. Fluids* 21 071902
- [38] Paraz F, Schouveiler L and Eloy C 2016 Thrust generation by a heaving flexible foil: resonance, nonlinearities, and optimality *Phys. Fluids* 28 011903
- [39] Nguyen P L, Lee B R and Ahn K K 2016 Thrust and swimming speed analysis of fish robot with non-uniform flexible tail J. Bionic Eng. 13 73–83

- [40] Quinn D B, Lauder G V and Smits A J 2015 Maximizing the efficiency of a flexible propulsor using experimental optimization J. Fluid Mech. 767 430–48
- [41] Fernandez-Feria R and Alaminos-Quesada J 2021 Analytical results for the propulsion performance of a flexible foil with prescribed pitching and heaving motions and passive small deflection J. Fluid Mech. 910 A43
- [42] Spagnolie S E, Moret L, Shelley M J and Zhang J 2010 Surprising behaviors in flapping locomotion with passive pitching *Phys. Fluids* 22 041903
- [43] Leftwich M C, Tytell E D, Cohen A H and Smits A J 2012 Wake structures behind a swimming robotic lamprey with a passively flexible tail *J. Exp. Biol.* 215 416–25
- [44] Tytell E D, Leftwich M C, Hsu C-Y, Griffith B E, Cohen A H, Smits A J, Hamlet C and Fauci L J 2016 Role of body stiffness in undulatory swimming: insights from robotic and computational models *Phys. Rev. Fluids* 1 073202
- [45] Floryan D and Rowley C W 2018 Clarifying the relationship between efficiency and resonance for flexible inertial swimmers J. Fluid Mech. 853 271–300
- [46] Tytell E D, Hsu C-Y and Fauci L J 2014 The role of mechanical resonance in the neural control of swimming in fishes *Zoology* 117 48–56
- [47] Jusufi A, Vogt D M, Wood R J and Lauder G V 2017 Undulatory swimming performance and body stiffness modulation in a soft robotic fish-inspired physical model Soft Robot. 4 202–10
- [48] Vanella M, Fitzgerald T, Preidikman S, Balaras E and Balachandran B 2009 Influence of flexibility on the aerodynamic performance of a hovering wing *J. Exp. Biol.* 212 95–105
- [49] Kang C, Aono H, Cesnik C and Shyy W 2011 Effects of flexibility on the aerodynamic performance of flapping wings 6th AIAA Theoretical Fluid Mechanics Conf. p 3121
- [50] Yin B and Luo H 2010 Effect of wing inertia on hovering performance of flexible flapping wings *Phys. Fluids* 22 111902
- [51] Zhu X, He G and Zhang X 2014 How flexibility affects the wake symmetry properties of a self-propelled plunging foil J. Fluid Mech. 751 164
- [52] Ramananarivo S, Godoy-Diana R and Thiria B 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance *Proc. Natl Acad.* Sci. 108 5964–9
- [53] Eldredge J D and Jones A R 2019 Leading-edge vortices: mechanics and modeling Annu. Rev. Fluid Mech. 51 75–104
- [54] Kang C-k, Aono H, Baik Y S, Bernal L P and Shyy W 2013 Fluid dynamics of pitching and plunging flat plate at intermediate Reynolds numbers AIAA J. 51 315–29
- [55] Low K H, Chong C W and Zhou C 2010 Performance study of a fish robot propelled by a flexible caudal fin 2010 IEEE Int. Conf. Robotics and Automation pp 90–5
- [56] Bose N 1995 Performance of chordwise flexible oscillating propulsors using a time-domain panel method *Int. Shipbuild. Prog.* 42 281–94
- [57] Moore N 2014 Analytical results on the role of flexibility in flapping propulsion J. Fluid Mech. 757 599–612
- [58] Paraz F, Eloy C and Schouveiler L 2014 Experimental study of the response of a flexible plate to a harmonic forcing in a flow C. R. Mec. 342 532–8
- [59] Moored K W, Dewey P A, Smits A J and Haj-Hariri H 2012 Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion *J. Fluid Mech.* 708 329–48
- [60] Rosic M-L N, Thornycroft P J M, Feilich K L, Lucas K N and Lauder G V 2017 Performance variation due to stiffness in a tuna-inspired flexible foil model *Bioinspiration Biomimetics* 12 016011
- [61] Feilich K L and Lauder G V 2015 Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion *Bioinspiration Biomimetics* 10 036002

- [62] Lucas K N *et al* 2015 Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model *Bioinspiration Biomimetics* 10 056019
- [63] Tytell E D, Hsu C-Y, Williams T L, Cohen A H and Fauci L J 2010 Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming *Proc. Natl Acad. Sci.* 107 19832–7
- [64] Esposito C J, Tangorra J L, Flammang B E and Lauder G V 2012 A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance J. Exp. Biol. 215 56–67
- [65] Behbahani S B and Tan X 2017 Role of pectoral fin flexibility in robotic fish performance J. Nonlinear Sci. 27 1155–81
- [66] Yu J, Zhang C and Liu L 2016 Design and control of a single-motor-actuated robotic fish capable of fast swimming and maneuverability *IEEE/ASME Trans. Mechatron.* 21 1711–9
- [67] Zhong Q et al 2021 Tunable stiffness enables fast and efficient swimming in fish-like robots Sci. Robot. 6 eabe4088
- [68] Zeyghami S and Moored K W 2019 Effect of nonuniform flexibility on hydrodynamic performance of pitching propulsors J. Fluids Eng. 141 041108
- [69] Harper K A, Berkemeier M D and Grace S 1998 Modeling the dynamics of spring-driven oscillating-foil propulsion IEEE J. Ocean. Eng. 23 285–96
- [70] Moore M N J 2015 Torsional spring is the optimal flexibility arrangement for thrust production of a flapping wing *Phys. Fluids* 27 091701
- [71] Valdivia y Alvarado P and Youcef-Toumi K 2005 Performance of machines with flexible bodies designed for biomimetic locomotion in liquid environments *Proc. 2005* IEEE Int. Conf. Robotics and Automation pp 3324–9
- [72] Reddy N S, Sen S and Har C 2018 Effect of flexural stiffness distribution of a fin on propulsion performance *Mech. Mach. Theory* 129 218–31
- [73] Floryan D and Rowley C W 2019 Distributed flexibility in inertial swimmers (arXiv:1909.05133)
- [74] Zhu Q and Bi X 2017 Effects of stiffness distribution and spanwise deformation on the dynamics of a ray-supported caudal fin *Bioinspiration Biomimetics* 12 026011
- [75] Wang W, Huang H and Lu X-Y 2020 Optimal chordwise stiffness distribution for self-propelled heaving flexible plates *Phys. Fluids* 32 111905
- [76] Riggs P, Bowyer A and Vincent J 2010 Advantages of a biomimetic stiffness profile in pitching flexible fin propulsion J. Bionic Eng. 7 113–9
- [77] Kancharala A K and Philen M K 2016 Optimal chordwise stiffness profiles of self-propelled flapping fins Bioinspiration Biomimetics 11 056016
- [78] Lucas K N et al 2014 Bending rules for animal propulsion Nat. Commun. 5 3293
- [79] Piñeirua M, Thiria B and Godoy-Diana R 2017 Modelling of an actuated elastic swimmer (arXiv:1712.08463)
- [80] McMillen T and Holmes P 2006 An elastic rod model for anguilliform swimming J. Math. Biol. 53 843–86
- [81] Masoud H and Alexeev A 2010 Resonance of flexible flapping wings at low Reynolds number Phys. Rev. E 81 056304
- [82] Zhang Z, Philen M and Neu W 2010 A biologically inspired artificial fish using flexible matrix composite actuators: analysis and experiment Smart Mater. Struct. 19 094017
- [83] Alben S, Madden P G and Lauder G V 2007 The mechanics of active fin-shape control in ray-finned fishes J. R. Soc. Interface 4 243–56
- [84] Kancharala A K and Philen M K 2014 Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments *Bioinspiration Biomimetics* 9 036011
- [85] Epps B P, Valdivia y Alvarado P, Youcef-Toumi K and Techet A H 2009 Swimming performance of a biomimetic compliant fish-like robot Exp. Fluids 47 927–39

- [86] Shintake J, Cacucciolo V, Shea H and Floreano D 2018 Soft biomimetic fish robot made of dielectric elastomer actuators Soft Robot. 5 466–74
- [87] Lifshitz E and Landau L 1986 Theory of Elasticity 3rd edn (Burlington, MA: Elsevier)
- [88] Valdivia y Alvarado P and Youcef-Toumi K 2006 Design of machines with compliant bodies for biomimetic locomotion in liquid environments J. Dyn. Syst. Measurem. Control 128 3–13
- [89] Valdivia y Alvarado P P A 2007 Design of Biomimetic Compliant Devices for Locomotion in Liquid Environments (Cambridge, MA: Massachusetts Institute of Technology)
- [90] Goza A, Floryan D and Rowley C 2019 Connections between resonance and nonlinearity in swimming performance of a flexible heaving plate (arXiv:1908.05704)
- [91] Marais C, Thiria B, Wesfreid J E and Godoy-Diana R 2012 Stabilizing effect of flexibility in the wake of a flapping foil (arXiv:1207.6949)
- [92] Hoover A P, Cortez R, Tytell E D and Fauci L J 2018 Swimming performance, resonance and shape evolution in heaving flexible panels J. Fluid Mech. 847 386–416
- [93] Quinn D B, Lauder G V and Smits A J 2014 Flexible propulsors in ground effect *Bioinspiration Biomimetics* 9 036008
- [94] Tang C, Huang H, Gao P and Lu X-Y 2016 Self-propulsion of a flapping flexible plate near the ground *Phys. Rev.* E 94 033113
- [95] Siala F F, Totpal A D and Liburdy J A 2016 Characterization of vortex dynamics in the near wake of an oscillating flexible foil J. Fluids Eng. 138 101202
- [96] Porter M E, Diaz C, Sturm J J, Grotmol S, Summers A P and Long J H 2014 Built for speed: strain in the cartilaginous vertebral columns of sharks *Zoology* 117 19–27
- [97] Porter M E, Roque C M and Long J H Jr 2009 Turning maneuvers in sharks: predicting body curvature from axial morphology J. Morphol. 270 954–65
- [98] Shadwick R and Gemballa S 2006 Structure, kinematics, and muscle dynamics in undulatory swimming Fish Biomechanics (Fish Physiology) vol 23 ed R E Shadwick and G V Lauder (New York: Academic) pp 241–80
- [99] Shadwick R E, Katz S L, Korsmeyer K E, Knower T and Covell J W 1999 Muscle dynamics in skipjack tuna: timing of red muscle shortening in relation to activation and body curvature during steady swimming J. Exp. Biol. 202 2139–50
- [100] Donley J M, Shadwick R E, Sepulveda C A, Konstantinidis P and Gemballa S 2005 Patterns of red muscle strain/activation and body kinematics during steady swimming in a lamnid shark, the shortfin mako (*Isurus oxyrinchus*) J. Exp. Biol. 208 2377–87
- [101] Nowroozi B N and Brainerd E L 2014 Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes Zoology 117 28–35
- [102] Katz S L, Shadwick R E and Rapoport H S 1999 Muscle strain histories in swimming milkfish in steady and sprinting gaits J. Exp. Biol. 202 529–41
- [103] Gray J 1953 How Animals Move (Cambridge: Cambridge University Press)
- [104] Lauder G V 2006 The Physiology of Fishes 3rd edn ed D H Evans and J B Claiborne (Boca Raton, FL: CRC Press) pp 3–46
- [105] Webb P W 1975 Hydrodynamics and energetics of fish propulsion Bull. Fish. Res. Board Can. 190 1–159
- [106] Hertel H 1966 Structure, Form and Movement (Princeton, NJ: Van Nostrand-Reinhold)
- [107] Smits A J 2019 Undulatory and oscillatory swimming *J. Fluid Mech.* **874** P1
- [108] Long J H, Koob-Emunds M, Sinwell B and Koob T J 2002 The notochord of hagfish Myxine glutinosa: visco-elastic properties and mechanical functions during steady swimming J. Exp. Biol. 205 3819–31

- [109] Tytell E D et al 2018 Body stiffness and damping depend sensitively on the timing of muscle activation in lampreys Integr. Comp. Biol. 58 860–73
- [110] Naughton L F, Kruppert S, Jackson B, Porter M E and Donatelli C M 2021 A tail of four fishes: an analysis of kinematics and material properties of elongate fishes *Integr. Comp. Biol.* 61 603–12
- [111] Bone Q 1966 On the function of the two types of myotomal muscle fibre in elasmobranch fish J. Mar. Biol. Assoc. U. K, 46 321–49
- [112] Bone Q 1978 Locomotor muscle Fish Physiology (Locomotion) vol 7 ed W S Hoar and D J Randall (New York: Academic) pp 361–424
- [113] Coughlin D J 2002 Aerobic muscle function during steady swimming in fish Fish Fish. 3 63–78
- [114] Coughlin D J and Rome L C 1999 Muscle activity in steady swimming scup, Stenotomus chrysops, varies with fiber type and body position Biol. Bull. 196 145–52
- [115] Johnston I A 1981 Structure and function in fish muscle Symp. Zoological Society of London vol 84 pp 71–113
- [116] Rome L C 1994 Mechanics and Physiology of Animal Swimming ed L Maddock, Q Bone and J M V Rayner (Cambridge: Cambridge University Press) pp 75–98
- [117] Dickson K A 1996 Locomotor muscle of high-performance fishes: what do comparisons of tunas with ectothermic sister taxa reveal? *Comp. Biochem. Physiol.* A 113 39–49
- [118] Graham J B, Koehrn F J and Dickson K A 1983 Distribution and relative proportions of red muscle in scombrid fishes: consequences of body size and relationships to locomotion and endothermy Can. J. Zool. 61 2087–96
- [119] Westneat M W, Hoese W, Pell C A and Wainwright S A 1993 The horizontal septum: mechanisms of force transfer in locomotion of scombrid fishes (Scombridae, Perciformes) J. Morphol. 217 183–204
- [120] Tytell E D and Lauder G V 2002 The C-start escape response of *Polypterus senegalus*: bilateral muscle activity and variation during stage 1 and 2 *J. Exp. Biol.* 205 2591–603
- [121] Johnson T P, Syme D A, Jayne B C, Lauder G V and Bennett A F 1994 Modeling red muscle power output during steady and unsteady swimming in largemouth bass Am. J. Physiol. Regul. Integr. Comp. Physiol. 267 481–8
- [122] Leeuwen J L, Lankheet M J M, Akster H A and Osse J W M 1990 Function of red axial muscles of carp (*Cyprinus carpio*): recruitment and normalized power output during swimming in different modes J. Zool. 220 123–45
- [123] Johnston I A, van Leeuwen J L, Davies M L F and Beddow T 1995 How fish power predation fast-starts J. Exp. Biol. 198 1851–61
- [124] Altringham J D, Wardle C S and Smith C I 1993 Myotomal muscle function at different locations in the body of a swimming fish J. Exp. Biol. 182 191–206
- [125] Jayne B and Lauder G 1995 Are muscle fibers within fish myotomes activated synchronously? Patterns of recruitment within deep myomeric musculature during swimming in largemouth bass J. Exp. Biol. 198 805–15
- [126] Alexander R M 1969 The orientation of muscle fibres in the myomeres of fishes J. Mar. Biol. Assoc. U. K. 49 263–90
- [127] Brainerd E L and Azizi E 2005 Muscle fiber angle, segment bulging and architectural gear ratio in segmented musculature J. Exp. Biol. 208 3249–61
- [128] Gemballa S and Vogel F 2002 Spatial arrangement of white muscle fibers and myoseptal tendons in fishes Comp. Biochem. Physiol. A 133 1013–37
- [129] Jayne B C and Lauder G V 1994 Comparative morphology of the myomeres and axial skeleton in four genera of centrarchid fishes J. Morphol. 220 185–205
- [130] Lauder G V and Tangorra J L 2015 Robot Fish—Bio-Inspired Fishlike Underwater Robots ed R Du, Z Li, K Youcef-Toumi and P Valdivia y Alvarado (Berlin: Springer) pp 25–49

- [131] Lauder G V 2015 Great Transformations in Vertebrate Evolution ed K P Dial, N Shubin and E Brainerd (Berkeley, CA: University of California Press) pp 31–45
- [132] Lauder G V, Madden P G A, Mittal R, Dong H and Bozkurttas M 2006 Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish Bioinspiration Biomimetics 1 25S-34
- [133] Cromie Lear M J, Millard M, Gleiss A C, Dale J, Dimitrov M, Peiros E and Block B 2020 Biomechanical analysis of the slow-twitch (red) muscle force transmission pathways in tunas *Physiol. Biochem. Zool.* 93 185–98
- [134] Knower A T 1998 Biomechanics of Thunniform Swimming: Electromyography, Kinematics, and Caudal Tendon Function in the Yellowfin Tuna Thunnus albacares and the Skipjack Tuna Katsuwonus pelamis PhD University California, Dan Diego
- [135] Shadwick R E, Rapoport H S and Fenger J M 2002 Structure and function of tuna tail tendons Comp. Biochem. Physiol. A 133 1109–25
- [136] Gibb A C, Dickson K A and Lauder G V 1999 Tail kinematics of the chub mackerel *Scomber japonicus*: testing the homocercal tail model of fish propulsion *J. Exp. Biol.* 202 2433–47
- [137] Lauder G V 2000 Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns Am. Zool. 40 101–22
- [138] Flammang B E and Lauder G V 2008 Speed-dependent intrinsic caudal fin muscle recruitment during steady swimming in bluegill sunfish, *Lepomis macrochirus J. Exp. Biol.* 211 587–98
- [139] Lauder G V 1989 Caudal fin locomotion in ray-finned fishes: historical and functional analyses Am. Zool. 29 85–102
- [140] Liem K F 1970 Comparative Functional Anatomy of the Nandidae (Pisces: Teleostei) Fieldiana Zool. 56 1–166
- [141] Nag A C 1967 Functional morphology of the caudal region of certain clupeiform and perciform fishes with reference to the taxonomy *J. Morphol.* 123 529–58
- [142] Videler J J 1974 On the interrelationships between morphology and movement in the tail of the cichlid fish Tilapia nilotica (L.) Neth. J. Zool. 25 143–94
- [143] Winterbottom R 1973 A descriptive synonymy of the striated muscles of the Teleostei Proc. Acad. Nat. Sci. Phila. 125 225–317
- [144] Lauder G V 1982 Structure and function in the tail of the Pumpkinseed sunfish (*Lepomis gibbosus*) J. Zool. 197 483–95
- [145] Gemballa S 2004 The musculoskeletal system of the caudal fin in basal actinopterygii: heterocercy, diphycercy, homocercy Zoomorphology 123 15–30
- [146] Nag A C 1972 Ultrastructure and adenosine triphosphatase activity of red and white muscle fibers of the caudal region of a fish, Salmo gairdneri J. Cell Biol. 55 42–57
- [147] Nguyen K, Yu N, Bandi M M, Venkadesan M and Mandre S 2017 Curvature-induced stiffening of a fish fin J. R. Soc. Interface 14 20170247
- [148] Chadwell B A, Standen E M, Lauder G V and Ashley-Ross M A 2012 Median fin function during the escape response of bluegill sunfish (*Lepomis macrochirus*): I. Fin-ray orientation and movement *J. Exp. Biol.* 215 2869–80
- [149] Chadwell B A, Standen E M, Lauder G V and Ashley-Ross M A 2012 Median fin function during the escape response of bluegill sunfish (*Lepomis macrochirus*): II. Fin-ray curvature *J. Exp. Biol.* 215 2881–90
- [150] Standen E M and Lauder G V 2005 Dorsal and anal fin function in bluegill sunfish *Lepomis macrochirus*: three-dimensional kinematics during propulsion and maneuvering *J. Exp. Biol.* 208 2753–63
- [151] Tytell E D, Standen E M and Lauder G V 2008 Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes J. Exp. Biol. 211 187–95

- [152] Hebrank M R 1980 Mechanical properties and locomotor functions of eel skin Biol. Bull. 158 58–68
- [153] Hebrank M R and Hebrank J H 1986 The mechanics of fish skin: lack of an 'external tendon' role in two teleosts *Biol.* Bull. 171 236–47
- [154] Long J, Hale M, McHenry M and Westneat M 1996 Functions of fish skin: flexural stiffness and steady swimming of longnose gar *Lepisosteus osseus J. Exp. Biol.* 199 2139–51
- [155] Motta P J 1977 Anatomy and functional morphology of dermal collagen fibres in sharks Copeia 1977 454–64
- [156] Wainwright S A, Vosburgh F and Hebrank J H 1978 Shark skin: function in locomotion Science 202 747-9
- [157] Wainwright S A 1983 Fish Biomechanics ed P Webb and D Weihs (New York: Praeger Press) pp 68–91
- [158] Barrett D S, Triantafyllou M S, Yue D K P, Grosenbaugh M A and Wolfgang M J 1999 Drag reduction in fish-like locomotion J. Fluid Mech. 392 183–212
- [159] Zhou C and Low K-H 2010 Better endurance and load capacity: an improved design of manta ray robot (RoMan-II) J. Bionic Eng. 7 137S-44
- [160] Yang S-b, Qiu J and Han X-y 2009 Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish J. Bionic Eng. 6 174–9
- [161] Wen L, Wang T, Wu G and Liang J 2012 Quantitative thrust efficiency of a self-propulsive robotic fish: experimental method and hydrodynamic investigation IEEE/Asme Trans. Mechatron. 18 1027–38
- [162] Su Z, Yu J, Tan M and Zhang J 2013 Implementing flexible and fast turning maneuvers of a multijoint robotic fish IEEE/ASME Trans. Mechatron. 19 329–38
- [163] Romero P, Sensale-Rodriguez B, Astessiano D and Canetti R F 2013 A cost-effective intelligent autonomous robot fish 2013 16th Int. Conf. Advanced Robotics (ICAR) pp 1–6
- [164] Wen L, Ren Z, Di Santo V, Hu K, Yuan T, Wang T and Lauder G V 2018 Understanding fish linear acceleration using an undulatory biorobotic model with soft fluidic elastomer actuated morphing median fins Soft Robot. 5 375–88
- [165] Wei C and Yu J 2012 Mechanical design of a slider-crank centered robotic dolphin Proc. 10th World Congress on Intelligent Control and Automation pp 3741–6
- [166] Kumph J M 2000 Maneuvering of a Robotic Pike (Cambridge, MA: Massachusetts Institute of Technology)
- [167] Mohammadshahi D, Yousefi-Koma A, Bahmanyar S and Maleki H 2008 Design, fabrication and hydrodynamic analysis of a biomimetic robot fish WSEAS Int. Conf. Proc. Mathematics and Computers in Science and Engineering
- [168] Zhong Y, Li Z and Du R 2013 The design and prototyping of a wire-driven robot fish with pectoral fins 2013 IEEE Int. Conf. Robotics and Biomimetics (ROBIO) pp 1918–23
- [169] Yu J, Tan M, Wang S and Chen E 2004 Development of a biomimetic robotic fish and its control algorithm *IEEE Trans. Syst. Man Cybern.* B 34 1798–810
- [170] Kopman V, Laut J, Acquaviva F, Rizzo A and Porfiri M 2014 Dynamic modeling of a robotic fish propelled by a compliant tail *IEEE J. Ocean. Eng.* 40 209–21
- [171] Katzschmann R K, DelPreto J, MacCurdy R and Rus D 2018 Exploration of underwater life with an acoustically controlled soft robotic fish Sci. Robot. 3 eaar3449
- [172] Fujiwara S and Yamaguchi S 2017 Development of fishlike robot that imitates carangiform and subcarangiform swimming motions J. Aero Aqua Bio-Mech. 6 1–8
- [173] Mazumdar A, Valdivia y Alvarado P and Youcef-Toumi K 2008 Maneuverability of a robotic tuna with compliant body 2008 IEEE Int. Conf. Robotics and Automation pp 683–8
- [174] Masoomi S F, Gutschmidt S, Chen X and Sellier M 2015 The kinematics and dynamics of undulatory motion of a tuna-mimetic robot *Int. J. Adv. Robot. Syst.* 12 83

- [175] Gibouin F, Raufaste C, Bouret Y and Argentina M 2018 Study of the thrust—drag balance with a swimming robotic fish *Phys. Fluids* 30 091901
- [176] Xie F, Li Z, Ding Y, Zhong Y and Du R 2019 An experimental study on the fish body flapping patterns by using a biomimetic robot fish *IEEE Robot. Autom. Lett.* 5 64–71
- [177] Van den Berg S C 2019 Design of a High Speed Soft Robotic Fish (Delft: Delft University of Technology)
- [178] Sharifzadeh M, Jiang Y, Lafmejani A S, Nichols K and Aukes D 2021 Maneuverable gait selection for a novel fish-inspired robot using a CMA-ES-assisted workflow Bioinspiration Biomimetics 16 056017
- [179] Long J H Jr, Koob T J, Irving K, Combie K, Engel V, Livingston N, Lammert A and Schumacher J 2006 Biomimetic evolutionary analysis: testing the adaptive value of vertebrate tail stiffness in autonomous swimming robots J. Exp. Biol. 209 4732–46
- [180] McLetchie K-M 2003 Drag reduction of an elastic fish model Oceans 2003. Celebrating the Past... Teaming Toward the Future vol 5 (IEEE) SPpp 2938–44 (Cat. No. 03CH37492)
- [181] Long J H Jr et al 2011 Testing biomimetic structures in bioinspired robots: how vertebrae control the stiffness of the body and the behavior of fish-like swimmers *Integr.* Comp. Biol. 51 158–75
- [182] White C H, Lauder G V and Bart-Smith H 2021 Tunabot flex: a tuna-inspired robot with body flexibility improves high-performance swimming *Bioinspiration Biomimetics* 16 026019
- [183] Guest S D 2011 The stiffness of tensegrity structures IMA J. Appl. Math. 76 57–66
- [184] Moored K W, Kemp T H, Houle N E and Bart-Smith H 2011 Analytical predictions, optimization, and design of a tensegrity-based artificial pectoral fin *Int. J. Solids Struct*. 48 3142–59
- [185] Ham R, Sugar T, Vanderborght B, Hollander K and Lefeber D 2009 Compliant actuator designs *IEEE Robot*. Autom. Mag. 16 81–94
- [186] Migliore S A, Brown E A and DeWeerth S P 2005 Biologically inspired joint stiffness control *Proc. 2005 IEEE Int. Conf. Robotics and Automation* pp 4508–13
- [187] Tonietti G, Schiavi R and Bicchi A 2005 Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction *Proc. 2005 IEEE Int. Conf. Robotics and Automation* pp 526–31
- [188] Hurst J W, Chestnutt J E and Rizzi A A 2010 The actuator with mechanically adjustable series compliance *IEEE Trans. Robot.* 26 597–606
- [189] Pelrine R et al 2008 Variable stiffness mode: devices and applications Dielectric Elastomers as Electromechanical Transducers Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Oxford: Elsevier) pp 141–5
- [190] Tangorra J, Anquetil P, Fofonoff T, Chen A, Zio M D and Hunter I 2007 The application of conducting polymers to a biorobotic fin propulsor *Bioinspiration Biomimetics* 2 S6
- [191] Kancharala A K and Philen M K 2013 Active stiffness modulation of fins using macro fiber composites Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems (San Diego, CA, 10–14 March 2013) vol 8692
- [192] Shan Y, Philen M, Lotfi A, Li S, Bakis C E, Rahn C D and Wang K W 2009 Variable stiffness structures utilizing fluidic flexible matrix composites J. Intell. Mater. Syst. Struct. 20 443–56
- [193] Laschi C, Mazzolai B, Mattoli V, Cianchetti M and Dario P 2009 Design of a biomimetic robotic octopus arm Bioinspiration Biomimetics 4 015006
- [194] Stilli A, Wurdemann H A and Althoefer K 2014 Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle 2014

- IEEE/RSJ Int. Conf. Intelligent Robots and Systems pp 2476–81
- [195] Cianchetti M, Calisti M, Margheri L, Kuba M and Laschi C 2015 Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot *Bioinspiration* Biomimetics 10 035003
- [196] Morita T and Sugano S 1995 Design and development of a new robot joint using a mechanical impedance adjuster Proc. 1995 IEEE Int. Conf. Robotics and Automation vol 3 pp 2469–75
- [197] Hollander K W, Sugar T G and Herring D E 2005 Adjustable robotic tendon using a 'Jack Spring' 9th Int. Conf. Rehabilitation Robotics, 2005 (ICORR 2005) pp 113–8
- [198] Nakabayashi M, Kobayashi R, Kobayashi S and Morikawa H 2009 Bioinspired propulsion mechanism using a fin with a dynamic variable-effective-length spring: evaluation of thrust characteristics and flow around a fin in a uniform flow J. Biomech. Sci. Eng. 4 82–93
- [199] Huh T M, Park Y-J and Cho K-J 2012 Design and analysis of a stiffness adjustable structure using an endoskeleton Int. J. Precis. Eng. Manuf. 13 1255–8
- [200] Park Y J, Huh T M, Park D and Cho K J 2014 Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot *Bioinspiration Biomimetics* 9 036002
- [201] Van Ham R, Vanderborght B, Van Damme M, Verrelst B and Lefeber D 2007 MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot Robot. Autonom. Syst. 55 761–8
- [202] Wolf S and Hirzinger G 2008 A new variable stiffness design: matching requirements of the next robot generation 2008 IEEE Int. Conf. Robotics and Automation pp 1741–6
- [203] Westneat M, Hale M, McHenry M and Long J 1998 Mechanics of the fast-start: muscle function and the role of intramuscular pressure in the escape behavior of *Amia* calva and *Polypterus palmas J. Exp. Biol.* 201 3041–55
- [204] Chen B and Jiang H 2021 Body stiffness variation of a tensegrity robotic fish using antagonistic stiffness in a kinematically singular configuration *IEEE Trans. Robot.* 37 1712–27
- [205] Li K, Jiang H, Wang S and Yu J 2018 A soft robotic fish with variable-stiffness decoupled mechanisms J. Bionic Eng. 15 599–609
- [206] Ziegler M, Hoffmann M, Carbajal J P and Pfeifer R 2011 Varying body stiffness for aquatic locomotion *Proc. IEEE Int. Conf. Robotics and Automation* pp 2705–12
- [207] Behbahani S B and Tan X 2017 Design and dynamic modeling of electrorheological fluid-based variable-stiffness fin for robotic fish Smart Mater. Struct. 26 085014
- [208] Zhu J et al 2019 Tuna robotics: a high-frequency experimental platform exploring the performance space of swimming fishes Sci. Robot. 4 eaax4615
- [209] Santina C D, Katzschmann R K, Bicchi A and Rus D 2020 Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment Int. J. Robot. Res. 39 490–513
- [210] Jin H et al 2021 Modeling and motion control of a soft SMA planar actuator IEEE/ASME Trans. Mechatron. (Early Access) 1
- [211] Golnaraghi F and Kuo B C 2017 Automatic Control Systems
 (New York: McGraw-Hill)
- [212] Porter M E, Ewoldt R H and Long J H 2016 Automatic control: the vertebral column of dogfish sharks behaves as a continuously variable transmission with smoothly shifting functions J. Exp. Biol. 219 2908–19
- [213] Chen B, Cui Z and Jiang H 2018 Producing negative active stiffness in redundantly actuated planar rotational parallel mechanisms Mech. Mach. Theory 128 336–48

- [214] Shadwick R E and Syme D A 2008 Thunniform swimming: muscle dynamics and mechanical power production of aerobic fibres in yellowfin tuna (*Thunnus albacares*) J. Exp. Biol. 211 1603–11
- [215] O'Neill M W and Gibb A 2007 Botulinum toxin injections as a method for chemically denervating skeletal muscle to test functional hypotheses: a pilot study in *Lepomis* cyanellus Physiol. Biochem. Zool. **80** 241–9
- [216] Katz S L, Syme D A and Shadwick R E 2001 Enhanced power in yellowfin tuna *Nature* **410** 770–1
- [217] Biewener A and Patek S 2018 Animal Locomotion (New York: Oxford University Press)
- [218] Gravish N and Lauder G V 2018 Robotics-inspired biology J. Exp. Biol. 221 138438
- [219] Fish F E 2020 Advantages of aquatic animals as models for bio-inspired drones over present AUV technology Bioinspiration Biomimetics 15 025001

- [220] Raj A and Thakur A 2016 Fish-inspired robots: design, sensing, actuation, and autonomy—a review of research Bioinspiration Biomimetics 11 031001
- [221] Saadat M, Fish F E, Domel A G, Di Santo V, Lauder G V and Haj-Hariri H 2017 On the rules for aquatic locomotion *Phys. Rev. Fluids* 2 083102
- 222] Wolf Z, Jusufi A, Vogt D M and Lauder G V 2020 Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model *Bioinspiration Biomimetics* 15 046008
- [223] Zhong Q, Dong H and Quinn D B 2019 How dorsal fin sharpness affects swimming speed and economy J. Fluid Mech. 878 370–85
- [224] Jayne B C and Lauder G V 1994 How swimming fish use slow and fast muscle fibers: implications for models of vertebrate muscle recruitment J. Comp. Physiol. A 175 123–31