
COMMUNICATION-EFFICIENT DISTRIBUTED MAX-VAR GENERALIZED CCA VIA
ERROR FEEDBACK-ASSISTED QUANTIZATION

Sagar Shrestha and Xiao Fu

School of Electrical Engineering and Computer Science
Oregon State University

Corvallis, OR 97331, USA
(shressag, xiao.fu)@oregonstate.edu

ABSTRACT

Generalized canonical correlation analysis (GCCA) aims to learn
common low-dimensional representations from multiple “views”
of the data (e.g., audio and video of the same event). In the
era of big data, GCCA computation encounters many new chal-
lenges. In particular, distributed optimization for GCCA—which
is well-motivated in applications like internet of things and paral-
lel computing—may incur prohibitively high communication costs.
To address this challenge, this work proposes a communication-
efficient distributed GCCA algorithm under the popular MAX-VAR
GCCA paradigm. A quantization strategy for information exchange
among the computing agents is employed in the proposed algorithm.
It is observed that our design, leveraging the idea of error feedback-
based quantization, can reduce communication cost by at least 90%
while maintaining essentially the same GCCA performance as the
unquantized version. Furthermore, the proposed method is guar-
anteed to converge to a neighborhood of the optimal solution in a
geometric rate—even under aggressive quantization. The effective-
ness of our method is demonstrated using both synthetic and real
data experiments.

Index Terms— Distributed GCCA, communication-efficient
learning, convergence analysis.

1. INTRODUCTION

The aim of canonical correlation analysis (CCA) [1] is to learn a
common representation from multiple distinct views of the same en-
tity (e.g., the image and audio of a car are considered two views of
the entity car). Classic CCA focuses on two-view cases. However, it
is intuitively appealing to leverage more than two views when avail-
able, because the learnt representation can be free of irrelevant de-
tails not characteristic of the entity. This has strong theoretical and
empirical support [2]. Hence, the so-called generalized canonical
correlation analysis (GCCA) paradigms have also attracted much
attention for decades [3–7]. (G)CCA have found numerous applica-
tions in signal processing and machine learning, e.g., blind source
separation [8, 9], latent semantic analysis [10], direction-of-arrival
estimation [11], clustering [12], just to name a few.

When many views of data are acquired by and stored in different
agents (or, nodes), computing GCCA in a distributed manner is well-
motivated. Consider a motivating scenario in which multiple social
media platforms have different views of the users’ data, e.g., images,
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tweets, messages, videos, etc. It is tempting to learn representations
of the multi-platform users using data from these platforms simulta-
neously, since such platform-invariant common representation may
be more effective in enhancing performance of downstream tasks,
e.g., product recommendation. However, exchanging user data to
perform centralized GCCA may not be allowed, and thus distributed
optimization becomes a natural choice. Such considerations have
led to the development of a series of distributed GCCA algorithms,
e.g., [4–8,13]. These algorithms are effective in terms of using mul-
tiple views in parallel for accelerated optimization. However, since
each iteration of the algorithms needs to exchange a large amount of
information among the computing agents, such algorithms may not
be feasible for overhead-restricted scenarios, e.g., wireless sensor
networks and internet-of-things. In fact, even for parallel computing
with multiple cores within the same computing facility, large over-
head may slow down the overall optimization process significantly.
Therefore, reducing communication overhead of distributed GCCA
is well-motivated, but effective solutions have been elusive.

To address these challenges, we propose a communication-
efficient distributed algorithm for GCCA. We consider a case where
each node holds a view of the data and seek a common representation
using the MAX-VAR formulation of GCCA. We leverage the idea
of exchange information compression/quantization from recent de-
velopments in distributed gradient descent methods, e.g., [14–16],.
Unlike the existing compression frameworks, we do not compress
the gradients, as our framework is not a distributed gradient de-
scent algorithm. Instead, we propose to compress necessary in-
formation for performing an alternating optimization algorithm,
using the so-called error feedback mechanism that was originally
used for gradient compression [15, 17]. This way, we are able to
consistently achieve 90% reduction in both downlink and uplink
communications—and the performance of GCCA tasks are essen-
tially unchanged relative to the uncompressed version. Our analysis
shows that, despite aggressive quantization and stochastic approxi-
mations, the proposed method converges to a neighborhood of the
optimal solution at a geometric rate. The analysis is nontrivial,
since existing analytical tools of gradient compression do not cover
our case. We provide both synthetic and real data experiments that
showcase the communication efficiency of the proposed method.

2. PROBLEM STATEMENT

In this work, we propose a communication-efficient distributed
GCCA algorithm. Our focus lies in a popular formulation of GCCA,
known as the maximal variation (MAX-VAR) GCCA. However, the
idea has the potential to cover other GCCA formulations, e.g., the



Fig. 1. Illustration of the considered scenario.

sum-of-correlations (SUMCORR) GCCA [5, 6].
Consider I views, Xi ∈ RJ×Ni , i ∈ [I], [I] = {1, . . . , I},

corresponding to different representations of J entities. Let Xi(j, :
) denote the jth data point of the ith view. The goal of GCCA
is to find K << Ni, i ∈ [I] maximally correlated components
among the views via linear transformations. That is, GCCA seeks
Qi ∈ RNi×K ’s such that Zi(j, :) = Xi(j, :)Qi’s that are highly
correlated across views. Such Zi(j, :) can then serve as the low-
dimensional and more “informative” representation of data entity j,
since the information contained in Zi(j, :) is view-invariant.

To this end, we consider the MAX-VAR formulation of GCCA
[18]. Under MAX-VAR, the optimization criterion seeks to find a
common latent representation for all the views, i.e.

minimize
G,{Qi}Ii=1

I∑
i=1

1

2
‖XiQi −G‖2F︸ ︷︷ ︸
fi(Qi,G)

subject to G>G = I (1)

The optimal solution of (1) can be found by taking the K largest
eigenvectors of

∑I
i=1XiX

†
i [4]. However, simply taking eigende-

composition in a naive way may encounter scalability issues. There-
fore, several methods have been proposed to tackle this challenge
[4,10]. In particular, the method in [4] naturally features a distributed
implementation. The algorithm updates Qi and G in an alternating
manner. The algorithm stores view i at the computing agent/node i
and only uploadsXiQi to a central node in each iteration. The cen-
tral node broadcasts the updatedG to every node. This way, the data
Xi does not need to be exchanged among the nodes. The exchanged
information has a size of O(JK), which is also much smaller than
that of the views, i.e., O(JNi), when K � Ni.

The distributed method in [4] is interesting and useful, but still
faces some major challenges. The most prominent among them
is the communication overhead. To be more precise, when J ≈
1, 000, 0000 and K ≈ 200, even exchanging JK double preci-
sion real numbers takes a large amount of communication overhead
(≥ 1.4GB) in each iteration—let alone the fact that the algorithm
may run for tens or even hundreds of iterations.

3. PROPOSED APPROACH

In the considered scenario, there are I computing agents (nodes)
holding the I views. There is a central server for gathering informa-
tion. Communication from the server to individual nodes is called
downlink communication and from a node to the server is called up-
link communication—see Fig. 1.

3.1. AltMaxVar’s Framework in [4]

We follow the method introduced in [4] known as alternating
optimization-based MAX-VAR GCCA (AltMaxVar) because

of its appealing convergence properties and distributed nature. It
follows the alternating optimization idea, which is summarized as
follows:

Q
(r+1)
i ← argmin

Qi

1

2

∥∥∥XiQi −G(r)
∥∥∥2
F
, ∀i ∈ [I], (2a)

G(r+1) ← arg min
G>G=I

I∑
i=1

∥∥∥XiQ
(r+1)
i −G

∥∥∥2
F
. (2b)

Exactly solving (2a) may be computationally costly. Approximate
solution may involve multiple (stochastic) gradient descent steps,
which will be presented later.

For (2b), one can find the optimal solution using the so-called
Procrustes Projection [19] as follows:

G(r+1) ← UY (r+1)V
>
Y (r+1) , (3)

where Y (r+1) =
∑I
i=1XiQ

(r+1)
i , svd(Y (r+1), ′econ′) =

UY (r+1)ΣY (r+1)V>Y (r+1) , and svd(Y (r+1), ′econ′) is the thin
SVD operator.

Notice that theQi-update is local to the node and the G update
only requires the transformed views. Therefore, for distributed im-
plementation, the node computes (2a) and sends XiQ

(r+1)
i to the

server, and the server computes (2b) and broadcasts G(r+1) to the
nodes. Each exchanged data is of size O(JK) which is costly for
large scale data, as discussed earlier.

3.2. Proposed: Quantized Communication

The proposed method is illustrated in Algorithm 1. In order to re-
duce the communication cost of the method in (2), we quantize both
the uplink and downlink messages. For example, a node may quan-
tize XiQ

(r+1)
i before sending it to the server. However, a bet-

ter approach is to quantize and transmit the change in XiQi, i.e.,
XiQ

(r+1)
i −XiQ

(r)
i . It is because we expect the change in XiQi

to converge to zero as the iteration progresses, which results in the
quantization error coverging to zero. Compressing such change can
still be problematic; it is quite noisy and can hinder convergence
guarantees in some cases [17]. A solution is to employ error feed-
back (EF) mechanism which has shown to be essential to conver-
gence in some compressed gradient methods or improve the conver-
gence rate in others [16,17]. Note that we do not use EF to compress
gradients, but the information needed to perform alternating opti-
mization between the nodes and the server.

To see how compression and EF is employed in the proposed
framework, let the server maintain an estimate of M (r+1)

i =

XiQ
(r+1)
i , ∀i, denoted by M̂ (r+1)

i , and the nodes maintain an
estimate of G(r+1), denoted by Ĝ(r+1). First, both the server and
nodes start from the same initial point as follows. Node i randomly
initializes Q(0)

i and transmits XiQ
(0)
i to the server using full pre-

cision, i.e., without compression. Then the server computes G(0)

using (3), and broadcasts G(0) using full precision. This allows us
to set the estimates M̂ (0)

i ←XiQ
(0)
i , ∀i, Ĝ(0) ← G(0). Note that

other initialization methods, such as in [4], can also be employed for
the proposed method. In the following, we see how the computation
and communication are carried out by the nodes and the server.
Node operations. At iteration r, node i computes Q(r+1)

i using
Ĝ(r) as follows:

Q
(r+1)
i ← argmin

Qi

fi
(
Qi, Ĝ

(r)
)
. (4)



Note that the above can be solved by any off-the-shelf least squares
solvers, e.g., the conjugate gradient. It also needs not to be solved ex-
actly, but approximated to reduce computational cost (see Sec. 3.4).

Let ∆(r)
Qi

denote the information that needs to be transmitted
from node i to the server, which is defined as follows:

∆
(r)
Qi

=XiQ
(r+1)
i − M̂ (r)

i (5)

=XiQ
(r+1)
i −XiQ

(r)
i︸ ︷︷ ︸

exact change

+XiQ
(r)
i − M̂

(r)
i︸ ︷︷ ︸

previous estimation error

.

This is called error feedback because the estimation error from pre-
vious iteration, induced by compression, is fedback along with the
current change in XiQi. If the node transmits ∆(r)

Qi
, the server can

exactly recoverM (r+1)
i =∆

(r)
Qi

+M̂
(r)
i . However, to reduce com-

munication overhead, the node quantizes ∆(r)
Qi

using a compressor
C(·) : RJ×K → QJ×K , where QJ×K ⊂ RJ×K is a quantized
domain that is a subset of the real domain.

The server receives C(∆(r)
Qi

) from node i and updates the esti-

mate M̂ (r+1)
i as M̂ (r+1)

i ← M̂
(r)
i + C(∆(r)

Qi
). Using the above

operation, node i also maintains a copy of M̂ (r+1)
i in order to com-

pute the estimation error in (5).
Server Operations. Server operation proceeds in a similar manner.
First, the server computesG(r+1), using M̂ (r+1)

i , as follows:

G(r+1) ← arg min
G>G=I

I∑
i=1

∥∥∥M̂ (r+1)
i −G

∥∥∥2
F
.

The G-update proceeds as G(r+1) ← UŶ (r+1)V
>
Ŷ (r+1) , where

Ŷ (r+1) =
∑I
i=1 M̂

(r+1). We define ∆(r+1)
G , the information that

needs to be exchanged with the nodes, as ∆(r)
G = G(r+1) − Ĝ(r).

The server compresses∆(r)
G and broadcasts C(∆(r)

G ) to the nodes.
The nodes receive C(∆(r)

G ) and update the estimate Ĝ as
Ĝ(r+1) ← Ĝ(r) + C(∆(r)

G ). Using the above operation, the server
also maintains a copy of Ĝ(r+1) in order to compute∆(r+1)

G .

3.3. Choice of Compressor

There are more than one option for the compressor C(·), e.g., quan-
tization based [14, 16], or sparsification based [15, 20]. In this work,
we employ a stochastic quantization based compressor introduced
in [16] due to its flexibility of accommodating multi-precision quan-
tization, small computation cost, and good performance in practice.

For any data, ∆ ∈ RJ×K , ∆ 6= 0, C(∆) is computed as
follows. We first divide the range from 0 to 1 into S intervals,
where S corresponds to the number of levels of quantization. For
each element∆(j, k), we can find an interval [p/S, (p+1)/S], p ∈
{0, . . . , S−1}, such that the normalized value |∆(j, k)|/‖∆‖max ∈
[p/S, (p+ 1)/S]. We define a Bernoulli random variable,
h(∆(j, k), S), which takes the value p/S with probability 1 −
(|∆(j,k)|S/‖∆‖max − p), and (p + 1)/S otherwise. The result
is obtained by unnormalizing h(∆(j, k), S) using the sign and
magnitude information as [C(∆)]j,k = ‖∆‖maxsgn(∆(j, k)) ·
h(∆(j, k), s), where sgn(·) is the sign operator.

3.4. Acceleration via SGD at the Nodes

As mentioned in [4,5,7], whenXi’s are large and sparse, one can use
first-order methods such as conjugate gradient or gradient descent
to solve the Qi-update problem. However, using the full data (e.g.,

Algorithm 1: CuteMaxVar
// At the nodes

1 InitializeQ(0)
i , and set M̂(0)

i ← XiQ
(0)
i , ∀i;

2 TransmitXiQ
(0)
i to the server using full precision, ∀i;

// At the server

3 M̂
(0)
i ← XiQ

(0)
i , ∀i;

4 ComputeG(0) using (3), and set Ĝ(0) ← G(0);
5 BroadcastG(0) to the nodes using full precision;
6 r ← 0 ;
7 while some stopping criteria is not met do

// At the Nodes
8 if r = 0 then
9 Ĝ(0) ← G(0);

10 else
11 Ĝ(r) ← Ĝ(r−1) + C(∆(r−1)

G ) ;
12 end
13 for i← 1 : I do
14 for t← 0 : T − 1 do
15 Sample a minibatch and compute ∇̂Qi

f(Qi
(r,t), Ĝ(r));

16 Q
(r,t+1)
i ← Q

(r,t)
i − α∇̂Qi

f(Qi
(r,t), Ĝ(r));

17 end
18 ∆

(r)
Qi
← XiQ

(r+1)
i − M̂(r)

i ;

19 Transmit C(∆(r)
Qi

) to the server ;

20 M̂
(r+1)
i ← M̂

(r)
i + C(∆(r)

Qi
) ; // Node’s copy

21 end
// At the Server

22 Receive C(∆(r)
Qi

), ∀i from the nodes ;

23 M̂
(r+1)
i ← M̂

(r)
i + C(∆(r)

Qi
) ;

24 G(r+1) ← U
Y (r+1)V

>
Y (r+1) where Ŷ (r+1) =∑I

i=1 M̂
(r+1);

25 ∆
(r)
G ← G(r+1) − Ĝ(r) ;

26 Broadcast C(∆(r)
G ) to the nodes ;

27 Ĝ(r+1) ← Ĝ(r) + C(∆(r)
G ) ; // Server’s copy

28 r ← r + 1 ;
29 end
30 Output:G(r), {Q(r)

i }
I
i=1.

computing the full gradient) can still be computationally costly when
the nodes have limited compute power (such as edge devices), or
when the views are large and dense. In this case, the nodes can
run stochastic gradient descent (SGD) instead. Specifically, at each
iteration r, node i runs T steps of SGD as follows:

Q
(r,t+1)
i ← Q

(r,t)
i − α∇̂Qif(Qi

(r,t), Ĝ(r)),

where ∇̂Qifi(Qi
(r,t), Ĝ(r)) is the minibatch-estimated gradient for

fi(Q
(r,t)
i , Ĝ(r)) with respect to a uniformly sampled minibatch at

random, α is the step size, and Q(r+1)
i ← Q

(r,T )
i and Q(r,0)

i ←
Q

(r)
i . The algorithm is termed as communication-quantized MAX-

VAR (CuteMaxVar) and summarized in Algorithm 1.

3.5. Convergence Analysis

Let P =
∑I
i=1Xi(X

>
iXi)

−1X>i andU1 = UP (:, 1 : K), U2 =

UP (:,K +1 : J), whereUPΣPV
>
P = svd(P ) . Note that the op-

timal solution of Problem (1) isG? = U1. Therefore we can use the
subspace distance metric, dist(R(G(r)),R(U1)) = ‖U>2G(r)‖2 to
measure the progress towards the optimal. We establish the follow-
ing theorem regarding the convergence of CuteMaxVar.

Theorem 1 Assume that there exist a δ ∈ (0, 1] such that E‖C(∆)−
∆‖2F ≤ (1 − δ)‖∆‖2F and E‖∇̂Qif(Qi

(r,t), Ĝ(r))‖2F ≤ σ2,
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Fig. 2. Communication cost [left] and convergence rate [right] under
various compression levels.

where the expectation is over the randomness of compressor and
sample seed of SGD, respectively. Let the eigenvalues of P be
λ1, . . . , λJ in descending order. Assume λK > λK+1, the range
space of G(0), is not orthogonal to any components in R(U1).
Further, assume that one solves the Qi-subproblem in each itera-
tion to an accuracy such that E‖Q(r+1)

i − Q̃(r+1)
i ‖2 ≤ κ, where

Q̃
(r+1)
i = (X>iXi)

−1XiG
(r). Then, with probability at least

1− ω,

dist
(
R(G(r)),R(U1)

)
≤ tan(γ)

(
λK+1

λK

)r
+ C,

where dist
(
R(G(r)),R(U1)

)
= ‖U>2G(r)‖2 measures the sub-

space distance, C = O(λK/λK−λK+1) is a constant, and ω =∑I
i=1 r‖Xi‖2κ+ 2Ir

√
(1−δ)(Tα2σ2+2K)/δ.

Theorem 1 asserts that, if the Qi-subproblem is solved to a good
accuracy and the compressor is sufficiently accurate, CuteMaxVar
converges to a neighborhood of the optimal with high probability in a
geometric rate. Due to page limitations, the proof is put in the online
technical report [21] (see [22] for more details). Note that our anal-
ysis is different from existing gradient compression methods, since
CuteMaxVar is not a gradient descent algorithm. Instead, we re-
cast our updates as an inexact and noisy version of the orthogonal
iterations [23] and draw our conclusions from there.

4. NUMERICAL RESULTS

Synthetic Experiments. The method in [4], AltMaxVar can be
understood as the unquantized version of CuteMaxVar. There-
fore, we compare the communication efficiency of CuteMaxVar
and AltMaxVar. We use the optimal solution computed using
eigendecomposition as another baseline. All the curves are aver-
aged from 50 Monte Carlo trials. Each view is synthesized using
Xi = ZAi + ηNi; Z ∈ RJ×D is the latent factor with J ≥ D,
Ai ∈ RD×Mi the “mixing matrix”, η2 ∈ R the noise variance, and
Ni the noise. The matrices Z, A, and Ni are sampled from the
standard i.i.d. normal distribution. To measure the communication
efficiency, we define bits per variable BPV as BPV(r) = qfull + rq,
where r is the iteration index, qfull is the full precision—32 bits in
our case—and q represents the number of bits per scalar used by
the compressor. Also, we define compression ratio (CR) as follows:
CR = 1 − qRC/qfullRA, where RC and RA are the numbers of it-
erations required by CuteMaxVar and AltMaxVar to achieve a
certain convergence criterion, respectively.

Fig. 2 shows the communication cost (BPV) and convergence
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Fig. 3. Training objective [left] and NN freq [right] vs. communi-
cation cost for the sentence embedding task; q =3 bits.

speed (in iterations) under various levels of quantization. We set
(J,N,D,K, I, η) = (500, 25, 20, 5, 3, 0.01). To handle the Qi-
subproblem, we use a batch size of 150 for AltMaxVar and
CuteMaxVar, and run the algorithms for T =10 inner iterations.
One can see that using q = 3 bits provides us the best communica-
tion efficiency. When q ≥ 3, the compressed algorithm converges
to the optimal solution using essentially the same number of itera-
tions as the uncompressed version. Using q = 2 causes divergence
because the assumption in Theorem 1 on the compressor may not
be violated. When the algorithm reaches 1.5 times of the optimal
objective value, the implementations using q =3, 4, and 5 bits
for real-value encoding attain CRs of 0.9062, 0.8681, and 0.8428,
respectively—i.e., 90% communication reduction can be attained
relative to the unquantized version AltMaxVar.
Real-Data Experiment. We also observe the performance of pro-
posed method on the Europarl Corpus [24]. We are given high di-
mensional representations of sentences in different language, from
which we learn low dimensional representations using GCCA. We
select 3 languages and use each language as a view, and follow the
method described in [6] to obtain a 524,288-dimensional representa-
tion for each sentence. We use 160,000 sentences in each language
as the training data and 10,000 sentences as the testing data. We ex-
pect that the learnt representations for the same sentence are similar
across all languages. NN freq [6] captures this idea by counting the
frequency of ‖X(test)

` (a, :)Q` −X(test)
m (b, :)Qm‖22 for different `

and m being the smallest when a = b.
Fig. 3 depicts the communication cost of AltMaxVar and

CuteMaxVar for the aforementioned task when setting K = 10.
We use q = 3. For theQi-subproblem, we set T = 20 and use SGD
with a batch size of 2,000. One can see that CuteMaxVar consis-
tently achieves a compression ratio of above 0.9 to reach different
objective values.

5. CONCLUSION

In this work, we proposed a provably convergent communication-
efficient method for distributed MAX-VAR GCCA. By utilizing a
carefully designed compression scheme, we showed that the pro-
posed method consistently achieves a reduction of 90% in both
downlink and uplink communication overhead, without any degra-
dation in the convergence properties compared to the uncompressed
version. We also offered tailored convergence analysis to support
our design. In particular, we showed that the proposed algorithm
approaches a global optimum with a geometric rate, even under
heavy communication compression. Our proof is a nontrivial gener-
alization of gradient compression and error feedback to the domain
of eigenvalue computation, which may also be of interest in other
computational linear algebra applications.
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