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Abstract— To minimize the excavation damage of
underground pipelines, we propose to provide real-time
feedback to operators by monitoring the distance
information from the underground pipeline. Despite
multiple efforts to locate underground ferromagnetic
pipelines using the magnetic anomaly detection, it has not
been implemented in real-time excavation operations due
to low signal-to-noise ratios, unknown external magnetic
interference, and high computational power. To address
these limitations, we propose an approach to locating a
custom-designed wireless sensor system on the excavator
bucket to increase accuracy of real-time distance
estimation with efficient external magnetic interference
cancellation. We present the system using a 14:1
lab-scaled excavator and six sizes of ferromagnetic pipes.
To create a distance estimation model of each pipe, we
measure the magnetic anomaly caused by ferromagnetic
pipes from eight distances (from 5 to 75 mm, spaced 10mm
apart). The wireless system with the localization algorithm
successfully estimates the distance between the sensor
and the pipe with a less than 4.38%1.62mm error overall.
This pilot study shows that the proposed system with the
localization algorithm is able to accurately locate pipes.
This will lay the foundation for providing accurate spatial
information, and ultimately prevent critical
excavation/drilling damage at construction sites.

Index Terms—Distance estimation, external magnetic
interference cancellation, ferromagnetic underground
pipelines, magnetic anomaly detection.

|. INTRODUCTION
AMAGE to underground utilities (e.g.,
telecommunications, gas, TV, water, sewer) is a

possibility on every excavation site [1] and can result in costly
consequences such as disrupting essential services, downtime,
and potentially serious injuries or death. Approximately
379,000 incidents of the underground utility damage were
reported in the United States (U.S.) in 2016, an increase of 20%
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from 2015, and an additional cost of approximately $1.5 billion
to society [2]. For example, it was reported that more than 50%
of Atmos Energy’s hazardous leaks in 2018 were caused by
excavation damage [3]. Even minor damage, such as a scrape,
dent, or crease in a pipeline or its coating, can weaken a
pipeline and lead to a future leak. Therefore, an efficient
method of detecting buried objects (i.e., pipelines) to prevent
accidents at construction site is important not only to ensure a

safer environment on construction sites but also to save
unnecessary costs.
To minimize excavation/drilling damage on real

construction sites, operators use caution while digging along
with two main approaches: 1) the proper marking of
underground pipelines reported to the Federal Communications
Commission [4]-[6] and 2) radar-based scanning that detects
pipelines [7]-[16]. These mitigation efforts, however, will not
sufficiently reduce excavation damage to underground utilities.
To address the limitations of these approaches, we must first
understand why they are limited.

Marking pipelines: Some excavation damage can be prevented
by contacting 811, the number that the Federal
Communications Commission has designated as the national
toll-free “Call Before You Dig” number in the U.S. [17]. An
811 representative will take information about planned
excavation activities and notify the appropriate utility
companies to locate and mark buried lines they own at the
location specified in the call ticket. The call must be placed at
least two to three business days before excavation begins to
ensure that buried utility-owned pipelines are properly located
and marked. Based on the types of the utilities, different
color-coded markers would be provided for this purpose.
Despite the benefits, this practice has not had a significant
effect at reducing the number of incidents. Evidence of damage
(particularly to telecommunication and television lines) has
been increasingly reported in the U.S. [18]-[20], possibly the
result of errors in the marker location or the provision of no
depth information nor real-time feedback.
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Radar pipeline scanning: The radar-based pipeline scanning
can be performed in dangerous/critical areas to prevent pipeline
damage. Typically, handheld devices are used to scan the target
area for construction sites. In the last several decades, advances
in the field of remote sensing and visual augmentation (e.g.,
augmented reality, virtual reality) have enhanced the spatial
awareness of buried utilities [21]-[26] by providing workers
with more information (e.g., regarding depth) with more
displays. Such advances have dramatically improved operator
performance and mitigated the likelihood of accidents. For
example, locating technology such as ground penetrating radar
(GPR) enables operators to use three-dimensional underground
utility mapping to obtain more precise (depth) information
about buried utilities [7]-[26]. If such locating technology,
along with GPS/GIS and augmented reality (AR), can be fully
utilized before excavation work, the machine guidance system
may provide operators with information of the proximity of the
excavator bucket to 3D models of buried utilities
[4],[6],[21]-[26]. Even though this GPR technology can
provide an accurate spatial information for pipeline locations, it
takes a substantial amount of time to scan and process the laser
signals that detect the pipelines. Moreover, if the penetration
distance of the device (radar) is limited, it may not be capable
of detecting all pipelines from ground level.

It is also critical to understand the main causes of
underground utility damage. The most common causes are
insufficient excavation practices and insufficient location
practices. Even if utilities are located and marked, and depth
information is known prior to excavation, the current control
interface of an excavator is not intuitive enough to accurately
control an excavator arm. Therefore, efficient feedback to
convey depth information to an excavation operator on the
construction site is another important issue [27].

At the same time, to provide the operator with reliable
information, we need to be able to estimate the depth
information of buried pipelines in real time. However,
providing accurate and reliable spatial information for the
underground environment has been a challenging task, because
sensors (e.g., vision, distance, depth) are usually designed for
the overground localization [28]-[32], and cannot detect the
objects at the underground environment. To monitor spatial
information in underground environments, several studies have
proposed using inertial measurement units (IMUs) with noise
reduction algorithms, and they have applied them to various
underground localization tasks for construction activities such
as excavation and drilling [33]-[38]. Specifically, the
magnetometer, among the IMU sensors, plays an important role
in underground environment as it can monitor the magnetic
anomaly from the buried metal objects. As metal-based pipes
(i.e., ferromagnetic object) deform the earth’s magnetic fields
(EMF) near the pipelines, the distorted magnetic field can be
utilized to estimate the location of the metal-based pipes (see
Fig. 1). Note that, the most of the materials covering the ground
are transparent to the magnetic fields, except for the particular
soils that contain magnetism [39], [40]; so if we can efficiently
eliminate the magnetic interference, including the EMF and
external magnetic fields (i.e., magnetic soil), then the
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Fig. 1. Overview of the Real-time ferromagnetic Pipeline Detection
System (RPDS) that utilizes Magnetic Anomaly Detection (MAD) to
locate the hidden underground ferromagnetic objects with external
magnetic interference (EMI) cancellation.
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metal-based pipes can be effectively localized. By monitoring
underground metal-based pipes using a magnetometer in real
time, we can ultimately provide proper and intuitive feedback
to the operators to avoid any accident via a visual, auditory, or
tactile channel.

Several research groups have worked on magnetic anomaly
detection (MAD) for underground pipeline localization, on the
purpose of moving ferromagnetic objects or drilling activities
[41]-[44]. The most common method of distance or depth
estimation for the underground ferromagnetic pipelines is
magnetic dipole reconstruction (MDR) [45]-[53]. The MDR
approach, as a forward modelling, can accurately do the
magnetic anomaly detection (MAD) of target pipelines and
model the magnetic dipole to estimate the depth from the
ground. To increase the accuracy of MDR, several studies have
implemented novel algorithms to increase signal-to-noise ratio,
such as stochastic resonance [47] and deep learning neural
networks [48]. They have evaluated their approaches with
mathematical simulation models and measurement outcomes to
show how much the signal-to-noise ratio can be improved.

Moreover, the MDR approach requires a high computational
power to estimate the distance [49]-[51]. Others have explored
different scheme to reduce its computational power, such as
segmentation strategy and section segmentation method
approach. However, they reported the time for calculation as
tens or thousands of seconds [51]. Other studies have
demonstrated the application of MAD in operations of placing
the sensor in stationary positions or directional movements
(e.g., horizontal drill movements). A few of them estimated the
distance between the magnetic sensors and target ferromagnetic
objects, yet the distance range (e.g., several meters) did not
cover the interested distance to be implemented in excavator
movements. Moreover, none of them tested the system in actual
excavation movements to estimate the distance from the pipes.

To minimize an excavation damage of the underground
pipeline, our approach is to provide real-time feedback (e.g.,
auditory, visual, vibro- or electro-tactile [54], [55]) to the
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Fig. 2. Block diagram of the wireless multi-sensor recording hardware
of the Real-time Pipeline Detection System (RPDS).

TABLE |
SPECIFICATIONS OF RPDS HARDWARE
Specification Value
Control Unit
Microcontroller Unit MSP432
Wireless Module Xbee 2.4GHz RF Module
Control Unit Dimensions 40 x 55 mm?

Power Source
Board Weight (with Battery)

3.7 V 2000 mAh Li-ion polymer battery
22 grams (60 gram)

Sampling Rate 20 Hz
Inertial Measurement Unit (IMU) Modules
Sensors BNO-055
Sensor Unit Dimensions 20 x 27 mm?
Sensor Unit Weight 3 gram per each module
Accelerometer +16g
Gyroscope +2000°/s
Magnetometer +1300uT (x-, y-axis), £2500uT (z-axis)
Magnetic Field Resolution ~0.3uT
Operating Hours ~ 20 Hours

operators based on the distance information of the underground
ferromagnetic pipeline. Considering the speed of excavator
arms (e.g., boom and stick) or bucket, this approach requires to
estimate the near field proximity information (e.g., up to 1x or
2x of bucket height) in subsecond scale during excavation
motions. Any of the existing approaches cannot be employed
because they cannot estimate the distance within the subsecond
time window. Further, existing approaches did not function at
the distance range of our interests, were not tested in
multi-degree movements, and did not consider external
magnetic interferences of equipment body (i.e., excavator).

To accurately estimate the proximity information within this
scope, we propose an approach to locate the sensor at the tip of
the bucket. As the excavation proceeds, the sensor can get close
to the wunderground pipeline, so it can increase the
signal-to-noise ratio. At the same time, we can increase a
control resolution because the tip of the bucket is the main
collision point. However, it might be challenging because the
excavator body, boom, stick, and buckets are also composed of
ferromagnetic materials; and therefore, an external magnetic
interference should be efficiently removed. Moreover, the earth
magnetic fields need to be cancelled too while the sensors are
moved along with the multi-degree excavation motions.

To efficiently remove the external magnetic interference,
several prior studies have employed a reference sensor at a
distance to efficiently distinguish the target MAD while
cancelling the common mode interference [52], [53]. However,
this is not applicable to the case where the two sensors are on
the different ferromagnetic materials in movement. Therefore,
we selected the linear relationship between the reference and

(d) Zighee Transceiver
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Control Unit

(b) IMU Modules
(BNO-055)

(c) Battery

Fig. 3. Actual wireless multi-sensor recording hardware of the RPDS:
(a) a custom-designed control unit, (b) inertial-measurement unit (IMU)
modules, (c) a Li-poly rechargeable battery, and (d) a Zigbee wireless
transceiver.

measurement sensors, with the static external magnetic
interference for each sensor. The virtual linear relationship
based on the measurement data was utilized to cancel the
external magnetic interference (EMI). Note that any dynamic
external magnetic interference cannot be cancelled and the
ferromagnetic pipeline can be easily detected. This approach
had been applied to the magnetic localization for magnet-based
tongue-controlled assistive technology and its efficacy was
demonstrated with multiple system-level operation tests
[56]-[60].

Therefore, we propose the Real-time Pipeline Detection
System (RPDS), which employs a pair of magnetic sensors and
a localization algorithm to detect magnetic deformation caused
by ferromagnetic pipes as a bucket of the model excavator
approaches the target ferrogmagnetic object during the actual
excavation movement. To accurately estimate the
distance/depth from a pipeline, we must first increase the
signal-to-noise ratio by eliminating external magnetic
interference. The main source of magnetic interference is the
EMF and environmental magn etic fields (i.e., magnetic soil),
which is relatively easy to eliminate since they are considered a
common mode noise. Another source of interference is
magnetic deformation caused by the excavator body (i.e.,
bucket, the stick, and the boom), which typically consists of
ferromagnetic material. To closely collect the magnetic
deformation from the pipes, our system requires that the
measurement sensor be located at the teeth of the excavator
bucket, which means that the sensor will continuously move
along with the bucket during excavation movements. To
address the challenges of constantly moving sensor(s) for the
real-time monitoring of underground pipes, a specialized
signal-processing procedure requires to efficiently eliminate
magnetic interference using a reference sensor during the
excavation movements. Moreover, the proposed localization
algorithm should accurately estimate the distance from the
measurement of the magnetic anomaly caused by the
ferromagnetic pipes.

In this study, we developed the RPDS and evaluated the
system with pipes of various diameters and distance, and a set
of experimental results showed that the RPDS can effectively
eliminate magnetic interference and accurately estimate the
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Fig. 4. Block diagram of the RPDS localization algorithm including calibration, sensor offset and external magnetic interference cancellation,
creating the distance estimation models for each pipe, and the actual distance estimation. For the system validation, we analyzed the error rate from
the difference between the actual distance estimation from the distance estimation model and its reference distance.

distance from the ferromagnetic pipes. The proposed RPDS
system can complement existing excavation tools, and will
ultimately support operators in their efforts to protect
underground utilities during excavation activities that require
more caution by providing an accurate spatial information.

Il. METHODS

The RPDS consists of wireless multi-sensor recording
hardware with a localization algorithm including offset and
magnetic interference cancellation (calibration) and distance
estimation.

A. Wireless Multi-sensor Recording Hardware

The wireless multi-sensor recording hardware of RPDS
consists of a custom-designed control unit with two IMU
modules, a Li-poly rechargeable battery, a wireless transceiver,
and a laptop computer. The hardware collects
multi-dimensional sensor data and conveys information to the
computer, which processes the sensor information. The
transceiver takes charge of the wireless data communication.
The laptop computer provides the user interface and processes
the pre-built localization algorithm to eliminate offset and
external magnetic interference and to determine the distance
from ferromagnetic pipes. The overall block diagram of the
hardware of RPDS is illustrated in Fig. 2, and the system
specifications are summarized in Table I. The RPDS firmware
was programmed using the Texas Instrument Real-Time
Operating System (TI-RTOS) MSP432 package. The hardware
system, sensor modules, and the transceiver with the USB data
conversion module are shown in Fig. 3.

The custom-designed hardware of RPDS consists of a
microcontroller (MCU; MSP432, Texas Instruments, TX
USA), a power-management circuit, a Zigbee wireless
transceiver module (Xbee 2.4GHz RF Module; Digi

International, MN USA), and two IMUs (BNO-055, Bosch
Sensortec, Germany). The IMU sensor data is delivered to the
MCU via a serial communication protocol (1>C), and the MCU
creates a data package to transmit it via the Zigbee wireless
protocol. The power-management circuit converts the battery
input to a 3.3 V regulated supply to power all electronic
components.

The IMU module, BNO-055, provides the output of the
accelerometer, the gyroscope, and the magnetometer as well as
three-dimensional Euler angle information as outputs of the
data fusion mode using the IMU data. The information is used
as reference angle for the excavator boom and the bucket. The
main signal processing algorithm, however, uses the three-axis
magnetometer information. To collect accurate Euler angle
output (i.e., the pitch, the roll, and yaw within £3 degrees) using
their own data fusion algorithm, each sensor module must
undergo the sensor calibration process [61].

B. Offset and External Magnetic Interference Cancellation

The localization algorithm of the RPDS consists of an
increase in the signal-to-noise ratio and an estimate of the
distance. To accurately locate ferromagnetic pipes using the
magnetic sensors, we increased the signal-to-noise ratio by
following two major steps: (1) offset and (2) external magnetic
interference (EMI) cancellation. A flowchart of the localization
(sensor signal processing) algorithm that both eliminates offset
and common-mode EMI and estimates distance from the pipe is
shown in Fig. 4.

We began by removing offsets, defined as any deviation
from the baseline sensor information at the initial excavator
location, referred to as Offset cancellation. Offset occurs when
magnetic sensors are very close to extremely high magnetic
fields, mainly caused by magnetic hysteresis. Since both sensor
modules can provide Euler angle information used to identify a
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baseline location at the initial stage, we compared the sensor
values to the baseline sensor values when the excavator was
positioned at the initial stage. If the system detected a certain
level of offset in the measurement sensor from the baseline
sensor information, it automatically subtracted the offset.
After eliminating the sensor offset, we applied EMI
cancellation. Magnetometers detect changes in the magnetic
field from not only the ferromagnetic pipes but also the EMI,
such as the EMF and external ferromagnetic objects (i.e., parts
of the excavator body, magnetic soil). The EMI, however, can
degrade the performance of the distance estimation of
localization algorithm because the EMI can be a significant
noise for the MAD measurement caused by the ferromagnetic
pipes. Thus, EMI cancellation is important, enhancing the
performance of algorithm that determines the distance between
the sensor and the ferromagnetic pipes.
The core of EMI cancellation is subtracting the real-time
EMI using a reference sensor (located at the top of the boom) to
the measurement sensor (located at the tip of the excavator
bucket) [52], [53]. Since the two sensors are not pointed in the
same direction, they must be virtually aligned in parallel
[56]-[60], [62], [63]. Then the magnetic fields of the reference
sensor (EMI) are subtracted from those of the measurement
sensor. As a result of subtraction with virtual alignment, the
common-mode components of the magnetic sensor output,
mainly the result of the EMI, are cancelled out while the
differential-mode components resulting from the ferromagnetic
pipelines are retained.
To virtually align both sensors in parallel, we first collected
sensor information with possible common-mode noise from the
EMI while executing possible excavation movements, maintain
the relative sensor locations constantly without any pipes. We
refer to this procedure as system calibration. Once we collected
the sensor data from this calibration procedure, we calculated
the calibration coefficients that could be used for virtual
alignment of the sensor modules. During the calibration
procedure, we also collected baseline sensor information (i.e.,
magnetic sensor data and Euler angle information) for both
sensors at the initial position of the stick, the boom, and the
bucket of the excavator (Fig. 5a) to detect and cancel the offset.
The outputs of the three-axis magnetometer from the
measurement sensor (M), located at the tip of the bucket, are
XM, Ym, and Zy and those from the reference sensor (R),
located at the top of the stick, are Xr, Yr, and Zr. After we
collected the magnetic sensor information during system
calibration, we calculated the calibration coefficients of the
linear relationship between the reference and measurement
sensors. The linear relationship between the original (Xgr, Yr,
Zr) and the virtually rotated modules (Xvr, Yvr, Zvr) can be
expressed in Eq. (1):
Xyr = @, Xg + b Yy + ¢, 2 + d,
Yur = ayXg + byYg + ¢y Zg + dy (1)
Zyp = @z Xp + b Yp + c;Zp + d,

where a, b, ¢, and d are linear coefficients, indicating the

relative orientation of the two sensors. These coefficients were
found using the multilinear regression algorithm during the
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Fig. 5. Experimental setup to emulate the construction site using 14:1
scaled metal excavator model. The series of excavation movements for
the distance estimation: (a)-(b)-(c)-(a) as a trial. (d) The nearest distance
between the sensor and the pipeline was applied to estimate the
distance from the data collection.

calibration procedure with the presence of EMI, yet without
any ferromagnetic pipes. After we virtually rotated the
reference sensor using the calibration coefficients from the
calibration data, we subtracted the rotated reference sensor data
from the measurement sensor data in Eq. (2).

Xue = Xy — Xy
Yo = Yar — Yyg (2)
Zyr = Zy — Zyg

Thus, the output of measurement sensor subtraction with virtual
alignment (Xwm+, Ywm+ ,Zm+) would be sensitive enough to detect
changes in magnetic fields caused by the ferromagnetic pipes,
yet insensitive to the EMI even while both sensors are in
motion. We calculated the root sum of square (RSS; Eq. (3))
values of the offset and EMI free sensor information to create
the distance estimation models. This output was also used for

validation.
M gss = JXu+ + Yorr + 2y (3)

C. Distance Estimation

To create a distance estimation model for each pipe, we first
measured magnetic fields of various distances between the
sensor and different sizes of pipes. From the RSS output of the
measurement sensor of the various distances, we created a
first-order linear regression model of each pipe for the distance
estimation. The coefficient of the first-order linear regression
model is expressed in Eq. (4):

y=ax+b 4)

where x is the reference distance between the sensor and the
pipes, and y is the RSS of magnetic fields. The linear regression
models were created by the measurement of 10 trials at each of
eight distances between 5 and 75 mm (for a total of 80
measurements per pipe). Once we created the distance
estimation models, we reversely applied the actual
measurements to estimate distances. We evaluated the distance
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estimation algorithm by comparing the estimated distance to
the reference distance.

[ll. EVALUATION

The goal of this study is to evaluate how accurately the
RPDS estimates the distance between the sensor and the pipe.
This evaluation was performed by a 14:1 scaled metal
excavator model that emulates the excavation operation at a
construction site.

A. Experimental Setup and System Calibration

Figs. 5a -c show the flow of the excavator operation for each
trial (from Figs. 5 (a)-(b)-(c)-(a) per trial) to estimate the
distance between the measurement sensor (installed inside of
the bucket teeth) and the pipe, based on the magnetic field
measurements (RSS output). We used the data at the location of
Fig. Sc for the validation. We manually changed the location of
each metal pipe at eight distances spaced 10 mm apart: the
closest was 5 mm and the farthest was 75mm (see Fig. 5d). At
each distance, we conducted 10 trials (a full excavation
movement), and used six different pipes for all measurements.
Detailed pipeline specifications are summarized in Table II. We
performed the experiment on a 14:1 lab-scaled metal excavator
(Top Race TR-211M).

We first performed “sensor calibration” to implement the
data fusion mode of the sensors to get accurate reference
angular information before we mounted them on the excavator.
We individually rotated th e sensor modules by changing them
45 degrees in all direction. This sensor calibration, which
differs from the system calibration for offset and EMI
cancellation, took about 30 seconds per sensor module. We
then placed the sensors in two positions on the excavator: the
teeth of the bucket and the top of the boom, and performed the
system calibration. For the system calibration, we collected
sensor data without any pipes, yet moved the boom of the
excavator a s similar so that it resembled the natural excavation
operation (repeated five times). We used the data to calculate
the coefficients of the linear relationship model (Eq. (1)) for
EMI cancellation and to collect the baseline sensor and angular
information at the initial excavator position. To create the
distance estimation models and estimate the actual distance, we
used the calibration coefficients and the initial information
from the system calibration that were saved in a text file.

TABLE Il
SPECIFICATIONS OF PIPELINES
. Diameter Wall Weight
Index Nosr;;l:al External Width Per Fgoot (II“;;%;:)
(Inches) (Inches)  (Pounds)
Pl 1.000 1.315 0.133 1.678 18.00
P2 2.000 2.375 0.154 3.652 18.00
P3 4.000 3.500 0.216 7.575 18.00
P4 4.000 4.500 0.237 10.79 18.00
P5 5.000 5.563 0.258 14.62 18.00
P6 6.000 6.625 0.280 18.97 18.00

All sample pipes are Structural Steel Pipe ASTM AS500.
Mechanical Properties: Tensile = 58,000 and Yield = +46,000.
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Fig. 6. Example graphs of magnetic field changes with and without
pipes. Raw magnetic sensor outputs from both measurement and
reference sensors (a) without pipes and (c) with the P2 pipe at 15mm
distance. The Euler angle and the RSS output after the offset and EMI
cancellation from the reference and measurement sensors (b) without
pipes and (d) with the P2 pipe.

B. Distance Estimation Model and Validation

To evaluate the RPDS, we manually set the location of the
pipes for the sensor data collection (1) to create the distance
estimation model and (2) to estimate the distance between the
sensor module and the pipe. After offset and EMI cancellation,
we calculated the RSS of the magnetic sensor data for creating
the distance estimation model for each pipe and validating the
distance estimation.

We selected one of the six pipes and measured the magnetic
fields of the eight distances ten times. The number of
measurements for each pipe was 80 (10 times for the eight
distances). As the average measurement of the RSS of the
magnetic fields for each distance was correlated with the
distance (see Fig. 7), we fit the linear regression model from the
multiple measurements. We repeated the same procedure for
six pipes (the number of measurements for the six pipes was
480). Then we obtained the raw sensor, pitch, and roll data, the
RSS magnetic fields, and the coefficients of the linear
relationships for distance estimation, which would be used to
estimate actual distances.

After we created the distance estimation models for each
pipe, we evaluated the accuracy of the distance estimation by
comparing the difference between the estimated distances and
the reference distances. We first selected one of the six pipes in
a random order, and randomly measured one of the eight
distances. Once we selected a distance, we repeated the
excavation operation 10 times to estimate the distance. Once
we completed the measurement with the eight distances, we
randomly selected another pipe and repeated the same
procedure. We estimated the distance using the offset- and
EMI-free RSS output at certain locations (Fig. 5¢), which we
referred to the Euler angle information to find.
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TABLE Il
COEFFICIENTS OF THE LINEAR REGRESSION MODEL FOR EACH PIPE
Index of Pipe a b R?
P1 -8.065 825.512 0.954
P2 -11.683 1292.486 0.978
P3 -8.657 954.755 0.989
P4 -17.376 1928.450 0.969
P5 -16.655 1951.175 0.980
P6 -6.125 676.352 0.978
Overall -11.417 1271.400 0.977

y=ax-+b; x: reference distance, y: RSS of measurement sensors

IV. RESULTS

Figs. 6a and 6¢ show the raw three-axis sensor data, and Figs.
6b and 6d show pitch and roll angle data and the RSS magnetic
fields after offset and EMI cancellation for a single excavation
movement with (Figs. 6¢-d) and without (Figs. 6a-b) a two-inch
diameter pipe (P2) at a distance of 15 mm.

The pitch and roll values of the closest distance between the
sensor and the pipe during one excavation movement, as in
Figs. 6b and 6d, was 31 and -24 degrees for the reference
sensor, and -24 and -191 degrees for the measurement sensor at

the position in Fig. Sc. Displaying a summary of overall data
collection, Fig. 7 presents the RSS magnetic fields of the eight
distances (from 5 mm to 75 mm) between the tip of the bucket
(measurement sensor) and the pipe for various diameters of
pipes (P1-P6). Fig. 7 displays the average and standard
deviation from the data collection of each of the distances and
each pipe (n=10 for each point). From the collected data, we
obtained the linear regression model for e ach pipe and found
that all linear regression models for d istance estimation for the
six pipes fit the data collection well and showed a greate r than
0.95 coefficient of determina tion (R?). A summary of the
coefficients of each linear regression model and their R? values
were summarized in Table I11.

Applying the linear regression model, we reversely fed the
coefficients to estimate the distance from th e RSS magnetic
fields. A summary of the estimated distances from the data
collection were summarized in Table IV. The summary of the
data was from ten repetitive validation measurements (n=10)
for each distance and each pipe; the overall data was a
summary of averaged data for six pipes at each distance point.
The overall error rate for the distance estimation using the
RPDS was about 25%. Even though the error rate was higher
for the closer distance (about 123% at a distance of 5 mm), the
average difference between the distances was less than 5 mm
for all sizes of pipes. When we focused only on the error rate
for the distance higher than 35mm, the error rate was decrased
by about 7.77%.

V. DISCUSSION

The coefficients of the distance estimation model did not
show a strong relationship according to the size of the pipe
(diameter), but it showed well-fitted linear regression models
(R? higher than 0.95) for all pipes. Once we know the
characteristics of the pipes (e.g., diameter, material, width,
direction), we can estimate the distance between the pipe and
the sensor with less than a 5 mm error for all cases except for
the shortest distance (5 mm). If we have no information about
the pipe and applied a generalized distance estimation model,
then the error rate can be significantly increased (~790.09% for
Smm; ~44.67% for the distance higher than 35mm, which is
5.75 times worse). However, the characterization of the

TABLE IV
DISTANCE ESTIMATION OUTPUTS FROM THE EXCAVATION MOVEMENTS

fndex of Pipe - = Estlzrr;ated distance be;x;zeen the sensor er‘ld pipes (mm) = — =
Pl -1.76 £4.79 12.47+3.72 29.23+3.71 39.03 +£3.43 52.48 £3.51 57.98 £ 1.67 61.86+1.85 68.72+2.94
P2 -0.99+£2.34 13.77+3.58 28.89 +£2.92 39.08 +3.66 48.81+3.46 55.78 £2.37 65.56+3.64 69.10+1.97
P3 1.93+5.10 15.67+5.01 24.10+£2.16 37.00 £4.38 49.10£5.75 5544 +£4.02 65.74+£5.18  71.00 £2.00
P4 -0.65+5.17 12.48 £5.06 29.34 +3.74 39.36+2.84 49.25+1.28 56.62 £2.42 64.58+3.80 69.03+1.89
P5 2.00 £ 5.86 11.03£5.30 28.80 +5.05 38.91+3.57 48.27+3.35 54.97 +£2.66 65.43+£226  70.59+1.54
P6 -1.28 £6.01 13.01 £4.81 28.18£7.10 38.05+2.03 48.78 £3.03 55.71+£5.12 6270146  71.28+2.36
Overall -0.13 + 1.66 13.01 £1.57 28.09 +1.99 38.57+0.89 49.45+1.52 56.09 +1.07 6431+£1.64 69.96+1.13
Estimated
Distance 6.19+1.13 3.94+0.85 446+ 1.69 4.19+0.61 490+1.15 3.69+2.53 2.67+0.60 5.04+1.13
Difference
Error Rate (%) 123.72 £22.61 26.26 +5.69 17.83 +£6.74 11.98 +1.75 10.89 +£3.35 5.14+1.64 4.11+£0.92 6.72+1.51

Overall error rate: 25.83 + 38.87 %; overall difference between the measurement sensor and the pipe: 4.38 + 1.62 mm;
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magnetic fields around the ferromagnetic pipe will improve the
generalized distance estimation algorithm without information
about the pipe. For example, the magnetic field change rate,
which depends on the size of pipes, can be applied to estimate
the size of the pipes. Moreover, we can apply signal processing
schemes such as principal component analysis and machine
learning classifiers to improve the generalized distance
estimation. In our future work, we will develop a generalized
solution with or without prior knowledge of pipe sizes.

From preliminary measurements, we found that some offset
caused by magnetic hysteresis in the sensor measurements
accumulated over the time. Offset was observed by the
magnetometer, particularly when the sensor was close to high
magnetic fields (i.e., a ferromagnetic pipe), degrading the
distance estimation. Therefore, we collected the baseline sensor
data during the calibration at the greatest distance between the
sensor and the pipe, initial position of the excavator (see Fig.
S5a). Based on the Euler angle of both measurement and
reference sensors, we could find the initial position of the
sensors. Thus, we were able to eliminate the offsets by locating
the initial excavator position and subtracting the offset by
comparing measurement sensor output with the baseline sensor
values; estimated the distance with the high accuracy distance.

To evaluate the feasibility of estimating the distance to a
moving object, we compared the measurement and reference
distance values offline. We took all measurements with a
metal-based model excavator at the lab-based testbed, which
resembles a real construction site. We also simulated possible
EMI caused by the excavator body and soil, and potential
ferromagnetic objects (i.e., metal pipes). To change the
distance between the sensor and the pipe, however, the current
setup of the evaluation experiment changed only the angle of
the boom; that is, the relative position/angle between the
reference and measurement sensors was constant, which is an
unrealistic condition in real excavation movement. However,
we expect to be able to position both measurement and
reference sensors on the bucket—one at the tip of the bucket
and the other at the connection to the stick—by replicating the
setup used in this study. If we are able to do so, the excavator
bucket will freely move in any direction by changing the boom
and stick angles, even though the relative position of both
sensors will remain the same. Moreover, the standard size of
the excavator bucket, between 24 and 48 inches, should ensure
that the measurement and reference sensors are sufficiently far
from the bucket to be utilized this signal processing algorithm.

The current RPDS system has two sensor modules connected
via wires, which may not be suitable for the rough construction
environment. We plan to develop a fully wireless system with
individual sensors that can send data wirelessly and a
smartphone/tablet that will receive the wireless sensor data.
Ultimately, we will also add a various feedback system to the
RPDS so that users can acquire spatial information for
excavation work and evaluate the efficacy of feedback. In
addition, as we validated the current distance estimation
method by manually placing the pipe and the sensor, this
approach could have introduced some human error. In a future
study, we will include distance measurement sensors such as

ultrasonic sensors and an optical recording system that
accurately obtain reference distances.

VI. CONCLUSION

We developed a custom-designed wireless sensor system
with a specialized localization algorithm that eliminates the
external magnetic interference and estimates the distance
between the tip of the bucket of an excavator and a
ferromagnetic pipe. We evaluated the system using the 14:1
lab-scaled excavator for accuracy of the distance estimation at
eight distances from six pipes. Based on pre-collected data, we
were able to find accurate linear regression models (higher than
0.95 of R?) for all six pipes. We also applied the actual distance
estimation during excavation movements at eight distances
(from 5 to 75 mm, spaced 10 mm apart) using the linear
regression models from the pre-collected data for validation.
We were able to estimate the differences between the distances
from the sensor to the pipe to be about 4.38+1.62mm for the six
pipes at the eight distances in overall; when we estimated a
target distance higher than 35 mm, the error rate was
7.774£3.68%. The preliminary study using the wireless sensor
system with our localization algorithm shows significant
potential for implementation on a real construction site to
estimate the distance between an excavator and an underground
pipe in real time. This system, which ultimately can be
integrated with a sensory feedback modality, delivers distance
information that will prevent excavation/drilling accidents on
construction sites.
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