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Abstract— To minimize the excavation damage of 

underground pipelines, we propose to provide real-time 
feedback to operators by monitoring the distance 
information from the underground pipeline. Despite 
multiple efforts to locate underground ferromagnetic 
pipelines using the magnetic anomaly detection, it has not 
been implemented in real-time excavation operations due 
to low signal-to-noise ratios, unknown external magnetic 
interference, and high computational power. To address 
these limitations, we propose an approach to locating a 
custom-designed wireless sensor system on the excavator 
bucket to increase accuracy of real-time distance 
estimation with efficient external magnetic interference 
cancellation. We present the system using a 14:1 
lab-scaled excavator and six sizes of ferromagnetic pipes. 
To create a distance estimation model of each pipe, we 
measure the magnetic anomaly caused by ferromagnetic 
pipes from eight distances (from 5 to 75 mm, spaced 10mm 
apart). The wireless system with the localization algorithm 
successfully estimates the distance between the sensor 
and the pipe with a less than 4.38±1.62mm error overall. 
This pilot study shows that the proposed system with the 
localization algorithm is able to accurately locate pipes. 
This will lay the foundation for providing accurate spatial 
information, and ultimately prevent critical 
excavation/drilling damage at construction sites.  

Index Terms—Distance estimation, external magnetic 
interference cancellation, ferromagnetic underground 
pipelines, magnetic anomaly detection. 

I. INTRODUCTION 

AMAGE to underground utilities (e.g., 

telecommunications, gas, TV, water, sewer) is a 

possibility on every excavation site [1] and can result in costly 

consequences such as disrupting essential services, downtime, 

and potentially serious injuries or death. Approximately 

379,000 incidents of the underground utility damage were 

reported in the United States (U.S.) in 2016, an increase of 20% 
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from 2015, and an additional cost of approximately $1.5 billion 

to society [2]. For example, it was reported that more than 50% 

of Atmos Energy’s hazardous leaks in 2018 were caused by 

excavation damage [3]. Even minor damage, such as a scrape, 

dent, or crease in a pipeline or its coating, can weaken a 

pipeline and lead to a future leak. Therefore, an efficient 

method of detecting buried objects (i.e., pipelines) to prevent 

accidents at construction site is important not only to ensure a 

safer environment on construction sites but also to save 

unnecessary costs. 

To minimize excavation/drilling damage on real 

construction sites, operators use caution while digging along 

with two main approaches: 1) the proper marking of 

underground pipelines reported to the Federal Communications 

Commission [4]-[6] and 2) radar-based scanning that detects 

pipelines [7]-[16]. These mitigation efforts, however, will not 

sufficiently reduce excavation damage to underground utilities. 

To address the limitations of these approaches, we must first 

understand why they are limited. 

Marking pipelines: Some excavation damage can be prevented 

by contacting 811, the number that the Federal 

Communications Commission has designated as the national 

toll-free “Call Before You Dig” number in the U.S. [17]. An 

811 representative will take information about planned 

excavation activities and notify the appropriate utility 

companies to locate and mark buried lines they own at the 

location specified in the call ticket. The call must be placed at 

least two to three business days before excavation begins to 

ensure that buried utility-owned pipelines are properly located 

and marked. Based on the types of the utilities, different 

color-coded markers would be provided for this purpose. 

Despite the benefits, this practice has not had a significant 

effect at reducing the number of incidents. Evidence of damage 

(particularly to telecommunication and television lines) has 

been increasingly reported in the U.S. [18]-[20], possibly the 

result of errors in the marker location or the provision of no 

depth information nor real-time feedback.  
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Radar pipeline scanning: The radar-based pipeline scanning 

can be performed in dangerous/critical areas to prevent pipeline 

damage. Typically, handheld devices are used to scan the target 

area for construction sites. In the last several decades, advances 

in the field of remote sensing and visual augmentation (e.g., 

augmented reality, virtual reality) have enhanced the spatial 

awareness of buried utilities [21]-[26] by providing workers 

with more information (e.g., regarding depth) with more 

displays. Such advances have dramatically improved operator 

performance and mitigated the likelihood of accidents. For 

example, locating technology such as ground penetrating radar 

(GPR) enables operators to use three-dimensional underground 

utility mapping to obtain more precise (depth) information 

about buried utilities [7]-[26]. If such locating technology, 

along with GPS/GIS and augmented reality (AR), can be fully 

utilized before excavation work, the machine guidance system 

may provide operators with information of the proximity of the 

excavator bucket to 3D models of buried utilities 

[4],[6],[21]-[26]. Even though this GPR technology can 

provide an accurate spatial information for pipeline locations, it 

takes a substantial amount of time to scan and process the laser 

signals that detect the pipelines. Moreover, if the penetration 

distance of the device (radar) is limited, it may not be capable 

of detecting all pipelines from ground level. 

It is also critical to understand the main causes of 

underground utility damage. The most common causes are 

insufficient excavation practices and insufficient location 

practices. Even if utilities are located and marked, and depth 

information is known prior to excavation, the current control 

interface of an excavator is not intuitive enough to accurately 

control an excavator arm. Therefore, efficient feedback to 

convey depth information to an excavation operator on the 

construction site is another important issue [27].  

At the same time, to provide the operator with reliable 

information, we need to be able to estimate the depth 

information of buried pipelines in real time. However, 

providing accurate and reliable spatial information for the 

underground environment  has been a challenging task, because 

sensors (e.g., vision, distance, depth) are usually designed for 

the overground localization [28]-[32], and cannot detect the 

objects at the underground environment. To monitor spatial 

information in underground environments, several studies have 

proposed using inertial measurement units (IMUs) with noise 

reduction algorithms, and they have applied them to various 

underground localization tasks for construction activities such 

as excavation and drilling [33]-[38]. Specifically, the 

magnetometer, among the IMU sensors, plays an important role 

in underground environment as it can monitor the magnetic 

anomaly from the buried metal objects. As metal-based pipes 

(i.e., ferromagnetic object) deform the earth’s magnetic fields 

(EMF) near the pipelines, the distorted magnetic field can be 

utilized to estimate the location of the metal-based pipes (see 

Fig. 1). Note that, the most of the materials covering the ground 

are transparent to the magnetic fields, except for the particular 

soils that contain magnetism [39], [40]; so if we can efficiently 

eliminate the magnetic interference, including the EMF and 

external magnetic fields (i.e., magnetic soil), then the 

metal-based pipes can be effectively localized. By monitoring 

underground metal-based pipes using a magnetometer in real 

time, we can ultimately provide proper and intuitive feedback 

to the operators to avoid any accident via a visual, auditory, or 

tactile channel. 

Several research groups have worked on magnetic anomaly 

detection (MAD) for underground pipeline localization, on the 

purpose of moving ferromagnetic objects or drilling activities 

[41]-[44]. The most common method of distance or depth 

estimation for the underground ferromagnetic pipelines is 

magnetic dipole reconstruction (MDR) [45]-[53]. The MDR 

approach, as a forward modelling, can accurately do the 

magnetic anomaly detection (MAD) of target pipelines and 

model the magnetic dipole to estimate the depth from the 

ground. To increase the accuracy of MDR, several studies have 

implemented novel algorithms to increase signal-to-noise ratio, 

such as stochastic resonance [47] and deep learning neural 

networks [48]. They have evaluated their approaches with 

mathematical simulation models and measurement outcomes to 

show how much the signal-to-noise ratio can be improved. 

Moreover, the MDR approach requires a high computational 

power to estimate the distance [49]-[51]. Others have explored 

different scheme to reduce its computational power, such as 

segmentation strategy and section segmentation method 

approach. However, they reported the time for calculation as 

tens or thousands of seconds [51]. Other studies have 

demonstrated the application of MAD in operations of placing 

the sensor in stationary positions or directional movements 

(e.g., horizontal drill movements). A few of them estimated the 

distance between the magnetic sensors and target ferromagnetic 

objects, yet the distance range (e.g., several meters) did not 

cover the interested distance to be implemented in excavator 

movements. Moreover, none of them tested the system in actual 

excavation movements to estimate the distance from the pipes. 

To minimize an excavation damage of the underground 

pipeline, our approach is to provide real-time feedback (e.g., 

auditory, visual, vibro- or electro-tactile [54], [55]) to the 

 
Fig. 1.  Overview of the Real-time ferromagnetic Pipeline Detection 
System (RPDS) that utilizes Magnetic Anomaly Detection (MAD) to 
locate the hidden underground ferromagnetic objects with external 
magnetic interference (EMI) cancellation. 
  



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

operators based on the distance information of the underground 

ferromagnetic pipeline. Considering the speed of excavator 

arms (e.g., boom and stick) or bucket, this approach requires to 

estimate the near field proximity information (e.g., up to 1x or 

2x of bucket height) in subsecond scale during excavation 

motions. Any of the existing approaches cannot be employed 

because they cannot estimate the distance within the subsecond 

time window. Further, existing approaches did not function at 

the distance range of our interests, were not tested in 

multi-degree movements, and did not consider external 

magnetic interferences of equipment body (i.e., excavator). 

To accurately estimate the proximity information within this 

scope, we propose an approach to locate the sensor at the tip of 

the bucket. As the excavation proceeds, the sensor can get close 

to the underground pipeline, so it can increase the 

signal-to-noise ratio. At the same time, we can increase a 

control resolution because the tip of the bucket is the main 

collision point. However, it might be challenging because the 

excavator body, boom, stick, and buckets are also composed of 

ferromagnetic materials; and therefore, an external magnetic 

interference should be efficiently removed. Moreover, the earth 

magnetic fields need to be cancelled too while the sensors are 

moved along with the multi-degree excavation motions. 

To efficiently remove the external magnetic interference, 

several prior studies have employed a reference sensor at a 

distance to efficiently distinguish the target MAD while 

cancelling the common mode interference [52], [53]. However, 

this is not applicable to the case where the two sensors are on 

the different ferromagnetic materials in movement. Therefore, 

we selected the linear relationship between the reference and 

measurement sensors, with the static external magnetic 

interference for each sensor. The virtual linear relationship 

based on the measurement data was utilized to cancel the 

external magnetic interference (EMI). Note that any dynamic 

external magnetic interference cannot be cancelled and the 

ferromagnetic pipeline can be easily detected. This approach 

had been applied to the magnetic localization for magnet-based 

tongue-controlled assistive technology and its efficacy was 

demonstrated with multiple system-level operation tests 

[56]-[60]. 

Therefore, we propose the Real-time Pipeline Detection 

System (RPDS), which employs a pair of magnetic sensors and  

a localization algorithm to detect magnetic deformation caused 

by ferromagnetic pipes as a bucket of the model excavator 

approaches the target ferrogmagnetic object during the actual 

excavation movement. To accurately estimate the 

distance/depth from a pipeline, we must first increase the 

signal-to-noise ratio by eliminating external magnetic 

interference. The main source of magnetic interference is the 

EMF and environmental magn etic fields (i.e., magnetic soil), 

which is relatively easy to eliminate since they are considered a 

common mode noise. Another source of interference is 

magnetic deformation caused by the excavator body (i.e., 

bucket, the stick, and the boom), which typically consists of 

ferromagnetic material. To closely collect the magnetic 

deformation from the pipes, our system requires that the 

measurement sensor be located at the teeth of the excavator 

bucket, which means that the sensor will continuously move 

along with the bucket during excavation movements. To 

address the challenges of constantly moving sensor(s) for the 

real-time monitoring of underground pipes, a specialized 

signal-processing procedure requires to efficiently eliminate 

magnetic interference using a reference sensor during the 

excavation movements. Moreover, the proposed localization 

algorithm should accurately estimate the distance from the 

measurement of the magnetic anomaly caused by the 

ferromagnetic pipes.  

In this study, we developed the RPDS and evaluated the 

system with pipes of various diameters and distance, and a set 

of experimental results showed that the RPDS can effectively 

eliminate magnetic interference and accurately estimate the 

 
Fig. 2.  Block diagram of the wireless multi-sensor recording hardware 
of the Real-time Pipeline Detection System (RPDS). 

TABLE I 
SPECIFICATIONS OF RPDS HARDWARE 

Specification Value  

Control Unit   

Microcontroller Unit MSP432  

Wireless Module Xbee 2.4GHz RF Module  

Control Unit Dimensions 40 x 55 mm2  

Power Source 3.7 V 2000 mAh Li-ion polymer battery   

Board Weight (with Battery) 22 grams (60 gram)  

Sampling Rate 20 Hz  

Inertial Measurement Unit (IMU) Modules  

Sensors BNO-055  

Sensor Unit Dimensions 20 x 27 mm2  

Sensor Unit Weight 3 gram per each module  
Accelerometer ±16g  

Gyroscope ±2000°/s  

Magnetometer ±1300µT (x-, y-axis), ±2500µT (z-axis)  

Magnetic Field Resolution ~0.3µT  
Operating Hours ~ 20 Hours   

  

 

 

 
Fig. 3.  Actual wireless multi-sensor recording hardware of the RPDS: 
(a) a custom-designed control unit, (b) inertial-measurement unit (IMU) 
modules, (c) a Li-poly rechargeable battery, and (d) a Zigbee wireless 
transceiver. 
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distance from the ferromagnetic pipes. The proposed RPDS 

system can complement existing excavation tools, and will 

ultimately support operators in their efforts to protect 

underground utilities during excavation activities that require 

more caution by providing an accurate spatial information. 

II. METHODS 

The RPDS consists of wireless multi-sensor recording 

hardware with a localization algorithm including offset and 

magnetic interference cancellation (calibration) and distance 

estimation. 

A. Wireless Multi-sensor Recording Hardware 

The wireless multi-sensor recording hardware of RPDS 

consists of a custom-designed control unit with two IMU 

modules, a Li-poly rechargeable battery, a wireless transceiver, 

and a laptop computer. The hardware collects 

multi-dimensional sensor data and conveys information to the 

computer, which processes the sensor information. The 

transceiver takes charge of the wireless data communication. 

The laptop computer provides the user interface and processes 

the pre-built localization algorithm to eliminate offset and 

external magnetic interference and to determine the distance 

from ferromagnetic pipes. The overall block diagram of the 

hardware of RPDS is illustrated in Fig. 2, and the system 

specifications are summarized in Table I. The RPDS firmware 

was programmed using the Texas Instrument Real-Time 

Operating System (TI-RTOS) MSP432 package. The hardware 

system, sensor modules, and the transceiver with the USB data 

conversion module are shown in Fig. 3. 

The custom-designed hardware of RPDS consists of a 

microcontroller (MCU; MSP432, Texas Instruments, TX 

USA), a power-management circuit, a Zigbee wireless 

transceiver module (Xbee 2.4GHz RF Module; Digi 

International, MN USA), and two IMUs (BNO-055, Bosch 

Sensortec, Germany). The IMU sensor data is delivered to the 

MCU via a serial communication protocol (I2C), and the MCU 

creates a data package to transmit it via the Zigbee wireless 

protocol. The power-management circuit converts the battery 

input to a 3.3 V regulated supply to power all electronic 

components.  

The IMU module, BNO-055, provides the output of the 

accelerometer, the gyroscope, and the magnetometer as well as 

three-dimensional Euler angle information as outputs of the 

data fusion mode using the IMU data. The information is used 

as reference angle for the excavator boom and the bucket. The 

main signal processing algorithm, however, uses the three-axis 

magnetometer information. To collect accurate Euler angle 

output (i.e., the pitch, the roll, and yaw within ±3 degrees) using 

their own data fusion algorithm, each sensor module must 

undergo the sensor calibration process [61].  

B. Offset and External Magnetic Interference Cancellation 

The localization algorithm of the RPDS consists of an 

increase in the signal-to-noise ratio and an estimate of the 

distance. To accurately locate ferromagnetic pipes using the 

magnetic sensors, we increased the signal-to-noise ratio by 

following two major steps: (1) offset and (2) external magnetic 

interference (EMI) cancellation. A flowchart of the localization 

(sensor signal processing) algorithm that both eliminates offset 

and common-mode EMI and estimates distance from the pipe is 

shown in Fig. 4. 

We began by removing offsets, defined as any deviation 

from the baseline sensor information at the initial excavator 

location, referred to as Offset cancellation. Offset occurs when 

magnetic sensors are very close to extremely high magnetic 

fields, mainly caused by magnetic hysteresis. Since both sensor 

modules can provide Euler angle information used to identify a 

 
Fig. 4.  Block diagram of the RPDS localization algorithm including calibration, sensor offset and external magnetic interference cancellation, 
creating the distance estimation models for each pipe, and the actual distance estimation. For the system validation, we analyzed the error rate from 
the difference between the actual distance estimation from the distance estimation model and its reference distance.  
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baseline location at the initial stage, we compared the sensor 

values to the baseline sensor values when the excavator was 

positioned at the initial stage. If the system detected a certain 

level of offset in the measurement sensor from the baseline 

sensor information, it automatically subtracted the offset.  

After eliminating the sensor offset, we applied EMI 

cancellation. Magnetometers detect changes in the magnetic 

field from not only the ferromagnetic pipes but also the EMI, 

such as the EMF and external ferromagnetic objects (i.e., parts 

of the excavator body, magnetic soil). The EMI, however, can 

degrade the performance of the distance estimation of 

localization algorithm because the EMI can be a significant 

noise for the MAD measurement caused by the ferromagnetic 

pipes. Thus, EMI cancellation is important, enhancing the 

performance of algorithm that determines the distance between 

the sensor and the ferromagnetic pipes.  

The core of EMI cancellation is subtracting the real-time 

EMI using a reference sensor (located at the top of the boom) to 

the measurement sensor (located at the tip of the excavator 

bucket) [52], [53]. Since the two sensors are not pointed in the 

same direction, they must be virtually aligned in parallel 

[56]-[60], [62], [63]. Then the magnetic fields of the reference 

sensor (EMI) are subtracted from those of the measurement 

sensor. As a result of subtraction with virtual alignment, the 

common-mode components of the magnetic sensor output, 

mainly the result of the EMI, are cancelled out while the 

differential-mode components resulting from the ferromagnetic 

pipelines are retained.  

To virtually align both sensors in parallel, we first collected 

sensor information with possible common-mode noise from the 

EMI while executing possible excavation movements, maintain 

the relative sensor locations constantly without any pipes. We 

refer to this procedure as system calibration. Once we collected 

the sensor data from this calibration procedure, we calculated 

the calibration coefficients that could be used for virtual 

alignment of the sensor modules. During the calibration 

procedure, we also collected baseline sensor information (i.e., 

magnetic sensor data and Euler angle information) for both 

sensors at the initial position of the stick, the boom, and the 

bucket of the excavator (Fig. 5a) to detect and cancel the offset.  

The outputs of the three-axis magnetometer from the 

measurement sensor (M), located at the tip of the bucket, are 

XM, YM, and ZM and those from the reference sensor (R), 

located at the top of the stick, are XR, YR, and ZR. After we 

collected the magnetic sensor information during system 

calibration, we calculated the calibration coefficients of the 

linear relationship between the reference and measurement 

sensors. The linear relationship between the original (XR, YR, 

ZR) and the virtually rotated modules (XVR, YVR, ZVR) can be 

expressed in Eq. (1): 
 

  
 

where a, b, c, and d are linear coefficients, indicating the 

relative orientation of the two sensors. These coefficients were 

found using the multilinear regression algorithm during the 

calibration procedure with the presence of EMI, yet without 

any ferromagnetic pipes. After we virtually rotated the 

reference sensor using the calibration coefficients from the 

calibration data, we subtracted the rotated reference sensor data 

from the measurement sensor data in Eq. (2). 
 

     

Thus, the output of measurement sensor subtraction with virtual 

alignment (XM*, YM* ,ZM*) would be sensitive enough to detect 

changes in magnetic fields caused by the ferromagnetic pipes, 

yet insensitive to the EMI even while both sensors are in 

motion. We calculated the root sum of square (RSS; Eq. (3)) 

values of the offset and EMI free sensor information to create 

the distance estimation models. This output was also used for 

validation. 

 
 

C.  Distance Estimation 

To create a distance estimation model for each pipe, we first 

measured magnetic fields of various distances between the 

sensor and different sizes of pipes. From the RSS output of the 

measurement sensor of the various distances, we created a 

first-order linear regression model of each pipe for the distance 

estimation. The coefficient of the first-order linear regression 

model is expressed in Eq. (4): 
 

y = a x + b           (4) 
 

where x is the reference distance between the sensor and the 

pipes, and y is the RSS of magnetic fields. The linear regression 

models were created by the measurement of 10 trials at each of 

eight distances between 5 and 75 mm (for a total of 80 

measurements per pipe). Once we created the distance 

estimation models, we reversely applied the actual 

measurements to estimate distances. We evaluated the distance 

 
Fig. 5.  Experimental setup to emulate the construction site using 14:1 
scaled metal excavator model. The series of excavation movements for 
the distance estimation: (a)-(b)-(c)-(a) as a trial. (d) The nearest distance 
between the sensor and the pipeline was applied to estimate the 
distance from the data collection. 
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estimation algorithm by comparing the estimated distance to 

the reference distance. 

III. EVALUATION 

The goal of this study is to evaluate how accurately the 

RPDS estimates the distance between the sensor and the pipe. 

This evaluation was performed by a 14:1 scaled metal 

excavator model that emulates the excavation operation at a 

construction site. 

A.  Experimental Setup and System Calibration 

Figs. 5a -c show the flow of the excavator operation for each 

trial (from Figs. 5 (a)-(b)-(c)-(a) per trial) to estimate the 

distance between the measurement sensor (installed inside of 

the bucket teeth) and the pipe, based on the magnetic field 

measurements (RSS output). We used the data at the location of 

Fig. 5c for the validation. We manually changed the location of 

each metal pipe at eight distances spaced 10 mm apart:  the 

closest was 5 mm and the farthest was 75mm (see Fig. 5d). At 

each distance, we conducted 10 trials (a full excavation 

movement), and used six different pipes for all measurements. 

Detailed pipeline specifications are summarized in Table II. We 

performed the experiment on a 14:1 lab-scaled metal excavator 

(Top Race TR-211M). 

We first performed “sensor calibration” to implement the 

data fusion mode of the sensors to get accurate reference 

angular information before we mounted them on the excavator.  

We individually rotated th e sensor modules by changing them 

45 degrees in all direction. This sensor calibration, which 

differs from the system calibration for offset and EMI 

cancellation, took about 30 seconds per sensor module. We 

then placed the sensors in two positions on the excavator: the 

teeth of the bucket and the top of the boom, and performed the 

system calibration. For the system calibration, we collected 

sensor data without any pipes, yet moved the boom of the 

excavator a s similar so that it resembled the natural excavation 

operation (repeated five times). We used the data to calculate 

the coefficients of the linear relationship model (Eq. (1)) for 

EMI cancellation and to collect the baseline sensor and angular 

information at the initial excavator position. To create the 

distance estimation models and estimate the actual distance, we 

used the calibration coefficients and the initial information 

from the system calibration that were saved in a text file. 

B. Distance Estimation Model and Validation 

To evaluate the RPDS, we manually set the location of the 

pipes for the sensor data collection (1) to create the distance 

estimation model and (2) to estimate the distance between the 

sensor module and the pipe. After offset and EMI cancellation, 

we calculated the RSS of the magnetic sensor data for creating 

the distance estimation model for each pipe and validating the 

distance estimation.  

We selected one of the six pipes and measured the magnetic 

fields of the eight distances ten times. The number of 

measurements for each pipe was 80 (10 times for the eight 

distances). As the average measurement of the RSS of the 

magnetic fields for each distance was correlated with the 

distance (see Fig. 7), we fit the linear regression model from the 

multiple measurements. We repeated the same procedure for 

six pipes (the number of measurements for the six pipes was 

480). Then we obtained the raw sensor, pitch, and roll data, the 

RSS magnetic fields, and the coefficients of the linear 

relationships for distance estimation, which would be used to 

estimate actual distances.  

After we created the distance estimation models for each 

pipe, we evaluated the accuracy of the distance estimation by 

comparing the difference between the estimated distances and 

the reference distances. We first selected one of the six pipes in 

a random order, and randomly measured one of the eight 

distances. Once we selected a distance, we repeated the 

excavation operation 10 times to estimate the distance. Once 

we completed the measurement with the eight distances, we 

randomly selected another pipe and repeated the same 

procedure. We estimated the distance using the offset- and 

EMI-free RSS output at certain locations (Fig. 5c), which we 

referred to the Euler angle information to find.  

                                  (a)                                                        (b)                

 
                                  (c)                                                       (d)                

 
 

Fig. 6.  Example graphs of magnetic field changes with and without 
pipes. Raw magnetic sensor outputs from both measurement and 
reference sensors (a) without pipes and (c) with the P2 pipe at 15mm 
distance. The Euler angle and the RSS output after the offset and EMI 
cancellation from the reference and measurement sensors (b) without 
pipes and (d) with the P2 pipe.  

TABLE II 
SPECIFICATIONS OF PIPELINES 

Index 
Nominal 

Size 

Diameter 
External 

(Inches) 

Wall 
Width 

(Inches) 

Weight 
Per Foot 

(Pounds) 

Length 

(Inches) 

P1 1.000 1.315 0.133 1.678 18.00 

P2 2.000 2.375 0.154 3.652 18.00 

P3 4.000 3.500 0.216 7.575 18.00 

P4 4.000 4.500 0.237 10.79 18.00 

P5 5.000 5.563 0.258 14.62 18.00 

P6 6.000 6.625 0.280 18.97 18.00 

All sample pipes are Structural Steel Pipe ASTM A500. 
Mechanical Properties: Tensile = 58,000 and Yield = ±46,000. 
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IV. RESULTS 

Figs. 6a and 6c show the raw three-axis sensor data, and Figs. 

6b and 6d show pitch and roll angle data and the RSS magnetic 

fields after offset and EMI cancellation for a single excavation 

movement with (Figs. 6c-d) and without (Figs. 6a-b) a two-inch 

diameter pipe (P2) at a distance of 15 mm.  

The pitch and roll values of the closest distance between the 

sensor and the pipe during one excavation movement, as in 

Figs. 6b and 6d, was 31 and -24 degrees for the reference 

sensor, and -24 and -191 degrees for the measurement sensor at 

the position in Fig. 5c. Displaying a summary of overall data 

collection, Fig. 7 presents the RSS magnetic fields of the eight 

distances (from 5 mm  to 75 mm) between the tip of the bucket  

 (measurement sensor) and the pipe for various diameters of 

pipes (P1-P6). Fig. 7 displays the average and standard 

deviation from the data collection of each of the distances and 

each pipe (n=10 for each point). From the collected data, we 

obtained the linear regression model for e ach pipe and found 

that all linear regression models  for d istance estimation for the 

six pipes fit the data collection well and showed a greate r than 

0.95 coefficient of determina tion (R2). A summary  of the 

coefficients of each linear regression model and their R2 values 

were summarized in Table III. 

Applying the linear regression model, we reversely fed the 

coefficients to estimate the distance from th e RSS magnetic 

fields. A summary of the estimated distances from the data 

collection were summarized in Table IV. The summary of the 

data was from ten repetitive validation measurements (n=10) 

for each distance and each pipe; the overall data was a 

summary of averaged data for six pipes at each distance point. 

The overall error rate for the distance estimation using the 

RPDS was about 25%. Even though the error rate was higher 

for the closer distance (about 123% at a distance of 5 mm), the 

average difference between the distances was less than 5 mm 

for all sizes of pipes. When we focused only on the error rate 

for the distance higher than 35mm, the error rate was decrased 

by about 7.77%. 

V. DISCUSSION 

The coefficients of the distance estimation model did not 

show a strong relationship according to the size of the pipe 

(diameter), but it showed well-fitted linear regression models 

(R2 higher than 0.95) for all pipes. Once we know the 

characteristics of the pipes (e.g., diameter, material, width, 

direction), we can estimate the distance between the pipe and 

the sensor with less than a 5 mm error for all cases except for 

the shortest distance (5 mm). If we have no information about 

the pipe and applied a generalized distance estimation model, 

then the error rate can be significantly increased (~790.09% for 

5mm; ~44.67% for the distance higher than 35mm, which is 

5.75 times worse). However, the characterization of the 

TABLE IV 
DISTANCE ESTIMATION OUTPUTS FROM THE EXCAVATION MOVEMENTS 

Index of Pipe 
Estimated distance between the sensor and pipes (mm) 

5 15 25 35 45 55 65 75 

P1 -1.76 ± 4.79 12.47 ± 3.72 29.23 ± 3.71 39.03 ± 3.43 52.48 ± 3.51 57.98 ± 1.67 61.86 ± 1.85 68.72 ± 2.94 

P2 -0.99 ± 2.34 13.77 ± 3.58 28.89 ± 2.92 39.08 ± 3.66 48.81 ± 3.46 55.78 ± 2.37 65.56 ± 3.64 69.10 ± 1.97 

P3 1.93 ± 5.10 15.67 ± 5.01 24.10 ± 2.16 37.00 ± 4.38 49.10 ± 5.75 55.44 ± 4.02 65.74 ± 5.18 71.00 ± 2.00 

P4 -0.65 ± 5.17 12.48 ± 5.06 29.34 ± 3.74 39.36 ± 2.84 49.25 ± 1.28 56.62 ± 2.42 64.58 ± 3.80 69.03 ± 1.89 

P5 2.00 ± 5.86 11.03 ± 5.30 28.80 ± 5.05 38.91 ± 3.57 48.27 ± 3.35 54.97 ± 2.66 65.43 ± 2.26 70.59 ± 1.54 

P6 -1.28 ± 6.01 13.01 ± 4.81 28.18 ± 7.10 38.05 ± 2.03 48.78 ± 3.03 55.71 ± 5.12 62.70 ± 1.46 71.28 ± 2.36 

Overall -0.13 ± 1.66 13.01 ± 1.57 28.09 ± 1.99 38.57 ± 0.89 49.45 ± 1.52 56.09 ± 1.07 64.31 ± 1.64 69.96 ± 1.13 

Estimated 

Distance 
Difference 

6.19 ± 1.13 3.94 ± 0.85 4.46 ± 1.69 4.19 ± 0.61 4.90 ± 1.15 3.69 ± 2.53 2.67 ± 0.60 5.04 ± 1.13 

Error Rate (%) 123.72 ± 22.61 26.26 ± 5.69 17.83 ± 6.74 11.98 ± 1.75  10.89 ± 3.35  5.14 ± 1.64  4.11 ± 0.92  6.72 ± 1.51  

Overall error rate: 25.83 ± 38.87 %; overall difference between the measurement sensor and the pipe: 4.38 ± 1.62 mm; 

 
Fig. 7.  Linear regression models for the estimation of the distance from 
individual and all pipes based on the RSS output from the pre-collected 
data. The bottom dashed black line represents the output without pipes.  

TABLE III 
COEFFICIENTS OF THE LINEAR REGRESSION MODEL FOR EACH PIPE 

Index of Pipe a b R2 

P1 -8.065 825.512 0.954 

P2 -11.683 1292.486 0.978 

P3 -8.657 954.755 0.989 

P4 -17.376 1928.450 0.969 

P5 -16.655 1951.175 0.980 

P6 -6.125 676.352 0.978 

Overall -11.417 1271.400 0.977 

y=ax+b; x: reference distance, y: RSS of measurement sensors 
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magnetic fields around the ferromagnetic pipe will improve the 

generalized distance estimation algorithm without information 

about the pipe. For example, the magnetic field change rate, 

which depends on the size of pipes, can be applied to estimate 

the size of the pipes. Moreover, we can apply signal processing 

schemes such as principal component analysis and machine 

learning classifiers to improve the generalized distance 

estimation. In our future work, we will develop a generalized 

solution with or without prior knowledge of pipe sizes. 

From preliminary measurements, we found that some offset 

caused by magnetic hysteresis in the sensor measurements 

accumulated over the time. Offset was observed by the 

magnetometer, particularly when the sensor was close to high 

magnetic fields (i.e., a ferromagnetic pipe), degrading the 

distance estimation. Therefore, we collected the baseline sensor 

data during the calibration at the greatest distance between the 

sensor and the pipe, initial position of the excavator (see Fig. 

5a). Based on the Euler angle of both measurement and 

reference sensors, we could find the initial position of the 

sensors. Thus, we were able to eliminate the offsets by locating 

the initial excavator position and subtracting the offset by 

comparing measurement sensor output with the baseline sensor 

values; estimated the distance with the high accuracy distance. 

To evaluate the feasibility of estimating the distance to a 

moving object, we compared the measurement and reference 

distance values offline. We took all measurements with a 

metal-based model excavator at the lab-based testbed, which 

resembles a real construction site. We also simulated possible 

EMI caused by the excavator body and soil, and potential 

ferromagnetic objects (i.e., metal pipes). To change the 

distance between the sensor and the pipe, however, the current 

setup of the evaluation experiment changed only the angle of 

the boom; that is, the relative position/angle between the 

reference and measurement sensors was constant, which is an 

unrealistic condition in real excavation movement. However, 

we expect to be able to position both measurement and 

reference sensors on the bucket—one at the tip of the bucket 

and the other at the connection to the stick—by replicating the 

setup used in this study. If we are able to do so, the excavator 

bucket will freely move in any direction by changing the boom 

and stick angles, even though the relative position of both 

sensors will remain the same. Moreover, the standard size of 

the excavator bucket, between 24 and 48 inches, should ensure 

that the measurement and reference sensors are sufficiently far 

from the bucket to be utilized this signal processing algorithm.   

The current RPDS system has two sensor modules connected 

via wires, which may not be suitable for the rough construction 

environment. We plan to develop a fully wireless system with 

individual sensors that can send data wirelessly and a 

smartphone/tablet that will receive the wireless sensor data. 

Ultimately, we will also add a various feedback system to the 

RPDS so that users can acquire spatial information for 

excavation work and evaluate the efficacy of feedback. In 

addition, as we validated the current distance estimation 

method by manually placing the pipe and the sensor, this 

approach could have introduced some human error. In a future 

study, we will include distance measurement sensors such as 

ultrasonic sensors and an optical recording system that 

accurately obtain reference distances.  

VI. CONCLUSION 

We developed a custom-designed wireless sensor system 

with a specialized localization algorithm that eliminates the 

external magnetic interference and estimates the distance 

between the tip of the bucket of an excavator and a 

ferromagnetic pipe. We evaluated the system using the 14:1 

lab-scaled excavator for accuracy of the distance estimation at 

eight distances from six pipes. Based on pre-collected data, we 

were able to find accurate linear regression models (higher than 

0.95 of R2) for all six pipes. We also applied the actual distance 

estimation during excavation movements at eight distances 

(from 5 to 75 mm, spaced 10 mm apart) using the linear 

regression models from the pre-collected data for validation. 

We were able to estimate the differences between the distances 

from the sensor to the pipe to be about 4.38±1.62mm for the six 

pipes at the eight distances in overall; when we estimated a 

target distance higher than 35 mm, the error rate was 

7.77±3.68%. The preliminary study using the wireless sensor 

system with our localization algorithm shows significant 

potential for implementation on a real construction site to 

estimate the distance between an excavator and an underground 

pipe in real time. This system, which ultimately can be 

integrated with a sensory feedback modality, delivers distance 

information that will prevent excavation/drilling accidents on 

construction sites. 
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