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ABSTRACT

NASICON (sodium superionic conductor) materials are promising host compounds for the
reversible capture of Na* ions, finding prior application in batteries as solid-state electrolytes and
cathodes/anodes. Given their affinity for Na* ions, these materials can be used in Faradaic
deionization (FDI) for the selective removal of sodium over other competing ions. Here, we
investigate the selective removal of sodium over other alkali and alkaline earth metal cations from
aqueous electrolytes when using a NASICON based mixed Ti-V phase as an intercalation
electrode, namely sodium titanium vanadium phosphate (NTVP). Galvanostatic cycling
experiments in three-electrode cells with Na*, K+, Mg?*, Ca?* and Li* reveal that only Na* and Li*
can intercalate into the NTVP crystal structure, while other cations show capacitive response,
leading to material-intrinsic selectivity factors of 56 for Na* over K*, Mg?* and Ca?*. Further,
electrochemical titration experiments together with modeling show that an intercalation
mechanism with limited miscibility gap for Na* in NTVP mitigates the state-of-charge gradients
to which phase-separating intercalation electrodes are prone when operated under electrolyte flow.
NTVP electrodes are then incorporated into a FDI cell with automated fluid recirculation to
demonstrate up to 94% removal of sodium in streams with competing alkali/alkaline earth cations
with ten-fold higher concentration, showing process selectivity factors of 3-6 for Na* over cations
other than Li*. Decreasing current density can improve selectivity up to 25% and reduce energy
consumption by as much as ~50%, depending on the competing ion. The results also indicate the

utility of NTVP for selective lithium recovery.

KEYWORDS: electrochemical deionization, selectivity, intercalation, NASICON, phase

equilibria, desalination, lithium recovery
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1. INTRODUCTION

Present water scarcity! and its potential exacerbation by climate change? motivate the
desalination of salt-rich water resources to increase freshwater access. While human-potable water
is a significant need, agriculture accounts for the most water use globally by humans among all
sectors,’ presenting a unique opportunity to selectively remove micronutrient sodium that
competes for uptake into crops together with potassium, magnesium, and calcium
macronutrients.** For example, in 2011 the US had 5.4 million acres of saline cropland with
another 76.2 million being at risk.® Recent analysis estimates an annual economic loss of
~$1000/acre due to lower crop yield,” motivating the desalination of groundwater and brackish
water for agricultural purposes.® While using desalinated water for irrigation has improved yield
up to 30%,’ remineralization is required to supply macronutrients using conventional desalination
processes.!® Despite pressure and thermally driven processes comprising the majority of global
desalination capacity,'' they lack ion selectivity. Therefore, energy-efficient selective removal of
sodium is a potential alternative to desalination with remineralization. In addition to desalination,
certain industrial separation processes such as purification of potassium-based salts'>!® require
selective removal of Na* over other alkali and alkaline earth cations.

Capacitive deionization using electric double layers (EDLs) in activated carbon electrodes has
been proposed for selective sodium removal,” but EDLs are only weakly selective based on
hydrated ionic radius and charge number.'*!5 Alternatively, redox-active cation intercalation
materials have been investigated in selective Faradaic deionization (FDI) processes. Nickel
hexacyanoferrate (NiHCF) has been used to demonstrate selective removal of Na* over divalent
ions such as Mg?* and Ca**.!'®* However, NiHCF shows 10:1 preference for K* over Na*!” and hence

exhibits the reverse order of selectivity to that which is desired (Na* over K*). Further, the potential
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degradation of NiHCF by Ni?** substitution with Mg?* or Ca?* poses a challenge to the long-term
life of such a system.!® Using sodium titanium phosphate (NTP) and sodium manganese oxide
(NMO), selective removal of Na* over other ions in diluate feed streams has shown preferential
capture of Na*,"” but the standard reduction potential for Na* intercalation into NTP is extremely
low (-0.8 V vs Ag/AgCl), leading to hydrogen evolution, poor coulombic efficiency (CE), and
high energy consumption."

Despite these limitations the broader class of sodium superionic conductor (NASICON)
materials to which NTP belongs show high charge capacity and fast solid-state sodium diffusion,
as supported by their use in solid-state electrolytes,*?? lithium-ion batteries,”® and sodium-ion
batteries as cathodes***” and anodes.?®3! These properties also make NASICON materials
attractive candidates for selective removal of Na* in FDI. Among NASICONSs, sodium vanadium
phosphate (Na;V,(PO.);; NVP) shows high specific capacity (~118 mAh/g) and density (3.25
g/cm?) 243234 theoretically producing three-fold higher solid-state cation-storage concentration (14
mol-Na*/L) than commonly used Prussian blue analogues (5 mol-Na*/L).3> Further, the standard
reduction potential of the V3*/V# couple for the intercalation of Na*in NVP at +0.3 V vs Ag/AgCl
is highly suitable for applications in aqueous electrolytes.’¢37 Despite earlier reports using NVP
in a dual-ion type FDI process,*® NVP/C suffers from dissolution in water during oxidation of V3*
to V# ¥ motivating its partial substitution with titanium to form Na,TiV(PO,); (NTVP) to enable
stable operation of the V34 redox couple in water.*

Despite their promise based on battery-like experiments, the performance of cation intercalation
materials in practical FDI cells additionally depends on the arrangement of flow channels and flow
conditions. Flowing feed water through porous electrodes — as motivated by modeling*“? — has

been shown experimentally to increase salt removal,* salt removal rate,” and thermodynamic
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energy efficiency**# compared to feed-water flow either by or behind electrodes. Even so, the
streamwise gradients in ion concentration that are inherent to deionization processes have been
linked to streamwise gradients in the state-of-charge of intercalation material,*** where phase-
separating NASICON has exhibited pronounced gradients* relative to solid-solution intercalation
materials (e.g., NiIHCF*'“2). While feed-water recirculation has been used to minimize such state-
of-charge gradients,#245 the relative merits of phase-separating and solid-solution mechanisms
has yet to be quantified among NASICONSs, as we presently do.

In this article, we investigate the selectivity of NTVP for Na* over K*, Mg?*, Ca**, NH,*, and Li*
using a combination of electrochemical characterization and Faradaic deionization experiments.
Insights into cation-storage mechanisms are first obtained through three-electrode flooded cells,
including solid-state phase equilibria and the distinction between cation intercalation into NTVP
versus cation adsorption into EDLs on its surface. NTVP electrodes are then incorporated into an
FDI cell with automatic feed-water recirculation to demonstrate the selective removal of sodium
from various feed streams with up to ten times higher concentration of competing ions. The effect
of current density on the selectivity and energy consumption is analyzed, and the major advantages
and limitations are discussed.

2. EXPERIMENTAL METHODS

2.1. SYNTHESIS AND CHARACTERIZATION OF NTVP/C PARTICLES

A sol-gel procedure was adopted from various sources in literature’-*4647 and optimized to
synthesize Na,TiV(PO,); powders coated with carbon (NTVP/C). Briefly, citric acid monohydrate
(0.02 M) was used as a reduction and chelation agent and was mixed with ammonium
metavanadate (0.02 M) and sodium dihydrogen phosphate (0.06 M) to form a 100 mL solution in

deionized water. This solution was heated at 80°C on a hot plate and vigorously stirred till a dark
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blue solution was obtained, indicating complete reduction of V°* to V#*. This solution was allowed
to cool to room temperature. In a separate dry beaker, glacial acetic acid (0.02M) and titanium
isopropoxide (0.02 M) were dissolved in pure ethanol to obtain a 100 mL solution. The second
solution was poured into the first solution under vigorous stirring, to obtain a whitish green turbid
dispersion. This mixture was heated at 80°C until the volume reached ~100 mL before being
transferred to a large petri dish and heated at the same temperature under vacuum to evaporate all
remaining solvents. A bluish green xerogel was obtained, which was ground into fine powders
using a mortar-pestle. These powders were transferred to porcelain crucibles and heated under N,
flow (2-3 L/min) in a tube furnace at 350°C for 5 h, followed by heating at 800°C for 12 hours,
with a ramp rate of 3°C/min for all temperature ramps. Black crystalline powders were obtained
after cooling the samples to room temperature, indicating the formation of carbon-coated
Na,TiV(PO,); powder. Sodium vanadium phosphate was also synthesized using the same
procedure as above, without the addition of titanium isopropoxide by adjusting concentrations
accordingly for vanadium precursor. Powder X-ray diffraction was performed using a Siemens
Bruker D8 instrument. The relative composition of transition metal elements in the as synthesized
powders was measured using energy dispersive X-Ray fluorescence (EDXRF, Shimadzu EDX-
7000).

2.2 FABRICATION OF ELECTRODES

Porous electrodes were made from NTVP active particles, Ketjenblack (KB) conductive
additive, and polyvinylidene fluoride (PVDF) binder with the weight ratio of 80:5:15. The mixture
of NTVP particles with KB was ground in a vortex mill with 5 mm steel balls (Ultra Turra-X,
IKA) at 6000 rpm for 10 to 15 minutes to obtain a fine, homogeneous powder. PVDF was dissolved

in N-methyl-2-pyrrolidone (NMP, Sigma Aldrich) to form a 16.2 wt.% solution. The NTVP and
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KB powder were further added to this solution and mixed in a planetary mixer (Thinky, ARE-310)
for 30 minutes. The resulting slurry was cast onto graphite foil (Ceramaterials) current collectors
that have a thickness of ~120um using a doctor blade and film applicator (Elcometer 4340). These
electrodes were immersed in deionized water for wet phase inversion and were subsequently dried
in a fume hood, followed by heating in an oven at 70°C for 2-3 hours to give ~150um thickness
after solidification. Electrodes were punched into 1 cm? circular disks for flooded cell experiments
and were cut into 1.7x1.5 cm? pieces for FDI experiments. The electrodes prepared had a high
mass loading of 8-11 mg/cm?.

2.3 ELECTROCHEMICAL CHARACTERIZATION AND FARADAIC DEIONIZATION
EXPERIMENTS

All electrochemical experiments were performed using a Biologic VMP-3 potentiostat. Flooded
cell experiments used NTVP working electrodes, Ag/AgCl reference electrodes (0.199V vs. SHE,
Pine Research), and a graphite rod (Gamry) as a counter electrode. In preparation for FDI
experiments one electrode was charged completely at a C-rate of C/10 to remove Na* ions while
the other was completely discharged, both in a flooded cell. These electrodes were assembled and
operated in a custom-built FDI flow cell using galvanostatic cycling. The design, operation, and
flow-calibration of this cell is described in our previous work .43 Briefly, the cell had two NTVP
electrodes separated by a Neosepta AMX anion exchange membrane (Astom Corp) sandwiched
between two graphite current collectors (McMaster-Carr). Here, feed water was forced to flow
through porous electrodes via a 3D-printed fluid-distribution unit. Diluate and concentrate effluent
were generated simultaneously during the experiment and were recirculated back to the respective
electrodes as influent. At the end of each half-cycle when the electrodes were fully (de)intercalated,

influent streams were swapped between the two electrodes so as to cause continuous desalination
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water in the diluate reservoir. This was performed by using four servos to pinch a branched rubber
tubing system to ensure influent from one reservoir flows through only one electrode. A Masterflex
peristaltic pump maintained a single constant flow rate in both diluate and concentrate streams
throughout desalination experiments. The effluents in all experiments were checked with pH paper
and found no change in pH. The concentration of individual cations within influent and effluent
water was measured using a 930 Compact IC system from Metrohm with a Metrosep C4 — 150/4.0
cation column calibrated against standard samples whose ion concentrations ranged between 1 —
100ppm (Supporting Information, Section S1). Specific energy consumption (SEC) was estimated
for each experiment by assuming that the fraction of electrical energy invested for Na removal was
proportional to its fraction of total cationic charge removed from solution, as determined from ex

situ IC.

3.RESULTS AND DISCUSSION

We first present the structural and electrochemical characterization of NTVP/C powders, after
which we present the results of cycling NTVP electrodes in an FDI flow cell. Intercalation of Na*
into the NTVP crystal is studied using equilibrium potential data from intermittent titration
experiments and regular solution modeling to reveal no apparent miscibility gap at equilibrium for
intercalation into NTVP, as opposed to high miscibility gaps leading to two-phase intercalation
observed in NVP and NTP. Theory is then used to predict the impact of miscibility gap on the
uniformity of electrode state-of-charge under flowing conditions. Galvanostatic cycling
experiments in a flooded cell with other electrolytes containing K*, Li*, Mg?*, and Ca** were
performed to determine the intrinsic selectivity of NTVP for Na* over other cations. Finally, FDI

experiments using feed water with different cation concentrations and compositions were
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performed to characterize process selectivity and energy consumption, and highly selective capture
of Na* over other cations is observed.

3.1 ELECTROCHEMICAL CHARACTERIZATION OF NTVP/C ELECTRODES

Sol-gel synthesis of carbon-coated NTVP was shown to produce a crystal structure in the R-3¢
space group with lattice parameters (a=8.6 A and c=21.8 A) in agreement with literature (Fig.
S1).2! Energy dispersive X-ray fluorescence also revealed the molar ratio of Ti to V as 0.97 in
close agreement with the nominal formula of NTVP. Galvanostatic cycling of NTVP and NVP
prepared using similar syntheses was performed to assess material stability. NTVP is shown to
stabilize after the first 10 cycles at 1C with high coulombic efficiency (Fig. 1(a,b)). Further, even
after all experiments presented in this article our NTVP electrodes retained a similar capacity level
in a three-electrode flooded cell even after approximately 150 prior cycles. In contrast, 80% of
NVP’s capacity is lost after one charge step when NVP is cycled in 500 mM NaCl (Fig. S2) with
V# dissolution evidenced by the yellowing of its electrolyte. Though the specific capacity
produced by NTVP (45 mAh/g) is less than half that of NVP (110 mAh/g), it corresponds to a
solid-state cation-storage concentration of 5.4 mol-Na*/L, which is similar to that of NiHCF? that

is commonly used in FDI.
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Figure 1. Charge/discharge profile of (a) sodium titanium vanadium phosphate (NTVP) in 0.5 M
NaCl at 1C. (b) Variation of specific capacity and coulombic efficiency of NTVP with cycle

number in 0.5 M NaCl.

To understand the interaction of Na* ions with the NTVP crystal, equilibrium potential curves
in 500 mM NaCl were measured using galvanostatic intermittent titration (GITT). Here, small
current pulses (C/40) were applied for 5 mins to inject 2.5% of the total charge capacity during
each pulse, followed by relaxation for 40 mins after each pulse. Fig. 2(a) shows the equilibrium
potential ¢, versus the degree of intercalation x obtained from GITT. In contrast with NVP and
NTP that possess non-zero miscibility gaps (92%* and 71%,* respectively) over which two-phase

coexistence occurs during intercalation, the binary NASICON material NTVP shows a continuous

10
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decrease of potential with increasing x, similar to NiHCF.>° The low miscibility gap of NTVP is
evident from the differential capacity obtained from GITT experiments, where 80% of its charge
capacity is achieved within a 60mV potential range (Fig. 2(b)). This range is much wider than that
shown for materials with first-order phase transformations.”!

To characterize the impact of material composition on the interaction energy {1 between the
reduced and oxidized endmembers of NTVP we fitted a regular solution model to the potential
variations measured from GITT. Here, the equilibrium potential ¢,, for Na* intercalation is
expressed as (Supporting Information, Section S2):

Geq = Pq + kTIn[(1 — x)/x]/e + Q(2x — 1) /e (D
where c[)gq, k, T, and e are the material’s standard reduction potential for Na* intercalation, the
Boltzmann constant, temperature, and the elementary charge, respectively. Here, the degree of
intercalation x varies from O to 1, and the interaction energy (1 quantifies the degree of
attractive/repulsive energies between endmember phases of the NTVP host.523 Fig. 2(b) shows
that NVP and NTP possess interaction energies greater than 2kT (2.50kT and 3.45kT,
respectively) causing phase separation during Na* intercalation. In contrast, NTVP produces an
approximate interaction energy of 0.57kT, minimizing the occurrence of phase separation at
equilibrium. Therefore, the partial substitution of vanadium in NVP with titanium as done here
significantly reduces the interaction parameter between endmember phases. However, the
interaction energy for NTVP is still slightly higher than in Prussian blue analogues that exhibit
potentials similar to ideal solutions.*>3* While the sloping potential profile and small interaction
parameter observed for the equilibrium intercalation into NTVP resembles that of a solid-solution
mechanism, we note that previous observations by synchrotron X-ray diffraction during non-

aqueous intercalation utilizing both the Ti and V redox couples have shown some degree of phase

11



228  separation.* Therefore, in situ synchrotron X-ray diffraction and/or solid-state NMR are required
229  to directly probe phase behavior during intercalation into NTVP in aqueous electrolytes, where

230  intercalated or crystal H,O may also play a role in stabilizing solid-solution cation intercalation.>
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232 Figure 2. (a) Equilibrium potential curve obtained from a room-temperature GITT experiment on
233 NTVP (¢eg05 = 0.291V vs. Ag/AgCl) fitted to a regular solution model (this work), along with
234 curves estimated for NTP (¢gq05 = -0.751V vs. Ag/AgCD** and NVP (¢poq05 = 0.321V vs.
235  Ag/AgCl) (this work) from galvanostatic cycling and for NiHCF (¢eq05 = 0.355 V vs.
236 Ag/AgCl)*5¢ from potentiostatic intermittent titration. (b) Differential capacitance of NTVP

237  estimated from GITT data. (c) Miscibility gap versus fitted interaction energy at ~300K and (d)
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modeled average state-of-charge deviation (|x,,; — X;»|) across an electrode to produce an

effluent cation concentration c,,; from feedwater with cation concentration c;,, .

To investigate the impact of these material-specific interactions on FDI performance a priori,
we constructed a theoretical model that links intercalation reaction-rate distributions to the
streamwise gradients of cation concentration in solution that are inherent to flow-cell operation.
Inspired by our previous work, we assume facile intercalation kinetics, facile solid-state transport,
and negligible streamwise current density*? to show that the difference in the equilibrium potential
between the ends of an electrode depends on the ratio of cation concentrations in solution at its
ends (see Supporting Information, Section S2):

beq(Xour) — Peq(Xin) = —kTIn[coye/cinl® (2)

Here, the exponent a takes on different values depending on whether the cation of interest is
part of a binary electrolyte (&« = 2(1 — t,), where t, is the transference number of intercalating
cations in solution) or a minority ion in a supporting electrolyte as for selective separations (a¢ =
1). By solving this equation numerically for the outlet degree-of-intercalation x,,,; for certain x;,,,
Cout» Cin, and (1, we calculated an average measure of the state-of-charge deviation across the

electrode (|x,y,: — Xin|) as follows:

1
(ot = 3il) = | o = i) i 3)

As shown in Fig. 2(c), this state-of-charge deviation in general is lowest for materials having
phase interaction energies commensurate with low miscibility gap and/or solid-solution
intercalation, while for two-phase materials increased miscibility gap results in maximal state-of-

charge non-uniformity. Hence, the decreased interaction energy within NTVP relative to NVP

13
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and NTP shows promise for efficient and resilient cycling in FDI systems due to its ability to
minimize phase separation and state-of-charge gradients.

Building on these results we characterized the intercalation of different alkali and alkaline-earth
cations into the NTVP crystal using galvanostatic cycling, as shown in Fig. 3(a) for cycling
experiments separately using aqueous electrolytes with 500 mM of LiCl, NaCl, KCI, MgCl,, and
CaCl,. Several trends are observed. Similar to Na* intercalation into NTVP, Li* shows stable
cycling in NTVP with a low miscibility gap. However, Li* intercalation produces a specific
capacity of approximately 30 mAh/g, which is 33% lower than the capacity for Na* intercalation.
This lower capacity for Li* intercalation indicates that there are likely one-third of the sites in the
NTVP crystal that are inaccessible to Li* ions, despite being accessible to Na* for intercalation.
Further, the standard reduction potential for Li* intercalation is approximately 70 mV lower than
that of Na* (0.24 V for Li* vs 0.31 V for Na*, vs Ag/AgCl). Assuming equivalent site occupation
statistics for Na* and Li* in the NTVP crystal and assuming thermodynamic equilibrium, this
difference in potential A¢ implies a selectivity ratio  at room temperature of approximately 16:1
for Na* to Li* using the appropriate Boltzmann factor: f = exp(—A¢/kT). In contrast with Li*
and Na*, all other alkali and alkaline-earth cations show capacitive response that produces ~10X
smaller specific capacity (5-6 mAh/g), suggesting that the cycling of electrolytes containing such
cations results in EDL charge-storage and not intercalation into the NTVP crystal. Therefore, these
results indicate a selectivity sequence of Na*> Li* >>> K* = Mg = Ca?* for electrosorption by

NTVP electrodes.
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Figure 3. Galvanostatic cycling in a three-electrode flooded cell with (a) electrolytes comprised
of 0.5 M NaCl, LiCl, KCI, MgCl, and CaCl, at a C-rate of 1C and (b) mixed solutions of KCI and

NaCl operated at different C-rates.

Fig. 3(b) shows the results of flooded-cell galvanostatic cycling in electrolytes with 100 mM
KCI + 100 mM NacCl, and 100 mM KCI + 10 mM NaCl at C-rates of 1C and C/2. The variation of
potential with capacity at C/2 rate indicates an intercalation process with a low miscibility gap,
which can be attributed to the insertion of Na* ions. Cycling at 1C in 100 mM KCI + 10 mM NaCl

shows less than 50% capacity than with 100 mM KCI + 100 mM NaCl. Further, in the case with
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only 10 mM NaCl, discharge and charge potential variations are highly asymmetric. These results
can be attributed to the low ratio of Na* to K* in the electrolyte (1:10). During discharge with low
Na* concentration in the electrolyte (10 mM), potential response is limited by the electrolyte-phase
diffusion of Na* ions. Therefore, a semi-linear potential profile is obtained. However, during
charging, since Na* ions travel from within NTVP into the electrolyte, the potential response as a
function of the degree of intercalation x follows the usual intercalation profile. When the applied
current is lowered to C/5, solid-state diffusion of Na* ions within the NTVP porous electrode
becomes rate-limiting during both discharge and charge, as evidenced by the potential response.
Based on the specific capacity results obtained by cycling in electrolytes containing both
monovalent and divalent ions as shown for Figs. 3(a) and 3(b), an intrinsic selectivity factor of the
electrodes can be calculated for Na* relative to other cations. For the case of 100 mM KCI + 10
mM NaCl, almost all the capacity at C/5 rate can be attributed to the intercalation of Na*. From
Fig. 3(a), a maximum of 6 mAh/g of can be absorbed from KCl solutions, which can be subtracted
from the total specific capacity calculated in the mixed ion solution to obtain the minimum amount
of Na* intercalated. The lack of a redox plateau suggests that such capacity for cycling in KCI
electrolyte is purely a result of adsorption into EDLs at the surfaces of NTVP particles, conducting
additives, and current collectors. Building on this postulate the selectivity of Na* over K*is infinite
for intercalation into the NTVP crystal. However, in the aqueous electrolytes of interest to us for
water treatment EDLs readily form, resulting either in the adsorption of K* or the expulsion of CI-
Hence, a finite selectivity ratio will be achieved in practice. The capacitive charge-storage
mechanism for ions other than Na* and Li* also suggests a way of tuning the selectivity ratio of
Na* and K* by modifying the surface area of the NTVP electrodes, including by using different

conductive additives or by physical modification NTVP/C particles. From the present
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galvanostatic cycling experiments, we estimate a selectivity ratio fyq/x by using measured
capacities while assuming that co-ion expulsion of CI- is negligible in EDLs:

ﬁ — [Na:aptured] [Ke+lectrolyte ] — (40 - 6)mAh-/g x 100 mM
Ne/K T Tk Na™ 6 mAh/g 10 mM

captured ] [ electrolyte]

=56.67 (4)

Therefore, porous electrodes of NTVP/C are at least 56 times more selective for capturing Na*
over K*. Similar estimates are obtained for Mg?* and Ca?* based on the above calculation. Note
that this selectivity factor is for the active material combined with capacitive contributions from
the carbon domains in the electrodes. In our subsequent results using NTVP electrodes in a
continuous-flow FDI cell we show that process selectivity for Na* — determined based on the
concentrations of ions in effluent streams — is smaller than the material selectivity determined from
flooded-cell experiments, due to the additional physicochemical mechanisms that are at play in
flow cells.

3.2 SELECTIVITY AND ENERGY CONSUMPTION OF A SYMMETRIC NTVP/C FDI
FLOW CELL

Encouraged by its high selectivity for Na* over other cations obtained from flooded-cell
characterization, we tested NTVP/C electrodes in the continuous-flow FDI cell developed in our
previous work.*># Feed streams with varying ratios of Na* with one other competing ion, including
K+, Mg?, Ca?*, NH,* and Li*, were pumped through the cell to obtain two effluent streams
respectively containing diluted and concentrated Na*. A constant flow rate of 1 mL/min was used
in all experiments. Ion composition of the diluate and concentrate reservoirs was measured using
ion chromatography. The composition of feed streams and the applied current used in each
experiment are listed in Table 1, and the results are presented in Fig. 4. When there is an abundance
of Na* and K* (Expt. 1) in equimolar ratio, the electrodes prefer to capture sodium, resulting in a

separation factor for the whole process of 15.25 (Fig. 4(a) and 4(b)). When the amount of sodium
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341

in the feed stream is 10 times less than potassium (Expts. 2 & 3), the NTVP electrodes were still

able to capture more than 90% of sodium. Decreasing the applied current density from 0.5 mA/cm?

(1.4C) to 0.25 mA/cm? (0.7C) led to a slight increase in sodium removal, while correspondingly

decreasing potassium removal, consistent with the results from flooded cell experiments.

Table 1: Feed stream concentrations and current density used in the experiments performed with

the symmetric FDI cells and NTVP/C electrodes for selective removal of Na*.

Initial cation concentrations in feed stream

Current density

Experiment (x mM Na*+y mM A*) (mA/cm?)
number (A=K*, Mg?*, Ca**, Li*, NH,*)

1 100 Nat* + 100 K* 0.5

2 10 Na* + 100 K* 0.5

3 10 Na* + 100 K* 0.25

4 10 Na* + 100Mg* 0.5

5 10 Na* + 100Mg** 0.25

6 10 Na* + 100Ca?* 0.5

7 50 Na* + 50 NH,* 0.5

8 20 Na* + 20 Li* 0.5
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Figure 4. (a) Concentration of individual ions in the diluate stream with corresponding amount of
ion removal, (b) percent removal of ions and selectivity ratio, and (c) specific energy consumption
(SEC) for each mole of sodium being removed in each experiment listed in Table 1. SEC for Li

removal in the experiment using a 1:1 mixture of NaCl and LiCl is identical to that for Na removal.

Similarly, in feed streams with 1:10 of Na* to Mg?*, 80% removal of Na* is obtained and with
1:10 of Na* to Ca** a removal of Na* close to 65% is obtained (Fig. 4a). In all experiments apart
from those using Li*, selectivity ratios of 4 to 5 were obtained (Fig. 4b). The percent sodium

removal in the experiments with Mg?*, Ca?*, and NH,* as the competing ion were slightly lower
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than K*, likely due to residual ions from previous experiments still adsorbed on electrode surfaces.
It is worth mentioning that even though the theoretical selectivity of Na* over Li* was estimated
as 16:1 based on measured intercalation potentials, we find that NTVP electrodes intercalate both

cations to a similar degree when operating in an FDI cell to produce a separation factor of Syq/1; =

1 (Figs. 4(a) and 4(b)). This result shows for the first time the promise of NTVP for Li*extraction
applications.

Next, we attempt to understand the effects of feed-stream concentration and current densities on
the selectivity and energy consumption of Na* removal. We focus on selectivity experiments with
Na*/K* and with Na*/Mg?* ions to highlight our insights, as shown in Figs. 4b,c. The variation of
capacity with cycle number and voltage polarization curves for other experiments are included in
the Supplementary Information (Figs. S3). At a 1:10 ratio of Na* to K*, greater than 90% Na* is
removed at current densities of both 0.25 mA/cm? and 0.5 mA/cm?, and slightly higher Na*
removal was achieved at lower current density, resulting in a 24% increase in selectivity factor
from 4.8 to 5.97. Further, energy consumption nearly halves (Fig. 4c) due to a significant reduction
in voltage polarization, as evidenced from the variation of cell voltage with specific capacity (Figs.
5a and 5b). Moreover, at 0.5 mA/cm?potential varies linearly with capacity (Fig. 5a) in an apparent
pseudo-capacitive manner, as opposed to 0.25 mA/cm? where the saturation of intercalation sites
is evident from sharp changes in potential at terminal capacity (Fig. 5b). The competition from K*
ions to reach active-material surfaces compared to Na* seems to be significantly higher at greater
current densities, likely due to the faster diffusion of K* in aqueous electrolytes than Na*, along
with its ten-fold higher concentration in the feed stream. Compared to flooded-cell cycling with
NaCl, there is significantly higher voltage polarization in the FDI process, likely due to ohmic

resistance caused by the AEM and electronic/ionic resistance within the porous electrodes, in
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addition to Donnan polarization caused by the concentration difference across the AEM. However,
in experiments with Mg?* as the competing ion (Expts. 4 & 5) halving the current density does not
lead to a significant change in selectivity (only 5% increase of f in Fig. 4b), and in fact such
decreased current increases the energy consumption for selective Na*removal by ~10% (Fig. 4c).
Therefore, the effect of ion-specific selectivity factors and energy consumption requires deeper
study. In principle, the presence of excess competing ions on electrode surfaces could crowd the
surface of NTVP and limit the amount of sodium that can be intercalated. This phenomenon has
been examined in the case of NTP and NMO materials, although in solutions with an order of

magnitude lower ionic strength."”
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Figure 5. Variation of potential with specific capacity for different charge/discharge cycles for
Expts. 2 and 3 (a)-(b) and Expts. 4 and 5 (c)-(d) from Table 1 with feed-stream concentration and

applied current density as shown.

Unlike the case with K* as a competing ion where pseudo-capacitive contributions dominate
after the initial cycles at higher current density (Figs. 5a and 5b), potential variation with capacity
in the case of electrolytes mixed with Mg?* and Na* indicate solid-solution intercalation
mechanisms at both 0.5 mA/cm? and 0.25 mA/cm? (Figs. Sc and 5d) for all cycles. This contrasting
behavior likely indicates lesser crowding of NTVP surfaces when Na*ions compete with Mg?*

compared to K*.
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We further analyze the energy consumption for selective Na* removal obtained in these
experiments and compare to previous work. It is important to note however that we used automated
fluid control for continuous deionization for many charge/discharge cycles. Most existing works
in literature involve either manually moving the electrodes between fresh and concentrated
solutions, or manually swapping the diluate and concentrate streams after completion of every
charge or discharge cycle. Capacitive deionization with sulfonated electrodes has been used to
selectively remove sodium from brackish water for irrigation, which consumes 0.2 — 0.4kWh/m?
for 4 — 6mM removal of Na*, about 150 — 200 kJ/mol of salt removal, but the separation factor
was only 1.6.57 A rocking-chair battery using NMO/KFeHCF electrodes was able to remove
sodium-ion impurities from KCI with 446 Wh/g-Na, which translates to 69 kJ/(mol-
Na).!* Membrane technology has been shown through mathematical modeling to be capable of
maintaining sodium concentration below the threshold level of 20 mM in irrigation water for
tomatoes with an energy consumption of 0.7-2.5 kWh/m? for a 360 g/h sodium removal at 1.48
m3/h volumetric flowrate to produce 252 — 900 kJ/mol sodium removed.’ For the majority of
experiments presented here the present NTVP symmetric FDI cell consumed less than or equal to
300 kJ/mol sodium removed (Fig. 4c) when operating with ten-fold higher concentration of
competing alkali/alkaline earth cations than sodium, which is among the most efficient devices for
selective removal of sodium to our knowledge. Further, our results using 1:1 feed water mixtures
of NaCl and LiCl indicate that Li* removal occurs with similarly low SEC.

Further examination reveals that specific capacity decreases rapidly after 4 to 6 cycles and
remains approximately constant afterwards for the cases where NaCl is mixed with either KClI,
MgCl, or CaCl, at ten-fold higher concentrations (Figs. 6a- 6e). Our preceding results suggest that

most sodium is removed during a few early cycles and that the charge capacity obtained in later
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cycles is mainly due to capacitive adsorption of competing ions, consistent with our results
obtained from flooded-cell experiments (Fig. 3a). As a consequence, we posit that the energy
consumed in later cycles is inconsequential to Na* removal and is therefore consumed
unnecessarily. To quantify this effect we estimate the ratio of the cumulative charge transferred to
NTVP by sodium intercalation Q.. over a set of cycles, relative to the total charge of sodium
removed Qp, for the five experiments shown in Figs. 6a-6e. Qy, was determined ex sifu by ion
chromatography on water effluent. Q... was calculated by subtracting the charge due to capacitive
adsorption, as estimated by the minimum capacity obtained from all cycles of a given experiment,
from the cumulative charge delivered via external circuit. As can be seen from Figs. 6a — 6e, Q4
exceeds 0.95Qy, after 4 — 7 cycles (the number of yellow columns in each experiment), meaning
that 95% of the sodium removal is obtained in a few early cycles, in agreement with our prior
reasoning. Hence, energy consumption is likely to be 30 to 50% lower if determined from those
few cycles, as compared to after the 10 — 20 cycles tested here (Fig. 6f). In particular, the energy
consumption at 0.5 mA/cm? and 0.25 mA/cm? in the presence of 100 mM KCI would be 297
kJ/mol-Na and 127kJ/mol-Na, respectively. Similarly for 100 mM MgCl, and 10 mM NacCl, the
energy consumption will drop to 171 kJ/ mol-Na and 155 kJ/mol-Na for the respective current
densities of 0.5 and 0.25 mA/cm?. For the case when 100 mM CaCl, was the competing ion, the
energy consumption will also reduce to 192 kJ/mol-Na. In addition, FDI process selectivity is
likely to approach the values of NTVP material selectivity if the experiments were stopped after
those few early cycles due to the decreases in competing ions removal by capacitive adsorption.
We note here that the values of Q,../Qn, of the last cycles in Figs. 6a — 6e are higher than one
due to the assumption that CE is 100%. These points motivate further investigation to determine

cycle-to-cycle variations of selectivity and energy consumption, to minimize energy input and to
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Figure 6. (a)-(e) Variation of specific capacity and normalized accumulated charge Q,../Qnq With

cycle number during operation of an FDI cell using NTVP electrodes with feed solution and
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applied current density as shown. Orange columns represent the cycles during which most Na* is
removed, whereas green columns represent cycles that competing-ion adsorption is dominant (f)
Total SEC compared to SEC calculated if the experiments were stopped after the cycle at which
Quce/Qna = 0.95, as determined by the number of orange columns in the corresponding
experiments: 4 cycles in Expt. 3; 5 cycles in Expt. 6; 6 cycles in Expts. 4 and 5; and 7 cycles in

Expt. 2.

4. CONCLUSIONS

Sodium titanium vanadium phosphate powders coated with carbon (NTVP) were synthesized
using a sol gel process and were shown to cycle stably in porous electrodes containing aqueous
electrolytes with Na* and Li*, reaching capacities of ~45 mAh/g for Na* intercalation and 30
mAbh/g for Li* intercalation. NTVP showed no signs of intercalation for K+, Mg?*, and Ca?* ions.
These results indicate ultra-high selectivity of NTVP over other cations. The variation of potential
with the degree of intercalation indicates an intercalation mechanism with limited miscibility gap
for Na* that was shown to produce a phase-interaction energy of 0.57kT by fitting to a regular
solution model. This interaction energy is larger than for Prussian blue analogues, but it is
significantly lower than phase-separating NVP and NTP. Further, our theoretical modeling shows
that the low phase-interaction energy of NTVP facilitates improved state-of-charge uniformity
during the cycling of electrodes in FDI cells in which cation concentration gradients are inherent
due to flow. In addition, experiments using a continuous-flow FDI apparatus containing NTVP
electrodes were performed to determine the selectivity of Na* removal from solutions containing
other cations, including K*, Mg?*, Ca?*, Li* and NH,*. High process selectivity factors of 5 — 6
were obtained in cases with 1:10 Na*:(K*or Mg?*), with more than 90% removal of Na*. Further,

energy consumption less than 300 kJ/mol-Na was observed for all experiments, less than or
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comparable to previous works which used a much lower concentration of competing cations.
Therefore, symmetric FDI using NTVP electrodes is promising in terms of selective sodium
removal when competing with other cations, which can have applications ranging from
desalination for agricultural irrigation to the manufacture of high-purity chemicals. Future work
involving optimization of electrodes and the FDI process can lead to significant reduction in
overall energy consumption for sodium removal. Further, the reversible and selective intercalation
of Li* in NTVP motivates its use for electrochemical lithium recovery, which to date has been

limited to Li-ion battery materials (e.g., LiFePO,*and L,M,0,*).
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