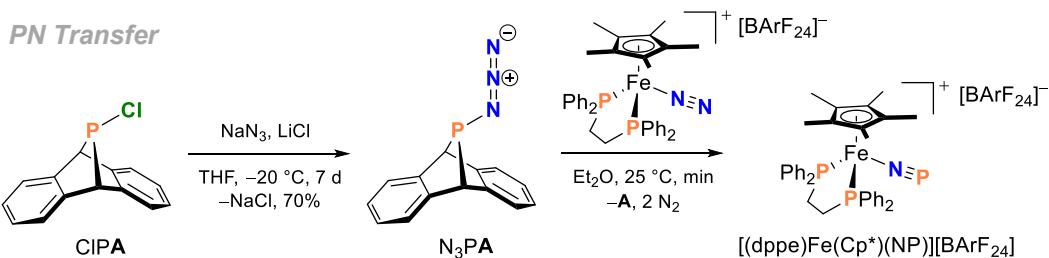


Staudinger Reactivity and Click Chemistry of Anthracene (A) Based Azido Phosphine N₃PA

André K. Eckhardt,^a Martin-Louis Y. Riu,^a Peter Müller^a and Christopher C. Cummins^{a,*}

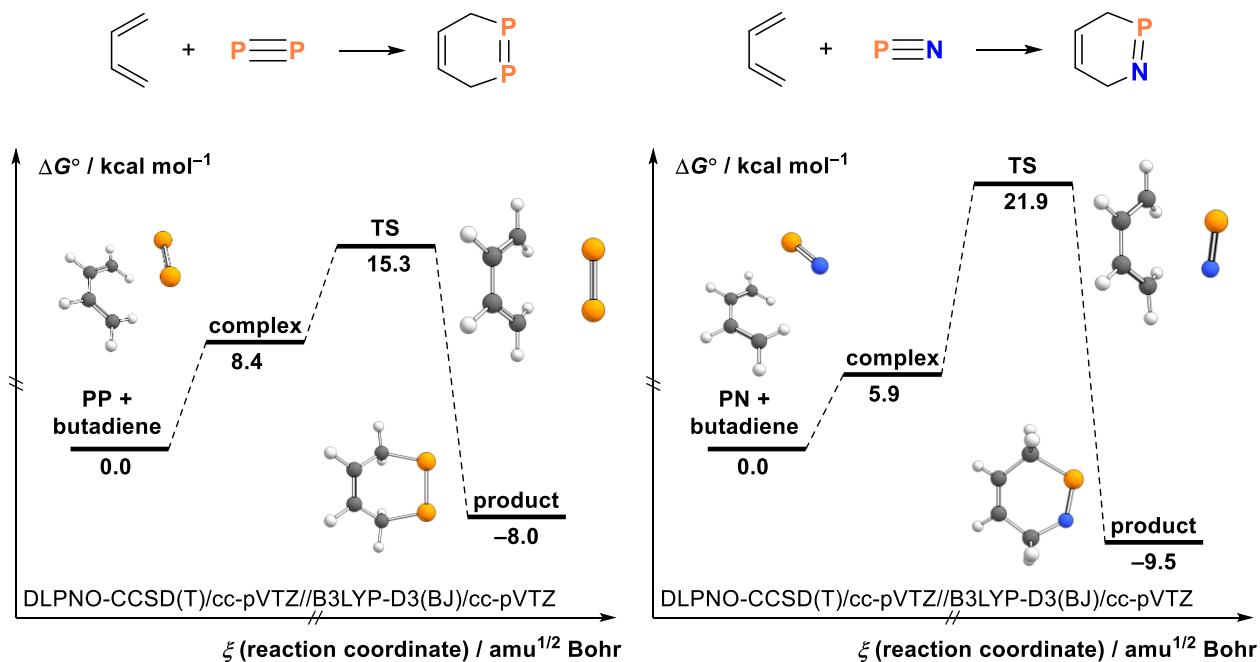
^a Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

*ccummins@mit.edu


Keywords: Azides – Click Chemistry – Staudinger reaction – Phosphorus – Transition Metal Chemistry

Abstract. 11-azido-9,10-dihydro-9,10-phosphanoanthracene (N₃PA) has been demonstrated recently as a transfer reagent for molecular PN as it easily dissociates at room temperature into dinitrogen (N₂), phosphorus mononitride (PN) and anthracene (A). Here we report further reactivity studies of the N₃PA molecule including strain promoted 1,3-dipolar cycloaddition with cyclooctyne and Staudinger type reactivity. Calculations at the DLPNO-CCSD(T)/cc-pVTZ//PBE0-D3(BJ)/cc-pVTZ level of theory indicate that the click reaction is faster than the dissociation of N₃PA. The Staudinger type reactivity enabled the transfer of the NPA fragment to a base-stabilized silylene. The previously reported intermediate of a vanadium trisanilide with an NPA ligand could be isolated in 61% yield and structurally characterized in a single crystal X-ray diffraction experiment. In line with the previously reported phosphinidene reactivity of the transient vanadium phosphorus mononitride complex, thermolysis or irradiation of the complex leads to anthracene elimination and the formation of the corresponding vanadium PN dimer or trimer, respectively.

Inspired by Carpino's hydrazine,¹ the Cummins group developed in the last decade the synthesis of dibenzo-7λ³-phosphanorbornadiene derivatives that serve as molecular precursors for the release of reactive phosphorous species.²⁻¹⁰ In an initial study, Velian and Cummins demonstrated the direct reaction of MgA·3THF (A = C₁₄H₁₀ or anthracene) with phosphorus dichlorides, R₂PCl₂ (R = 'Bu, dbab (2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene), HMDS ((Me₃Si)₂N), 'Pr₂N) to afford 7λ³-phosphanorbornadiene (RPA) derivatives.² These RPA compounds served as starting materials for the synthesis of further anthracene based molecular precursors for the mild release of small phosphorus bearing species, including P₂ and HCP.³⁻⁵


Recently, we expanded the scope of RPA derivatives with the synthesis and isolation of highly labile N₃PA (Figure 1).¹¹ N₃PA was shown to dissociate with a first order kinetics half-life of roughly 30 min at room temperature to anthracene and yellow-brownish polymers. By heating

under vacuum N_3PA explodes at 42 °C and dinitrogen (N_2), phosphorus mononitride (PN) and \mathbf{A} were identified as the dissociation products in a molecular beam mass spectrometry (MBMS) study. In solution PN transfer reactivity was demonstrated in the reaction of N_3PA with $[(\text{dppe})\text{Fe}(\text{Cp}^*)(\text{N}_2)][\text{BArF}_{24}]$ leading to the formation of $[(\text{dppe})\text{Fe}(\text{Cp}^*)(\text{NP})][\text{BArF}_{24}]$ with the PN ligand¹² N-bonded to the iron center due to significant covalent iron pnictogen bond character and associated less unfavorable Pauli repulsion in the metal-ligand interaction. Here we demonstrate further reactivity studies of N_3PA with cyclooctyne, a base-stabilized silylene and reinvestigate the proposed reaction mechanism in the synthesis of a transient vanadium PN complex, $\text{PNV}(\text{N}[\text{'Bu}]\text{Ar})_3$ ($\text{Ar} = 3,5\text{-Me}_2\text{C}_6\text{H}_3$).

Figure 1: Synthesis of 11-azido-9,10-dihydro-9,10-phosphanoanthracene (N_3PA) and PN transfer reactivity with $[(\text{dppe})\text{Fe}(\text{Cp}^*)(\text{N}_2)][\text{BArF}_{24}]$.

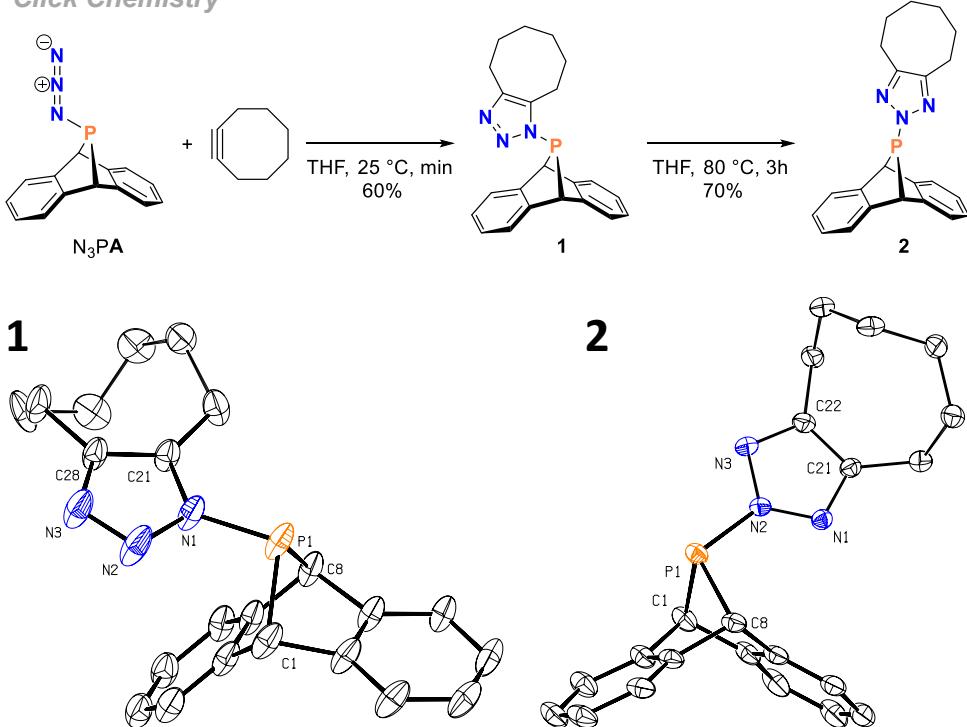
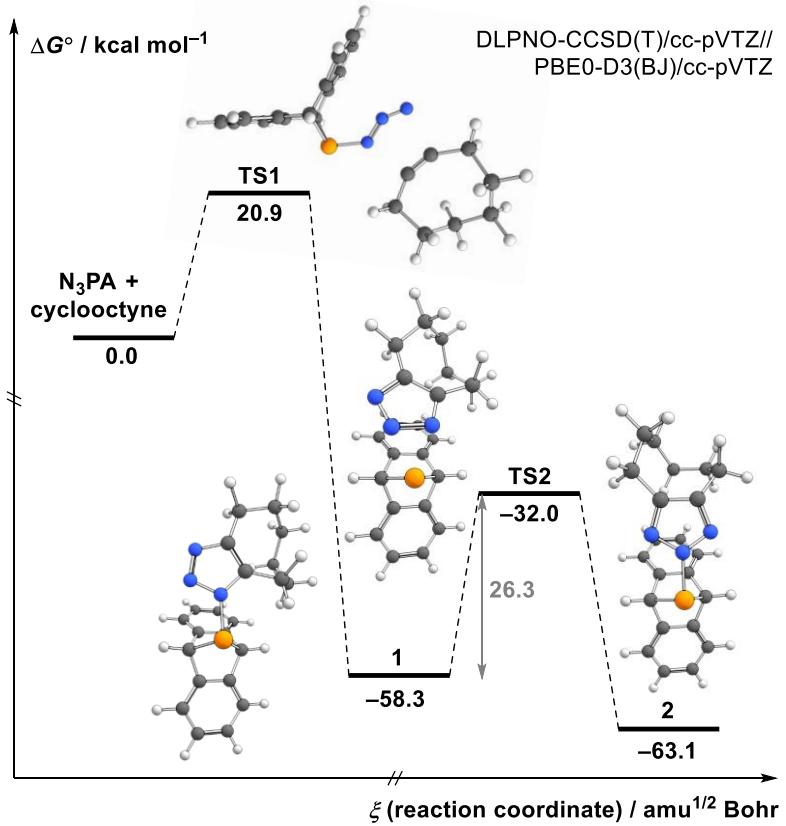

PN trapping experiments with N_3PA were conducted in neat cyclohexadiene and 2,3-dimethyl-1,3-butadiene, respectively. However, stirring the reaction mixture at room temperature or at 60 °C resulted in rapid PN polymerization as indicated by the precipitation of orange-brown polymers and no resonances in the ^{31}P NMR spectrum. The experiment was repeated and the solution irradiated in a quartz NMR tube with $\lambda = 254$ nm light for 10 min at room temperature but the result was the same. Note that rapid polymerization is also reported for gaseous PN, which produces white powder coatings on surfaces and limits high PN concentrations for spectroscopic measurements.¹³ The color of the PN polymers is reported to change depending on the nitrogen content.¹⁴⁻¹⁵ In stark contrast to diphosphorus (P_2) PN presumably does not show any triple bond reactivity with dienes under similar mild reaction conditions because of rapid polymerization.¹⁶⁻¹⁷ Further PN trapping experiments with 3,5-diphenyl-2-phosphafuran¹⁸ (DPF), different azide sources or alkynes were also not successful. We calculated the reaction barriers for the [4+2] cycloaddition reactions of 1,3-butadiene with P_2 (Figure 2, left) and PN (Figure 2, right), respectively, at the DLPNO-CCSD(T)/cc-pVTZ//B3LYP-D3(BJ)/cc-pVTZ + thermal correction to Gibbs free energy at 298.15 K level of theory. The cycloaddition reaction of 1,3-butadiene with P_2 is highly symmetric and associated with a reaction barrier of 15.3 kcal mol⁻¹ at room temperature (Figure 2, left). The low reaction barrier is in good agreement with the previous P_2 trapping experiments.¹⁶⁻¹⁷ Because of the different atomic and orbital sizes of P vs N the cycloaddition of 1,3-butadiene and PN is more asymmetric and the computed reaction barrier is increased by 6.6 kcal mol⁻¹ to 21.9 kcal mol⁻¹. Note that the energy for *trans-cis* interconversion of 1,3-butadiene is not included here.¹⁹ According to our experimental results, it seems likely that the barrier for PN polymerization is much lower in energy.

Figure 2: Computed reaction barriers for the [4+2] cycloaddition reactions of 1,3-butadiene with P_2 (left) and PN (right), respectively. Gibbs free energy values are computed for $T = 298.15$ K. Color code: carbon = grey, hydrogen = white, nitrogen = blue, phosphorus = orange.


Addition of cyclooctyne to a stirring solution of N_3PA in THF at room temperature did not lead to color changes or the formation of any precipitate. ^{31}P NMR analysis of the reaction mixture revealed a new triplet resonance at δ 154 ppm with a coupling constant of $^3J_{\text{HP}} = 13.3$ Hz, indicating that the product formed in this reaction contains a phosphorus center bound to anthracene. A diethyl ether solution of the crude reaction mixture was filtered through a plug of Celite and charcoal to remove free anthracene, and the filtrate was cooled to -20 °C to crystallize out the product. Single crystal X-ray diffraction confirmed triazole **1** as the 1,3-dipolar cycloaddition product (click product) between the azide unit of N_3PA and cyclooctyne (Figure 3). The computed low reaction barrier of the strain promoted [3+2]cycloaddition of phenyl azide and cyclooctyne is consistent with our experimental findings.²⁰ The strain promoted click reaction is faster than the decay of N_3PA .²¹ After stirring **1** in THF at room temperature for 2 h a small triplet signal at δ 165 ppm appeared in the ^{31}P NMR spectrum. Complete conversion of compound **1** to the species corresponding to the new resonance was achieved by heating the solution for 3 h at 80 °C. Crystals of the product were grown from diethyl ether and characterized by single crystal X-ray crystallography, revealing a [1,2]shift of the PA unit to the central nitrogen atom in the triazole ring and the formation of **2** (Figure 3). Surprisingly, we could find no literature precedent for phosphorous substituted triazoles, only related isomeric triazaphospholes are well-studied.²² Heating of **2** in toluene at 120 °C for 2 h leads to the release of **A** and no resonances in the ^{31}P NMR spectrum. Phosphinidene trapping experiments with an excess of cyclohexene were not successful.

Click Chemistry

Figure 3: Top: Strain promoted click chemistry of N_3PA and cyclooctyne. Bottom: Molecular structures of **1** and **2** with thermal ellipsoids shown at the 50% probability level. Hydrogen atoms are omitted for the sake of clarity. Selected interatomic distances (\AA): **1**: P1–N1 1.7670(14); P1–C1, 1.886(2); P1–C8, 1.8956(18); N1–C21, 1.3549(19); N1–N2, 1.368(2); N2–N3, 1.312(2); and C21–C28, 1.379(2). **2**: P1–N2 1.7564(13); P1–C1, 1.8921(17); P1–C8, 1.9028(17); N1–N2, 1.329(4); N1–C21, 1.324(8); and C21–C22, 1.401(9).

We explored the potential energy surface (PES) around N_3PA and cyclooctyne at the DLPNO-CCSD(T)/cc-pVTZ//PBE0-D3(BJ)/cc-pVTZ + thermal correction to Gibbs free energy at 298.15 K level of theory (Figure 4). We located a transition state (**TS1**) that is 20.9 kcal mol⁻¹ higher in energy than the two reactants. This barrier is lower in energy (2.4 kcal mol⁻¹) than the previously computed decomposition barrier of N_3PA (23.3 kcal mol⁻¹) at the same level of theory. Taking the experimentally determined dissociation barrier for N_3PA of $\Delta G^\ddagger = 22.1 \pm 1.5$ kcal mol⁻¹ at 298 K into account we assume that the computed barriers are in general slightly higher in energy than the experimental ones. Consistent with the high strain energy of cyclooctyne, the reaction is highly exothermic (-58.3 kcal mol⁻¹). A second transition state (**TS2**) that describes the experimentally observed rearrangement is associated with a 26.3 kcal mol⁻¹ high reaction barrier. The rearrangement is slightly exothermic by 4.8 kcal mol⁻¹. Note that the computed minima structure for **2** differs from the geometry of the crystalline compound. The triazolo ring is rotated by almost 90° around the central P–N bond and is now almost in a parallel position to the anthracene unit.

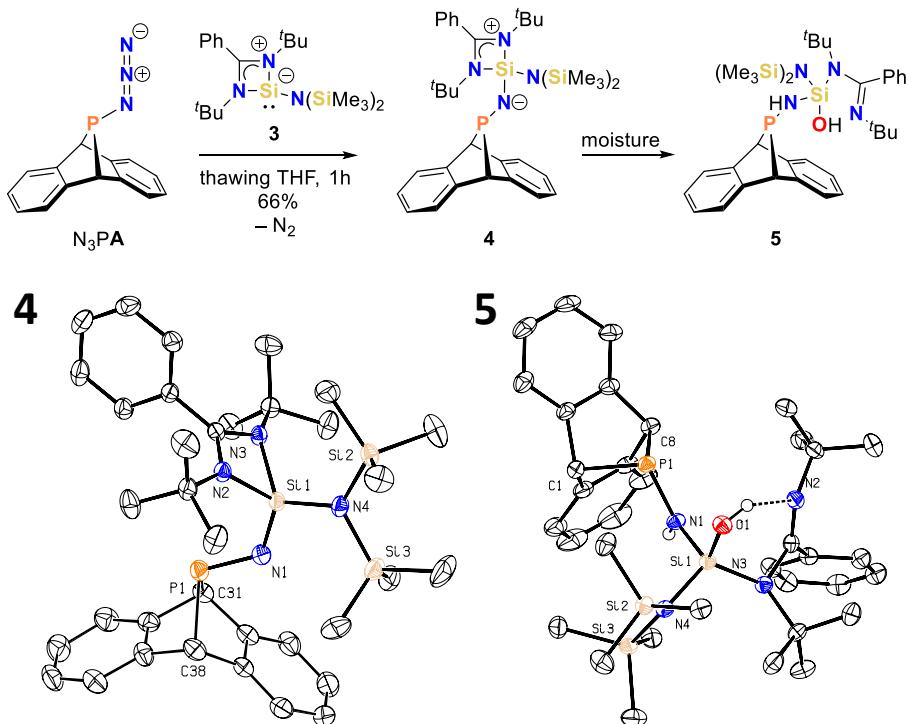


Figure 4: Computed minimum energy pathway for the reaction of N_3PA with cyclooctyne. Gibbs free energy values are computed for $T = 298.15 \text{ K}$.

Inspired by the work of Bertrand and co-workers, who demonstrated the stabilization of PN by N-heterocyclic carbenes (NHCs), we investigated the reaction of N_3PA with an NHC.²³ Addition of N_3PA to a thawing solution of 2 eq. 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (Ipr)²⁴ resulted in a gas evolution during warming and a color change to orange. After stirring the solution for 1 h we analyzed the crude reaction mixture by $^{31}\text{P}\{\text{H}\}$ and ^{31}P NMR spectroscopy and observed a new resonance at 285.5 ppm; note that the NHC-PN adduct by Bertrand and co-workers is reported at 134.0 ppm.²³ However, we were not able to isolate any reaction product. Therefore, we repeated the reaction in a similar fashion with base stabilized silylene (**3**, Figure 5).²⁵ The thawing yellow solution rapidly became blue, followed by orange and finally slightly yellow after stirring for 30 min during warming. In addition, gas evolution was observed. The ^{31}P NMR spectrum of the crude reaction mixture exhibited a single triplet resonance at δ 154 ppm with a coupling constant of $^3J_{\text{HP}} = 13.7 \text{ Hz}$, indicating a clean chemical transformation with the anthracene unit still attached to phosphorus. Single crystal X-ray crystallography on a crystal grown from a pentane solution revealed that a Staudinger type reaction²⁶ had ensued between N_3PA and the silylene, leading to the formation of APN-adduct **4**, with concomitant release of dinitrogen (Figure 5). Adduct **4** easily eliminates anthracene when heated, however, no resonances were observed in the ^{31}P NMR spectrum. Additionally, the compound is highly moisture sensitive as accidentally found by X-ray crystallography and AccuTOF-DART MS studies. Upon the addition of water compound **4** almost completely hydrolyzes within seconds and ring opens to compound **5**. Note

that there is an intramolecular hydrogen bond between the silanol and the nearby imine function (Figure 5). In contrast to Ipr, **3** is able to stabilize the Staudinger reaction product.

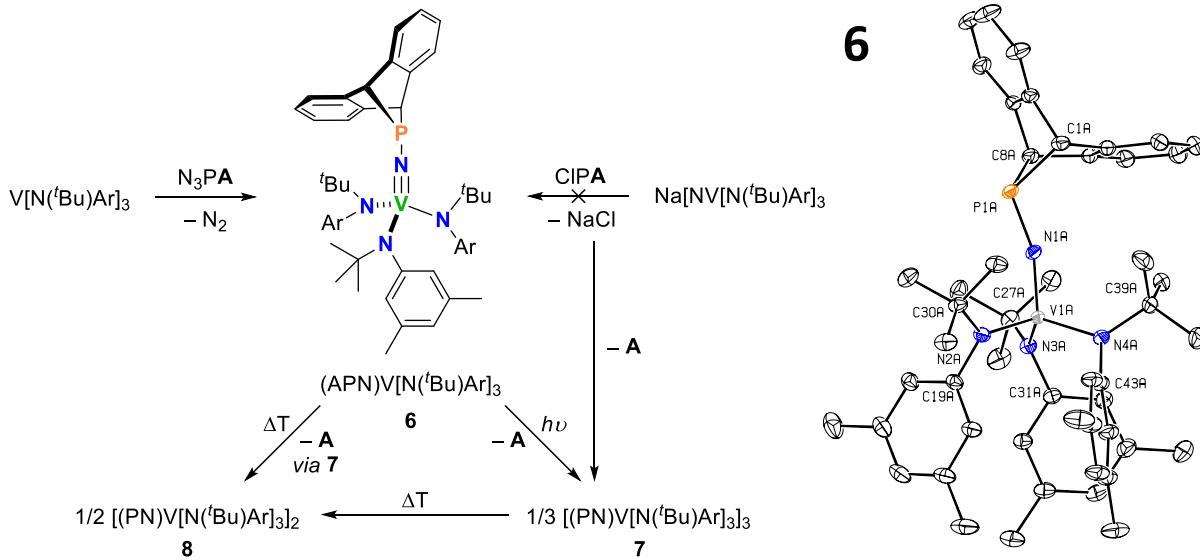

Staudinger Reactivity

Figure 5: Top: Staudinger type reactivity of N_3PA and base stabilized silylene **3** followed by hydrolysis. Bottom: Left and right: Molecular structure of **4** and **5** with thermal ellipsoids shown at the 50% probability level. Hydrogen atoms are omitted for the sake of clarity. Selected interatomic distances (Å): **4**: P1–N1 1.6320(11); P1–C31, 1.937(3); P1–C38, 1.938(3); and N1–Si1, 1.6289(12). **5**: P1–N1 1.6862(18); P1–C1, 1.912(2); P1–C8, 1.926(2); and N1–Si1, 1.7425(18).

The observed Staudinger type reactivity (*vide supra*) motivated us to revisit the proposed reaction mechanism in the formation of the transient vanadium PN complex, $(\text{PN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$.²⁷ In the reaction of $\text{Na}[\text{NV}(\text{N}[\text{'Bu}]\text{Ar})_3]$ with Cl PA only trimeric $[(\text{PN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3]_3$ (**7**), which forms dimeric $[(\text{PN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3]_2$ (**8**) upon heating, could be isolated. Anthracene bound $(\text{APN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$ (**6**) and free $(\text{PN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$ were proposed as reactive intermediates in this transformation. However, even in a low temperature NMR experiment between -60 and 23 °C, neither of the intermediates were detected. Hence, the two complexes were assumed to be thermally unstable. The careful addition of solid N_3PA to a dark green stirring solution of $\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$ in diethyl ether at room temperature led to an immediate color change to dark red and gas evolution. The crude $^{31}\text{P}\{^1\text{H}\}$ and ^{51}V NMR spectra showed broad signals at δ 249 and δ 27 ppm, respectively. In addition a doublet at δ 4.95 ppm was observed in the ^1H NMR spectrum, indicative for bridgehead protons of $(\text{APN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$. After workup bright red solids were isolated in 61% yield. A representative sample was crystallized from cold (-20 °C) diethyl ether over 2 days, yielding dark red crystals that were analyzed in a X-ray crystallographic study. This experiment confirmed the formation of $(\text{APN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$ (Figure 6). Heating of the complex in benzene at 80 °C resulted in the formation of dimer **8** via trimeric **7** as followed by ^{51}V NMR

spectroscopy (Figure S19). Irradiation of $(\text{APN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$ at room temperature with $\lambda = 254$ nm light also releases anthracene, and trimeric $[(\text{PN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3]_3$ is formed (Figure 6).

Figure 6: Left: Synthesis of $(\text{APN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$ and subsequent thermally and photochemically induced oligomerization reactions. Right: Molecular structure of $(\text{APN})\text{V}(\text{N}[\text{'Bu}]\text{Ar})_3$ (**6**) with thermal ellipsoids shown at the 50% probability level. Hydrogen atoms are omitted for the sake of clarity. Selected interatomic distances (\AA): P1A–N1A 1.699(1); P1A–C1A, 1.910(1); P1A–C8A, 1.904(1); and N1A–V1A, 1.693(8). Selected interatomic bond angles ($^\circ$): C1A–P1A–C8A, 79.3(5); P1A–N1A–V1A, 146.8(1).

The niobaziridine–hydride complex $\text{Nb}(\text{H})(\eta^2\text{-}^{\text{'}}\text{Bu}(\text{H})\text{CNAr})(\text{N}[\text{Np}]\text{Ar})_2$ (Np = neopentyl, $\text{Ar} = 3,5\text{-C}_6\text{H}_3\text{Me}_2$) was reported to react with elemental phosphorus (P_4) to yield the bridging diphosphide complex $(\mu_2\text{:}\eta^2\text{,}\eta^2\text{-P}_2)[\text{Nb}(\text{N}[\text{Np}]\text{Ar})_3]_2$.²⁸ Treatment of the niobaziridine–hydride complex with N_3PA resulted in a similar reactivity as with the vanadium trisanilide complex (*vide supra*) and the formation of the $(\text{APN})\text{Nb}(\text{N}[\text{'Bu}]\text{Ar})_3$ complex (**9**, Figure S20, see SI for further synthetic details). Heating or treatment of this complex with another equivalent of niobaziridine–hydride complex did not result in the formation of the bridging phosphorus mononitride complex. Besides free anthracene resonances in the ^1H NMR spectrum, we only observed a single resonance in the ^{31}P NMR at 115 ppm, which is tentatively assigned to an oligomerized niobium-PN complex based on free anthracene resonances and our findings of the related vanadium system (Figure S17–S18).

Caution

The handling of azide compounds should be done with the necessary safety precautions.²⁹ No direct explosions of N_3PA were encountered when it was diluted in organic solvents or carefully dried under vacuum below room temperature. Treatment of transition metal complexes in solution with solid N_3PA can cause a spontaneous explosive decomposition of N_3PA and should be avoided or solid N_3PA only be added in portions of a few milligrams, respectively.

Supporting Information

Full synthetic and computational details, including preparative procedures and spectroscopic data for the characterization of compounds.

CSD Reference Codes

CCDC 2110926–2110930 and 2120073 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Acknowledgements

A.K.E. thanks the Alexander von Humboldt foundation for a Feodor Lynen postdoctoral fellowship. P.M. thanks Bruce Noll for helpful discussions. The authors thank Marc-André Courtemanche for his careful proofreading and suggestions. This material is based on research supported by the National Science Foundation, under No. CHE-1955612. We thank all MIT DCIF staff members for technical support.

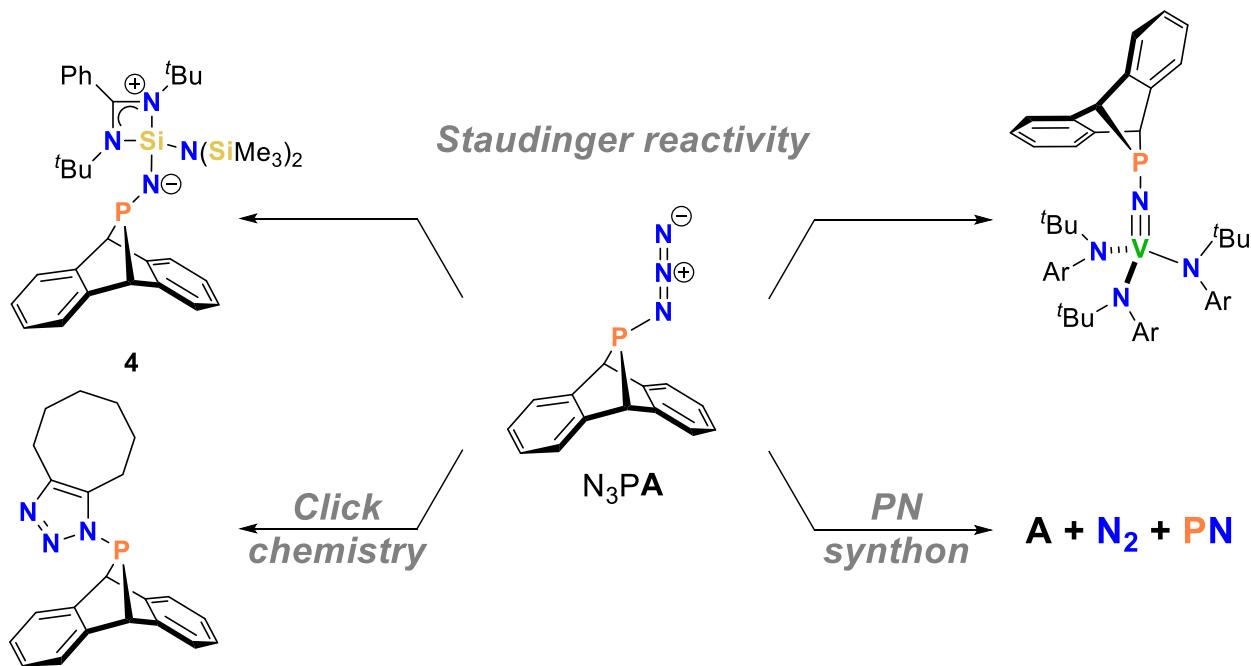
Competing financial interests

None.

Materials & Correspondence

Correspondence and material requests should be addressed to C.C.C.

Orcid


A.K.E. 0000-0003-1029-9272
M.L.Y.R. 0000-0002-0900-3545
P.M. 0000-0001-6530-3852
C.C.C. 0000-0003-2568-3269

References

1. Carpino, L. A.; Padykula, R. E.; Barr, D. E.; Hall, F. H.; Krause, J. G.; Dufresne, R. F.; Thoman, C. J., Synthesis, characterization, and thermolysis of 7-amino-7-azabenzonorbornadienes. *J. Org. Chem.* **1988**, *53*, 2565-2572.
2. Velian, A.; Cummins, C. C., Facile Synthesis of Dibenzo-7*λ*³-phosphanorbornadiene Derivatives Using Magnesium Anthracene. *J. Am. Chem. Soc.* **2012**, *134*, 13978-13981.

3. Velian, A.; Nava, M.; Temprado, M.; Zhou, Y.; Field, R. W.; Cummins, C. C., A Retro Diels–Alder Route to Diphosphorus Chemistry: Molecular Precursor Synthesis, Kinetics of P₂ Transfer to 1,3-Dienes, and Detection of P₂ by Molecular Beam Mass Spectrometry. *J. Am. Chem. Soc.* **2014**, *136*, 13586-13589.
4. Velian, A.; Cummins, C. C., Synthesis and characterization of P₂N₃⁻: An aromatic ion composed of phosphorus and nitrogen. *Science* **2015**, *348*, 1001.
5. Transue, W. J.; Velian, A.; Nava, M.; Martin-Drumel, M.-A.; Womack, C. C.; Jiang, J.; Hou, G.-L.; Wang, X.-B.; McCarthy, M. C.; Field, R. W.; Cummins, C. C., A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion. *J. Am. Chem. Soc.* **2016**, *138*, 6731-6734.
6. Transue, W. J.; Velian, A.; Nava, M.; García-Iriepea, C.; Temprado, M.; Cummins, C. C., Mechanism and Scope of Phosphinidene Transfer from Dibenzo-7-phosphanorbornadiene Compounds. *J. Am. Chem. Soc.* **2017**, *139*, 10822-10831.
7. Transue, W. J.; Yang, J.; Nava, M.; Sergeyev, I. V.; Barnum, T. J.; McCarthy, M. C.; Cummins, C. C., Synthetic and Spectroscopic Investigations Enabled by Modular Synthesis of Molecular Phosphaalkyne Precursors. *J. Am. Chem. Soc.* **2018**, *140*, 17985-17991.
8. Transue, W. J.; Nava, M.; Terban, M. W.; Yang, J.; Greenberg, M. W.; Wu, G.; Foreman, E. S.; Mustoe, C. L.; Kennepohl, P.; Owen, J. S.; Billinge, S. J. L.; Kulik, H. J.; Cummins, C. C., Anthracene as a Launchpad for a Phosphinidene Sulfide and for Generation of a Phosphorus–Sulfur Material Having the Composition P₂S, a Vulcanized Red Phosphorus That Is Yellow. *J. Am. Chem. Soc.* **2019**, *141*, 431-440.
9. Riu, M. Y.; Transue, W. J.; Rall, J. M.; Cummins, C. C., An Azophosphine Synthetic Equivalent of Mesitylphosphaazide and Its 1,3-Dipolar Cycloaddition Reactions. *J. Am. Chem. Soc.* **2021**, *143*, 7635-7640.
10. Eckhardt, A. K.; Riu, M. Y.; Müller, P.; Cummins, C. C., Frustrated Lewis Pair Stabilized Phosphoryl Nitride (NPO), a Monophosphorus Analogue of Nitrous Oxide (N₂O). *J. Am. Chem. Soc.* **2021**, *143*, 21252-21257.
11. Eckhardt, A. K.; Riu, M.-L. Y.; Ye, M.; Müller, P.; Bistoni, G.; Cummins, C. C., Taming Phosphorus Mononitride (PN). 2021-08-26 Version 1. *ChemRxiv (Inorganic Chemistry)*. DOI: 10.33774/chemrxiv-2021-zxtmf . (accessed 08-26-2021).
12. Martinez, J. L.; Lutz, S. A.; Beagan, D. M.; Gao, X.; Pink, M.; Chen, C.-H.; Carta, V.; Moënne-Locoz, P.; Smith, J. M., Stabilization of the Dinitrogen Analogue, Phosphorus Nitride. *ACS Cent. Sci.* **2020**, *6*, 1572-1577.
13. Ahmad, I. K.; Hamilton, P. A., The Fourier Transform Infrared Spectrum of PN. *J. Mol. Spectrosc.* **1995**, *169*, 286-291.
14. Moldenhauer, W.; Dörsam, H., Über die Vereinigung von Phosphor und Stickstoff unter dem Einflusse elektrischer Entladungen. *Ber. dtsch. Chem. Ges. A/B* **1926**, *59*, 926-931.
15. Holleman, A. F., *Lehrbuch der anorganischen Chemie*. Walter de Gruyter GmbH & Co KG: 2019.
16. Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C., Triple-Bond Reactivity of Diphosphorus Molecules. *Science* **2006**, *313*, 1276.
17. Hering, C.; Schulz, A.; Villinger, A., Diatomic PN – trapped in a cyclo-tetraphosphazene. *Chem. Sci.* **2014**, *5*, 1064-1073.
18. Riu, M.-L. Y.; Cummins, C. C., 3,5-Diphenyl-2-phosphafuran: Synthesis, Structure, and Thermally Reversible [4 + 2] Cycloaddition Chemistry. *J. Org. Chem.* **2020**, *85*, 14810-14816.
19. Baraban, J. H.; Martin-Drumel, M.-A.; Changala, P. B.; Eibenberger, S.; Nava, M.; Patterson, D.; Stanton, J. F.; Ellison, G. B.; McCarthy, M. C., The Molecular Structure of gauche-1,3-Butadiene: Experimental Establishment of Non-planarity. *Angew. Chem. Int. Ed.* **2018**, *57*, 1821-1825.
20. Breugst, M.; Reissig, H.-U., The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. *Angew. Chem. Int. Ed.* **2020**, *59*, 12293-12307.
21. Ess, D. H.; Jones, G. O.; Houk, K. N., Transition States of Strain-Promoted Metal-Free Click Chemistry: 1,3-Dipolar Cycloadditions of Phenyl Azide and Cyclooctynes. *Org. Lett.* **2008**, *10*, 1633-1636.
22. Sklorz, J. A. W.; Müller, C., Recent Developments in the Chemistry of 3H-1,2,3,4-Triazaphos-phole Derivatives. *Eur. J. Inorg. Chem.* **2016**, *2016*, 595-606.
23. Kinjo, R.; Donnadieu, B.; Bertrand, G., Isolation of a Carbene-Stabilized Phosphorus Mononitride and Its Radical Cation (PN⁺). *Angew. Chem. Int. Ed.* **2010**, *49*, 5930-5933.
24. Huang, J.; Nolan, S. P., Efficient Cross-Coupling of Aryl Chlorides with Aryl Grignard Reagents (Kumada Reaction) Mediated by a Palladium/Imidazolium Chloride System. *J. Am. Chem. Soc.* **1999**, *121*, 9889-9890.
25. Sen, S. S.; Hey, J.; Herbst-Irmer, R.; Roesky, H. W.; Stalke, D., Striking Stability of a Substituted Silicon(II) Bis(trimethylsilyl)amide and the Facile Si–Me Bond Cleavage without a Transition Metal Catalyst. *J. Am. Chem. Soc.* **2011**, *133*, 12311-12316.
26. Staudinger, H.; Meyer, J., Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. *Helv. Chim. Acta* **1919**, *2*, 635-646.

27. Courtemanche, M.-A.; Transue, W. J.; Cummins, C. C., Phosphinidene Reactivity of a Transient Vanadium P≡N Complex. *J. Am. Chem. Soc.* **2016**, *138*, 16220-16223.
28. Figueroa, J. S.; Cummins, C. C., The Niobaziridine–Hydride Functional Group: Synthesis and Divergent Reactivity. *J. Am. Chem. Soc.* **2003**, *125*, 4020-4021.
29. Safety, S. U. E. H. Information on Azide Compounds. <https://ehs.stanford.edu/reference/information-azide-compounds> (accessed 08-24-2021).

Synopsis: Anthracene (**A**) based azido phosphine N_3PA is an explosive compound, which may serve as a synthon for PN in reactions with *d*- and *p*-block compounds by way of N_2 and anthracene loss. Here we demonstrate new reactivity studies of N_3PA , including Staudinger reactivity and [3+2] click chemistry.