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Multiple-choice-multiple-response (MCMR) items allow students to select as many responses as they think
are correct to a given question stem. Using MCMR items can provide researchers and instructors with a richer
and more complete picture of what students do and do not understand about a particular topic. Interpreting
students’ MCMR responses is more nuanced than it is for single-response items. Unfortunately, many typical
analyses of data from multiple-choice tests assume dichotomously-scored items, which eliminates the possibility
of incorporating the rich information from students’ response patterns to MCMR items. We present a novel
methodology for using a combination of item response theory models to analyze data from MCMR items.
These methods could be applied to inform scoring models that incorporate partial credit for various response
patterns.
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I. INTRODUCTION

The Physics Inventory of Quantitative Literacy (PIQL) is
a 20-item multiple-choice test designed to assess students’
physics quantitative literacy, i.e., reasoning quantitatively in
ways typical of expert physicists [1]. One feature of the PIQL
is the use of six multiple-choice-multiple-response (MCMR)
items in addition to more typical single-response (SR) items.
MCMR items may have more than one correct response, and
allow students to choose all responses they think are cor-
rect. A benefit of using MCMR items on the PIQL is that
researchers and instructors can get a richer picture of student
understanding than is available with SR items alone, by prob-
ing fundamental quantitative reasoning as it interacts with
physics concepts. Previous results have shown that students
often choose at least one correct and one incorrect response
simultaneously, which suggests their thinking is somewhere
between completely novice-like and completely exert-like
[1–4]. A major challenge in using MCMR items is deciding
how such responses should be scored. (See Ref. [1] for more
information about the PIQL and a more detailed discussion
of the benefits and challenges of using MCMR items.)

One approach to scoring MCMR items is to categorize
each response pattern as either completely correct (selecting
all correct responses and no incorrect responses) or incorrect
[1–3]. This type of dichotomous scoring allows the results
from MCMR items to be combined with those of SR items in
many typical quantitative analyses (e.g., classical test theory,
factor analysis); however, this approach ignores the nuance
and complexity of students’ responses, which are the reason
for using MCMR items.

To begin to address the need for a more nuanced scoring
method, we have previously used a four-level categorization
scheme that labels response patterns as Completely Correct,
Some Correct, Both Correct and Incorrect, or Completely In-
correct [1–4]. Previous results using this four-level catego-
rization have shown that at least 60% of students provide at
least one correct response to each MCMR item on the PIQL,
although this is often coupled with an incorrect response:
6%–45% of students select Both Correct and Incorrect re-
sponse patterns [1]. This emphasizes the need to consider
methods for assigning partial credit for responses that are not
Completely Correct. Unfortunately, this four-level catego-
rization does not give a definite answer to the question of
how to score MCMR items. Is it better for a student to se-
lect only some of the correct response options, or all of the
correct response options in combination with an incorrect op-
tion? How could these categories be translated into assigning
partial credit for responses that are not Completely Correct?

In this paper we explore the use of item response theory
(IRT) to analyze MCMR items, with an eye toward future
work that could define partial credit for each response pat-
tern. Smith, Louis, Ricci, and Bendjilali [5], and Eaton,
Johnson, and Willoughby [6], have used IRT models for an-
alyzing nominal (i.e., nondichotomous) data in order to rank
responses according to how well they align with overall un-

derstanding for SR items on the Force and Motion Concep-
tual Evaluation (FMCE [7]) and the Force Concept Inventory
(FCI [8]), respectively. Eaton, et al. proposed a method for
assigning partial credit for incorrect responses based on their
rankings [6]. Smith and Bendjilali have explored the rela-
tionship between IRT item parameters in Bock’s nominal re-
sponse model (NRM [9]) and student understanding to show
that a student’s selection of a specific incorrect response is an
indicator of how well they understand the test material [10].

These prior uses of IRT nominal models [9, 10] and nested-
logit models [5, 6, 11] build on well-established uses of IRT
to analyze SR items; however, using them for MCMR items
is not entirely straightforward. Applying Bock’s NRM to
MCMR items would require coding each possible combina-
tion of responses as its own category: 346 categories across
the six MCMR items, requiring estimates of 836 parameters
in total across both SR and MCMR items. This would re-
quire a sample size of at least 8360 students (10 students for
each parameter estimated [12]), and many of the categories
defined by MCMR response patterns are likely to be chosen
very rarely (if at all), making the results unstable.

Alternatively, one could treat each individual response as
an independent item that is either selected (1) or not selected
(0) and use a dichotomous model for each (e.g., the two-
parameter logistic, 2PL [13]); however, this assumption of in-
dependence may not be valid for MCMR responses, some of
which may express opposite ideas (e.g., “Energy was added
. . . ” vs. “Energy was taken away . . . ”).

We present a novel approach in which we treat each
MCMR item as a combination of independent dichotomous
“response-items” and grouped nominal response-items. We
choose which responses to group together by examining
within-item correlations between responses, and we report
the goodness-of-fit of our IRT models using various fit statis-
tics. Our current goals are to demonstrate how standard IRT
methods may be used in novel ways to analyze MCMR items,
and to emphasize the decisions that must be made in order to
apply these methods. Future studies will apply these methods
to a large data set from a broad, diverse student population
to inform decisions about assigning partial credit for various
combinations of responses.

We seek to answer the following research questions:
1. How strongly correlated are students’ responses within

each MCMR item on the PIQL?
2. How does the fit of an IRT model that includes nominal

response-items compare with the fit of an IRT model
with only dichotomous response-items?

3. What is the optimal combination of dichotomous and
nominal response-items?

We expect that analyzing strongly correlated responses in-
dependently provides results that contain redundant infor-
mation; therefore, grouping these responses as nominal
response-items will likely improve the fit statistics of our IRT
model. We also expect that including nominal response-items
created from weakly correlated responses will have a minimal
(or perhaps negative) impact on the model fit.
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II. DATA SOURCES AND METHODS

Data for this study come from 3399 students enrolled in the
three-course calculus-based introductory physics sequence at
a large public research university in the USA. Data were col-
lected by administering the PIQL online at the beginning of
each course in five consecutive academic terms using PIQL
v2.2 [1] (available on the PhysPort website [14]).

We addressed research question 1 by calculating poly-
choric correlations for each pair of MCMR responses to de-
termine which are chosen together (or separately) more often
than would be expected by random chance. Kubinger showed
that polychoric correlations are more appropriate for dichoto-
mous data (e.g., whether or not a student chose a specific
response) than more traditional Pearson correlations [15].
Eaton, Frank, and Willoughby found that polychoric corre-
lations stronger than 0.613 suggest that responses are linked
by something more than a simple underlying latent trait [16].

We addressed research questions 2 and 3 by defining a base
model for our IRT analyses in which all 14 SR items on the
PIQL were modeled using Bock’s NRM, and all 34 MCMR
response options were assumed to be independent and an-
alyzed dichotomously using a two-parameter logistic (2PL)
model. With this “All2pl” model, two parameters are esti-
mated for each response option.

We addressed research question 2 by replacing each
within-item pair of dichotomous response-items with one
nominal response-item whose options included all four com-
binations of responses: 00, 01, 10, 11. We compared the
modified model with the base model using various fit statis-
tics, including the Akaike information criterion (AIC), the
Bayesian information criterion (BIC), the root mean square
error of approximation (RMSEA), the comparative fit index
(CFI), and the Tucker-Lewis fit index (TLI) [17–19]. Lower
values of AIC, BIC, and RMSEA, and higher values of CFI
and TLI, indicate better model fits. Each IRT model with a
single nominal response-item and 32 dichotomous response-
items required a sample size of at least 2140 students to esti-
mate 214 parameters.

We addressed research question 3 by ranking the cor-
relations between response pairs from strongest to weak-
est. Beginning with the most highly correlated (or anticor-
related) MCMR responses, we replaced the two dichotomous
response-items with a single nominal response-item. If the
model with the nominal response-item had better fit statis-
tics than the base model, we kept those responses paired,
otherwise we considered the responses to be independent
and modeled them as separate dichotomous items. We re-
peated this process for each successive pair of MCMR within-
item responses, building a model with more and more nom-
inal response-items. We terminated this iterative process
when all significant correlations had been included as nom-
inal response-items. The most complicated model we tested
included seven nominal response-items and 17 dichotomous
response-items, and required a sample size of at least 2280
students to estimate 228 parameters.
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FIG. 1. Polychoric correlations between responses to MCMR items.

All analyses were performed using the R computing en-
vironment [20]. Polychoric correlations were computed us-
ing the POLYCOR package [21], and IRT analyses were per-
formed using the MIRT package [22, 23]. To get a sense of the
variability in the values of the IRT fit statistics, we used the
MIRT function’s option to generate random values for the ini-
tial parameter estimates (GenRandomPars = TRUE), repeat-
ing the estimation of each model 10 080 times for research
question 2, and 20 064 times for research question 3. The
median value of each statistic is reported, with uncertainty
represented by the median absolute deviation of each distri-
bution, scaled by a factor of 0.6745 to be comparable to the
standard deviation [24].

III. RESULTS

A. Research Question 1: Correlations

Figure 1 shows the polychoric correlations between re-
sponses to MCMR items. The table is symmetric, with the
rows and columns being labeled by the item and response
option: e.g., “15A” represents response A to item 15. Fig-
ure 1 shows that only a small fraction of response pairs have
correlations strong enough to be considered significant, all
of which are within-item correlations (emphasized by their
proximity to the diagonal). As such, we only considered
within-item response pairs when building IRT models to ad-
dress research questions 2 and 3.

The strongest correlations tend to be negative and often
correspond to contradictory statements: for example, re-
sponse 18D indicates that, “The force . . . is in the opposite
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direction as . . . displacement,” while 18E states, “The force
. . . is in the same direction as . . . displacement.” Moreover,
only a minority of within-item response pairs display signifi-
cant correlations, with item 19 having no significantly corre-
lated pairs of responses.

B. Research Question 2: Grouping Responses

As mentioned above, we expect to see a relationship be-
tween the polychoric correlation between two response op-
tions, and the goodness-of-fit of an IRT model that in-
cludes those two responses as a single nominal response-
item. The “All2pl” model represents the baseline, with all 34
MCMR response options analyzed as independent dichoto-
mous response-items (using the 2PL model). Figure 2 shows
the relationship between correlation and goodness-of-fit for
two IRT fit statistics: AIC and CFI. In both cases, the value
of the fit statistic for the All2pl baseline model is shown by
a horizontal black dashed line, and the thresholds for signifi-
cant correlations (±0.613) are shown by vertical black dashed
lines. Data labels represent the responses that are paired in
each model: for example, the model labeled “16BD” includes
responses 16B and 16D as a single nominal response-item,
but leaves all other MCMR responses as independent dichoto-
mous response-items.

The AIC results in Fig. 2(a) show a clear trend: models that
include pairs with small correlations have AIC values very
near (and often above) the All2pl value; models with paired
responses that have larger correlations tend to have lower
(i.e., better) AIC values. The results for the BIC statistic
(not shown) are virtually identical to the AIC. These results
suggest that adding a nominal response-item formed from a
random pair of within-item responses will not significantly
improve the AIC or BIC fit statistics.

The CFI results shown in Fig. 2(b) are not as clear as
those for the AIC. Some of the models with weakly corre-
lated response-items make the model worse (lower CFI) and
others make it better (higher CFI). Similarly, some models
with strongly correlated response-items seem to make the fit
worse. The red dotted line in Fig. 2(b) shows the median
CFI value for all models with a only a single pair of re-
sponses grouped into a nominal option. This median is be-
low the All2pl baseline, which suggests that adding a nomi-
nal response-item formed from a random pair of within-item
responses is not likely to yield a significant positive effect.
The results for the TLI and RMSEA statistics are similar to
those for the CFI, with the median value being worse than the
All2pl model, but without a distinct shape to the data.

C. Research Question 3: Building an Optimal Model

The strongest correlation is between 16B and 16D, and Fig.
2 shows that the 16BD model significantly improves both fit
statistics. The next strongest correlations are between 16E
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FIG. 2. Fit statistics vs. correlation for IRT models with one MCMR
nominal response-item each. The black horizontal dashed line is the
All2pl baseline value; the vertical dashed lines represent correlations
of ±0.613. (a) AIC is shown (BIC has the same shape). (b) CFI
is shown (TLI and RMSEA have the same general result); the red
dotted line is the median value for all models. Error bars represent
the median absolute deviation for 10 080 runs of each IRT analysis.

and other responses to item 16: 16E states that, “None of
these are correct,” (referring to responses A–D) so it is not
surprising that it would be anticorrelated with the others.
Figure 3 shows the impact of incorporating the correlations
involving 16E to the 16BD IRT model: the model labeled
“16noE” in Fig. 3 removes 16E from the analysis entirely,
with choosing 16E considered equivalent to NOT choosing
16A, B, C, or D. Each subsequent model (moving to the right
on each plot in Fig. 3) includes the groupings of the previ-
ous models. (The 17noE model is similar to 16noE, with
the none-of-the-above response 17E being removed from the
analysis.) The final model, labeled 17CD in Fig. 3, includes
seven nominal response-items and 17 dichotomous response-
items, as opposed to the 34 dichotomous response-items in-
cluded in the All2pl model.

With each added pair/group, the AIC and BIC statistics im-
prove. The RMSEA, CFI, and TLI statistics improve for all
but two of the models shown (16noE and 20ABC). Adding
additional nominal response-items to model 17CD resulted
in a worse fit for all statistics. For models with mixed results
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FIG. 3. Fit statistics for IRT models with the most highly correlated
responses to MCMR items grouped. (a) AIC, BIC, RMSEA (lower
is better). (b) CFI, TLI (higher is better). Error bars represent the
median absolute deviation for 20 064 runs of the IRT analysis.

(better for some statistics but worse for others), we made a
judgement by looking at the specific response options. The
16noE model fit may be better or worse than 16BD; as men-
tioned above, response 16E is the “None of these are correct”
option. Combining three responses for 20ABC may be a bet-
ter or worse fit than combining only two responses for 20BC;
20A, B, and C all deal with an object’s speed, while 20D,
E, and F deal with the direction of its velocity. Due to the
relationships between the response options within items 16
and 20, we chose to keep both the 16noE and the 20ABC
models. Model 15ACF (not included in Fig. 3) also showed
mixed results; we rejected the model because 15A and 15F
are mathematically equivalent (incorrect) equations, but 15C
is a different (correct) equation. We only considered this type
of choice when the trends in the fit statistics were mixed.

As mentioned in Sec. I, using the NRM for all MCMR
response patterns would require a much larger data set, and
could yield unstable results. To explore the possible useful-
ness of an IRT model using the NRM for all MCMR items,
we created a data set that included only response patterns that
had been selected by at least 20 students (the minimum sam-
ple size for each response category [12]). This left us with
128 response categories spread over the six MCMR items.
This is significantly fewer than the 346 total possible combi-

nations, but still required a sample size of at least 4000 stu-
dents to estimate a total 400 parameters across all SR and
MCMR items. This was larger than our available data set,
and left us needing to select a larger minimum value. A min-
imum of 60 selections, for example, gave a model with 60
MCMR response categories that could work with our data (a
minimum sample size of 2640 students), but the selection of
this minimum value is quite arbitrary. Additionally, elimi-
nating response patterns based on their frequency in the data
set potentially removes meaningful patterns that are concep-
tually worth keeping, even if they are not popular. We do not
believe these results would be representative of our data set.

IV. DISCUSSION

The results from Fig. 3 show that IRT models that include
the most strongly correlated MCMR response pairs as nomi-
nal response-items more closely fit our data set than the base-
line All2pl model in which all MCMR response options are
included as independent dichotomous response-items. The
results from Fig. 2 show that these improvements to the fit
statistics are well beyond what would be expected from sub-
stituting any pair of dichotomous response-items with a sin-
gle nominal response-item. Together, these results demon-
strate the efficacy of our approach to using IRT to analyze
data from MCMR items: using polychoric correlations be-
tween response options to identify pairs and groups to com-
bine into nominal response-items for IRT analyses. This
novel approach generalizes IRT analyses of nominal data to
be able to incorporate all possible patterns of response options
to MCMR items.

More work is needed before this method may be used to
make decisions about scoring students’ responses to MCMR
items. Careful choices would have to be made to translate
IRT results into definitions for assigning partial credit, and the
analyses would have to be replicated and shown to be gener-
alizable across multiple student populations. The students in
our data set do not (and cannot) represent the overall physics
student population in the USA in terms of race and ethnicity.
In addition, these students (in general) have had more expo-
sure to prior instruction in both physics and mathematics than
many introductory physics students [25]. As such, our data
sources are not broad or diverse enough to make strong con-
clusions about rankings of response options or determining
partial credit models; however, this work serves as a proof-
of-concept for using IRT methods in novel ways to analyze
data from MCMR items.
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