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Covariational reasoning—considering how changes in one quantity affect another, related quantity—is a
foundation of quantitative modeling in physics. Understanding quantitative models is a learning objective of
introductory physics instruction at the college level. Prior work suggests that covariational reasoning in physics
contexts differs from the reasoning about functions and graphs in purely mathematical contexts that students
develop in math courses; this reasoning is effortful in physics even for mathematically well-prepared students.
In order to improve physics students’ covariational reasoning, we must first characterize covariational reasoning
with physics quantities. To this end, we present a framework of covariational reasoning in physics contexts, to
describe the ways that covariational reasoning is used in physics modeling. The framework can be used as a
lens through which to analyze student reasoning, and can help inform instructional interventions. We describe
an application of this framework in the development of a set of computer-based training assignments.
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I. INTRODUCTION AND BACKGROUND

Covariational reasoning is defined by mathematics educa-
tion researchers as “the cognitive activities involved in coor-
dinating two varying quantities while attending to the ways in
which they change in relation to each other” [1]. It is consid-
ered an essential tool for pre-calculus and calculus courses,
and has thus been extensively characterized in mathematics
contexts [1–3]. Covariational reasoning is also at the heart
of quantitative modeling in physics, but prior work indicates
that physics experts reason mathematically in different ways
than mathematics experts [4, 5]. While students in introduc-
tory physics courses may have experience with covariational
reasoning in mathematical contexts from prerequisite math
courses, covariational reasoning in physics contexts is not
simply doing math with physics quantities; rather, it requires
an understanding of both the mathematics and the quanti-
ties themselves [6–10]. This suggests that characterization of
physics covariational reasoning is necessary to provide guid-
ance for leveraging the experience that students have from
math courses for more productive reasoning and quantitative
modeling in physics contexts. In this paper, we present a
framework that characterizes how covariational reasoning is
used in quantitative modeling with physics quantities. The
framework is a lens through which student reasoning can be
viewed and can provide guidance for the development of in-
structional interventions.

The covariational reasoning framework we present is based
largely on three areas of research: work by mathematics ed-
ucation researchers on covariational reasoning in mathemati-
cal contexts; interviews with physics graduate students com-
pleting tasks requiring covariational reasoning; and work by
physics education researchers on student understanding of
mathematics, quantities, and variables.

Mathematics education researchers Carlson et al. devel-
oped frameworks to describe levels of development of covari-
ational reasoning, and “mental actions” that are supported by
those levels [1]. The framework of mental actions describes
five modes of reasoning about relationships between vari-
ables that effectively operationalize covariational reasoning
in mathematics. An abbreviated version of the mental actions
framework is shown in Table I.

The mental actions described by Carlson et al. are often
considered in the context of graphing. Graphing is covari-
ational reasoning: a graph is an important and ubiquitous
representation of a relationship between quantities. Math-
ematics education researchers Hobson and Moore reported
on the results of interviews with mathematics graduate stu-
dents performing graphing tasks [11]. To investigate if and
how physics experts might use covariational reasoning differ-
ently from mathematics experts when graphing, Zimmerman
et al. replicated their study by interviewing physics graduate
students (“experts” in introductory-level physics) using the
same tasks [4]. It was found that physics experts were more
likely than mathematics experts to: (1) rely on familiarity and
facility with physics quantities; (2) rely on experience with

TABLE I. Framework of covariational reasoning “Mental Actions”
in mathematics contexts developed by Carlson et al. [1]

Mental
Action

Description

MA1 Coordinating the value of one variable with changes in
another

MA2 Coordinating the direction of change of one variable
with changes in another variable

MA3 Coordinating the amount of change of one variable with
changes in the other variable

MA4 Coordinating the average rate-of-change of the function
with uniform increments of change in the input variable

MA5 Coordinating the instantaneous rate of change of the
function with continuous changes in the independent
variable for the domain of the function

physics models to approximate or describe a physics con-
text quantitatively, rather than engage in novel covariatonal
reasoning; and (3) consider the covariational relationship be-
tween quantities near important points of change, rather than
continuously (as in MA5 by Carlson et al.). For more details,
see Ref. [4].

Students may enter physics courses comfortable with
graphing in mathematical contexts, learned in prerequisite
math courses; but substantial research by physics educa-
tion researchers suggests that facility with graphing in purely
mathematical contexts may not transfer to productive inter-
pretation of graphs in physics contexts. For example, Mc-
Dermott et al. found that students had difficulty connect-
ing features of a graph to the physical quantities they rep-
resent [12]. Others have found that the physics content of the
graph affected how students interpret graphs and influences
approaches to calculations of slope [13, 14].

Research suggests introductory physics students struggle
to emulate quantitative reasoning used by physics experts
[9, 15–17]. Introductory students may have difficulty with un-
familiar notation though the underlying mathematics is famil-
iar [18, 19]. Sherin’s “symbolic forms” were developed to ex-
plain how successful physics students interpret and use equa-
tions [6]; Sherin suggested that successful students associate
symbolic patterns with physical and mathematical meaning.
Study of introductory-level physics students indicated that
physics learners engage in similar behaviors as physics ex-
perts when engaged in covariational reasoning tasks, but do
so less productively [20, 21]. Differences between introduc-
tory and graduate students in physics led us to consider what
introductory physics students bring in from their prerequisite
courses in mathematics, and what additional resources grad-
uate students are using to engage in the behaviors more pro-
ductively.

Here, we present a framework of covariational reasoning in
physics contexts, to describe the ways covariational reasoning
is used in physics modeling. To demonstrate the applicabil-

336



2

TABLE II. Current version of a framework to describe the use of
covariational reasoning in physics modeling

PROCEPTUAL UNDERSTANDING
I. Mathematics Resources II. Physics Quantities
A. Common function behavior A. Constructing quantity
B. Common function rules B. Mathematical structure
C. Use of common operations C. Constraints of quantities
D. Use of common procedures D. Symbolizing

E. Combining quantities
PHYSICS MENTAL ACTIONS EXPERT BEHAVIORS
I. Related Quantities I. Compiled Relationships
II. Trend of Change A. Proxy Quantities
III. Discrete Change B. “Goes Like”
IV. Small Chunks of Change II. Simplification Techniques
V. Functional Reasoning A. Limiting Cases

B. Physically Significant Points
C. Symmetry

ity of this framework, we describe the development of a set
of computer-based training assignments intended to improve
introductory physics students’ covariational reasoning.

II. FRAMEWORK

In physics contexts, covariational reasoning is done in the
service of quantitative modeling, and is used in conjunction
with understanding of physics quantities and familiarity with
physics content. The framework presented in Table II char-
acterizes the use of covariational reasoning in physics model-
ing. We developed this framework by combining previously
published findings [1, 7, 9, 11] with additional results from
interviews with physics graduate students engaged in covari-
ational reasoning graphing tasks [4]. Generally speaking, the
items under the heading Proceptual Understanding describe
foundational reasoning that is required for productive covari-
ational reasoning; Physics Mental Actions describe reasoning
that is directly related to novel covariation of quantities; and
Expert Behaviors describe behaviors observed in physics ex-
perts that either facilitate covariational reasoning with physics
quantities, or limit the amount of novel covariational reason-
ing necessary in a given context. Though the framework is
presented as having these three distinct parts, we stress that
there is significant interaction between the three parts when
physics experts use covariational reasoning.

A. Proceptual understanding

Proceptual understanding is defined by Gray and Tall as
a combination of procedural mastery and conceptual under-

standing [22]. They explain that in the context of fractions,
for example, “the symbol 3

4 stands for both the process of di-
vision and the concept of fraction.” A student with a procep-
tual understanding of fractions would move fluidly between
the procedure of dividing 3 by 4, and the instantiation of the
fraction 3

4 as a precise quantification of portion. In our frame-
work, we identify elements of proceptual understanding as it
relates to covariational reasoning in physics contexts in two
broad areas: mathematics resources and physics quantities.
We first consider four aspects of proceptual understanding of
mathematics resources that define understanding of the un-
derlying mathematics in math contexts, which is a basis for
applying the mathematics to physics contexts.

A. Common function behavior: familiarity with the over-
all behavior of relevant functions. There are a handful
of relevant functions in introductory-level physics: lin-
ear, quadratic, trigonometric, exponential, and rational
functions.

B. Rules for common functions: familiarity with range,
domain, etc.

C. Use of common operations: facility with mathemati-
cal operations such as addition/subtraction, multiplica-
tion/division, and taking derivatives/integrals.

D. Use of common procedures: facility with mathemat-
ical procedures such as taking a limit or finding ex-
trema. Procedures often involve using mathematical
operations to act on a function.

Physics graduate students may rely on facility with physics
quantities when engaging in covariational reasoning [4].
Here, we define proceptual understanding of quantities.

A. Constructing quantity: Generating a quantity to repre-
sent a physical quality, or understanding how and why
a quantity is generated. The quantity “velocity,” for ex-
ample, can be understood as a quantity that relates a
change in position to a time interval through the op-
eration of division, in order to characterize the rate at
which an object moves.

B. Mathematical structure: Recognition of features (e.g.,
scalar or vector, units, sign) of a quantity, and why
those features are appropriate for that quantity. In ad-
dition, understanding the meaning of the features of
a quantity. For example, the negative sign associated
with a quantity carries meaning that may be specific to
that quantity—the sign associated with electric charge
has a different meaning than the sign associated with
mechanical work.

C. Constraints of physics quantities: Understanding of the
constraints of a quantity. Not all quantities can be neg-
ative, and some can only be integers, or particular, dis-
crete values. Some quantities are bounded—speed, for
example, cannot exceed c, the speed of light in vacuum.
Understanding of constraints also includes understand-
ing of appropriate scale for a given context: a car will
not move at an appreciable fraction of c, and a small
metal sphere will not have a charge of 5 Coulombs.

D. Symbolizing: Understanding of multiple representa-
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tions of a quantity (algebraic, graphical, or diagram-
matic), as well as translate between them.

E. Combining quantities: Reasoning around how and why
mathematical operations are used to combine quanti-
ties, including reasoning about combining quantities
with different properties or units. For example, recog-
nition that a velocity vector and speed value cannot be
added because they are different kinds of quantities.

B. Physics mental actions

The physics mental actions (PMA) are derived from and
closely aligned with the mental actions described by Carlson
et al. [1]. There are a number of small but important dif-
ferences between the two sets of mental actions, based on
observed differences between mathematics and physics ex-
perts. For all of the PMA, we stress that the variables are
physics quantities, rather than just numeric values. Moreover,
the PMA do not entail reasoning about continuous changes,
instead focusing on small “chunks” of change. PMA V does
not have an analog in the mental actions by Carlson et al., and
seems to stem from knowledge of familiar physics models.
Physics mental actions describe direct covariation of quanti-
ties; they are explicit instantiations of considering how quan-
tities relate to each other or how changes in one quantity lead
to changes in the other.

I. The recognition that one quantity changes with an-
other; describing one quantity as a function of another
is a behavior associated with this PMA.

II. Connecting the trend of change of one quantity with the
trend of change of the other quantity. One associated
behavior is an explicit statement of the trend, e.g., “the
electric force decreases as separation increases.”

III. Consideration of the change in quantity due to a change
of a specified amount in another; the statement “the
electric field decreases by a factor of 4 when the separa-
tion doubles” is an example of an associated behavior.

IV. An “almost continuous” consideration of change in one
quantity due to a small (almost infinitesimal) change
in another. Recognition that the electric force between
two point changes more quickly when the charges are
closer together than when they are farther apart.

V. Using a functional relationship between quantities to
consider how two quantities change with respect to
each other. An associated behavior would be recog-
nition that the force between two point charges goes as
1/r2, with the exact value at any point determined by
physical constants and the magnitude of the charges.

C. Expert behaviors

The expert behaviors were informed by the graphing task
interviews with physics graduate students by Zimmerman, et
al. These interviews started with the Hobson and Moore repli-

FIG. 1. Left: animation still of the Ferris wheel interview task given
to mathematics and physics graduate students. Right: graph deemed
correct created by a physics expert.

cation study, and continued with novel graphing tasks devel-
oped specifically for physics experts (see Ref. [4] for more
detail). In general, expert behaviors are used in ways that tend
to limit or guide the use of PMA, though we don’t claim that
this is a conscious process. Here, we give an overview of the
behaviors, in the context of the Ferris wheel item. The Ferris

wheel interview task, developed by Hobson and Moore and
used to study covariational reasoning with both mathemat-
ics and physics experts [4, 11], used an animation of a Ferris
wheel rotating at constant angular speed, and asked subjects
to create a graph to relate the height of a Ferris wheel car to
the total distance the car had traveled around the wheel. A
still of the item, and a correct response produced by a physics
graduate student is shown in Fig. 1.

Compiled Relationships describes behaviors that use un-
derstanding of physics quantities or familiarity with physics
contexts, and minimize mental effort. Proxy quantities is the
use of a different, more familiar quantity substituted for an-
other when covarying two quantities. “Goes Like” reasoning
refers to ways physicists relate two quantities through a sim-
plified function. These behaviors are illustrated below.

When creating a graph for the Ferris wheel item, some
physics experts began by creating a graph that related the
height of the car to the time elapsed rather than total dis-
tance traveled. They used time as a proxy quantity for to-
tal distance; for uniform circular motion, time and total dis-
tance traveled are directly proportional. In addition, multiple
physics experts noted that height goes like a trigonometric
function; that is, they identified a direct functional relation-
ship between quantities based on familiarity with the context.

Use of Simplification Techniques describes behaviors
which physics experts engaged in that both guide and limit
the amount of novel covariational reasoning that is required
in a given physics context. Limiting cases describes the habit-
of-mind of taking a limit, as well as the physics content
knowledge to choose a productive limit to take. Experts often
choose physically significant points around which to engage
in the physics mental actions. For example, some physics ex-
perts did not use “goes like” reasoning when completing the
Ferris wheel task; these students tended to engage in covari-
ational reasoning about the motion of the car at the sides and
top of the Ferris wheel (i.e., at the points at which the height
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of the car changes the most and least rapidly as a function of
total distance traveled). Finally, many experts simplify prob-
lems using symmetry to reduce complexity. As an example,
some physics graduate students recognized that the height of
the Ferris wheel car would decrease in the same way that it
increased, and used this knowledge to quickly complete their
graphs.

III. APPLICATION OF THE FRAMEWORK

Our framework lays out a number of foundational “skills”
that underlie productive covariational reasoning in physics
contexts. We describe here an example of using the frame-
work to inform the development of instructional interven-
tions. The tasks are designed to strengthen student facility
with these skills with the intent of supporting students’ use of
covariational reasoning in physics modeling.

Physics education researchers Mikula and Heckler de-
scribed a framework for improving physics essential skills
(ES) [23], fundamental skills that are necessary for problem-
solving in STEM fields. They are largely mathematical and
procedural in nature, such as vector superposition and alge-
braic manipulation of variables. While such skills are easy
and automatic for physics experts, they can be more time-
consuming and effortful for students. The ES framework
describes a structure for computer-based assignments to im-
prove students’ fluency with these skills; when students are
able to do the math quickly and accurately (i.e., fluently),
they are able to dedicate more cognitive effort to understand-
ing physics content and reasoning. Similarly, we believe that
ES assignments featuring more conceptual essential skills can
also facilitate physics problem solving. Recently developed
ES items that focus on interpretation of the meaning of the
negative sign in physics contexts [17], and proportional rea-
soning [24] may be effective ways to increase students’ quan-
titative reasoning [25].

To this end, we are using the framework described in
this paper to identify essential skills related to covariational
reasoning, and developing ES assignments that target those
skills. Our first set of covariational reasoning ES items fo-
cuses on graphing, and targets proceptual understanding of
physics quantities.

As described in Sec. II, using covariational reasoning in
physics modeling requires a proceptual understanding (PU)
of physics quantities, including their graphical representa-
tions (PU II.D in the framework). Interpreting a graph in a
physics context entails understanding what various graphical
features mean in terms of the physics quantities they repre-
sent. For example, for an object moving in one dimension, the
slope of a position vs. time graph is a named physics quantity
(velocity), and has a physical interpretation (the time rate of
change of position, PU II.A). We consider interpretation of
graphical features, such as the slope, to be an essential skill,
and developed a set of ES items to improve student fluency.

The graphical features ES items involve a wide range of

Graphs like the one below are referred to as “potential
energy diagrams” and show how potential energy varies
with position (in one dimension).

How could you use the potential energy diagram above
to find a quantity that has units of Newtons?

(a) Find the slope of the graph
(b) Find the area under the curve
(c) Find the vertical coordinate of a point on the

graph
(d) Find the vertical intercept

FIG. 2. Essential skills item intended to improve student fluency
with interpretation of graphical features. The correct answer is (a),
and uses PU II. A, D, and E.

physics topics (e.g., mechanics, temperature, volume) and
non-physics topics. Items may ask for interpretation of a
graphical feature such as a point, the slope of a line, or the
area under the curve (PU II.A), or the identification of a quan-
tity associated with a given graphical feature (PU II.D). Other
items ask students to identify the graphical feature that is
associated with a given interpretation or quantity. Because
proceptual understanding of physics quantities involves facil-
ity with units and unit manipulations (PU II.E), many of the
items focus on the units of quantities represented in a graph.
An example graphical feature ES item is shown in Fig. 2.

The covariational reasoning framework may be particularly
useful for understanding the gap between the reasoning stu-
dents develop in math courses and the reasoning they are ex-
pected to use in physics courses. The intervention described
here may help bridge that gap by developing reasoning about
physics quantities in the context of covariational reasoning.
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