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Recycling sedimentation sludge water (SSW) supernatant to the head of drinking water treatment plants also
recycles a large fraction of dissovled disinfection byproduct (DBP) precursors, contributing to the overall DBP
load of the finished water. pH adjustment of SSW before release to settling ponds may result in incidental
enhanced coagulation due to a significant amount of residual coagulant present in SSW, potentially removing
DBP precursors. We adjusted the pH of SSW to 5, 6, 7, 8, and 9, and simulated recycling via mixing, sedimen-
tation, and filtration. Samples settled at pH 5 or 6 formed the least DBPs, dependent on species, illustrating that
buffering pH at slightly acidic conditions is an effective DBP precursor treatment strategy during SSW recycling.
Carbonaceous DBP formation increased with increasing pH. An overall decrease in dissolved organic carbon at
acidic conditions was observed, likely due to some enhanced coagulation and sedimentation of dissolved com-
pounds. For nitrogenous DBPs (N-DBPs), samples at pH 5, 8, and 9 had greater formation than at pH 6 and 7.
Fourier transform ion cyclotron resonance mass spectrometry revealed that adjusting pH to 8 and 9 increased the
presence of highly unsaturated molecules, while the unsaturated nitrogen-containing formulae were removed at
PpH 6 and 7. N-DBP formation potential and the intensity (i.e., concentration) of CHON formulae with double
bond equivalent > 10 were well correlated, demonstrating that alkaline pH SSW should be avoided to minimize
formation/release of nitrogenous compounds and subsequent N-DBP formation.

DBP FPs (Hu et al., 2021; Qian et al., 2020). The summative calculated
toxicity of measured DBPs in SSW was also higher than that in FBW after

1. Introduction

Water resources have become increasingly stressed due to environ-
ment pollution and global population growth. Recycling wastewater
produced by drinking water treatment plants (DWTPs) improves water
use efficiency and reduces the cost of treatment and transportation
(Bourgeois et al., 2004; Li et al., 2018). Wastewater produced by DWTPs
includes filter backwash water (FBW) and sedimentation sludge water
(SSW), accounting for approximately 2-10% of total DWTP intake flows
(Curko et al., 2013; Walsh et al., 2008). Compared to FBW and typical
influent waters, SSW contains significantly more suspended solids (i.e.,
particulate), natural organic matter (NOM) represented by dissolved
organic carbon (DOC), and disinfection byproduct (DBP) precursors
(Chen et al., 2015; Mccormick et al., 2010). Our recent research
demonstrated that DOC and dissolved organic nitrogen (DON) concen-
trations in SSW were 2.1 and 1.8 times that of in FBW, respectively, and
DBP formation potential (FP) concentration were 1.1-2.2 times FBW
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chlorination. Therefore, SSW is likely the most challenging to treat and
reuse, but if successful, provides an opportunity for resource recovery.

In China, SSW is usually discharged to surface water after treated by
thickener-induced precipitation, which removes suspended solids well
but has little impact on dissolved organic matter (DOM), and DOM
impacts receiving ecosystems by depleting dissolved oxygen. Another
treatment method is to pump SSW to intermittent storage tanks or
settling ponds, which settle much of the suspended solids, and the su-
pernatant is then recycled to the head of the DWTP and blended with
incoming raw water. Again, this poorly removes DOM and previous
studies have shown that the formation of some specific DBP classes (e.g.,
nitrosamines, trihalomethanes (THMs), and haloacetic acids (HAAs))
increased when recycling SSW supernatant. The recycled DOM
contributed 8-31% of the finished water DBP loading (Walsh et al.,
2008; Westerhoff et al., 2019). Therefore, SSW treatment to remove
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DOM, DBPs, and DBP precursors before recycling will positively impact
finished water quality and water use efficiency.

Coagulation and sedimentation remove suspended solids well from
water (Bachand et al., 2019; Lin et al., 2018; Liu et al., 2016). But
traditional coagulation and sedimentation poorly remove DOM and DBP
precursors. Researchers have attempted to improve removal of DOM and
DBP precursors by enhanced coagulation, and obtained excellent
removal (Guo et al., 2017; Ulu et al., 2019; Zhao et al., 2013). However,
treatment of SSW by either traditional or enhanced coagulation requires
additional on-site infrastructure, increasing the cost and complexity of
treatment. pH adjustment of SSW before storage in tanks or settling
ponds may mimic enhanced coagulation because there is a significant
amount of residual coagulant present (Cao et al., 2011). Thus, pH
adjustment of SSW may be a relatively simple method to enhance
finished water quality and reduce water waste.

DBP precursors are generally low molecular weight compounds,
including the precursors for the highly toxic DBPs haloacetonitriles
(HANSs) and haloacetamides (HAMSs) (An et al., 2019; Qian et al., 2020).
One challenge with pH adjustment of SSW may be that the higher mo-
lecular weight organic matter may be altered/hydrolyzed, which may
form new precursor material and influence the formation of DBPs
(Baker et al., 2007; Meng et al., 2017; Zhang et al., 2009).

To investigate the potential treatment of SSW via pH adjustment, we
collected SSW samples from a traditional DWTP and adjusted the pH to
between 5 and 9. Samples were mixed, settled, and filtered to represent
downstream DWTP processes. Four THMs, nine HAAs, seven HANS, six
HAMs, and the change in DOM composition via mass spectrometry were
measured. The objective was to investigate changes to DOM composi-
tion and DBP formation. We draw conclusions based on the correlations
between DBP FP and Fourier transform ion cyclotron resonance mass
spectrometry (FT-ICR-MS) formulae and signal intensity.

2. Materials and methods
2.1. Chemical reagents

Standards of four THMs, nine HAAs, seven HANs, and six HAMs in
methyl tert-butyl ether (MTBE) were purchased from Dr. Ehrenstorfer
(Augsburg, Germany). Detailed information on DBPs is described in
Supplemental Information. Methyl tert-butyl ether (high performance
liquid chromatography grade) was purchased from Sigma Aldrich (St.
Louis, MO, USA). Ultrapure water with a resistivity of 18.2 MQecm was
prepared using a Gradient A10 ultrapure water system (Milli-Q®, Mil-
lipore Corporation, Bedford, MA, USA). Sodium hypochlorite (NaClO,
analytical grade, 99%) and other reagents (analytical grade) were ob-
tained from the Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China).

2.2. Sedimentation sludge sample collection and treatment

Sedimentation sludge samples were collected from a conventional
drinking water treatment plant in Shanghai, China which treats Yangtze
River water with coagulation, sedimentation, filtration, and disinfec-
tion. The samples of sludge were collected in amber glass bottles from
the outlet of the sludge discharge pipe from the sedimentation tank and
stored at 4 °C in refrigerators until use. Aluminum sulfate was used as
coagulant during coagulation at the drinking water treatment plant in
the pH range of 6.5-7.5. pH of raw water and SSW was 8.2 + 0.1 and
7.43 £ 0.1, respectively.

The pH of SSW was adjusted to 5, 6, 7, 8, and 9 using 1 mol/L hy-
drochloric acid solution and 1 mol/L sodium hydroxide solution,
respectively. Samples were then mixed with a Jar tester (ZR4-6, Zhon-
grun water industry technology development CO., LTD.) at 150 rpm for
60 min at room temperature, similar to mixing provided in sludge buffer
tanks in China. After 30 min of sedimentation the supernatants were
filtered with 0.45 pm glass fiber filters. The pH of all the samples was
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adjusted to 7 after filtration before further experimentation and/or
analysis to allow for comparison of DBP FPs. The raw sample (not pH
adjusted) was mixed, settled, and filtered the same as the control
experiment, and is further referred to as the untreated sample. Water
quality characteristics of the SSW are listed in Table S2. An example
image of samples before and after treatment is shown in Figure S1.

2.3. MW fractionation

A Minimate™ II tangential flow filtration (TFF) system (Pall Cor-
poration, USA) with Ultracel®-PL ultrafiltration membranes (Millipore
Sigma, USA) was used to fractionate water samples into nominal MW
fractions of < 3, < 10, and < 100 kDa fractions (Figure S2). The con-
centration of DOC in the filtrates was determined directly and expressed
as fractions of total DOC by subtraction of lower MW filtrate DOC con-
centrations (e.g., concentration in the 3 — 10 kDa fraction was equal to
that measured in the < 10 kDa filtrate minus the concentration in the <
3 kDa filtrate). Further methodology is provided in our previous publi-
cations (An et al., 2017; Qian et al., 2020) and in the Supplemental
Information.

2.4. FT-ICR-MS analysis

100 mL of each treated water sample was solid-phase extracted using
Bond Elut PPL cartridges (500 mg, 6 mL, Agilent Technologies, USA).
Cartridges were first conditioned with methanol (HPLC grade, 20 mL)
and acidified ultrapure water (pH = 2, 20 mL). Water samples were
acidified with hydrochloric acid to pH 2 and passed through PPL car-
tridges by gravity at approximately 2 mL/min. Cartridges were rinsed
with 20 mL of acidified ultrapure water to remove salt and dried by
passing ultrapure Ny gas. Organic matter was eluted with 6 mL of
methanol and stored at —18 °C in the dark until FT-ICR-MS analysis. An
ultrapure water sample was also extracted using a PPL cartridge and
then eluted in order to serve as procedural blank in the FT-ICR-MS
analysis.

FT-ICR-MS (SolariX 7.0T, Bruker, USA) in ESI- mode was used to
analyze the molecular composition of organic matter. Initial experi-
ments in ESI+ resulted in a significant number of sodium adducts which
made formulae assignment challenging and thus only ESI- results are
presented. Briefly, samples were injected into the source at 180 pL/h by
a syringe pump. The spray shield voltage, capillary voltage, and cone
voltage were 4.0 kV, 4.5 kV, and —320 V, respectively. lonized sub-
stances were accumulated in a hexapole trap and an argon filled hexa-
pole collision cell for 0.1 and 1 s, respectively, before being directed to
the ICR detector. The mass range was set at m/z 100—1000. Notably, the
FT-ICR-MS mass range is entirely contained within the <3 kDa fraction
and conclusions made from the MS measurements are therefore only
reflective of this fraction. Each spectrum was scanned 128 times.

HPLC grade methanol and extracted ultrapure water samples were
measured as solvent and procedural blanks. Peaks found in blanks were
removed from the lists of peaks in samples. Molecular formulae were
determined by Bruker DataAnalysis software (version 4.0) and Matlab
routines (Fu et al., 2020). Only mass peaks with signal to noise (S/N)
ratios > 10 were considered. Molecular formulae were limited to the
following elemental combinations: 1261,100, 1H1,100, 160(),5(), 14No,s,
13Cy_1, 32Sg_s, 31P_,, and mass error between the assigned formula and
the measured mass was limited to a maximum of 1 ppm. DOM molecular
formulae were delineated into seven categories by elemental ratios (O/C
and H/C) (Fuetal., 2020; Li et al., 2018; Feng et al., 2016): (1) lipids and
proteins (O/C = 0 — 0.52, H/C = 1.5 — 2.2), (2) amino sugars (O/C =
0.52—-0.71, H/C = 1.5 — 2.2), (3) carbohydrates (O/C = 0.71-1.2, H/C
= 1.5 — 2.4), (4) unsaturated hydrocarbons (O/C =0 — 0.1, H/C = 0.7
— 1.5), (5) lignins (O/C = 0.1 — 0.67, H/C = 0.7 — 1.5), (6) tannins
(0/C =0.67—-1.2, H/C = 0.5 — 1.5), and (7) condensed hydrocarbons
(0/C=0-0.67,H/C=0.2 - 0.7).
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Fig. 1. (a) THM, (b) HAA, (c) HAN, and (d) HAM formation in the samples coagulated at varying pH and filtered with a 0.45 pm nominal pore size filter. The
untreated sample was mixed, settled, filtered and had a pH = 7.43. Error bars represent one standard deviation (n = 3).

2.5. Additional analytical methods

DOC was measured by a total organic carbon (TOC) analyzer (Multi
N/C 2100, Analytik Jena AG, Germany). UVy54 was measured using a
spectrophotometer (DR6000, HACH, USA). DBP formation potential
(FP) tests have been described in detail in previous literature (Qian
et al., 2020) and in the Supplemental Information. Four THMs, nine
HAAs, seven HANs, and six HAMs were analyzed by liquid-liquid
extraction (LLE) and gas chromatography (GC, 7890B, Agilent Tech-
nologies, USA) equipped with an electron capture detector (ECD, Agilent
Technologies, USA). Detailed information on the analytical methods for
DBPs are described in previously published procedures (An et al., 2013;
Qian et al., 2020) and Supplemental Information. All experiments were
conducted in triplicate.

3. Results and discussion
3.1. DBP FP after pH treatment

Trichloromethane (TCM), dichloroacetic acid (DCAA), dichlor-
oacetonitrile (DCAN), and 2-chloroacetamide (CAM) were the primary
species of THMs, HAAs, HANs, and HAMs, and accounted for 34-84% of
the total THM, HAA, HAN, and HAM formations, respectively (Fig. 1),
consistent with the results from our previous research conducted on SSW
(Qian et al., 2021). The formation of carbonaceous DBPs (C-DBPs)
increased as the pH increased from 5 to 9 and all samples at alkaline pH
had greater C-DBP formation than the untreated sample (pH = 7.43,
mixed, settled, filtered without pH adjustment). Compared to the un-
treated sample, acidic and neutral samples had lower concentrations of

C-DBP precursors, likely due to enhanced coagulation and sedimenta-
tion of sludge. Therefore, adding acid, settling, and filtering was effec-
tive at controlling the formation of C-DBPs in SSW during disinfection
process, but more alkaline conditions tended to release new precursors
or transform some precursors to more reactive material.

The formation of nitrogenous DBPs (N-DBPs) increased with
increasing pH from 6 to 9. The sample treated at pH 5 did not follow the
trend and had greater N-DBP FP than the untreated sample, approxi-
mately equivalent to the sample treated at pH 8. N-DBP yield on a car-
bon basis was also elevated. Thus, it is likely that at both pH 5 and
alkaline pH, N-DBPs precursors were released by hydrolysis of larger
organic compounds and the lower molecular weight hydrolysis products
were not removed by filtration. The different behavior of C- and N-DBP
precursors at reduced pH suggests that the groups of precursors are
distinctly different, having different reactivity after acidic treatment. In
general, slightly acidic (pH 6) conditions balanced C- and N-DBPs and
resulted in the lowest total DBP formation. However, at lower pH (pH 5),
there was an increase in N-DBP FP, which is concerning because N-DBPs
are generally orders of magnitude more toxic than C-DBPs (Wagner and
Plewa, 2017).

3.2. MW distribution effects on DBP FP

Mixing, settling, and filtering at acidic pH resulted in DOC concen-
trations slightly less than that of the untreated sample; 3.17 mg/L and
3.35 mg/L at pH 5 and 6, respectively, compared to 3.65 mg/L in the
untreated sample (Table S1). But at pH 8 and 9, DOC concentrations
increased significantly, 8.67 mg/L and 9.45 mg/L, respectively. Thus,
acidic pH likely caused some limited coagulation and sedimentation of
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Fig. 2. DOC concentration in different MW fractions of samples coagulated at
varying pH and filtered with a 0.45 ym nominal pore size filter. Error bars
represent one standard deviation of experimental replicates (n = 3).

dissolved compounds, which is well reflected in the reduced formation
of DBPs. At alkaline pH, organic compounds were released from larger
settleable/filterable solids which would have otherwise been removed
by filtration.

Fig. 2 shows the MW distribution of DOM in pH adjusted and un-
treated samples. Low MW organic matter is generally thought to
dominate the DBP precursor pool (Hua and Reckhow, 2007; Qian et al.,
2020; Zhang et al., 2018) and both conventional and advanced treat-
ment processes remove low MW organic matter poorly (Han et al., 2015;
Hanigan et al., 2015). DOC in the < 3 kDa fraction accounted for > 39%
of the total DOC across all treatments, greater than all other fractions for
all samples. The MW distribution among the untreated, neutral and
acidic samples was similar, although the concentration of < 3 kDa
organic matter in acidic samples was slightly less than that in untreated
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decreased to 40%-47% of the total DOC, and the proportion of high MW
(> 10 kDa) organic material increased to 27%-49%. Although the
fractional contribution to DOC decreased for the <3 kDa fraction, the
overall DOC in this fraction (and in the bulk sample) increased signifi-
cantly, likely due to the hydrolysis of the flocs or increasing solubility or
larger molecules at alkaline pH. This resulted in greater overall DBP FP,
although the yield of DBPs on a carbon basis was reduced (Figure S4).
Thus, slightly acidic pH was the most beneficial for removal of both DBP
precursors and organic matter.

3.3. Effects of molecular composition on DBP FP

3.3.1. Molecular weight and saturation

To further understand the mechanisms impacting increased or
decreased DBP formation after SSW treatment at varying pH, we con-
ducted FT-ICR-MS of the residual organic matter. The MW and double
bond equivalent (DBE) distributions are displayed as kernel-based cu-
mulative density plots (violin plots) in Fig. 3 (raw mass spectra shown in
Figure S3). Table 1 contains the intensity weighted average elemental
compositions. The neutral mass (m/z plus mass of a proton, assuming
singly charged and deprotonated ions) of > 83% of the molecular
formulae occurred in the range of 200-600 Da for nearly all samples.
However, for the water sample treated at pH 9, the molecular formulae
of compounds with mass between 600 and 1000 Da accounted for more
than 47% of the total molecular formulae. The intensity weighted
average neutral mass was 562 Da for the water sample treated at pH 9,
compared to ~425 Da for all other samples. Notably the instrument was
set to scan from 100 to 1000 m/z, which does not capture the full range
of the masses captured in the fractionation experiments. But, organic
matter in the higher MW fractions measured by mass spectrometry
(600-1000 Da) corresponds to the low MW fraction from fractionation

Table 1
Intensity weighted average elemental compositions of DOM identified by FT-
ICR-MS.

Water Number of MWy, o/ H/ N/ DBEya DBE/
samples, and the 3-10 kDa fraction slightly greater, reflective of sample assigned (Da) Cwa  Cuwa Cua Cua
agglomeration of low MW neutrals into higher mass compounds, or formulae
agglomeration of colloidal and suspended particulates followed by Untreated 2566 428.80 037 1.46 0.03 7.02 0.37
sorption of lower MW compounds. Our previous studies indicated that pH=5 3602 44924 039 140 0.03 8.13 0.39
low MW (< 3 kDa) organic matters were the primary precursors of DBP, pH=6 2805 437.03 036 146 0.03 7.44 0.35
including THMs, HAAs, HAN, and HAMs in SSW (Hu et al., 2021; Qian ng; Z;g jg;;? gig 1‘212 ggz 22(2) gig
et al., 2020). Therefore, such a reduction in the lower MW DOC is likely gH;g 2677 56153 036 150 005 836 0.34
responsible for the reduced DBP formation. - - -

At neutral and alkaline pH, the proportion of < 3 kDa fraction wa = intensity weighted average.
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Fig. 3. Kernel-based cumulative density plots (violin plots) displaying the intensity weighted distribution of (a) molecular mass and (b) DBE for assigned formulas.

White dots indicate median values, whiskers indicate upper and lower quartiles.
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Fig. 5. Cumulative intensity of (a) all ions, (b) only CHO formulae, (c) only CHON formulae, and (d) only sulfur containing formulae.

experiments. Thus, when comparing the fractionation experiments to
these experiments, there is agreement that at pH 9 some additional
organic matter was released and was not removed by settling or filtra-
tion, and it is apparent that the released organic matter is slightly greater
mass than that which is present in lower pH samples. These compounds
likely account for the increase in C-DBP FP at increased pH.

Previous studies have shown that highly unsaturated NOM molecules
are more reactive toward chlorine than those that are more saturated,
and chloroform FP has been shown to be correlated with increasing
degree of unsaturation (Lavonen et al., 2013; Wang et al., 2017; Zhang
et al., 2012a). DBE was used to evaluate the degree of saturation
(Stubbins et al., 2010; Zhang et al., 2019). The intensity weighted

average DBEs (DBE,,) were 8.36 and 8.40 at pH 8 and 9, respectively,
higher than that at acidic and neutral pH (7.02 — 8.13). Therefore, the
organic matter released from filterable sludge flocs at alkaline pH was
less saturated than that in acid and neutral pH, further contributing to
increased C-DBP FP.

Figs. 4 and S5 are Van Krevelen plots of all compounds measured and
reveal that lignin-like compounds were the dominant components of
DOM in all water samples, accounting for 43%-56% of all compounds.
This is consistent with previous studies that conclude that DOM in
environmental water samples contains a large fraction of lignin-like
compounds, typically composed of aromatic polymeric structures,
such as syringyl and p-hydroxyphenylpropane moieties (Nebbioso and
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Fig. 6. Number of (a) CHO and (b) CHON formulae unchanged (present in both the untreated and treated samples), formed (present in the treated sample but not the
untreated sample) and removed (present in the untreated sample but not in the treated sample) after treatment at varying pH.

Piccolo, 2013; Phatthalung et al., 2021; Zhang et al., 2012b). These
lignin-like compounds are likely to be refractory and have been shown
to be an important source of DBPs (e.g., HAAs, HANs, HAMs and hal-
oacetaldehydes) during chlor(am)ination (Chuang et al., 2015; Hua
etal., 2014; Sanchis et al., 2020). Water samples treated at pH 5, 8, and 9
had a higher intensity of lignin-like compounds than other water sam-
ples (Figure S6), and treatment at this pH also resulted in the greatest
formation of N- and C-DBPs.

3.3.2. CHO/CHON formulae
CHO and CHON formulae are classes of molecular formulae most

closely related to the formation of C-DBPs and N-DBPs during chlori-
nation, respectively (Zhang et al., 2019). As for CHO containing com-
pounds, the total number of formulae (i.e., diversity of dissolved
compounds) and cumulative intensity of all CHO formulae (i.e., con-
centration) decreased as the pH increased from 5 to 9 (Table S3 and
Fig. 5b). The weighted average H/C of CHO formulae at alkaline pH was
lower than at other pH, and, correspondingly, the weighted average O/C
was higher (Table S3), consistent with the findings from DBE, where
unsaturation tended to increase with pH. The finding that the number of
and intensity of CHO compounds decreased with increasing pH is
somewhat contradictory to the C-DBP findings, but it could be that the
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Fig. 7. Correlation between DBP FP in all samples (untreated, pH 5, 6, 7, 8 and 9) and cumulative ion intensity of relatively unsaturated compounds (DBE > 10).

Error bars represent one standard deviation of experimental replicates (n = 3).

additional released DOM (pH 8 and 9) had higher ionization efficiency
with the consequence that the other CHO (apparently lost) could not
further be detected. Another possibility is that compounds which
contain CHO only do not perfectly represent the pool of C-DBP
precursors.

In Figs. 5d and S7 it can be seen that CHOS, CHONS, CHOSP,
CHONSP compounds were formed at alkaline pH. Thus, it is possible
that heteroatom (e.g., N, S, and P) addition reactions with CHO com-
pounds were the primary mechanism for the removal of CHO formulae
at alkaline pH (Feng et al., 2015; Jackson et al., 2017; Qian et al., 2011).
Another possibility is base catalyzed condensation reactions of CHO and
CHONP/CHONS/CHOSP/CHONSP. Previous studies had shown that
sulfur and nitrogen containing organic matter are reactive N-DBP pre-
cursors (Ding et al., 2019; Yang et al., 2012), potentially explaining
higher levels of N-DBP formation at pH 8 and 9, but not at pH 5.

The total number of CHON compounds (Table S3), formation of new
CHON compounds (Fig. 6b), and cumulative intensity of CHON
formulae (Fig. 5¢) increased at pH 5 and 9, and decreased at pH 6 or 7.
More than 96% of the initial CHON formulae were removed to below the
instrument detection limit and more than 88% of the CHON formulae at
pH 8 and 9 were newly formed as a consequence of pH treatment
(Fig. 6b). CHON formulae also had higher H/Cy, and lower DBE,,
values at pH 6 and 7 than that at other pH (Table S4). Together, these
results illustrate that unsaturated nitrogen-containing DOM was
removed at pH 6 and 7, attributable for the decrease of N-DBP FP.

3.3.3. Relationship between DBP FP and CHO/CHON

To determine the most important precursor material in the treated
samples we attempted to discover correlations between assigned
formulae and DBP formation. The number and intensity of CHO
formulae decreased with increasing pH (Table S3 and Fig. 5) but C-DBP
concentrations increased. Thus, it is no surprise that there was no sig-
nificant correlation (R2 = 0.07-0.43, P < 0.01) between C-DBP FP and
the cumulative intensity of all CHO compounds (Figure S8a), or CHO
compounds with DBE > 10 (Fig. 7a). This suggests that low MW (< 1
kDa) organic matter with only CHO in the structure were not the pri-
mary precursors of C-DBPs, or the primary precursor pool may be in
organic matter greater than the instrumental scan range (100-1000 m/
2).

N-DBPs were also poorly correlated with the total number of CHON
compounds and CHON cumulative ion intensity (Figure S8b), but there
was a significant positive correlation (R2 = 0.79-0.89, P < 0.05) be-
tween N-DBP formation and the cumulative intensity of all CHON
formulae with DBE > 10 (Fig. 7b). Thus, the primary precursor pool for
HANs and HAMs was relatively unsaturated CHON containing

compounds. Further research should confirm these conclusions in other
SSWs and other drinking water sources. Attempts to reduce N-DBP
formation in SSW and, likely drinking water as a whole should focus on
removal of relatively unsaturated organic N.

4. Conlusions

Recycling SSW improves water use efficiency but contributes the
formation of C- and N-DBPs during drinking water treatment and the
contents and characteristics of NOM affect the formation of DBPs. pH
adjustment before simluated sludge storage had two effects on the
sludge, 1) in some cases NOM was removed, likely though coagulation
and sedimentation, reducing formation of C-DBPs to a significant extent,
and reducing the formation of N-DBPs to a lesser extent, and 2) the
overall characteristics of the remaining NOM were changed signifi-
cantly, in some cases resulting in greater reactivity towards N-DBPs. For
example, pH adjustment to 5 effectively minimized the formation of C-
DBPs, and pH 6 minimized the formation of N-DBPs during SSW recy-
cling. Reducing the pH to 6 prior to storage, approximately 1.5 units
from the raw SSW, would effectively balance the reduction in N- and C-
DBPs. The ion intensity of compounds containing CHON, CHOS,
CHONS, CHOSP, and CHONSP and the concentration of DBP FP in the
samples treated at pH 6 and 7 were lower than that in other samples. But
at alkaline pH, SSW contained more highly unsaturated organic matter,
which although less reactive in terms of yield, still resulted in greater
formation of C- and N-DBPs. No correlation was observable between
various organic matter characteristics and C-DBP FP, but relatively un-
saturated CHON formulae were significantly correlated with the for-
mation of N-DBPs. Other more effective removal strategies for relatively
unsaturated CHON formulae should be further employed to minimize
the formation of N-DBPs and ensure the safety of finished water during
SSW recycling.
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