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ABSTRACT

We study the propagation of premixed flames, in the absence of external turbulence, under the effect
of both hydrodynamic (Darrieus-Landau) and thermodiffusive instabilities. The Sivashinsky equation in
a suitable parameter space is initially utilized to parametrically investigate the flame propagation speed
under the potential action of both kinds of instability. An adequate variable transformation shows that
the propagation speed can collapse on a universal scaling law as a function of a parameter related to the
number of unstable wavelengths within the domain n,. To assess whether this picture can persist in real-
istic flames, a DNS database of large scale, two-dimensional flames is presented, embracing a range of n.
values and subject to either purely hydrodynamic instability (DL) or both kinds of instability (TD). With
the aid of similar DNS databases from the literature we observe that when adequately rescaled, propa-
gation speeds follow two distinct scaling laws, depending on the presence of thermodiffusive instability
or lack thereof. We verify the presence of secondary cutoff values for n. identifying (a) the insurgence
of secondary wrinkling in purely hydrodynamically unstable flames and (b) the attainment of domain
independence in thermodiffusively unstable flames. A possible flame surface density based model for the

subgrid wrinkling is also proposed.

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Premixed flame propagation can be affected by exogenous
phenomena such as turbulence as well as by endogenous effects
such as intrinsic flame instabilities and, indeed, by the non-trivial,
synergistic action of both [1-4]. While the effects of turbulence
on flame morphology, transport and characterization of turbu-
lent speed have received universal attention trough theoretical,
numerical and experimental studies [5-9], the specific role of
intrinsic instabilities has only recently gained increasing interest.
Various experimental [3,10-14], analytical [4,15] and numeri-
cal [2,16-20] studies have indeed shown that instabilities can
play a substantial role in flame propagation, especially at low
turbulence intensity. On a practical level, intrinsic intabilities may
be key in understanding such phenomena as accidental large scale
gas explosions [21] or in explaining the effects of pressure on
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flame propagation [3,22] or in accounting for the inaccuracy of
sub-grid modelling in numerical simulations of premixed turbulent
combustion [23], to name a few examples. In all cases, instabilities
will tend to dramatically corrugate the flame surface, according
to morphological features that can enhance the flame propagation
and whose characteristics need to be accurately studied if a full
understanding of the propagative behavior is to be acquired.
Flame instabilities are activated by two distinct mechanisms:
the ubiquitous Darrieus-Landau (or hydrodynamic) mechanism,
due to thermal expansion, which is therefore unconditionally
active, and by thermal diffusive destabilizing effects which are
generally manifested as small scale corrugation for sub-unity
Lewis number conditions. The latter are dictated by the mass
diffusivity of the controlling reactant, such as those encountered
in lean hydrogen [24] or hydrogen-diluted mixtures [25]. Whether
thermal diffusive effects are stabilizing or destabilizing, a cutoff
wavelength A exists, depending on the mixture and on pressure,
for which all perturbations of larger wavelength will destabilize
an unconstrained planar front. Such cutoff wavelength can be
estimated to be one to two orders of magnitude larger than the
flame thickness [2,16,26,27] thereby rendering instability effects
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https://doi.org/10.1016/j.combustflame.2020.02.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2020.02.030&domain=pdf
mailto:francesco.creta@uniroma1.it
mailto:pasquale.lapenna@uniroma1.it
mailto:rachele.lamioni@uniroma1.it
mailto:n.fogla@gtisoft.com
mailto:matalon@illinois.edu
https://doi.org/10.1016/j.combustflame.2020.02.030

E Creta, PE. Lapenna and R. Lamioni et al./Combustion and Flame 216 (2020) 256-270 257

inherently large-scale in nature, i.e. visible only for unconstrained
flames, spherical expanding flames, large enough Bunsen or slot
flames etc. Indeed, the large scale nature of such phenomena and
the ensuing potentially vast scale separation this entails [16], is
the root cause hindering realistic three-dimensional direct nu-
merical simulations of intrinsically unstable flames encompassing
domains which are e.g. one or more orders of magnitude larger
than the cutoff wavelength. This was accomplished only using
simpler tools, such as weakly nonlinear flame models [1,28] or in
two-dimensional domains [17,18] where, under certain conditions,
flames were shown to exhibit a fractal conformation [17,28].

The occurrence of intrinsic flame instabilities depends ulti-
mately on the cutoff wavelength and how this compares to a char-
acteristic hydrodynamic length scale L constraining the premixed
flame, such as e.g. a Bunsen diameter or the radius of an expanding
spherical flame. Any small scale flame for which L < A, will there-
fore inhibit intrinsic instabilities. On the other hand, when L > A,
cellular corrugation will invariably manifest itself due to either
purely hydrodynamic effects, when Le > Ley or due to the interplay
of both hydrodynamic and thermal diffusive effects, when Le < Ley,
where Leg < 1 is a critical Lewis number. Given the complex and
diverse nature of instability effects, an important preliminary task
is therefore the identification of a minimum set of parameters
which uniquely and unambiguously identify such effects. This is a
first step towards the identification of universal scaling laws for-
mulated as a function of such parameters. The primary objective
of this work is to extend the findings of previous work [1], which
was limited to the effect of Darrieus-Landau instability, by incor-
porating thermal-diffusive effects and do so in a laminar setting.
The interplay of such effects with turbulence and the implications
this may have on scaling laws and on possible modifications of
existing premixed turbulent combustion models is left to a future
study. As mentioned, we therefore identify the most suitable set
of independent parameters and subsequently verify if observables,
such as the global propagation speed of the corrugated flame
front, obey universal scaling laws in terms of such parameters.

This work is divided into two parts. The first part utilizes the
weakly nonlinear Sivashinky model [29] to approach the general
problem of the interplay between hydrodynamic and thermal dif-
fusive instability in a freely propagating flame front in the absence
of external turbulence. Independent parameters are identified and
a universal scaling law for the propagation speed is formulated.
Drawing on the findings of the first part and abandoning the con-
straining hypotheses of the Sivashinky model, the second part uses
direct numerical simulations (DNS) of large scale two-dimensional
unstable flames to construct a database which, in conjunction
with other existing DNS databases, is used to formulate scaling
laws which extend their validity to more realistic fully nonlinear
regimes.

2. The Sivashinsky model

In this section we summarize the weakly nonlinear flame
model, as first introduced by Sivashinky [29] as well as its equiv-
alent forms, obtainable through transformation of variables. The
associated dispersion relations, as well as more elaborate disper-
sion relations resulting from hydrodynamic theory, are then used
as a guide to establish the stability characteristics as a function of
the model parameters. Solutions of the Sivashinky model are later
used to determine a scaling law for the front propagation speed.

2.1. Model definition and linear stability
The weakly nonlinear integro-differential Sivashinsky equation

[29] describes the evolution of the perturbation of a planar flame
front and accounts for both thermal-diffusive and hydrodynamic

effects. In its most general form it reads as follows

1
B+4(1+6)2Fxxxx+€ax+§52:(1_0)I(F) (1)

where
_L o « 5 ik(x—%) 5
1F) = o [mﬁw|1<|F(x,t)e dkdg

and where F(x, t) is the dimensionless flame perturbation, consid-
ered as a single-valued function of the dimensionless coordinate x,
both measured in units of the flame thickness ls. o = py/pu < 1 is
the ratio of burned to unburned density (coefficient of thermal ex-
pansion) and € = (Leg — Le)/(1 — Leg), where Le is the Lewis num-
ber of the deficient reactant and Leg < 1 is a critical Lewis number.
Dimensionless time ¢ is measured in units of [;/S; where S; is the
velocity of the planar laminar flame. Note that Eq. (1) was obtained
by assuming that (i) Le ~ Ley < 1 (ii) thermal expansion is weak
1 -0 << 1 (iii) the nondimensional activation energy N = E/RT}, is
a large number (using the notation used in [29]). A mathematically
more systematic derivation given later by Sivashinsky [30] consid-
ering the distinguished limit N(1 — Le) = O(1), led to an equation
similar to (1) but with the coefficient (1 + €)% ~ 1. Since, as ex-
plained below, we intend to accept the Sivashinsky model without
any restriction on the Lewis number Le (or equivalently on €), the
original form (1) will be retained in the following discussion.

Eq. (1) accounts for the coexistence of thermal-diffusive and
thermal expansion effects on the stability and propagation of a
premixed flame. The second, third and fourth terms on the left
hand side represent respectively a short wavelength stabilization
term, a term accounting for stabilizing/destabilizing thermal-
diffusive effects, depending on whether Le is above/below Ley, or
€ is negative/positive respectively, and a nonlinear front prop-
agation term. The right hand side, on the other hand, accounts
for the destabilizing effect of thermal expansion. The dispersion
relation associated to the linearized form of Eq. (1), expressing
the growth rate w of a perturbed flame front with perturbation of
wavenumber k, reads

o= (1/2)(1 — o)k + ek — 4(1 + €)*k?, (2)

indicating the unconditionally unstable character of the hydro-
dynamic (Darrieus-Landau) term due to thermal expansion (first
term on the right hand side), the stabilizing/destabilizing diffusive
effect (second term) depending on whether € < 0 or € > 0 respec-
tively and the stabilizing fourth order term. Note that when € > 0
(Le < Leg), i.e. destabilizing thermal-diffusive effects and in the ab-
sence of hydrodynamic effects, o = 1 (constant density), Eq. (1) re-
duces to a form of the Kuramoto-Sivashinsky (KS) equation
[30,31] which can lead to complex small-scale cellular structures
and chaotic dynamics. On the other hand when € = -1 and o # 1,
instabilities of thermal-diffusive origin are not present and the
flame is only subject to hydrodynamic effects. In this latter case
Eq. (1) can be recast into the Michelson-Sivashinsky (MS) form
[1,32-35] by adopting the following variable transformation:

F=(1-0)Pu; t=(1-0)*1t ; x=(0-0)"13 (3)
which yields the MS form

Up — & Ugg + %ué =Iu) ; a=(1-0)"2%3 (4)

In particular, Eq. (4), which possesses analytical “pole” solutions
[36], was extensively analyzed in a previous study by Creta et al.
[1] both in its original laminar form and in a forced version in
which a correlated noise term was added to mimick turbulent
motions.

Although the Sivashinsky equation (1) is valid in a small neigh-
borhood of Ley and for small thermal expansion, for illustrative
purposes it will be used, in this context, as a generalized equation
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Fig. 1. Critical wavelength A. shown on the (¢,1 — o) plane for (a) dispersion relation Eq. (2) relative to Sivashinsky model Eq. (1) and (b) as estimated via the MCB model
Eq. (8) with Ze = 9. Symbols correspond to solutions shown in Fig. 4 for 1D flames (o) and in Fig. 5 for 2D flames ( x ).

even beyond its region of validity in order to fully capture the
qualitative effect of parameter variation on the flame. For example,
in the range € < 0 we will at times assume |¢| large enough so
that Le > 1 values will be considered in the analysis or 1 — o large
enough to encompass more realistic thermal expansion values.

The dispersion relation Eq. (2) yields a critical (cutoff)
wavenumber k. and a critical wavelength A, = 2m /k;, obtained
by imposing @ =0. Figure 1(a) displays A on the parameter
plane (e¢,1— o). Considering any contour line in Figure 1(a) as
representative of domain size L, then all values of € and o that
lie above such line will trigger instabilities because L > A, while
all values below this line will yield stable flames since L < Ac.
A domain size of L =400 units of flame thickness, for example,
is sufficient to trigger instabilities for almost all combinations of
parameters € and o.

In the work by Michelson and Sivashinsky [37], for the case
o # 1 and € # —1, Eq. (1) was rescaled and presented in a one
parameter form. The equation thus obtained reads

1
Ur + Uggge + ,BUgg + Eu% =1(u) (5)

with the variable transformation given by
B=4"131-0)2Pe(1+€)%3,
F=ue/B, t=1€¢/[f(1-0)°], x=§¢€/[B(1-0)]. (6)

Figure 2(a) displays the parameter 8 on the (e¢,1— o) plane, thus
relating the model represented by Eq. (5) to the original model
Eq. (1). Such figure reveals that as f — oo, the model will only
retain destabilizing thermodiffusive effects as € > 0 and 0 — 1.
On the other hand, for § < 0, thermodiffusive effects will be
stabilizing (¢ < 0) and, for a given ¢, hydrodynamic effects will
be stronger as § — 0. The limiting case of 8 — —oco corresponds
to the model Eq. 4. The dispersion relation associated to the
linearized form of Eq. (5) reads

W = %k’ + BK? — k4, (7)

The cutoff wavenumber k. of Eq. (7) and the corresponding critical
wavelength A, = 2w /k. is displayed on Fig. 2(b) as a function of
the parameter . Note that according to the scaling Eq. (6) the
critical wavelength corresponding to the original form given in
Eq. (1) is recovered as the rescaled quantity A, = ALe/B(1 —0).

To incorporate the effects of realistic density ratios, we resort
to the asymptotic dispersion relation that exploits the disparity
between the hydrodynamic and diffusion scales, assuming that
d=I;/L <1 where L is the the domain size, or hydrodynamic
length. This expression, in dimensionless form, reads

= wok — 8[By + Ze(Le — 1)B; + PrB3]k? (8)

where L is used as a unit of length and the laminar flame speed as
a unit of velocity, and Ze, Pr and Le are the Zel'dovich, Prandtl and
Lewis numbers, respectively. Such expression was taken from [38],
but was first derived in [39] by neglecting buoyancy and expand-
ing the expression for the growth rate in powers of k. Parameters
o, B3 are all functions of the expansion coefficient once the
dependence of the transport coefficients on temperature, A(T), is
specified. These expressions are properly listed in [40,41] for a
general A(T); in [38] they are presented only for A(T) =T (with
a minor typo in By; the factor ¢ — 1 must be omitted). Note that
in [38,40,41], o is defined as the ratio of the unburned-to-burned
density ratio, i.e., the inverse of the present definition. When the
viscosity is assumed constant and independent of temperature
one obtains B3 =0. By placing w =0 one obtains the critical
wavelength A. = 27 /k. which can be expressed in units of the
flame thickness, similar to Fig. 1(a), as A./8. In order to recast the
result in a (¢,1 — o) plane, Leg is recovered as the value for which
the diffusive coefficient of the quadratic term in Eq. (8) changes
sign, i.e.

Leg=1— —— (9)

The result for temperature independent transport coefficients is
shown in Fig. 1(b) where the domain is only limited to the € < 0,
i.e. Le > Leg, for which diffusive effects are stabilizing (i.e. the
diffusive coefficient of the quadratic term in Eq. (8) is positive).
Indeed, for Le < Ley Eq. (8) would diverge and a stabilization
term would have to be sought by carrying the linear stability
analysis to higher order, which has not been done in the literature.
For Le < Ley, however, we note a close qualitative similarity to
results obtained via Eq. (5) and displayed in Fig. 1(a). The critical
Lewis number Ley as a function of 1 — o is displayed in Fig. 3(b)
for various values of Ze. Figure 3(a), following the definition of
parameter €, displays the Le field in the (¢,1 — o) plane, where
Le = Leg — €(1 — Leg).
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2.2. Nonlinear evolution and front morphology

Representative solutions of Eq. 1 are displayed in Fig. 4 for
a domain size L =400, with periodic boundary conditions. Note
that both the flame displacement F(x, t) and domain size were
rescaled according to Eq. (6). The left column, Fig. 4(a), represents
€ < 0 solutions for which only Darrieus-Landau effects are present,
whereas the right column, Fig. 4(b), represents € > 0 solutions for
which the additional thermal-diffusive instability is active. Solu-
tions are displayed for growing values of 1 — o. As can be observed
in Fig. 4(a), Darrieus-Landau effects show as large scale (cusp-like)
cells which are steadily propagating density ratios near unity. The
effect of growing thermal expansion is to increase the amplitude
of the cells. At high values of 1 — o, a secondary unsteady corru-
gation appears, which disrupts the otherwise steady character of
the large, cusp-like cells. Figure 4(b) shows how thermal-diffusive
effects are manifested as a small scale unsteady corrugation which
is superimposed on Darrieus-Landau cells. Clearly, one of the main
limitations of the model is the single valued nature of the flame
displacement F(x, t), which does not allow for fold or pockets
which are, however, basic characteristics of thermodiffusively un-
stable flames, as will be shown later in the DNS simulations.

Figure 5 shows similar solutions for the multidimensional
version of Eq. (1). Very similar observations can be made for
such two-dimensional flame surfaces, with the addition that the
coupling of the corrugation in the two spatial dimensions gives
rise to complex polyhedral structures, resembling caustic surfaces.
Such structures are particularly evident in Fig. 6 in terms of cur-
vature signatures, revealing the typically small scale corrugation
in thermodiffusively unstable flames.

2.3. Front propagation velocity

The solution to Eq. (1) may be expressed at a given time
as a corrugated profile propagating in the vertical y-direction,
F(x,t) = —Ut + ¢ (x), where U, for steadily propagating structures,
represents the incremental increase in propagation speed, in units
of laminar flame speed, relative to a nominal laminar planar flame
[1] and ¢ is a zero-mean perturbation of such planar flame. Substi-
tuting into Eq. (1) and taking the spatial average (-) = (1/L) fOL- dx,
it can be shown, by enforcing continuity of derivatives at the pe-
riodic boundaries, that U = (1/2)((¢y(x))?). For unsteady cellular
solutions, the time averaged incremental speed U acquires the
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Fig. 4. Solutions F(x, t) of the one-dimensional Eq. (1) in a domain of size L = 400. Solutions and domain were rescaled according to Eq. (6). Left column (a) € = —0.5, right
column (b) € = 0.5. From bottom to top figures: o = 0.9, 0.6, 0.3, 0.1. From bottom to top: (a) B = —2.32, -0.92, —0.63, —0.53 (b) f = 1.11,0.44, 0.3, 0.26.

meaning of an incremental speed of a (self-) turbulent front in
statistical steady state, relative to the planar conformation.

A parametric campaign was performed by varying the param-
eters (€,1—o0) and seeking in turn statistically steady solutions
of Eq. (1) on a domain of size L =400 units of flame thickness.
Figure 7 displays a plot of the mean incremental propagation
speed U in the parameter plane (¢,1— o) for said solutions. We
observe that the highest values of U occur for strong thermal
expansion and large positive values of € where the hydrody-
namically unstable structure coexists with the thermodiffusively
unstable cellular structure, thus enhancing the corrugated nature
of the front. Figure 7 also displays the loci of constant number of
unstable cells n. which seems to correlate directly to U.

Using the scaling in Eq. (6), the propagation speed data pre-
sented in Fig. 7 can be collapsed onto a single curve as a function
of B, as shown in Fig. 8. The figure displays the scaled propagation

speed U/(1 — )2 (here U is used interchangeably with U for ease
of notation), where from Eq. (6), the scaling emerges from u/t =
(F/t)/(1 —0)2. This rescaling effectively compensates for the
increase in flame perturbation amplitude as the thermal expansion
increases. Thus, any effect of thermal expansion (and thus on
corrugation amplitude) on the propagation speed is factored out,
leaving the effect of the extent of flame corrugation, measured by
parameter S. Being the critical wavelength A/ a single-valued func-
tion of B, as shown in Fig. 2(b), the collapsed incremental propaga-
tion speed data of Fig. 8 can be equivalently recast as a function of
A= XicB(1 —0)/€. However, a more effective measure of the ex-
tent of corrugation than A. is the parameter n. = L/A, which mea-
sures the number of unstable wavelengths in the domain L. We can
therefore recast Fig. 8 as a function of the rescaled number of un-
stable wavelengths nce/[8(1 — o)], thus obtaining Fig. 9. We note
that for 8 « 0 (corresponding to low values of n. — 1) the scaling
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(d)

Fig. 5. Solutions F(x, y, t) of the two-dimensional form of Eq. (1) in a square domain of size L = 400 and for the following parameters (a) € = —0.3, 0 =0.9 (8 ~ —1.1) (b)
€=-03,0=07(B~-053)(c)e=0506=05(f~0.53)(d)e=0506=09 (8~ 11)

Fi

[

Fig. 7. Contour plot on the (¢,1—0) plane of the mean incremental propagation
speed U (bold continuous lines) for solutions to Eq. (1) on a domain of length L =
400. Also shown, the number of unstable cells n. = L/A. (dashed lines). Area below
ne =1 (L= Ac) is the parameter space region of stability.

(c) (d)

. 6. Cellular structure of solutions displayed in Fig. 5 highlighed (black) in terms of the locus of negative curvature.

function €/[f(1-0)]~1 so that for purely hydrodynamically
unstable (thermodiffusively stable) flames, the rescaled and the
actual values of n, effectively coincide. When § > 0 (correspond-
ing to values of n: » 1), the scaling function is well above unity
so that for thermodiffusively unstable flames the rescaled values
of n. are substantially larger than the actual values and the scaling
function effectively operates a stretching transformation on nc.

In conclusion, Fig. 9 shows that a universal scaling law can
be recovered between the incremental propagation speed U and
the number of unstable wavelengths n. when both are suitably
rescaled by means of scaling functions which only depend on
the thermophysical parameters ¢ and €. In the context of the
simplifying assumptions of the Sivashinsky model, such scaling
functions are lacking a factor expressing the dependence of the
transport coefficients on temperature. This would imply a modified
fourth order derivative term in (1) requiring the extension of the
dispersion relation (8) to the stabilizing fourth order term, which
as mentioned was never done in the literature. Nevertheless,
our result will prove a useful guideline in the search of a scal-
ing behavior for actual flames, as illustrated in Section 3. Indeed
ne = L/A¢ is a parameter which can be readily recovered for any re-
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alistic configuration, being L a measure of the largest characteristic
hydrodynamic length and A, a function of the nature and compo-
sition of the flammable mixture as well as the ambient pressure.

The particular form of the scaling law displayed in Fig. 9 can
be explained in terms of the following arguments. When 8 < 0
the flame exclusively experiences hydrodynamic instability and
this generally results in the formation of a single cusp-like flame
shape pointing towards the burned gas, that propagates at a con-
stant speed. Figure 8 shows that such speed has the asymptotic
value of U/(1—0)% =0.125 which is attained as B — —oc. This
coincides with the limiting configuration of a pole solution of
Eq. (4), which exists only for € = —1, with increasingly large
number of poles, as observed in [1]. The analytical expression
of the incremental increase in propagation speed, for an N-pole
solution [1,42] of Eq. (4), reads Uy =2maN(1 -4maN) and
indeed plateaus at the value of 0.125 for large N, i.e. sufficiently
small o, where N =Int[gl; + 3]. From the dispersion relation
corresponding to Eq. (4), it can be shown that n. = 1/(4mra), so
that N = Int[% + 1] where nc=L/Ac is the number of unstable
wavelengths in the domain L and ultimately

1N N
Uy==—(1-—). 10

N2 ne ( nc) (10)
The function Uy is displayed in Fig. 9 along with the rescaled data

and seems to capture the scaling behavior up to some threshold
value of the rescaled n.. Note that the behavior near the bifurca-

tion value n. = 1, after which the front loses stability, is also well
captured because, as stated, the scaling function for small n, — 1
is close to unity.

As f — 0—, Fig. 8 shows that cusp-like solutions seem to di-
verge from the limiting pole solution and its corresponding value
of U/(1 — 0)? = 0.125. Indeed, for large enough domains, the cusp
sides, which may be considered as quasi-planar [4], become larger
than A and undergo secondary bifurcations with the insurgence of
additional corrugation. A mathematical description of the origin of
this phenomenon is given in the Appendix, where it is explained
in terms of the high sensitivity to external noise of the Sivashinsky
equation. A more physical explanation is that for 8 <0, thermod-

iffusive effects are only weakly stabilizing (€ <0) while thermal

expansion effects may be large. As a result, additional cellular
structures, due solely to hydrodynamic instability, appear on an
otherwise smooth cusp-like conformation, thus increasing the
propagation speed above the asymptotic value. Such additional
structures, obtained in [17] through two-dimensional direct nu-
merical simulations by increasing the lateral size of the simulated
flame, were shown to induce a fractal conformation of the flame
surface. Very similar fractal corrugation was also observed with a
Sivashinsky-type equation in [1,43]. The onset of this phenomenon
was predicted to occur at n. ~ 4.5 — 5 for extemely low turbulence
levels in [1] and reported to occur at n.~4—4.5 in [4]. Such
values seem to be substantially confirmed in Fig. 9.

For 8 > 0 thermodiffusive instability becomes active, with
cellular structures constantly forming and merging on the surface
of the cusp-like flame shape. The propagation speed of the front
now becomes a marked function of 8 and the rescaled n.. As 8
further increases, the effect of thermodiffusive instability becomes
dominant with the flame surface exhibiting a growingly cellular
structure. At sufficiently high values of 8 ( > 1) the hydrodynamic
expansion dissappears and the purely thermodiffusive behavior
is recovered. In this regime the propagation speed is found to
scale approximately as ~ 3. This regime is also clearly visible in
Fig. 9 as a function of the rescaled n. which, in this regime, are
higher than the actual values of n..

2.4. Flame surface density

The Sivashinsky model can be used to extract statistical in-
formation on a variety of quantities related to flame morphology.
One such quantity, relevant to reaction rate modeling in premixed
turbulent combustion is the concept of flame surface density
(FSD) X. The context of the Sivashinsky model clearly restricts
the analysis to a flamelet assumption so that an adequate repre-
sentation of ¥ can be assumed as that originally given by Bray
et al. [44]. Given solutions such as those shown in Fig. 4, one
can assume flame sheets dividings an unburned zone, identified
by progress variable ¢ =0, from a burned zone c = 1. The flame
brush will be identified by the mean progress variable ¢ along
the vertical flame displacement direction. Figure 10 displays the
mean progress variable in the vertical direction and clearly shows,
as expected, that the flame brush thickness tends to increase as
the thermal expansion increases. We also note that flame brushes
are generally thicker for € > 0 due to the additional wrinkling of
thermal diffusive instabilities.

Flame surface density can be represented [44] as ¥ = ng/oF
where np is the average number of flame crossings per unit flame
length along a constant ¢ iso-surface and o is the cosine of the
angle between the flame and such iso-surface. Figure 11(a) shows
¥ as a function of the mean progress variable for two values of
€ and several thermal expansion coefficients. Flames exhibiting
thermal diffusive instabilities (€ = 0.5) also exhibit larger flame
surface densities. While this is essentially due to the extra small
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Fig. 10. Average progress variable ¢ along the vertical flame displacement direction.
for € = —0.5 (red dashed lines) and € = 0.5 (black continuous lines) at selected val-
ues of o.

scale wrinkling of thermal diffusive nature, caution must be
adopted when analyzing such results as the Sivashinsky model
constrains flame displacement F to be a single valued function
of x. On the other hand, real flames may exhibit folds or pockets
which can drastically influence both their flame surface density
and propagation speed. Given a flame brush, a measure of the
underlying flame wrinkling is given by the wrinkling factor [45],
defined as E = X/|Vc| where the gradient is intended in the ver-
tical displacement direction. Again, the largest flame wrinkling is
shown by flames exhibiting thermal diffusive instabilities (¢ = 0.5).

2.5. Hydrocarbon and hydrogen mixtures

Asymptotic hydrodynamic theory, such as that presented in
[38] and yielding the dispersion relation Eq. 8, can be utilized to
estimate the location, within the (¢, 1 — o) plane, of actual fuel/air
mixtures at variable equivalence ratios. Using a procedure similar
to [2,13] and mixture data from various sources, one obtains the
results displayd in Fig. 12. Clearly, only a small subdomain of the
plane is effectively spanned by actual fuel/air mixtures. Fig. 12 also
clearly shows that the ¢ > 0 zone, where thermal-diffusive insta-
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Fig. 11. (a) Flame surface density X = |Vc| (b) Wrinkling factor & = ¥/|Vc|, for € = —0.5 (red dashed lines) and € = 0.5 (black continuous lines) at various values of o.

bilities are active, can be accessed only by hydrogen/air mixtures.
As demonstrated by data from Ref. [25], shown in Fig. 12, a
dual-fuel mixture of propane and hydrogen in air can also access
the € > 0 zone, provided the relative abundance of hydrogen is
large enough.

The diagram of Fig. 12 proves effective in locating the stability
properties of premixed flames of various mixtures. Indeed, given
a mixture composition, the location on such diagram can be
identified, revealing both the potential presence of thermodiffu-
sive effects and the extent of thermal expansion (hydrodynamic)
effects. Points corresponding to recent DNS simulations, including
those presented in the present study, are also located on the
diagram. A further analysis, based either on hydrodynamic theory
and Eq. (8) or on the numerical recontruction via direct numerical
simulation (DNS) of dispersion relations, can reveal, for each
flame, the cut-off wavelength A, and thus the number of unstable
wavelengths n. = L/A. for a given domain size or characteristic
hydrodynamic length L. This will prove useful, as illustrated in the
following section, in extracting possible universal characteristics in
the propagation of unstable flames, similarly to those observed in
Fig. 9 for the Sivashinsky model.

3. DNS of unstable flames

In this section we move away from the weakly nonlinear
Sivashinsky model and its limiting assumptions and utilize direct
numerical simulations to analyze, in a more realistic setting, the
behavior of intrinsically unstable, nominally planar flames. In
particular, simulations are performed for a set of parameters that
inhibit as well as promote thermal diffusive instabilities, thereby
allowing the analysis of their interaction with the ubiquitous
hydrodynamic instabilities. We draw from the findings of the
Sivashinsky model and especially from the general scaling of the
rescaled propagation speed illustrated in Fig. 9 as a function of
the rescaled parameter n¢, in order to verify if a coherent behavior
persists in the context of, finite thickness, generic morphology
flame fronts at arbitrary density ratios and Lewis numbers.

3.1. Description of DNS simulations

In the present study a well established numerical framework
for the direct simulation of intrinsic flame instabilities is em-
ployed [2,16,49,50]. Such framework is based on the low-Mach
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Fig. 12. Locus of (¢,1— o) points for flammable mixtures at variable equivalence ratio ¢ or mixing ratio «. Values of the critical Lewis number Ley are estimated via Eq.
(9) with temperature independent properties. Bold continuous lines: hydrocarbon/air and hydrogen/air mixtures at variable ¢ where Le is an effective Lewis number taken
as a weighted average of individual Le numbers of oxidixer and fuel [38,46] and functions o (¢) and Ze(¢) are fitted from experimental data by Tseng [47]. Thin continuous
line: similar hydrogen/air mixture with data fitted from Ref. [48]. Dashed bold line: data from Ref. [25] relative to a dual-fuel hydrogen-propane mixture in air at p =5 atm
and at an overall eqgivalence ratio ¢ = 0.8, the "mixing ratio” « measuring the relative proportion of the two fules (o = 0 being pure hydrogen and « = 1 pure propane).

Bold red symbols indicate current and literature DNS simulations.

number approximation of the governing equations and on the
transport of temperature and a deficient reactant, which govern
the reaction rate of a one-step irreversible reaction. The mentioned
approach is implemented in an equation-of-state-independent ver-
sion [51-55] of the incompressible and variable density massively
parallel flow solver nek5000 [56] which is based on the spectral
element method (SEM) [57] for the discretization of the governing
equations.

A set of two dimensional simulations of unstable, planar flames
are carried out consisting in two series of flames, denoted by
suffix TD (thermal-diffusive) and DL (Darrieus-Landau) depending
on the destabilizing or stabilizing character of thermal-diffusive
effects respectively. Each series consists of three simulations,
characterized by increasing values of n. which is obtained via
the numerical evaluation of the cut-off lengthscale A, as done
for instance in [16]. The computational setup is an inflow/outflow
configuration [58] characterized by periodic boundary conditions
in the crosswise direction which is also taken as the reference
hydrodynamic length L. In the streamwise direction, the dimension
of the domain is chosen in order to correctly contain the flame for
the entire non-linear evolution studied. The computational domain
is uniformly discretized using square spectral elements obtaining
at least ~ 14 grid points, for each flame, within the thermal
thickness 8t of a corresponding 1D unstretched freely propagating
flame, defining the thermal thickness as 87 = (T, — T;)/max(VT).
The initial conditions are generated extrapolating over the periodic
direction 1D flame profiles with the addition of a small broadband
velocity disturbance to trigger the instabilities and promote the
onset of the non-linear regime. After reaching the non-linear
regime, the simulations are carried for at least 100 laminar flame
times in order to collect statistical results.

A summary of the relevant parameters for the six performed
simulations is given in Table 1. Note that thermodiffusively stable
flames (DL), which exhibit purely hydrodynamic instabilities, have
markedly larger values of A. in units of flame thickness. This
results in a range of values of n. that can be explored by the DL
series using similar computational resources, is clearly narrower
than the TD series. Figure 13 shows instantaneous realizations of
the non dimensional temperature fields in the non-linear regime.

Observing the TD series at the top of Fig. 13 as n. increases
from left to right, we notice increasing corrugation which dra-
matically alters the flame morphology. A ubiquitous small scale

Table 1
Summary of DNS simulations of purely hydrodynamically (DL) or thermodiffusively
(TD) flames. Ze = 8 for all simulations.

Sim. € 1-0 Le ne Liep SwiSL
DL1 -2.0 0.90 1.36 9.2 400 1.57
DL2 -1.0 0.85 1.00 13.7 400 1.32
DL3 -1.0 0.90 1.00 16.3 400 1.85
TD1 0.5 0.85 0.49 7.6 40 2.03
TD2 0.5 0.85 0.49 20.0 105 4.03
TD3 0.5 0.85 0.49 76.0 400 4.52

corrugation, seemingly of constant scale in units of flame thick-
ness, is superimposed, for a large enough n¢, on finger-like, large
scale structures (flame fingers). The small scale corrugation is
observed to convect along the sides of the flame fingers due to a
tangential component of the flow velocity, while the asymmetric
fingers exhibit a lateral motion, inducing their periodic coales-
cence. This confirms the characteristic patterns observed by Berger
et al. in [18] for two-dimensional DNS of lean hydrogen flames. In
their study, the small scale corrugation was observed to be of the
same size of the most amplified wavelength as calculated from a
numerically derived dispersion relation. The large scale, finger-like
corrugation, on the other hand, was observed only for large
enough domains and no further scale of larger size was observed
for yet larger domains. This domain independence of spatial scales
is also confirmed by the present study as discussed later.

Contrary to solutions of the Sivashinky equation, the flame
sheet of the TD series now exhibits multiple folds which were
previously inhibited. This clearly suggests that the Sivashinky
equation is expected to be a poor model of thermodiffusively
unstable flames. Sub-adiabatic temperatures downstream of the
flame are also visible, indicating the tendency of flame breakup,
typical of sub-unity Lewis numbers. The substantial drop in tem-
perature here is not associated with flame extinction because,
as noted in [59,60], in adiabatic systems, despite the reduced
reaction rate, the unburned reactant gets completely consumed.
The DL1 simulation, for which Le > 1, on the contrary, exhibits
super-adiabatic temperatures.

The three simulations of the DL series clearly exhibit the
characteristic large size cusp-like corrugation, reminiscent of
“pole solutions” described earlier, with smaller size corrugation
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Fig. 13. Instantaneous non dimensional temperature fields for the two-dimensional DNS simulations of Table 1.

appearing on the cusp sides. For large enough values of n., this
secondary corrugation was observed to eventually become fractal
[17], although in the DL1-3 series n. seems to still be excessively
small to achieve such transition. We note in passing that such
fractal conformation is a feature of extremely large scale flames,
for which L/¢p may exceed values of say 103. For equivalent tur-
bulent flames, subject to turbulent fields characterized by integral
length scales of the order of L, it is likely that the Kolmogorov
scale may be considerably larger than the flame thickness, driving
the Karlovitz number to unrealistically low values, hardly observed
in practical devices.

3.2. Flame surface density

Similarly to the Sivashinsky model, we can extract statistical
quantities from the DNS data such as the mean progress variable
¢ along the vertical direction, the flame surface density ¥ = [V¢|
and the wrinkling factor E = |Vc|/|V¢|. Such quantities are shown
in Figs. 14-16. In particular, Fig. 14 shows wider flame brushes
as n. increases, which highlights, as expected, a more intense
corrugation as the number of unstable wavelengths in the domain
increases. Figure 15 displays the flame surface density, defined as
S = V|, conditioned to the mean progress variable. Generally,
Y. is observed to decrease as n. increases, essentially due to a
wider flame brush which reduces the flame surface density. In
the Le < Ley (TD) case, a peak of X is observed towards the
fresh mixture. Observing Fig. 13, this is attributed to the presence
of finger-like structures (TD2-3) protruding towards the fresh
mixture, observed in other simulations [18] and experiments [61].
In addition, the wrinkling factor shown in Fig. 16, confirms the
trend observed in the Sivashinsky model with the wrinkling factor
being larger for Le < Ley flames which exhibit additional wrinkling
of thermodiffusive nature. Finally, while some degree of similarity

can be observed for the Le > Ley cases between the DNS and the
Sivashinky results, severe differences arise in the Le < Ley cases,
where thermodiffusive effects strongly wrinkle and distort the
flame to an extent not predictable by a weakly nonlinear model.

3.3. Propagation speed

The Sivashinsky model revealed (see Fig. 9) a universal be-
havior of the incremental propagation speed U of a corrugated
flame front as a function of n. when both are adeguately rescaled
according to functions depending on thermochemical parameters.
This observation, ultimately due to the one parameter reformula-
tion of the Sivashinky model, (6), should clearly not be generalized
to real flames as it is gleaned in the context of a weakly nonlinear
model for which flame perturbations are small and single valued,
thus excluding any flame fold or pocket which may drastically
alter such scenario. Nevertheless, it appeared clear that thermal
expansion o plays a role in modulating the amplitude of flame
corrugation and thus in affecting the incremental propagation
speed U. Thus the rescaling of U with respect to an adequate
function of the thermal expansion coefficient should serve the
purpose of filtering out such effect leaving only the effect of
the extent of flame wrinkling. The latter was taken into account
through parameter n., again suitably rescaled by a function which,
at least for low values of n. was noticed to be close to unity.
We conclude that a universal scaling law of the kind shown in
Fig. 9 can be formally represented as U/Un (o) = f[nc Un(€,0)],
where Uy, and Uy are generic scaling functions.

Following such guidelines, we can tentatively propose a general
form for the scaling law of the nondimensional incremental flame
speed Uy of a generic real flame as follows:
Sw

— —1= UW(O’, nc) = Um(g)f(nC)

s, (11)
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where Sy, is the dimensional corrugated flame speed. Note that
this scaling law, while formally similar to the Sivashinsky type, is
structurally simpler as no scaling is envisioned for the variable n,
effectively placing U, = 1. This will operate no stretching of the
variable n¢, which in Fig. 9 was rather intense for thermodiffu-
sively unstable flames (8 > 0), i.e. at high values of n.. Such choice
is grounded on simplicity and on the lack of a clear form for Uy
applicable to real flames. This may suggest that thermodiffusively
unstable flames may scale differently as a function of n. than
purely hydrodynamically unstable flames, something that anyway
clearly emerged from the morphological differences of TD and DL
simulations of Fig. 13.

In [62], in the context of an evolution equation model for a
hydrodynamically unstable front, an expression for the scaling
function Upn(o) was derived for realistic values of the thermal ex-
pansion coefficient. The incremental propagation speed of a steady
corrugated front was expressed [17,62] by Eq. (11) where f(n.)
coincides with the analytical function Uy of Eq. (10). The scaling
function Up(o ) can be verified directly through DNS by computing

the incremental flame speed U, = (Sw/S;) — 1, for various values
of o, of a set of hydrodynamically unstable flames which have
attained a steady, cusp-like conformation. This was done, until at-
tainment of steady state, by propagating initially perturbed flame
fronts at varying o and constant n. = 3. In other words, each
flame is propagated in a domain of lateral size L = 3A., where A,
was estimated via dispersion relation Eq. 8 with Le = 1 and Ze = 8.
Results are shown in Fig. 17 which displays flame profiles as rep-
resentative contours of deficient reactant concentration Y = 0.5,
together with the analytical function Up(o) from [62] and the
computed values of Uy /f(n. = 3), which correspond to numerical
estimates of the scaling function once, in Eq. (11) it is assumed
that f(nc) = Uy from Eq. 10. As can be observed, the analytical
scaling function captures the effect of thermal expansion on the
propagation speed with reasonable accuracy.

We now utilize the numerical simulations of Table 1 to verify
the scaling proposed in Eq. (11) with the scaling function Up(o)
shown in Fig. 17. The ensuing dataset, however, is insufficient for
such task and it is therefore enriched by additional sets of litera-
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Fig. 17. (a) Steady flame profiles of hydrodynamically unstable flames for which n. =3 and (1 — o) =0.5,0.67,0.75, 0.8, 0.83, 0.875, 0.9. Domain is shown in units of L. (b)
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unstable flames.

ture data from recent simulations of unstable flames. In particular
we used two dimensional simulations by the following groups:

(a) Yu et al [17] of hydrodynamically unstable one-step chem-
istry flames at Le=1 (¢ = —-1) and 1 — o =0.8,0.875,0.9 in
the range nc =1 - 95,

(b) L. Berger et al. [18] of thermodiffusively unstable, lean
(¢ =0.44), hydrogen flames at an estimated Le =0.39
(¢ =0.35) and 1 — 0 = 0.77 in the range n. = 1 — 300,

(c) Frouzakis et al. [64] of lean to rich hydrogen flames which
are both hydrodinamically and thermodiffusively unsta-
ble (¢ =0.5, estimated Le=0.53 and 1-0 =0.8) or
only hydrodinamically unstable (¢ = 0.75 — 2.0, estimated
Le=0.82-196 and 1- 0 =0.835-0.854) in the range
ne=1-3.

Results are shown in Fig. 18 where the rescaled incremental
propagation speed Uy /Un(o) for each simulation is reported as a
function of the corresponding parameter n.. An initial observation
is that the DNS dataset, when rescaled, seems to roughly collapse
onto two distinct scaling behaviors. Indeed, a clear difference
exists between the behavior of Le > Ley (empty symbols) from
the Le < Leqy (filled symbols) flames, the latter propagating con-
siderably faster than the former. The existence of two visibly
different scaling behaviors for purely hydrodynamically (Le > Leg)
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Fig. 18. Rescaled incremental propagation speed Uy, /Un(o) as a function of n. for
various DNS studies including the present one. Empty symbols: Le > Ley (€ < 0);
filled symbols: Le < Ley (¢ > 0). Symbol shape refers to a DNS study while
symbol color to thermal expansion. Circles: Yu et. al Ref. [17]; Diamonds: Berger
et al. Ref. [18]; Triangles: Frouzakis et al. Ref. [64] Squares: present study. Red:
1-0=0.9; Orange: 1 —0 =0.835-0.854; Grey: 1 —0 =0.8; Cyan: 1 -0 =0.77.
Black squares refer to the Steady flame profiles of Fig. 17(a). Bold line, analytical
incremental speed Uy Eq. (10).
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and thermodiffusively (Le < Leg) unstable flames, was anticipated
earlier and is due to the vastly different morphology. In addition,
the lack of an adequate stretching function on the independent
parameter n. prevents the data to collapse on a unique scaling
behavior, contrary to the Sivashinky model.

Purely hydrodynamically unstable flames (Le > Ley) seem
to exhibit incremental propagation speeds which follow quite
well the analytical incremental propagation speed of pole solu-
tions Uy(nc) of Eq. (10). This remains true up to n,=6-38, a
cut-off value beyond which additional wrinkling appears. This
phenomenon is similar in nature to the one originating from an
increasing sensitivity to external noise, illustrated in the Appendix
for the Sivashinsky model. As mentioned, Yu et al [17] noticed, for
growing domain sizes, and thus growing n¢, an increasingly fractal
flame conformation which causes the propagation speed to deviate
from the analytical asymptotic value Uy = 0.125 of the single cusp
conformation. For very large values of n. it is still unclear whether
this behavior will eventually become domain independent and
plateau at a constant value. Indeed, simulations of Le > Ley flames,
for which Ac is relatively large (Ac ~ 10%¢p, with ¢p the flame
thicknesses), which exhibit n. > 102 are still excessively computa-
tionally intensive, even in two-dimensions, as they would require
lateral domains of the order of say L > 102A. ~ 10%¢p,.

Observing Fig. 18 in the presence of thermal diffusive insta-
bility (Le < Leg), on the other hand, flames exhibit a different
scaling behavior. The intense small scale corrugation and large
scale finger-like structures, observable in Fig. 13, which cannot
be reproduced within the weakly nonlinear Sivashinsky model,
yield incremental propagation speeds which are far larger than the
corresponding Le > Ley cases at the same values of n.. A growing
trend for the incremental propagation speed is also observed as
ne increases which, however, seems to plateau at a cut-off value
of n. ~ 30. Indeed Berger et al. [18], while performing simula-
tions of increasingly wider domains, eventually noticed a domain
independence with respect to the flame’s propagation speed,
indicating the existence of a finite-size largest scale corrugation.
This behavior seems to be confirmed by the largest of the Le < Leg
DNS simulations presented in this study (TD3).

3.4. Modelling considerations

Ultimately, Fig. 18 suggests that intrinsically unstable flames
tend to propagate according to two distinct scaling laws for the
incremental speed, depending on the presence of thermal-diffusive
instabilities or lack thereof. We can generically represent such
laws as Uw/Um = F(nc). The incremental propagation speed was
rescaled according to a function Up(o) in order to compensate for
the effect of thermal expansion and this seems to be effective in
leaving n. = L/A. as the main surviving independent variable in
a laminar scenario, A, being a purely thermophysical property of
the mixture. As a result, the behavior emerging from Fig. 18 may
find applications in a FSD-based premixed turbulent combustion
model. The interest here is to express the unresolved wrinkling
on a large eddy simulation (LES) grid by means of a modeled
generalized FSD ¥ = E|V¢|, wher E is the wrinkling factor and
¢ the resolved progress variable. Identifying the wrinkling factor
Z with the self-turbulent propagation speed, & = S,,/S; =1+ Uy,
then Fig. 18 may yield a model for the sub-grid wrinkling as
E(o,nc) =1+Un(0)F(n:). Because E would represent the
unresolved wrinkling on the LES grid of size A, then in this
context A would replace the role of hydrodynamic length L so
that n.= A/A.. While these remain preliminary suggestions,
future studies will be focused on their testing in a a-priori
fashion.

4. Conclusions

The self-turbulent propagation of a premixed flame in a qui-
escent mixture is analyzed. Self-wrinkling arises as a result of
two instability mechanisms: the hydrodynamic or Darrieus Landau
(DL) and the thermodiffusive (TD) mechanisms. While the DL
mechanism is unconditionally unstable, the TD mechanism can
be stabilizing or destabilizing. The conditions for which the two
forms of instability can coexist are preliminarily studied using
the weakly nonlinear Sivashinky equation in terms of thermal
expansion o and parameter € expressing deviations of the Lewis
number from a critical value. The parameter range for which both
instabilities are present can only be accessed by lean hydrogen or
hydrogen-diluted mixtures. The largest propagation speeds are ob-
served for flames subject to both forms of instability and inducing
a large thermal expansion which modulates the amplitude of the
corrugation. Through a variable transformation, the propagation
speed, adequately rescaled by a function of the thermal expansion
coefficient, can be made to collapse on a universal scaling law as
the function of the rescaled parameter n. = L/A, measuring the
number of unstable wavelengths within the lateral domain L.

A database of two-dimensional direct numerical simulations
is then presented, consisting in a series of paradigmatic, nomi-
nally planar flames exhibiting only DL instability or both DL and
TD instability and characterized by varying number of unstable
wavelengths n.. Destabilizing thermodiffusive effects are observed
to deeply corrugate the flame on multiple scales, something
that could not be observed in the weakly nonlinear model. On
the other hand, purely hydrodynamic effects are manifested as
cusp-like structures reminiscent of analytical ’pole’ solutions to
the Sivashinsky equation. Utilizing three additional DNS databases
from the literature we suitably rescale the propagation speed data,
to account for thermal expansion, and represent it as a function of
ne. Two different scaling behaviors emerge:

(a) flames subject to purely hydrodynamic (DL) instabilities ini-
tially scale similarly to analytical ‘pole’ solutions, with a plateauing
behavior, until n. exceeds a secondary cutoff at which additional
wrinkling emerges, significantly increasing the propagation speed
with ng,

(b) flames subject to the additional TD instability mechanism
propagate considerably faster than DL flames, owing to the par-
ticular multiscale wrinkling, but the propagation speed which
initially grows with n¢, plateaus at a cutoff value of n., larger
than the previous one, at which the largest structures reach their
maximum size.

An approach based on flame surface density is proposed in
order to model subgrid self-wrinkling in LES, grounded on the
gathered DNS data on propagation speed. Future work will be
dedicated to testing such model in a a-priori fashion.
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Fig. 19. Non-normal behavior of Eq. (4).

Appendix A. Sensitivity to external noise

In the absence of thermal-diffusive instabilities (¢ = —1) the
Sivashinsky equation reduces to the form Eq. (4) which is well
known to possess a family of exact, steadily propagating analytical
“pole solutions” [36]. The stability of such solutions was studied by
Vaynblat and Matalon [42,65] who recognized that the only stable
pole solution is the so called “coalescent pole solution” uy(§)
characterized by having the largest possible number of poles N for
a given value of the parameter o and domain size L. It was recog-
nized [1] that the numerical solution of Eq. (4) indeed converges
to the corresponding stable pole solution, possessing a cusp-like
flame conformation. However, for large enough domain sizes L
and/or small enough values of the parameter ¢, corresponding to
a large number of poles N, additional wrinkling was noticed to
appear sporadically on the flame surface, disrupting the steady
analytical pole solution [1,33,43]. This apparently contradictory
behavior, is due to the high sensitivity of the Sivashinsky equation
to external noise, which can amplify even the smallest numerical
round-off errors, provided N is large enough. This behavior was
attributed by Karlin [66] to the non-normal character of the eigen-
functions of the linear operator resulting from the linearization
about the pole solution. In other words, as the number of poles
N increases, such eigenfunctions, or a subset of them, become
increasingly collinear.

More specifically, perturbing the solution about a coalescent N-
pole solution, we express the solution as u(&,t) = uy(§) +@(&.t)
which, once substituted into Eq. (4) and upon linearizing yields

O =1(P) + adee — (Un)epe = Ay ¢ (12)

where Ay is the formal expression of the linear operator about the
N-pole solution. The linear stability of pole solutions and thus the
eigenvalues and eigenfunctions of Ay were determined analytically
in [42,65] where they were divided into two categories: type I and
type II. In particular, type I eigenfunctions were subdivided into
symmetric and antisymmetric functions.

A rigorous analysis of the non-normal character of Ay requires
the computation of its pseudospectra [67], a concept based on the
norm of the resolvent matrix. We can, however, analyze the indi-
vidual eigenfunctions of Ay to verify if they become increasingly
non-orthogonal as the number of poles N increases. Taking as
reference the symmetric type I eigenfunctions llf’I{V on the interval
2, we can define the inner product I';j = (1/[1v;l]) fq ¥iv;dE,
so that eigenfuctions are increasingly non-orthogonal as I';; — 1.

Figure 19(a) shows two representative eigenfunctions for increas-
ing pole number N, while Fig. 19(b) shows the inner product I';;,
suggesting that, indeed, a subset of eigenfunctions tend to become
increasingly non-normal as N increases.
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