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a b s t r a c t 

We study the propagation of premixed flames, in the absence of external turbulence, under the effect 

of both hydrodynamic (Darrieus–Landau) and thermodiffusive instabilities. The Sivashinsky equation in 

a suitable parameter space is initially utilized to parametrically investigate the flame propagation speed 

under the potential action of both kinds of instability. An adequate variable transformation shows that 

the propagation speed can collapse on a universal scaling law as a function of a parameter related to the 

number of unstable wavelengths within the domain n c . To assess whether this picture can persist in real- 

istic flames, a DNS database of large scale, two-dimensional flames is presented, embracing a range of n c 
values and subject to either purely hydrodynamic instability (DL) or both kinds of instability (TD). With 

the aid of similar DNS databases from the literature we observe that when adequately rescaled, propa- 

gation speeds follow two distinct scaling laws, depending on the presence of thermodiffusive instability 

or lack thereof. We verify the presence of secondary cutoff values for n c identifying (a) the insurgence 

of secondary wrinkling in purely hydrodynamically unstable flames and (b) the attainment of domain 

independence in thermodiffusively unstable flames. A possible flame surface density based model for the 

subgrid wrinkling is also proposed. 

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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1. Introduction 

Premixed flame propagation can be affected by exogenous

phenomena such as turbulence as well as by endogenous effects

such as intrinsic flame instabilities and, indeed, by the non-trivial,

synergistic action of both [1–4] . While the effects of turbulence

on flame morphology, transport and characterization of turbu-

lent speed have received universal attention trough theoretical,

numerical and experimental studies [5–9] , the specific role of

intrinsic instabilities has only recently gained increasing interest.

Various experimental [3,10–14] , analytical [4,15] and numeri-

cal [2,16–20] studies have indeed shown that instabilities can

play a substantial role in flame propagation, especially at low

turbulence intensity. On a practical level, intrinsic intabilities may

be key in understanding such phenomena as accidental large scale

gas explosions [21] or in explaining the effects of pressure on
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ame propagation [3,22] or in accounting for the inaccuracy of

ub-grid modelling in numerical simulations of premixed turbulent

ombustion [23] , to name a few examples. In all cases, instabilities

ill tend to dramatically corrugate the flame surface, according

o morphological features that can enhance the flame propagation

nd whose characteristics need to be accurately studied if a full

nderstanding of the propagative behavior is to be acquired. 

Flame instabilities are activated by two distinct mechanisms:

he ubiquitous Darrieus–Landau (or hydrodynamic) mechanism,

ue to thermal expansion, which is therefore unconditionally

ctive, and by thermal diffusive destabilizing effects which are

enerally manifested as small scale corrugation for sub-unity

ewis number conditions. The latter are dictated by the mass

iffusivity of the controlling reactant, such as those encountered

n lean hydrogen [24] or hydrogen-diluted mixtures [25] . Whether

hermal diffusive effects are stabilizing or destabilizing, a cutoff

avelength λc exists, depending on the mixture and on pressure,

or which all perturbations of larger wavelength will destabilize

n unconstrained planar front. Such cutoff wavelength can be

stimated to be one to two orders of magnitude larger than the

ame thickness [2,16,26,27] thereby rendering instability effects
. 
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nherently large-scale in nature, i.e. visible only for unconstrained

ames, spherical expanding flames, large enough Bunsen or slot

ames etc. Indeed, the large scale nature of such phenomena and

he ensuing potentially vast scale separation this entails [16] , is

he root cause hindering realistic three-dimensional direct nu-

erical simulations of intrinsically unstable flames encompassing

omains which are e.g. one or more orders of magnitude larger

han the cutoff wavelength. This was accomplished only using

impler tools, such as weakly nonlinear flame models [1,28] or in

wo-dimensional domains [17,18] where, under certain conditions,

ames were shown to exhibit a fractal conformation [17,28] . 

The occurrence of intrinsic flame instabilities depends ulti-

ately on the cutoff wavelength and how this compares to a char-

cteristic hydrodynamic length scale L constraining the premixed

ame, such as e.g. a Bunsen diameter or the radius of an expanding

pherical flame. Any small scale flame for which L < λc will there-

ore inhibit intrinsic instabilities. On the other hand, when L > λc ,

ellular corrugation will invariably manifest itself due to either

urely hydrodynamic effects, when Le > Le 0 or due to the interplay

f both hydrodynamic and thermal diffusive effects, when Le < Le 0 ,

here Le 0 � 1 is a critical Lewis number. Given the complex and

iverse nature of instability effects, an important preliminary task

s therefore the identification of a minimum set of parameters

hich uniquely and unambiguously identify such effects. This is a

rst step towards the identification of universal scaling laws for-

ulated as a function of such parameters. The primary objective

f this work is to extend the findings of previous work [1] , which

as limited to the effect of Darrieus–Landau instability, by incor-

orating thermal-diffusive effects and do so in a laminar setting.

he interplay of such effects with turbulence and the implications

his may have on scaling laws and on possible modifications of

xisting premixed turbulent combustion models is left to a future

tudy. As mentioned, we therefore identify the most suitable set

f independent parameters and subsequently verify if observables,

uch as the global propagation speed of the corrugated flame

ront, obey universal scaling laws in terms of such parameters. 

This work is divided into two parts. The first part utilizes the

eakly nonlinear Sivashinky model [29] to approach the general

roblem of the interplay between hydrodynamic and thermal dif-

usive instability in a freely propagating flame front in the absence

f external turbulence. Independent parameters are identified and

 universal scaling law for the propagation speed is formulated.

rawing on the findings of the first part and abandoning the con-

training hypotheses of the Sivashinky model, the second part uses

irect numerical simulations (DNS) of large scale two-dimensional

nstable flames to construct a database which, in conjunction

ith other existing DNS databases, is used to formulate scaling

aws which extend their validity to more realistic fully nonlinear

egimes. 

. The Sivashinsky model 

In this section we summarize the weakly nonlinear flame

odel, as first introduced by Sivashinky [29] as well as its equiv-

lent forms, obtainable through transformation of variables. The

ssociated dispersion relations, as well as more elaborate disper-

ion relations resulting from hydrodynamic theory, are then used

s a guide to establish the stability characteristics as a function of

he model parameters. Solutions of the Sivashinky model are later

sed to determine a scaling law for the front propagation speed. 

.1. Model definition and linear stability 

The weakly nonlinear integro-differential Sivashinsky equation

29] describes the evolution of the perturbation of a planar flame

ront and accounts for both thermal-diffusive and hydrodynamic
ffects. In its most general form it reads as follows 

 t + 4(1 + ε) 2 F xxxx + εF xx + 

1 

2 
F 2 x = (1 − σ ) I(F ) (1)

here 

(F ) = 

1 

4 π

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

| k | F ( ̃  x , t) e ik (x − ˜ x ) d kd ̃  x 

nd where F ( x, t ) is the dimensionless flame perturbation, consid-

red as a single-valued function of the dimensionless coordinate x ,

oth measured in units of the flame thickness l f . σ = ρb /ρu < 1 is

he ratio of burned to unburned density (coefficient of thermal ex-

ansion) and ε = (Le 0 − Le ) / (1 − Le 0 ) , where Le is the Lewis num-

er of the deficient reactant and Le 0 < 1 is a critical Lewis number.

imensionless time t is measured in units of l f / S L where S L is the

elocity of the planar laminar flame. Note that Eq. (1) was obtained

y assuming that (i) Le ~ Le 0 < 1 (ii) thermal expansion is weak

 − σ << 1 (iii) the nondimensional activation energy N = E/RT b is

 large number (using the notation used in [29] ). A mathematically

ore systematic derivation given later by Sivashinsky [30] consid-

ring the distinguished limit N(1 − Le ) = O (1) , led to an equation

imilar to (1) but with the coefficient (1 + ε) 2 ≈ 1 . Since, as ex-

lained below, we intend to accept the Sivashinsky model without

ny restriction on the Lewis number Le (or equivalently on ε), the
riginal form (1) will be retained in the following discussion. 

Eq. (1) accounts for the coexistence of thermal-diffusive and

hermal expansion effects on the stability and propagation of a

remixed flame. The second, third and fourth terms on the left

and side represent respectively a short wavelength stabilization

erm, a term accounting for stabilizing/destabilizing thermal-

iffusive effects, depending on whether Le is above/below Le 0 , or

is negative/positive respectively, and a nonlinear front prop-

gation term. The right hand side, on the other hand, accounts

or the destabilizing effect of thermal expansion. The dispersion

elation associated to the linearized form of Eq. (1) , expressing

he growth rate ω of a perturbed flame front with perturbation of

avenumber k , reads 

 = (1 / 2)(1 − σ ) k + εk 2 − 4(1 + ε) 2 k 4 , (2)

ndicating the unconditionally unstable character of the hydro-

ynamic (Darrieus–Landau) term due to thermal expansion (first

erm on the right hand side), the stabilizing/destabilizing diffusive

ffect (second term) depending on whether ε < 0 or ε > 0 respec-

ively and the stabilizing fourth order term. Note that when ε > 0

 Le < Le 0 ), i.e. destabilizing thermal-diffusive effects and in the ab-

ence of hydrodynamic effects, σ = 1 (constant density), Eq. (1) re-

uces to a form of the Kuramoto–Sivashinsky (KS) equation

30,31] which can lead to complex small-scale cellular structures 

nd chaotic dynamics. On the other hand when ε = −1 and σ � = 1,

nstabilities of thermal-diffusive origin are not present and the

ame is only subject to hydrodynamic effects. In this latter case

q. (1) can be recast into the Michelson–Sivashinsky (MS) form

1,32–35] by adopting the following variable transformation: 

 = (1 − σ ) 2 / 3 u ; t = (1 − σ ) −4 / 3 τ ; x = (1 − σ ) −1 / 3 ξ (3)

hich yields the MS form 

 τ − α u ξξ + 

1 

2 
u 2 ξ = I(u ) ; α = (1 − σ ) −2 / 3 (4)

n particular, Eq. (4) , which possesses analytical “pole” solutions

36] , was extensively analyzed in a previous study by Creta et al.

1] both in its original laminar form and in a forced version in

hich a correlated noise term was added to mimick turbulent

otions. 

Although the Sivashinsky equation (1) is valid in a small neigh-

orhood of Le 0 and for small thermal expansion, for illustrative

urposes it will be used, in this context, as a generalized equation
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Fig. 1. Critical wavelength λc shown on the (ε, 1 − σ ) plane for (a) dispersion relation Eq. (2) relative to Sivashinsky model Eq. (1) and (b) as estimated via the MCB model 

Eq. (8) with Ze = 9 . Symbols correspond to solutions shown in Fig. 4 for 1D flames ( ◦) and in Fig. 5 for 2D flames ( × ). 
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L 0 0 
even beyond its region of validity in order to fully capture the

qualitative effect of parameter variation on the flame. For example,

in the range ε < 0 we will at times assume | ε| large enough so
that Le > 1 values will be considered in the analysis or 1 − σ large

enough to encompass more realistic thermal expansion values. 

The dispersion relation Eq. (2) yields a critical (cutoff)

wavenumber k c and a critical wavelength λc = 2 π/k c , obtained

by imposing ω = 0 . Figure 1 (a) displays λc on the parameter

plane ( ε, 1 − σ ). Considering any contour line in Figure 1 (a) as

representative of domain size L , then all values of ε and σ that

lie above such line will trigger instabilities because L > λc , while

all values below this line will yield stable flames since L < λc .

A domain size of L = 400 units of flame thickness, for example,

is sufficient to trigger instabilities for almost all combinations of

parameters ε and σ . 

In the work by Michelson and Sivashinsky [37] , for the case

σ � = 1 and ε � = −1 , Eq. (1) was rescaled and presented in a one

parameter form. The equation thus obtained reads 

u τ + u ξξξξ + βu ξξ + 

1 

2 
u 2 ξ = I(u ) (5)

with the variable transformation given by 

β = 4 −1 / 3 (1 − σ ) −2 / 3 ε(1 + ε) −2 / 3 , 

F = uε/β , t = τε/ [ β(1 − σ ) 2 ] , x = ξε/ [ β(1 − σ )] . (6)

Figure 2 (a) displays the parameter β on the ( ε, 1 − σ ) plane, thus

relating the model represented by Eq. (5) to the original model

Eq. (1) . Such figure reveals that as β → ∞ , the model will only

retain destabilizing thermodiffusive effects as ε > 0 and σ → 1.

On the other hand, for β < 0, thermodiffusive effects will be

stabilizing ( ε < 0) and, for a given ε, hydrodynamic effects will

be stronger as β → 0. The limiting case of β → −∞ corresponds

to the model Eq. 4 . The dispersion relation associated to the

linearized form of Eq. (5) reads 

ω 
′ = 

1 

2 
k ′ + βk ′ 2 − k ′ 4 . (7)

The cutoff wavenumber k ′ c of Eq. (7) and the corresponding critical
wavelength λ′ 

c = 2 π/k ′ c is displayed on Fig. 2 (b) as a function of
the parameter β . Note that according to the scaling Eq. (6) the

critical wavelength corresponding to the original form given in

Eq. (1) is recovered as the rescaled quantity λc = λ′ 
c ε/β(1 − σ ) . 
To incorporate the effects of realistic density ratios, we resort

o the asymptotic dispersion relation that exploits the disparity

etween the hydrodynamic and diffusion scales, assuming that

= l f /L 	 1 where L is the the domain size, or hydrodynamic

ength. This expression, in dimensionless form, reads 

 = ω 0 k − δ[ B 1 + Ze (Le − 1) B 2 + P rB 3 ] k 
2 (8)

here L is used as a unit of length and the laminar flame speed as

 unit of velocity, and Ze, Pr and Le are the Zel’dovich, Prandtl and

ewis numbers, respectively. Such expression was taken from [38] ,

ut was first derived in [39] by neglecting buoyancy and expand-

ng the expression for the growth rate in powers of k . Parameters

 0 , B 1,2,3 are all functions of the expansion coefficient once the

ependence of the transport coefficients on temperature, λ( T ), is
pecified. These expressions are properly listed in [40,41] for a

eneral λ( T ); in [38] they are presented only for λ(T ) = T (with

 minor typo in B 2 ; the factor σ − 1 must be omitted). Note that

n [38,40,41] , σ is defined as the ratio of the unburned-to-burned

ensity ratio, i.e., the inverse of the present definition. When the

iscosity is assumed constant and independent of temperature

ne obtains B 3 = 0 . By placing ω = 0 one obtains the critical

avelength λc = 2 π/k c which can be expressed in units of the

ame thickness, similar to Fig. 1 (a), as λc / δ. In order to recast the
esult in a (ε, 1 − σ ) plane, Le 0 is recovered as the value for which

he diffusive coefficient of the quadratic term in Eq. (8) changes

ign, i.e. 

e 0 = 1 − B 1 + P rB 3 
ZeB 2 

(9)

he result for temperature independent transport coefficients is

hown in Fig. 1 (b) where the domain is only limited to the ε < 0,

.e. Le > Le 0 , for which diffusive effects are stabilizing (i.e. the

iffusive coefficient of the quadratic term in Eq. (8) is positive).

ndeed, for Le < Le 0 Eq. (8) would diverge and a stabilization

erm would have to be sought by carrying the linear stability

nalysis to higher order, which has not been done in the literature.

or Le < Le 0 , however, we note a close qualitative similarity to

esults obtained via Eq. (5) and displayed in Fig. 1 (a). The critical

ewis number Le 0 as a function of 1 − σ is displayed in Fig. 3 (b)

or various values of Ze . Figure 3 (a), following the definition of

arameter ε, displays the Le field in the (ε, 1 − σ ) plane, where

e = Le − ε(1 − Le ) . 
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Fig. 2. (a) Contour plot of the parameter β ( Eq. (6) ) on the ( ε, 1 − σ ) plane. (b) Critical wavelength λ′ 
c associated to Eq. (5) . 

Fig. 3. (a) Contour plot of Le on the (ε, 1 − σ ) plane.. (b) Critical Le 0 as derived from Eq. (9) with Ze = 9 . 
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.2. Nonlinear evolution and front morphology 

Representative solutions of Eq. 1 are displayed in Fig. 4 for

 domain size L = 400 , with periodic boundary conditions. Note

hat both the flame displacement F ( x, t ) and domain size were

escaled according to Eq. (6) . The left column, Fig. 4 (a), represents

< 0 solutions for which only Darrieus–Landau effects are present, 

hereas the right column, Fig. 4 (b), represents ε > 0 solutions for

hich the additional thermal-diffusive instability is active. Solu-

ions are displayed for growing values of 1 − σ . As can be observed

n Fig. 4 (a), Darrieus–Landau effects show as lar ge scale (cusp-like)

ells which are steadily propagating density ratios near unity. The

ffect of growing thermal expansion is to increase the amplitude

f the cells. At high values of 1 − σ, a secondary unsteady corru-

ation appears, which disrupts the otherwise steady character of

he large, cusp-like cells. Figure 4 (b) shows how thermal-diffusive

ffects are manif ested as a small scale unsteady corrugation which

s superimposed on Darrieus–Landau cells. Clearly, one of the main

imitations of the model is the single valued nature of the flame

isplacement F ( x, t ), which does not allow for fold or pockets

hich are, however, basic characteristics of thermodiffusively un-

table flames, as will be shown later in the DNS simulations. 
s  
Figure 5 shows similar solutions for the multidimensional

ersion of Eq. (1) . Very similar observations can be made for

uch two-dimensional flame surfaces, with the addition that the

oupling of the corrugation in the two spatial dimensions gives

ise to complex polyhedral structures, resembling caustic surfaces.

uch structures are particularly evident in Fig. 6 in terms of cur-

ature signatures, revealing the typically small scale corrugation

n thermodiffusively unstable flames. 

.3. Front propagation velocity 

The solution to Eq. (1) may be expressed at a given time

s a corrugated profile propagating in the vertical y -direction,

 (x, t) = −Ut + φ(x ) , where U , for steadily propagating structures,

epresents the incremental increase in propagation speed, in units

f laminar flame speed, relative to a nominal laminar planar flame

1] and φ is a zero-mean perturbation of such planar flame. Substi-

uting into Eq. (1) and taking the spatial average 〈·〉 = (1 /L ) 
∫ L 
0 · dx,

t can be shown, by enforcing continuity of derivatives at the pe-

iodic boundaries, that U = (1 / 2) 〈 (φy (x )) 
2 〉 . For unsteady cellular

olutions, the time averaged incremental speed U acquires the
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Fig. 4. Solutions F ( x, t ) of the one-dimensional Eq. (1) in a domain of size L = 400 . Solutions and domain were rescaled according to Eq. (6) . Left column (a) ε = −0 . 5 , right 

column (b) ε = 0 . 5 . From bottom to top figures: σ = 0 . 9 , 0 . 6 , 0 . 3 , 0 . 1 . From bottom to top: (a) β = −2 . 32 , −0 . 92 , −0 . 63 , −0 . 53 (b) β = 1 . 11 , 0 . 44 , 0 . 3 , 0 . 26 . 
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meaning of an incremental speed of a (self-) turbulent front in

statistical steady state, relative to the planar conformation. 

A parametric campaign was performed by varying the param-

eters (ε, 1 − σ ) and seeking in turn statistically steady solutions

of Eq. (1) on a domain of size L = 400 units of flame thickness.

Figure 7 displays a plot of the mean incremental propagation

speed U in the parameter plane (ε, 1 − σ ) for said solutions. We

observe that the highest values of U occur for strong thermal

expansion and large positive values of ε where the hydrody-

namically unstable structure coexists with the thermodiffusively

unstable cellular structure, thus enhancing the corrugated nature

of the front. Figure 7 also displays the loci of constant number of

unstable cells n c which seems to correlate directly to U . 

Using the scaling in Eq. (6) , the propagation speed data pre-

sented in Fig. 7 can be collapsed onto a single curve as a function

of β , as shown in Fig. 8 . The figure displays the scaled propagation
peed U/ (1 − σ ) 2 (here U is used interchangeably with U for ease

f notation), where from Eq. (6) , the scaling emerges from u/τ =
(F /t) / (1 − σ ) 2 . This rescaling effectively compensates for the

ncrease in flame perturbation amplitude as the thermal expansion

ncreases. Thus, any effect of thermal expansion (and thus on

orrugation amplitude) on the propagation speed is factored out,

eaving the effect of the extent of flame corrugation, measured by

arameter β . Being the critical wavelength λ′ 
c a single-valued func-

ion of β , as shown in Fig. 2 (b), the collapsed incremental propaga-

ion speed data of Fig. 8 can be equivalently recast as a function of
′ 
c = λc β(1 − σ ) /ε. However, a more effective measure of the ex-

ent of corrugation than λc is the parameter n c = L/λc which mea-

ures the number of unstable wavelengths in the domain L . We can

herefore recast Fig. 8 as a function of the rescaled number of un-

table wavelengths n c ε/ [ β(1 − σ )] , thus obtaining Fig. 9 . We note

hat for β 	 0 (corresponding to low values of n c → 1) the scaling
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Fig. 5. Solutions F ( x, y, t ) of the two-dimensional form of Eq. (1) in a square domain of size L = 400 and for the following parameters (a) ε = −0 . 3 , σ = 0 . 9 ( β ≈ −1 . 1 ) (b) 

ε = −0 . 3 , σ = 0 . 7 ( β ≈ −0 . 53 ) (c) ε = 0 . 5 , σ = 0 . 5 ( β ≈ 0.53) (d) ε = 0 . 5 , σ = 0 . 9 ( β ≈ 1.1) 

Fig. 6. Cellular structure of solutions displayed in Fig. 5 highlighed (black) in terms of the locus of negative curvature. 

Fig. 7. Contour plot on the (ε, 1 − σ ) plane of the mean incremental propagation 

speed U (bold continuous lines) for solutions to Eq. (1) on a domain of length L = 

400 . Also shown, the number of unstable cells n c = L/λc (dashed lines). Area below 

n c = 1 ( L = λc ) is the parameter space region of stability. 
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unction ε/ [ β(1 − σ )] ≈ 1 so that for purely hydrodynamically

nstable (thermodiffusively stable) flames, the rescaled and the

ctual values of n c effectively coincide. When β � 0 (correspond-

ng to values of n c � 1), the scaling function is well above unity

o that for thermodiffusively unstable flames the rescaled values

f n c are substantially larger than the actual values and the scaling

unction effectively operates a stretching transformation on n c . 

In conclusion, Fig. 9 shows that a universal scaling law can

e recovered between the incremental propagation speed U and

he number of unstable wavelengths n c when both are suitably

escaled by means of scaling functions which only depend on

he thermophysical parameters σ and ε. In the context of the
implifying assumptions of the Sivashinsky model, such scaling

unctions are lacking a factor expressing the dependence of the

ransport coefficients on temperature. This would imply a modified

ourth order derivative term in (1) requiring the extension of the

ispersion relation (8) to the stabilizing fourth order term, which

s mentioned was never done in the literature. Nevertheless,

ur result will prove a useful guideline in the search of a scal-

ng behavior for actual flames, as illustrated in Section 3 . Indeed

 c = L/λc is a parameter which can be readily recovered for any re-
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Fig. 8. Rescaled propagation speed U plotted against parameter β: data taken from 

Fig. 7 . Also shown (large symbols) are selected values of ε. 

Fig. 9. Rescaled incremental propagation speed U (filled symbols) plotted against 

the rescaled number of unstable wavelengths n c . Data taken from Fig. 7 . Bold line, 

analytical incremental speed U N Eq. (10) . 
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alistic configuration, being L a measure of the largest characteristic

hydrodynamic length and λc a function of the nature and compo-

sition of the flammable mixture as well as the ambient pressure. 

The particular form of the scaling law displayed in Fig. 9 can

be explained in terms of the following arguments. When β < 0

the flame exclusively experiences hydrodynamic instability and

this generally results in the formation of a single cusp-like flame

shape pointing towards the burned gas, that propagates at a con-

stant speed. Figure 8 shows that such speed has the asymptotic

value of U/ (1 − σ ) 2 = 0 . 125 which is attained as β → −∞ . This

coincides with the limiting configuration of a pole solution of

Eq. (4) , which exists only for ε = −1 , with increasingly large

number of poles, as observed in [1] . The analytical expression

of the incremental increase in propagation speed, for an N -pole

solution [1,42] of Eq. (4) , reads U N = 2 παN(1 − 4 παN) and

indeed plateaus at the value of 0.125 for large N , i.e. sufficiently

small α, where N = Int 
[

1 
8 πα + 

1 
2 

]
. From the dispersion relation

corresponding to Eq. (4) , it can be shown that n c = 1 / (4 πα) , so

that N = Int 
[
n c 
2 + 

1 
2 

]
where n c = L/λc is the number of unstable

wavelengths in the domain L and ultimately 

 N = 

1 

2 

N 

n c 

(
1 − N 

n c 

)
. (10)

The function U N is displayed in Fig. 9 along with the rescaled data

and seems to capture the scaling behavior up to some threshold

value of the rescaled n c . Note that the behavior near the bifurca-
ion value n c = 1 , after which the front loses stability, is also well

aptured because, as stated, the scaling function for small n c → 1

s close to unity. 

As β → 0 −, Fig. 8 shows that cusp-like solutions seem to di-

erge from the limiting pole solution and its corresponding value

f U/ (1 − σ ) 2 = 0 . 125 . Indeed, for large enough domains, the cusp

ides, which may be considered as quasi-planar [4] , become larger

han λc and undergo secondary bifurcations with the insurgence of

dditional corrugation. A mathematical description of the origin of

his phenomenon is given in the Appendix, where it is explained

n terms of the high sensitivity to external noise of the Sivashinsky

quation. A more physical explanation is that for β < ∼ 0 , thermod-

ffusive effects are only weakly stabilizing ( ε < ∼ 0 ) while thermal

xpansion effects may be large. As a result, additional cellular

tructures, due solely to hydrodynamic instability, appear on an

therwise smooth cusp-like conformation, thus increasing the

ropagation speed above the asymptotic value. Such additional

tructures, obtained in [17] through two-dimensional direct nu-

erical simulations by increasing the lateral size of the simulated

ame, were shown to induce a fractal conformation of the flame

urface. Very similar fractal corrugation was also observed with a

ivashinsky-type equation in [1,43] . The onset of this phenomenon

as predicted to occur at n c ≈ 4 . 5 − 5 for extemely low turbulence

evels in [1] and reported to occur at n c ≈ 4 − 4 . 5 in [4] . Such

alues seem to be substantially confirmed in Fig. 9 . 

For β > 0 thermodiffusive instability becomes active, with

ellular structures constantly forming and merging on the surface

f the cusp-like flame shape. The propagation speed of the front

ow becomes a marked function of β and the rescaled n c . As β
urther increases, the effect of thermodiffusive instability becomes

ominant with the flame surface exhibiting a growingly cellular

tructure. At sufficiently high values of β ( � 1) the hydrodynamic

xpansion dissappears and the purely thermodiffusive behavior

s recovered. In this regime the propagation speed is found to

cale approximately as ~ β3 . This regime is also clearly visible in

ig. 9 as a function of the rescaled n c which, in this regime, are

igher than the actual values of n c . 

.4. Flame surface density 

The Sivashinsky model can be used to extract statistical in-

ormation on a variety of quantities related to flame morphology.

ne such quantity, relevant to reaction rate modeling in premixed

urbulent combustion is the concept of flame surface density

FSD) �. The context of the Sivashinsky model clearly restricts

he analysis to a flamelet assumption so that an adequate repre-

entation of � can be assumed as that originally given by Bray

t al. [44] . Given solutions such as those shown in Fig. 4 , one

an assume flame sheets dividings an unburned zone, identified

y progress variable c = 0 , from a burned zone c = 1 . The flame

rush will be identified by the mean progress variable c along

he vertical flame displacement direction. Figure 10 displays the

ean progress variable in the vertical direction and clearly shows,

s expected, that the flame brush thickness tends to increase as

he thermal expansion increases. We also note that flame brushes

re generally thicker for ε > 0 due to the additional wrinkling of

hermal diffusive instabilities. 

Flame surface density can be represented [44] as � = n F /σF 

here n F is the average number of flame crossings per unit flame

ength along a constant c iso-surface and σ F is the cosine of the

ngle between the flame and such iso-surface. Figure 11 (a) shows

as a function of the mean progress variable for two values of

and several thermal expansion coefficients. Flames exhibiting

hermal diffusive instabilities ( ε = 0 . 5 ) also exhibit larger flame

urface densities. While this is essentially due to the extra small
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Fig. 10. Average progress variable c along the vertical flame displacement direction. 

for ε = −0 . 5 (red dashed lines) and ε = 0 . 5 (black continuous lines) at selected val- 

ues of σ . 
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cale wrinkling of thermal diffusive nature, caution must be

dopted when analyzing such results as the Sivashinsky model

onstrains flame displacement F to be a single valued function

f x . On the other hand, real flames may exhibit folds or pockets

hich can drastically influence both their flame surface density

nd propagation speed. Given a flame brush, a measure of the

nderlying flame wrinkling is given by the wrinkling factor [45] ,

efined as � = �/ |∇ c | where the gradient is intended in the ver-

ical displacement direction. Again, the largest flame wrinkling is

hown by flames exhibiting thermal diffusive instabilities ( ε = 0 . 5 ).

.5. Hydrocarbon and hydrogen mixtures 

Asymptotic hydrodynamic theory, such as that presented in

38] and yielding the dispersion relation Eq. 8 , can be utilized to

stimate the location, within the (ε, 1 − σ ) plane, of actual fuel/air

ixtures at variable equivalence ratios. Using a procedure similar

o [2,13] and mixture data from various sources, one obtains the

esults displayd in Fig. 12 . Clearly, only a small subdomain of the

lane is effectively spanned by actual fuel/air mixtures. Fig. 12 also

learly shows that the ε > 0 zone, where thermal-diffusive insta-
Fig. 11. (a) Flame surface density � = |∇c| (b) Wrinkling factor � = �/ |∇ c | , for ε = −0
ilities are active, can be accessed only by hydrogen/air mixtures.

s demonstrated by data from Ref. [25] , shown in Fig. 12 , a

ual-fuel mixture of propane and hydrogen in air can also access

he ε > 0 zone, provided the relative abundance of hydrogen is

arge enough. 

The diagram of Fig. 12 proves effective in locating the stability

roperties of premixed flames of various mixtures. Indeed, given

 mixture composition, the location on such diagram can be

dentified, revealing both the potential presence of thermodiffu-

ive effects and the extent of thermal expansion (hydrodynamic)

ffects. Points corresponding to recent DNS simulations, including

hose presented in the present study, are also located on the

iagram. A further analysis, based either on hydrodynamic theory

nd Eq. (8) or on the numerical recontruction via direct numerical

imulation (DNS) of dispersion relations, can reveal, for each

ame, the cut-off wavelength λc and thus the number of unstable

avelengths n c = L/λc for a given domain size or characteristic

ydrodynamic length L . This will prove useful, as illustrated in the

ollowing section, in extracting possible universal characteristics in

he propagation of unstable flames, similarly to those observed in

ig. 9 for the Sivashinsky model. 

. DNS of unstable flames 

In this section we move away from the weakly nonlinear

ivashinsky model and its limiting assumptions and utilize direct

umerical simulations to analyze, in a more realistic setting, the

ehavior of intrinsically unstable, nominally planar flames. In

articular, simulations are performed for a set of parameters that

nhibit as well as promote thermal diffusive instabilities, thereby

llowing the analysis of their interaction with the ubiquitous

ydrodynamic instabilities. We draw from the findings of the

ivashinsky model and especially from the general scaling of the

escaled propagation speed illustrated in Fig. 9 as a function of

he rescaled parameter n c , in order to verify if a coherent behavior

ersists in the context of, finite thickness, generic morphology

ame fronts at arbitrary density ratios and Lewis numbers. 

.1. Description of DNS simulations 

In the present study a well established numerical framework

or the direct simulation of intrinsic flame instabilities is em-

loyed [2,16,49,50] . Such framework is based on the low-Mach
 . 5 (red dashed lines) and ε = 0 . 5 (black continuous lines) at various values of σ . 
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Fig. 12. Locus of (ε, 1 − σ ) points for flammable mixtures at variable equivalence ratio φ or mixing ratio α. Values of the critical Lewis number Le 0 are estimated via Eq. 

(9) with temperature independent properties. Bold continuous lines: hydrocarbon/air and hydrogen/air mixtures at variable φ where Le is an effective Lewis number taken 

as a weighted average of individual Le numbers of oxidixer and fuel [38,46] and functions σ ( φ) and Ze ( φ) are fitted from experimental data by Tseng [47] . Thin continuous 

line: similar hydrogen/air mixture with data fitted from Ref. [48] . Dashed bold line: data from Ref. [25] relative to a dual-fuel hydrogen-propane mixture in air at p = 5 atm 

and at an overall eqivalence ratio φ = 0 . 8 , the ”mixing ratio” α measuring the relative proportion of the two fules ( α = 0 being pure hydrogen and α = 1 pure propane). 

Bold red symbols indicate current and literature DNS simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Summary of DNS simulations of purely hydrodynamically (DL) or thermodiffusively 

(TD) flames. Ze = 8 for all simulations. 

Sim. ε 1 − σ Le n c L / � D S w / S L 

DL1 -2.0 0.90 1.36 9.2 400 1.57 

DL2 -1.0 0.85 1.00 13.7 400 1.32 

DL3 -1.0 0.90 1.00 16.3 400 1.85 

TD1 0.5 0.85 0.49 7.6 40 2.03 

TD2 0.5 0.85 0.49 20.0 105 4.03 

TD3 0.5 0.85 0.49 76.0 400 4.52 
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number approximation of the governing equations and on the

transport of temperature and a deficient reactant, which govern

the reaction rate of a one-step irreversible reaction. The mentioned

approach is implemented in an equation-of-state-independent ver-

sion [51–55] of the incompressible and variable density massively

parallel flow solver nek50 0 0 [56] which is based on the spectral

element method (SEM) [57] for the discretization of the governing

equations. 

A set of two dimensional simulations of unstable, planar flames

are carried out consisting in two series of flames, denoted by

suffix TD (thermal-diffusive) and DL (Darrieus–Landau) depending

on the destabilizing or stabilizing character of thermal-diffusive

effects respectively. Each series consists of three simulations,

characterized by increasing values of n c which is obtained via

the numerical evaluation of the cut-off lengthscale λc as done

for instance in [16] . The computational setup is an inflow/outflow

configuration [58] characterized by periodic boundary conditions

in the crosswise direction which is also taken as the reference

hydrodynamic length L . In the streamwise direction, the dimension

of the domain is chosen in order to correctly contain the flame for

the entire non-linear evolution studied. The computational domain

is uniformly discretized using square spectral elements obtaining

at least ~ 14 grid points, for each flame, within the thermal

thickness δT of a corresponding 1D unstretched freely propagating

flame, defining the thermal thickness as δT = (T b − T u ) / max (∇T ) .

The initial conditions are generated extrapolating over the periodic

direction 1D flame profiles with the addition of a small broadband

velocity disturbance to trigger the instabilities and promote the

onset of the non-linear regime. After reaching the non-linear

regime, the simulations are carried for at least 100 laminar flame

times in order to collect statistical results. 

A summary of the relevant parameters for the six performed

simulations is given in Table 1 . Note that thermodiffusively stable

flames (DL), which exhibit purely hydrodynamic instabilities, have

markedly larger values of λc in units of flame thickness. This

results in a range of values of n c that can be explored by the DL

series using similar computational resources, is clearly narrower

than the TD series. Figure 13 shows instantaneous realizations of

the non dimensional temperature fields in the non-linear regime. 

Observing the TD series at the top of Fig. 13 as n c increases

from left to right, we notice increasing corrugation which dra-

matically alters the flame morphology. A ubiquitous small scale
orrugation, seemingly of constant scale in units of flame thick-

ess, is superimposed, for a large enough n c , on finger-like, large

cale structures (flame fingers). The small scale corrugation is

bserved to convect along the sides of the flame fingers due to a

angential component of the flow velocity, while the asymmetric

ngers exhibit a lateral motion, inducing their periodic coales-

ence. This confirms the characteristic patterns observed by Berger

t al. in [18] for two-dimensional DNS of lean hydrogen flames. In

heir study, the small scale corrugation was observed to be of the

ame size of the most amplified wavelength as calculated from a

umerically derived dispersion relation. The large scale, finger-like

orrugation, on the other hand, was observed only for large

nough domains and no further scale of larger size was observed

or yet larger domains. This domain independence of spatial scales

s also confirmed by the present study as discussed later. 

Contrary to solutions of the Sivashinky equation, the flame

heet of the TD series now exhibits multiple folds which were

reviously inhibited. This clearly suggests that the Sivashinky

quation is expected to be a poor model of thermodiffusively

nstable flames. Sub-adiabatic temperatures downstream of the

ame are also visible, indicating the tendency of flame breakup,

ypical of sub-unity Lewis numbers. The substantial drop in tem-

erature here is not associated with flame extinction because,

s noted in [59,60] , in adiabatic systems, despite the reduced

eaction rate, the unburned reactant gets completely consumed.

he DL1 simulation, for which Le > 1, on the contrary, exhibits

uper-adiabatic temperatures. 

The three simulations of the DL series clearly exhibit the

haracteristic large size cusp-like corrugation, reminiscent of

pole solutions” described earlier, with smaller size corrugation
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Fig. 13. Instantaneous non dimensional temperature fields for the two-dimensional DNS simulations of Table 1 . 
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ppearing on the cusp sides. For large enough values of n c , this

econdary corrugation was observed to eventually become fractal

17] , although in the DL1-3 series n c seems to still be excessively

mall to achieve such transition. We note in passing that such

ractal conformation is a feature of extremely large scale flames,

or which L / � D may exceed values of say 10 3 . For equivalent tur-

ulent flames, subject to turbulent fields characterized by integral

ength scales of the order of L , it is likely that the Kolmogorov

cale may be considerably larger than the flame thickness, driving

he Karlovitz number to unrealistically low values, hardly observed

n practical devices. 

.2. Flame surface density 

Similarly to the Sivashinsky model, we can extract statistical

uantities from the DNS data such as the mean progress variable

 along the vertical direction, the flame surface density � = |∇c| 
nd the wrinkling factor � = |∇c| / |∇ c | . Such quantities are shown

n Figs. 14 –16 . In particular, Fig. 14 shows wider flame brushes

s n c increases, which highlights, as expected, a more intense

orrugation as the number of unstable wavelengths in the domain

ncreases. Figure 15 displays the flame surface density, defined as

= |∇c| , conditioned to the mean progress variable. Generally,

is observed to decrease as n c increases, essentially due to a

ider flame brush which reduces the flame surface density. In

he Le < Le 0 (TD) case, a peak of � is observed towards the

resh mixture. Observing Fig. 13 , this is attributed to the presence

f finger-like structures (TD2-3) protruding towards the fresh

ixture, observed in other simulations [18] and experiments [61] .

n addition, the wrinkling factor shown in Fig. 16 , confirms the

rend observed in the Sivashinsky model with the wrinkling factor

eing larger for Le < Le 0 flames which exhibit additional wrinkling

f thermodiffusive nature. Finally, while some degree of similarity
an be observed for the Le > Le 0 cases between the DNS and the

ivashinky results, severe differences arise in the Le < Le 0 cases,

here thermodiffusive effects strongly wrinkle and distort the

ame to an extent not predictable by a weakly nonlinear model. 

.3. Propagation speed 

The Sivashinsky model revealed (see Fig. 9 ) a universal be-

avior of the incremental propagation speed U of a corrugated

ame front as a function of n c when both are adeguately rescaled

ccording to functions depending on thermochemical parameters.

his observation, ultimately due to the one parameter reformula-

ion of the Sivashinky model, (6) , should clearly not be generalized

o real flames as it is gleaned in the context of a weakly nonlinear

odel for which flame perturbations are small and single valued,

hus excluding any flame fold or pocket which may drastically

lter such scenario. Nevertheless, it appeared clear that thermal

xpansion σ plays a role in modulating the amplitude of flame

orrugation and thus in affecting the incremental propagation

peed U . Thus the rescaling of U with respect to an adequate

unction of the thermal expansion coefficient should serve the

urpose of filtering out such effect leaving only the effect of

he extent of flame wrinkling. The latter was taken into account

hrough parameter n c , again suitably rescaled by a function which,

t least for low values of n c was noticed to be close to unity.

e conclude that a universal scaling law of the kind shown in

ig. 9 can be formally represented as U/U m (σ ) = f [ n c U n (ε, σ )] ,

here U m and U n are generic scaling functions. 

Following such guidelines, we can tentatively propose a general

orm for the scaling law of the nondimensional incremental flame

peed U w of a generic real flame as follows: 

S w 

S 
− 1 = U w (σ, n c ) = U m (σ ) f (n c ) (11)
L 
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Fig. 14. Mean progress variable c as a function of vertical direction y , measured in units of flame thickness � D for (a) Le > Le 0 (DL) flames; (b) Le < Le 0 (TD) flames. 

Fig. 15. Flame surface density � = |∇c| conditioned to mean progress variable for c for (a) Le > Le 0 (DL) flames; (b) Le < Le 0 (TD) flames. Red lines correspond to the 

Sivashinsky model. 
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where S w is the dimensional corrugated flame speed. Note that

this scaling law, while formally similar to the Sivashinsky type, is

structurally simpler as no scaling is envisioned for the variable n c ,

effectively placing U n = 1 . This will operate no stretching of the

variable n c , which in Fig. 9 was rather intense for thermodiffu-

sively unstable flames ( β > 0), i.e. at high values of n c . Such choice

is grounded on simplicity and on the lack of a clear form for U n 

applicable to real flames. This may suggest that thermodiffusively

unstable flames may scale differently as a function of n c than

purely hydrodynamically unstable flames, something that anyway

clearly emerged from the morphological differences of TD and DL

simulations of Fig. 13 . 

In [62] , in the context of an evolution equation model for a

hydrodynamically unstable front, an expression for the scaling

function U m ( σ ) was derived for realistic values of the thermal ex-

pansion coefficient. The incremental propagation speed of a steady

corrugated front was expressed [17,62] by Eq. (11) where f ( n c )

coincides with the analytical function U N of Eq. (10) . The scaling

function U m ( σ ) can be verified directly through DNS by computing
he incremental flame speed U w = (S w /S L ) − 1 , for various values

f σ , of a set of hydrodynamically unstable flames which have

ttained a steady, cusp-like conformation. This was done, until at-

ainment of steady state, by propagating initially perturbed flame

ronts at varying σ and constant n c = 3 . In other words, each

ame is propagated in a domain of lateral size L = 3 λc , where λc 

as estimated via dispersion relation Eq. 8 with Le = 1 and Ze = 8 .

esults are shown in Fig. 17 which displays flame profiles as rep-

esentative contours of deficient reactant concentration Y = 0 . 5 ,

ogether with the analytical function U m ( σ ) from [62] and the

omputed values of U w / f (n c = 3) , which correspond to numerical

stimates of the scaling function once, in Eq. (11) it is assumed

hat f (n c ) = U N from Eq. 10 . As can be observed, the analytical

caling function captures the effect of thermal expansion on the

ropagation speed with reasonable accuracy. 

We now utilize the numerical simulations of Table 1 to verify

he scaling proposed in Eq. (11) with the scaling function U m ( σ )

hown in Fig. 17 . The ensuing dataset, however, is insufficient for

uch task and it is therefore enriched by additional sets of litera-
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Fig. 16. Wrinkling factor � = |∇c| / |∇ c | conditioned to mean progress variable for c for (a) Le > Le 0 (DL) flames; (b) Le < Le 0 (TD) flames. Red lines correspond to the 

Sivashinsky model. 

Fig. 17. (a) Steady flame profiles of hydrodynamically unstable flames for which n c = 3 and (1 − σ ) = 0 . 5 , 0 . 67 , 0 . 75 , 0 . 8 , 0 . 83 , 0 . 875 , 0 . 9 . Domain is shown in units of L . (b) 

Continuous line: Scaling function U m ( σ ) from Bychkov [63] ; Filled dots: incremental flame speed U w / f (n c = 3) computed from numerical simulations of hydrodynamically 

unstable flames. 
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Fig. 18. Rescaled incremental propagation speed U w / U m ( σ ) as a function of n c for 

various DNS studies including the present one. Empty symbols: Le > Le 0 ( ε < 0); 

filled symbols: Le < Le 0 ( ε > 0). Symbol shape refers to a DNS study while 

symbol color to thermal expansion. Circles: Yu et. al Ref. [17] ; Diamonds: Berger 

et al. Ref. [18] ; Triangles: Frouzakis et al. Ref. [64] Squares: present study. Red: 

1 − σ = 0 . 9 ; Orange: 1 − σ = 0 . 835 − 0 . 854 ; Grey: 1 − σ = 0 . 8 ; Cyan: 1 − σ = 0 . 77 . 

Black squares refer to the Steady flame profiles of Fig. 17 (a). Bold line, analytical 

incremental speed U N Eq. (10) . 
ure data from recent simulations of unstable flames. In particular

e used two dimensional simulations by the following groups: 

(a) Yu et al [17] of hydrodynamically unstable one-step chem-

istry flames at Le = 1 ( ε = −1 ) and 1 − σ = 0 . 8 , 0 . 875 , 0 . 9 in

the range n c = 1 − 95 , 

(b) L. Berger et al. [18] of thermodiffusively unstable, lean

( φ = 0 . 44 ), hydrogen flames at an estimated Le = 0 . 39

( ε = 0 . 35 ) and 1 − σ = 0 . 77 in the range n c = 1 − 300 , 

(c) Frouzakis et al. [64] of lean to rich hydrogen flames which

are both hydrodinamically and thermodiffusively unsta-

ble ( φ = 0 . 5 , estimated Le = 0 . 53 and 1 − σ = 0 . 8 ) or

only hydrodinamically unstable ( φ = 0 . 75 − 2 . 0 , estimated

Le = 0 . 82 − 1 . 96 and 1 − σ = 0 . 835 − 0 . 854 ) in the range

n c = 1 − 3 . 

Results are shown in Fig. 18 where the rescaled incremental

ropagation speed U w / U m ( σ ) for each simulation is reported as a

unction of the corresponding parameter n c . An initial observation

s that the DNS dataset, when rescaled, seems to roughly collapse

nto two distinct scaling behaviors. Indeed, a clear difference

xists between the behavior of Le > Le 0 (empty symbols) from

he Le < Le 0 (filled symbols) flames, the latter propagating con-

iderably faster than the former. The existence of two visibly

ifferent scaling behaviors for purely hydrodynamically ( Le > Le )
0 



268 F. Creta, P.E. Lapenna and R. Lamioni et al. / Combustion and Flame 216 (2020) 256–270 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

e  

t  

(  

m  

b  

f  

t  

e  

n  

i  

h  

s  

a  

c  

s  

c  

t  

n

 

i  

n  

T  

w  

t  

t  

t  

c  

t  

f  

t  

n

 

t  

b  

w  

w

 

p  

t  

i  

t  

m

 

o  

g  

d

D

 

c  

t

A

 

M  

v  

S  

a  

M  

1

and thermodiffusively ( Le < Le 0 ) unstable flames, was anticipated

earlier and is due to the vastly different morphology. In addition,

the lack of an adequate stretching function on the independent

parameter n c prevents the data to collapse on a unique scaling

behavior, contrary to the Sivashinky model. 

Purely hydrodynamically unstable flames ( Le > Le 0 ) seem

to exhibit incremental propagation speeds which follow quite

well the analytical incremental propagation speed of pole solu-

tions U N ( n c ) of Eq. (10) . This remains true up to n c = 6 − 8 , a

cut-off value beyond which additional wrinkling appears. This

phenomenon is similar in nature to the one originating from an

increasing sensitivity to external noise, illustrated in the Appendix

for the Sivashinsky model. As mentioned, Yu et al [17] noticed, for

growing domain sizes, and thus growing n c , an increasingly fractal

flame conformation which causes the propagation speed to deviate

from the analytical asymptotic value U N = 0 . 125 of the single cusp

conformation. For very large values of n c it is still unclear whether

this behavior will eventually become domain independent and

plateau at a constant value. Indeed, simulations of Le > Le 0 flames,

for which λc is relatively large ( λc ~ 10 2 � D , with � D the flame

thicknesses), which exhibit n c > 10 2 are still excessively computa-

tionally intensive, even in two-dimensions, as they would require

lateral domains of the order of say L > 10 2 λc ~ 10 4 � D . 

Observing Fig. 18 in the presence of thermal diffusive insta-

bility ( Le < Le 0 ), on the other hand, flames exhibit a different

scaling behavior. The intense small scale corrugation and large

scale finger-like structures, observable in Fig. 13 , which cannot

be reproduced within the weakly nonlinear Sivashinsky model,

yield incremental propagation speeds which are far larger than the

corresponding Le > Le 0 cases at the same values of n c . A growing

trend for the incremental propagation speed is also observed as

n c increases which, however, seems to plateau at a cut-off value

of n c ≈ 30. Indeed Berger et al. [18] , while performing simula-

tions of increasingly wider domains, eventually noticed a domain

independence with respect to the flame’s propagation speed,

indicating the existence of a finite-size largest scale corrugation.

This behavior seems to be confirmed by the largest of the Le < Le 0 
DNS simulations presented in this study (TD3). 

3.4. Modelling considerations 

Ultimately, Fig. 18 suggests that intrinsically unstable flames

tend to propagate according to two distinct scaling laws for the

incremental speed, depending on the presence of thermal-diffusive

instabilities or lack thereof. We can generically represent such

laws as U w /U m = F(n c ) . The incremental propagation speed was

rescaled according to a function U m ( σ ) in order to compensate for

the effect of thermal expansion and this seems to be effective in

leaving n c = L/λc as the main surviving independent variable in

a laminar scenario, λc being a purely thermophysical property of

the mixture. As a result, the behavior emerging from Fig. 18 may

find applications in a FSD-based premixed turbulent combustion

model. The interest here is to express the unresolved wrinkling

on a large eddy simulation (LES) grid by means of a modeled

generalized FSD � = �|∇ ̃  c | , wher � is the wrinkling factor and

˜ c the resolved progress variable. Identifying the wrinkling factor

� with the self-turbulent propagation speed, � = S w /S L = 1 + U w ,

then Fig. 18 may yield a model for the sub-grid wrinkling as

�(σ, n c ) = 1 + U m (σ ) F(n c ) . Because � would represent the

unresolved wrinkling on the LES grid of size �, then in this

context � would replace the role of hydrodynamic length L so

that n c = �/λc . While these remain preliminary suggestions,

future studies will be focused on their testing in a a-priori

fashion. 
. Conclusions 

The self-turbulent propagation of a premixed flame in a qui-

scent mixture is analyzed. Self-wrinkling arises as a result of

wo instability mechanisms: the hydrodynamic or Darrieus Landau

DL) and the thermodiffusive (TD) mechanisms. While the DL

echanism is unconditionally unstable, the TD mechanism can

e stabilizing or destabilizing. The conditions for which the two

orms of instability can coexist are preliminarily studied using

he weakly nonlinear Sivashinky equation in terms of thermal

xpansion σ and parameter ε expressing deviations of the Lewis

umber from a critical value. The parameter range for which both

nstabilities are present can only be accessed by lean hydrogen or

ydrogen-diluted mixtures. The largest propagation speeds are ob-

erved for flames subject to both forms of instability and inducing

 large thermal expansion which modulates the amplitude of the

orrugation. Through a variable transformation, the propagation

peed, adequately rescaled by a function of the thermal expansion

oefficient, can be made to collapse on a universal scaling law as

he function of the rescaled parameter n c = L/λc measuring the

umber of unstable wavelengths within the lateral domain L . 

A database of two-dimensional direct numerical simulations

s then presented, consisting in a series of paradigmatic, nomi-

ally planar flames exhibiting only DL instability or both DL and

D instability and characterized by varying number of unstable

avelengths n c . Destabilizing thermodiffusive effects are observed

o deeply corrugate the flame on multiple scales, something

hat could not be observed in the weakly nonlinear model. On

he other hand, purely hydrodynamic effects are manifested as

usp-like structures reminiscent of analytical ’pole’ solutions to

he Sivashinsky equation. Utilizing three additional DNS databases

rom the literature we suitably rescale the propagation speed data,

o account for thermal expansion, and represent it as a function of

 c . Two different scaling behaviors emerge: 

(a) flames subject to purely hydrodynamic (DL) instabilities ini-

ially scale similarly to analytical ‘pole’ solutions, with a plateauing

ehavior, until n c exceeds a secondary cutoff at which additional

rinkling emerges, significantly increasing the propagation speed

ith n c , 

(b) flames subject to the additional TD instability mechanism

ropagate considerably faster than DL flames, owing to the par-

icular multiscale wrinkling, but the propagation speed which

nitially grows with n c , plateaus at a cutoff value of n c , larger

han the previous one, at which the largest structures reach their

aximum size. 

An approach based on flame surface density is proposed in

rder to model subgrid self-wrinkling in LES, grounded on the

athered DNS data on propagation speed. Future work will be

edicated to testing such model in a a-priori fashion. 
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Fig. 19. Non-normal behavior of Eq. (4) . 
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ppendix A. Sensitivity to external noise 

In the absence of thermal-diffusive instabilities ( ε = −1 ) the

ivashinsky equation reduces to the form Eq. (4) which is well

nown to possess a family of exact, steadily propagating analytical

pole solutions” [36] . The stability of such solutions was studied by

aynblat and Matalon [42,65] who recognized that the only stable

ole solution is the so called “coalescent pole solution” u N ( ξ )
haracterized by having the largest possible number of poles N for

 given value of the parameter α and domain size L . It was recog-

ized [1] that the numerical solution of Eq. (4) indeed converges

o the corresponding stable pole solution, possessing a cusp-like

ame conformation. However, for large enough domain sizes L

nd/or small enough values of the parameter α, corresponding to

 large number of poles N , additional wrinkling was noticed to

ppear sporadically on the flame surface, disrupting the steady

nalytical pole solution [1,33,43] . This apparently contradictory

ehavior, is due to the high sensitivity of the Sivashinsky equation

o external noise, which can amplify even the smallest numerical

ound-off errors, provided N is large enough. This behavior was

ttributed by Karlin [66] to the non-normal character of the eigen-

unctions of the linear operator resulting from the linearization

bout the pole solution. In other words, as the number of poles

 increases, such eigenfunctions, or a subset of them, become

ncreasingly collinear. 

More specifically, perturbing the solution about a coalescent N -

ole solution, we express the solution as u (ξ , t) = u N (ξ ) + φ(ξ , t)

hich, once substituted into Eq. (4) and upon linearizing yields 

t = I(φ) + αφξξ − (u N ) ξφξ = A N φ (12)

here A N is the formal expression of the linear operator about the

 -pole solution. The linear stability of pole solutions and thus the

igenvalues and eigenfunctions of A N were determined analytically

n [42,65] where they were divided into two categories: type I and

ype II. In particular, type I eigenfunctions were subdivided into

ymmetric and antisymmetric functions. 

A rigorous analysis of the non-normal character of A N requires

he computation of its pseudospectra [67] , a concept based on the

orm of the resolvent matrix. We can, however, analyze the indi-

idual eigenfunctions of A N to verify if they become increasingly

on-orthogonal as the number of poles N increases. Taking as

eference the symmetric type I eigenfunctions ψ 
N 
k 

on the interval

, we can define the inner product �i j = (1 / || ψ i || ) ∫ � ψ i ψ j dξ ,

o that eigenfuctions are increasingly non-orthogonal as �i j → 1.
igure 19 (a) shows two representative eigenfunctions for increas-

ng pole number N , while Fig. 19 (b) shows the inner product �i j ,

uggesting that, indeed, a subset of eigenfunctions tend to become

ncreasingly non-normal as N increases. 
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