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Abstract

Fairness and robustness are two important notions
of learning models. Fairness ensures that models
do not disproportionately harm (or benefit) some
groups over others, while robustness measures the
models’ resilience against small input perturbations.
While equally important properties, this paper illus-
trates a dichotomy between fairness and robustness,
and analyzes when striving for fairness decreases
the model robustness to adversarial samples. The
reported analysis sheds light on the factors causing
such contrasting behavior, suggesting that distance
to the decision boundary across groups as a key fac-
tor. Experiments on non-linear models and different
architectures validate the theoretical findings. In ad-
dition to the theoretical analysis, the paper also pro-
poses a simple, yet effective, solution to construct
models achieving good tradeoffs between fairness
and robustness.

1 Introduction

Data-driven learning systems have become instrumental for
decision-making in a variety of consequential contests, in-
cluding assisting in legal decisions, [Jayatilake and Ganegoda,
2021], lending, [Stevens et al., 2020], hiring, [Schumann e al.,
20201, and providing personalized recommendations. [Burke,
2003]. Consequentially, fairness has emerged as a critical
requirement for adoption and usage of these systems. Various
notions of fairness drawing from legal and philosophical doc-
trine have been proposed to ensure that the models’ errors do
not affect specific groups [Mehrabi er al., 2021].

In general, fair models attempt at constraining their hypoth-
esis space so that errors in reported outcomes are uniformly
distributed across different protected groups [Mehrabi er al.,
2021]. When these fairness constraints are enforced in learn-
ing systems, a commonly observed behavior is an overall
degradation of the model accuracy. Thus, a growing body of
research has been focusing on striking the right balance be-
tween fairness and accuracy [Rodolfa et al., 2021]. This paper
shows that fairness may have another important consequence
on the deployed models: a reduction of the model robustness.
Given the susceptibility of deep learning models to adversarial
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attacks in security-sensitive applications, this is an important
yet underexplored issue.

Contribution. This paper shows that enforcing fairness may
negatively affect the robustness of a model. Specifically, the
paper (1) analyzes when and why fairness and robustness may
be misaligned in their objectives, (2) provides an understand-
ing on the relationship between fair, robust, and “natural” (e.g.,
non-fair non-robust) models, and (3) identifies the distance
to the decision boundary as a key aspect linking fairness and
robustness. Moreover, (4) the paper shows how the distance to
the decision boundary can explain the increase of adversarial
vulnerability of fair models, providing validation over a variety
of tasks and architectures, and verifying the presence of the
fairness/robustness dichotomy for multiple techniques aimed
at achieving fairness and measuring robustness. Finally, (5)
building from the reported theoretical observations, the paper
also proposes a simple, yet effective, strategy to find a good
tradeoff between accuracy, fairness, and robustness.

The results show that, without careful considerations, induc-
ing a desired equity property may create significant security
challenges. These results should not be read as an endorse-
ment to avoid constructing fairer or safer models; rather as a
call for additional research to achieve appropriate tradeoffs.

Relation with previous work. We discuss related work
in Appendix A! and highlight here the distinguishing fea-
tures of this study in the context of robustness and fairness
research. The intersection of fairness and robustness has re-
ceived limited attention thus far, with only a handful of stud-
ies examining this area. For instance, [Xu ef al., 2021a] re-
cently showed that adversarially robust models can exhibit
significant accuracy disparity among different classes, as op-
posed to their standard counterparts. To address this issue,
they proposed a Fair-Robust-Learning framework for adver-
sarial defense. Meanwhile, [Khani and Liang, 2020] ana-
lyzed the impact of noise in features on disparities in er-
ror rates when learning regression models. While previous
studies highlighted how adversarial training can dispropor-
tionately harm certain protected groups [Xu er al., 2021a;
Nanda et al., 20211, we demonstrate that enforcing fairness
comes at the expense of reduced robustness. As a result, the
proposed analysis requires a distinct approach from those pro-
posed in earlier studies.

'Please refer to [Tran et al., 2022c] for the appendices.
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2 Problem Settings

Consider a multi-class classification problem, whose input
is a dataset D con51st1ng of n data points (X;, A;,Y;), each
of which drawn i.i.d. from an unknown distribution II and
where X; € X is a feature vector, A; € A is a protected
attribute, and Y; € ) = [C] is a label, with C being the
number of possible class labels. For example, consider the
case of a classifier to predict the age range of an individual.
The features X; may describe the pixels associated with the
individual headshot and their demographics, the protected
attribute A; may describe the individual gender or ethnicity,
and Y; represents the age range. The goal is to learn a classifier
fo : X — Y, where 6 is a vector of real-valued parameters.
The model quality is assessed in terms of a non-negative loss
function £ : Y x Y — R, and the training aims at minimizing
the empirical risk function:

) ey

6= argmm Ly(D ( Z (fo(X

For a group a € A, notation D,, is used to denote the subset
of D containing exclusively samples ¢ with A; = a. Impor-
tantly, the paper assumes that the attribute A is not part of the
model input during inference. The paper focuses on learning
classifiers that satisfy group fairness (to be defined shortly)
and on analyzing the robustness impact of fairness.

3 Preliminaries

Fairness and fair learning. This paper considers a classi-
fier f satisfying accuracy parity [Zhao and Gordon, 2019], a
group fairness notion commonly adopted in machine learning
requiring model misclassification rates to be conditionally in-
dependent of the protected attribute. That is, V(X, A,Y) ~ II
and Va € A,

Pr(fo(X) #Y | A=a) = Pr(fo(X) #Y)| <a, (2

where a denotes the allowed fairness violation. In practice, the
above is expressed as a difference of empirical expectations
of the group and population misclassification rates. That is,
Va € A:

Yipal Y H{fo(X

(X,A,Y)€D,

)AYE=1nY  {fo(X) £V} <a

(X,AY)eD

Several approaches have been proposed in the literature to
encourage the satisfaction of accuracy parity. They can be
summarized in methods that use penalty terms into the empir-
ical risk loss function to capture the fairness violations, and
those which minimize the maximum group loss. The core of
the paper focuses on the first set of methods; the analysis for
the second set is presented in Appendix C.

Penalty-based methods. In this category, the model loss
function (Equation (1)) is augmented with penalty fairness
constraint terms [Agarwal et al., 2018; Tran ef al., 2021b] as:

S Io(Ds Ee(D)I> G)

Or(N) —argmm Lo(D) + A (
acA
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where Lo(Da) = 1/1Dal X2 (x, 4,y )ep, {(fo(X),Y) is the em-
pirical risk loss of protected group a € A. In addition, A > 0
is the fairness penalty parameter that enforces a tradeoff be-
tween fairness and accuracy.

Robustness and robust learning. Following robust learning
conventions, the robustness of a model f is measured in terms
of the robust error:

L5 () = Pr(3r, lIrlly < e fo(X +7) £Y), @)
which measures the sensitivity of the model errors to small
input perturbations ||7||, < € in £, norms, with p often con-
sidered in {0, 1, 2, co}. Robust errors can be decomposed into
two components [Zhang er al., 2019]:

Li°(0) = L + £ 5)
where the first denotes the natural error and the second the
boundary error. The natural error measures the standard
model performance when exposed to unperturbed samples
(X,AY):

L5 =Pr(fo(X)#Y), (6)

whose empirical version is defined in Equation (1) with a 0/1
loss function. The boundary error measures the probability
that the model predictions change on perturbed samples (X +
I7llps A, Y):

Lg% (e) =Pr(AIrll, < e fo(X +7) # fo(X),
fo(X) =Y). (7)

The concept of boundary error inherently involves a decision
boundary as well as a distance between an input sample and
the decision boundary. In the context of linear classifiers,
this boundary is typified by a hyperplane. The distance from
a sample X to the decision boundary in a classifier fy is
expressed as:

A(X, fo) fo(X
Note that samples close to the decision boundary will be less
tolerant to noise than those lying far from it. The analysis
in this paper regarding the impact of fairness on robustness
is based on this concept. In particular, the results show that
imposing fairness constraints may reduce the distance to the
decision boundary of the samples (X, A,Y") ~ IL

=max s.t. fy(X +7) = ), VTl < e

4 Real-World Implications

Prior diving into the analysis, we provide an example showing
how robustness errors can be exacerbated when a image clas-
sifier is trained to satisfy fairness. When perturbations (either
due to noise or by malicious adversaries) are introduced in the
model inputs, they may cause harmful effects as they lead the
classifier to misclassify targeted inputs.

Figure 1 shows UTKFace dataset examples processed by
classifiers trained either on the standard empirical risk loss
from Equation (1) (top) or the fair empirical risk loss from
Equation (3) (bottom). Although both inputs receive identical
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Loo = 4/255 X

Ground truth: 0-10

Predicted (reg): 0-10
Predicted (fair): 0-10

class: child

Ground truth: 50-60

Predicted (reg): 30-40
Predicted (fair): 50-60

class: woman

Predicted (reg): 0-10
Predicted (fair): 50-60

Predicted (reg):30-40
Predicted (fair): 10-15

Figure 1: An example of robustness loss in the UTKFace dataset. A regular (reg) and a fair models are trained to predict age group from faces
and exposed to adversarial examples generated under an RFGSM attack. The predictions of the regular model do not change under adversarial
examples (regardless of their original correctness), while those of the fair models do.

¢+, noise perturbations, the fair network is much more brittle,
inducing errors in the classifier’s outputs.

It is important to note that while this paper uses datasets
such as UTKFace (see details in Appendix D) to demonstrate
the effects of fairness to robustness, the very task of predicting
gender, race, or other characteristics from a person face is
flawed and raises deep ethical concerns [Raji ef al., 2020].

5 Why Fairness Weakens Robustness?

This section presents the main results of the paper. It will show
that fairness affects model robustness because the learned
decision boundary is pulled in opposite directions by fair and
robust models. To render the analysis tractable, the theoretical
discussion focuses on linear classifiers, and more specifically
on learning a mixture of Gaussians with a linear classifiers.
In addition, Section 6 will show that a similar phenomenon
occurs in large non-linear models.

5.1 Optimal Models for Mixtures of Gaussians

Consider a binary classification setting (i.e., Y = {—1,1})
with data drawn from a mixture of Gaussian distributions,
sothat Pr(X | Y = —1) xc N (p,1) and Pr (X | Y =1)
N (ji, K?), with < ji and different variances (K > 1).
These non-restrictive assumptions help simplifying and clar-
ifying exposition, but the appendix generalizes the above to
higher-dimensional cases. An illustration of this setting is
reported in Figure 2 (top) where the data distributions are
highlighted with black dashed curves.

The following analysis poses no restrictions on the rela-
tive subgroup sizes |D;| and |D_4]| and focuses on the bal-
anced data setting, in which data samples from different pro-
tected groups are equally likely. The paper studies a family
of parametric classifiers {fg}o with 0 € [u, i] C R, where
fo(X) = 1{X > 6} denotes the classification output of the
classifier. The optimal models with respect to the natural, fair,
and robust losses can be specified as follows:

e Optimal natural model (f 0) It is the Bayes classifier

which minimizes the natural classification error as defined in
Equation (1). In Figure 2 (top), this classifier is represented
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by vertical blue lines.

e Optimal fair model (fg,). Intuitively, this classifier is
0¢(c0) as defined in Equation (3). Formally speaking, this
classifier minimizes a lexicographic function whose first com-
ponentis ) . 4 (Lg(D,) — Lo(D))| and second component
is Ly(D). In Figure 2 (top), this classifier is represented by
vertical red lines.

e Optimal robust model ( f §(©) ). This classifier minimizes

the robust classification error in Equation (5), for a given €. In
Figure 2 (top), it is depicted by vertical green lines.

5.2 Relationships Between the Optimal Models
The next result characterizes the positional relationship among
the three optimal models mentioned above, which can be
observed in Figure 2.

Theorem 1. Forany e € [0, (¢=#)/2] and K € (1, Bg|, where
Bg = min {exp ((t=—20%/2) , (n=)/e — 1},

pre< b < g <09 <p-e @®)

Besides, 055) is an increasing function of € over [0, (r=0)/2].

The result follows from the observation that the optimal natural
model fj can be expressed as

p— i

0 K2-1

= p— +K2K_1\/2(K271)1n(K)+(g*ﬁ)2;

the fair classifier fp, as:

=i

O =p+

—_

and the robust classifier f ) as

_ p—p— (K?+1)e

=k K2 -1
o[22 ) W(E) + (a2
K2-1 = '

6L
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Figure 2: An optimal natural 6*, fair 6, and robust 6, classifiers for
K =5 (left) and K = 10 (right) with p = —1 and i = 1.

We note that [Xu et al., 2021a] derives expressions for the op-
timal natural and robust models, which are used to investigate
the natural error gap between the two classes. Importantly,
however, Theorem 1 above provides a unique comparison
among the three classifiers analyzed, highlighting the difficulty
in achieving both robustness and fairness simultaneously, as
fairness and robustness pull the optimal classifier in opposing
directions. While [Xu et al., 2021a] focuses on the unfairness
resulting from robust training, the remainder of this section
examines the cost of adversarial robustness in fair training.
Specifically, we measure this reduced robustness cost analyz-
ing robust and boundary errors.
From the relations highlighted in Theorem 1, it follows,
1. fair classifiers achieve the largest robust errors while robust
classifiers result in the least error;
2. fair classifiers achieve the largest boundary errors while
robust classifiers result in the smallest boundary error, as
expressed by the following Corollaries.

Corollary 1. Forany e € [0, (,—R)/2] and K € (1, Bg],

craofb (€) > ng (€) > clggi) (€).

Corollary 2. Forany e€ [0, (¢=)/a] and K € (1, Bg ]|,

bdy bdy bdy
‘C’of (6) 2 'Cé (6) > 'Cage) (6) ’

= —i—2¢)? L — [
where B = min {exp (%),gﬁ*l(Q — 2)} and

¢~ is the inverse function associated with ¢ : [1,+00)
[2,4+00) such that p(xz) =z + 1/ .

These results further highlight the impossibility of achieving
fairness and robustness simultaneously in this classification
task. Fairness and robustness are pulling the classifier in
opposite directions.

5.3 The Role of the Decision Boundary

Building on the previous results, this section provides the
key theoretical intuitions to explain why fairness increases
adversarial vulnerability. It identifies the average distance to
the decision boundary as the central aspect linking fairness
and robustness, which is formalized in Theorem 2.
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Theorem 2. For any ¢ € [0, (1—1)/2] and K € (1, Bk,

< (o0 ) () o )

In addition, the fair model minimizes the average distance to
its decision boundary over all valid classifiers, i.e.,

0 = argmin E [A (X, fo)] .

0€(p, i)

Theorem 2 indicates that, among the three considered optimal
models, the fair model has the smallest average distance to the
decision boundary while the robust model has the largest dis-
tance. The result above is exemplified in Figure 2. The bottom
plots show the losses associated with the optimal natural, fair,
and robust models for two choices of K (left and right) while
the top plots show the optimal decision boundaries associated
with each of the three models — notice they correspond to the
minima of their relative losses.

Observe that class Y = 1 has a higher classification er-
ror than class Y = —1 under the natural (and thus un-
fair) classifier f;. This is intuitive since the conditional
distribution Pr (X | Y =1) has much higher variance than
Pr (X | Y=—-1). Hence, to balance the classification errors,
the fair classifier pushes the decision boundary towards the
mean of class Y = —1. This increases the error of class Y = —1
while decreasing the error of class Y =1. In contrast, the ro-
bust classifier pushes the decision boundary far away from the
dense input region, i.e., the mean of the data associated with
classY = —1.

There are a few points worth emphasizing. First, robustness
and fairness pull the decision boundary into two opposite di-
rections. Second, the fair model fp, results in predictions with
higher robust errors, when compared to the optimal natural
model f;, and it also increases adversarial vulnerability as the
variance K increases. The variance K regulates the difference
in the standard deviation of the underlying distributions asso-
ciated with the protected groups and thus controls the overall
distance to the decision boundary. In summary, fairness can
reduce the average samples distance of the training samples
to the decision boundary which, in turn, makes the model less
tolerant to adversarial noise.

This section concludes with another important result. The
previous relationships continue to hold even when the optimal-
ity conditions of the fair classifier are relaxed, i.e., when A is
taking values different from oco. Moreover, the fairness con-
straints always reduce the distance to the decision boundary
among protected groups and this reduction is proportional to
the strength of the fairness constraints (or the tightness of the
required fairness bound «).

Theorem 3. Consider the fair classifier fy, () that optimizes
Eq. (3). It follows that, for any \ € (%, —|—oo>,

Or(N) = b,

which means that the fair classifier fo.(\) coincides with the
optimal fair classifier fo,, when the fairness penalty \ is large.
while for any X € [0, K=1/K+1],

p—p
0r(A) =p

b=t
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Figure 3: Comparing group’s natural accuracy (left) and its average
distance to the decision boundary (right) in fair and unfair models
(UTK-Face dataset).
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Moreover, the parameter 0:(\) associated with the fair clas-
sifier and the average distance to its decision boundary
E [A (X, fgf()\))] are both decreasing as ) increases.
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Informally speaking, Theorem 3 states that applying fairness
constraint with large enough penalty \ will push the deci-
sion boundary towards the negative class (group with smallest
variance). As a result, the average distance to the decision
boundary of all samples will be reduced.

While this analysis applies to the setting considered in this
section, the results are empirically validated on large non-
linear models. For example, Figure 3 compares the perfor-
mance of a fair CNN model (bottom plots) with A = 1.0
against a natural (non-fair) CNN classifier (top plots). The
left plots report the task accuracy by each subgroup (denoting
races) and average distance to decision boundary (right) of
each subgroup. Note how the fair classifier reduces the dispar-
ities in task accuracy experienced by the various subgroups.
This effect, however, also reduces the overall average distance
to the decision boundary. As a consequence, fair models will
be more vulnerable to adversarial perturbations.

The next sections focus on assessing these theoretical intu-
itions onto general non-linear classifiers in a variety of settings
and on devising a possible mitigation strategy to balance a
good tradeoff between fairness and robustness.

6 Beyond the Linear Case

This section empirically validates the theoretical insights dis-
cussed earlier, extending them to more complex architectures,
datasets, and loss functions. Our experiments focus on explor-
ing the interplay between fairness, robustness, and error rates
in relation to decision boundary proximity. For nonlinear mod-
els fy, calculating this proximity becomes a computational
challenge. Hence, we employ a widely-used proxy metric
that quantifies the difference between the two highest order
statistics of the softmax output [Wang and Loog, 2022].

Datasets. The experiments of this section focus on three
vision datasets: UTK-Face [Zhang et al., 2017], FMNIST
[Xiao et al., 2017] and CIFAR-10 [Krizhevsky ef al., 2009].
The adopted protected groups and labels in the UTK-Face
datasets are ethnicity (White/Black/Indian/Asian/Others) or
age (nine age bins), resulting in two distinct tasks. For
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Figure 4: Natural errors, fairness deviations, and average decision-
boundary distances for the UTK-Face (ethnicity and age bins) and
CIFAR datasets, with variations in the fairness coefficient A on a
CNN model.

FMNIST and CIFAR, the experiments use their standard la-
bels and assume that labels are also protected groups, mir-
roring the setting of previous work [Tran er al., 2022a;
Ma et al., 2022]. A complete description of the dataset and
settings is found in Appendix E.

Settings. The experiments consider several deep neural net-
work architectures, including CNN, ResNet 50 [He et al.,
2016] and VGG-13 [Simonyan and Zisserman, 2014]. The for-
mer uses 3 convolutional layers followed by 3 fully connected
layers. Models trained on the UTK-Face data use a learning
rate of 1e~2 and 70 epochs. Those trained on FMNIST and CI-
FAR, use a learning rate of 1e ! and 200 epochs, as suggested
in previous work [Xu et al., 2021a]. The experiments analyze
penalty-based fairness method, RFGSM attacks [Tramer er al.,
20171, and the VGG-13 network, unless specified otherwise.
Additional experiments using group-loss focused method (see
Appendix C), additional network architectures, and adversarial
attacks are reported in Appendix E.

Fairness impacts on the decision boundary. As shown by
Theorem 3, fairness reduces the average distance of the testing
samples to the decision boundary. This section illustrates how
this result carries over to larger non-linear models. Figure 4
reports results obtained by executing the penalty-based fair
models on the UTK-Face datasets for ethnicity (top) and age
(middle) classification and on CIFAR (bottom). A clear trend
emerges: As more fairness is enforced (larger A values), the
natural errors (left plots) increase, while the fairness violations
(center plots) decrease. Importantly, and in agreement with the
theoretical results, the experiments report a sharp reduction
to the average distance to the decision boundary (right plots).
This behavior renders fair models more vulnerable to adver-
sarial attacks, as will be highlighted shortly. Similar results
are also observed for the group-loss based models and other
architectures (see Appendix E).

Boundary errors increase as fairness decreases. This sec-
tion highlights the key consequence of the sharp reduction to
the average distance to the decision boundary: the increase of
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Figure 5: Top: Natural errors (left) and fairness violations (right) on the UTKFace ethnicity task at varying of the fairness parameters A. The
middle plots compares the robustness of fair (A > 0) vs. natural (A = 0) classifiers to different RFGSM attack levels. Bottom: Mitigating

solution using the bounded Ramp loss.
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Figure 6: Natural error (left) and fairness violation (right) at varying
of the margin perturbation €, and fairness parameters .

the vulnerability to adversarial attacks. Figure 5 (top) reports
the natural errors (left), boundary errors (middle), and fairness
violations (right) for a VGG-13 model trained on UTKFace
dataset on the ethnicity task using a standard cross-entropy
(CE) loss. Once again, other architectures® and datasets are
reported in the appendix and the results follow the same trends
as those reported here. Error rates and fairness violations
are evaluated for fair classifiers across different fairness co-
efficients, denoted as A. We also report boundary errors for
classifiers that meet various fairness levels (A in {0, 1, 2}) and
robustness strengths (¢), as defined in Equation (4).

Notice how, compared to natural models, fair models incur
much higher natural and boundary errors. In particular, the
fairness models have boundary errors that are up to 9% larger
than their natural counterparts. These observations match
the theoretical analysis and highlight a significant increase in
vulnerability to adversarial examples by the fair models, even

2With the caveat that VGG-13 could not be used for FMNIST
since the 28x28 pixel resolution of FMNIST is smaller than that
required by some VGG filters.
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for moderate selections of the fairness violation parameters .

6.1 Enforcing Both Fairness and Robustness

This section considers an additional experiment that high-
lights the potential negative impact of fairness on robustness.
The experiment involves a classifier attempting to achieve
both fairness and robustness. similar to [Xu et al., 2021al,
which incorporates two fairness components to align per-class
natural/robust accuracy per class with overall natural/robust
accuracy (see Equation (9) in [Xu et al., 2021al), our approach
adds both robustness and fairness regularization terms to the
standard classification objective function. The resulting model
aims at solving the following regularized empirical risk prob-
lem:

n

mein Lo(D) + % max £(fo(X; +7),Y5)

 |rll,<e.

F A [1oa Y €30, Y) = 3 USo(X), V)

acA| (X,AY)eD,

using stochastic gradient descent. The second component
aims at increasing the robustness of the classifier under a
margin perturbation ¢,, following the PGD training [Madry
et al., 2017] with perturbation norm p = oo. It works by first
generating adversarial samples X; + 7, where ||7|locc < €,
and then the learning progress aims at minimizing the loss
between the model prediction for that adversarial samples and
the ground-truth ¢(fo(X; + 7),Y;). The larger the margin
perturbation e, the more robust the resulting classifier. The
third component implements a penalty-based fairness strategy
[Fioretto et al., 2020; Tran et al., 2022b; Agarwal et al., 2018],
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Figure 7: Robust errors for different attack levels € of a robust and fair classifier at varying of the margin perturbation €, and fairness value .
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Figure 8: Classifiers using different losses (top) and the associated
natural and robust errors (bottom).

which promotes fairness by penalizing the difference among
each groups’ average loss and the overall’s average loss.

The experiments vary the margin perturbation €, (robust-
ness) and the penalty value X (fairness). Figure 6 reports the
(natural) error (left) and fairness violations (right) for differ-
ent levels of the margin perturbation €, on the UTK-Face
(ethnicity) dataset. As expected, enforcing larger margin per-
turbations e, increases model robustness, but at the cost of
significantly increasing the natural errors. Increasing the
fairness parameter A\ decreases the fairness violation.

Figure 7 reports the robust errors under different levels of ad-
versarial attacks, specified by the perturbation value €. Notice
how the level of defense €, correlates with higher robustness
(smaller robust errors) for all fairness parameters A tested.
These results show the challenge to achieving simultaneously
robustness, fairness, and accuracy. They also suggest that the
incorporation of both robustness and fairness, as proposed in
[Xu et al., 2021al, may not effectively reduce the trade-off
between accuracy, robustness, and fairness.

7 A Mitigating Solution

While previous sections established the inherent trade-
off between fairness and robustness, we now introduce a
theoretically-grounded solution to mitigate this conflict. Note
that in standard (unbounded) loss functions, misclassified
samples far from the decision boundary incur much higher
losses than those near it. Given that the decision boundary
is a pivotal factor connecting fairness and robustness, we
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propose using a bounded loss function [Goh er al., 2016;
Collobert er al., 2006]:

LRamp(fo(X),Y) = min(1, max(0,1 — Y f4(X))),

and referred to as Ramp loss, with domain (0, 1]. Our strategy
incorporates this bounded loss function into a fair classifier,
as outlined in Equation (3). The benefits are evident in Figure
5, where it shows decreased natural (left) and boundary errors
(middle) for fair classifiers with A > 0.

Figure 8, further illustrates the strenghts of the proposed
strategy. The results depict the same setting used in the previ-
ous section and compare a fair classifier trained using the
ramp loss with one trained using a 0/1-loss (which is
also bounded but not differentiable), a log-loss , and an
exponential loss (both unbounded) (top). The results show
that the fair classifier trained using a ramp-loss is the least
impacted by misclassified samples, resulting in lower robust
errors compared to unbounded losses. It can be observed in
the bottom subplot, where its associated loss is the closest,
among all differentiable losses, to the local minima. Further
analysis reported in Appendix E illustrates the strength of the
proposed solution.

8 Conclusions

This paper was motivated by two key challenges brought by
the the adoption of modern machine learning systems in con-
sequential domains: fairness and robustness. The paper ob-
served and analyzed the relationship between these two im-
portant machine-learning properties and showed that fairness
increases vulnerability to adversarial examples. Through a
theoretical analysis on linear models, this work provided a
new understanding of why such tension arises and identified
the distance to the decision boundary as a key explanation
factor linking fairness and robustness. These theoretical find-
ings were validated on non-linear models through extensive
experiments on a variety of vision tasks. Finally, building
from this new understanding, the paper proposed a simple, yet
effective, strategy to find a better balance between accuracy,
fairness and robustness.

Overall, our results show that, without a careful consideration,
inducing a desired equity property on a learning task may cre-
ate significant security challenges. We stress that this should
not be read as an endorsement to satisfy a single property, but
as a call for additional research at the intersection of fairness
and robustness in order to design appropriate tradeoffs and
hope that our results could stimulate such a needed discussion.
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